
Blockchained Federated Learning for Internet of Things: A

Comprehensive Survey

YANNA JIANG, University of Technology Sydney, Broadway, Australia

BAIHE MA, University of Technology Sydney, Broadway, Australia

XU WANG, University of Technology Sydney, Broadway, Australia

GUANGSHENG YU, CSIRO, Sydney, Australia

PING YU, Harbin Institute of Technology, Harbin, China

ZHE WANG, Xidian University, Xian, China

WEI NI, CSIRO, Sydney, Australia

REN PING LIU, University of Technology Sydney, Broadway, Australia

The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing

digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Feder-

ated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure

and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things

(IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet

of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diver-

sity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and

effective solution for distributed model training, while the overhead and compatibility still need further study.

It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of ac-

commodating dynamic environments in IoV and the high demands of identity and permission management

in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data

heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping

researchers and practitioners to make informed decisions about the selection and development of BlockFL

for various IoT application scenarios.
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1 INTRODUCTION

The Internet of Things (IoT), comprising smartphones, laptops, vehicles, and smartwatches, is
ubiquitous and equipped with sensing and computing capabilities that enable accurate and effec-
tive data analysis and decision-making based on massive data and advanced models [2]. Artificial

Intelligence (AI) disciplines, especially the field of Machine Learning (ML), have been rapidly
growing and widely applied to enhance the performance of these devices and drive the evolu-
tion of related industries [38, 87]. However, big-data-based applications bring significant risks and
challenges, particularly in traditional centralized storage and computing approaches. The data col-
lected by mobile devices and containing sensitive information is growing at an unprecedented rate,
leading to a development bottleneck in cloud-based data processing.

Various approaches have been proposed to meet the requirements of new-generation data stor-
age, data processing, and privacy protection. One such approach is Federated Learning (FL), a
distributed ML approach introduced in 2016 by McMahan et al. [80]. In the FL model, training
data is kept locally on edge devices, instead of being uploaded to a central server. By only sharing
the model parameters for aggregation, FL mitigates the risk of privacy leakage during raw train-
ing data transmission, relieves the burden of centralized data storage and computation, and aligns
well with the IoT development trend. FL empowers devices to collaboratively learn a shared model
while maintaining data locally, thereby circumventing the centralization of sensitive information
and further addressing the concerns over data privacy and security in the IoT ecosystem [13].

There is a growing focus on research in FL, recognizing the specific challenges and problems
related to FL, such as heterogeneity and trust issues of the central server [60, 152]. To address these
concerns and further advance development, Blockchain technology [86], which enables safe data
storage and sharing, is introduced as an alternative to classical the central server of FL. Blockchain
is a distributed and immutable ledger, consisting of blocks of data that are linked and secured using
cryptography [113]. It ensures data consistency, integrity and trustworthiness across Blockchain
peers, fostering a secure environment for decentralized systems [32]. The integration of FL and
Blockchain technology can leverage their strengths and enable the training of distributed models
in a secure and decentralized way. The advent of Blockchain technology as a complement to FL
introduces an unprecedented level of security and trust. By decentralizing the management of
model updates and data exchanges, Blockchain ensures that the learning process within FL is
immutable and transparent [97].

In this article, we explore the synergistic integration of FL and Blockchain technologies, com-
monly referred to as BlockFL, across various domains of the IoT. The IoT landscape is vast and
diverse, encompassing a range of application areas, each with its unique challenges and require-
ments. To provide a structured and in-depth analysis, we focus on four specific application areas of
IoT, selected for their distinct characteristics and the unique benefits they can derive from BlockFL
technologies:

— Personal Internet of Things (PIoT): PIoT enhances the connectivity and automation of
daily-use objects, using data from individual sensors and devices to drive personalization and
convenience [34]. The integration of BlockFL in PIoT is crucial for ensuring data privacy and
security in personal applications [58].
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Fig. 1. This figure presents a taxonomy of recent studies on Blockchained FL. It is based on a statistical analy-

sis of references, categorized by their technological focus and IoT application domains. Our study stands out

as it concentrates on BlockFL, differentiating it from research that mainly focuses on either FL or Blockchain

separately. Moreover, our work provides a broader analysis of applications and development in diverse IoT

fields, surpassing studies confined to one or two domains.

— Industrial Internet of Things (IIoT): IIoT is geared toward revolutionizing industrial pro-
cesses through intelligent manufacturing and smart factories [110]. In IIoT, BlockFL is in-
strumental in ensuring secure, efficient, and transparent industrial operations, enhancing
productivity and process optimization [53].

— Internet of Vehicles (IoV): IoV focuses on vehicle-related aspects of IoT, providing real-
time traffic information and enhancing in-vehicle services [21]. The role of BlockFL in IoV is
vital for managing vast amounts of vehicular data securely and efficiently, improving trans-
portation systems and vehicle-to-infrastructure communication [108].

— Internet of Health Things (IoHT): IoHT connects patients and healthcare providers, uti-
lizing biomedical sensors for improved healthcare services [104]. The application of BlockFL
in IoHT is paramount for safeguarding sensitive health data, ensuring data integrity, and fa-
cilitating secure health data exchange [19].

By categorizing these IoT domains, we aim at highlighting the distinct challenges each faces and
how the convergence of FL and Blockchain can offer tailored solutions. The criteria for selecting
these domains include the sensitivity and volume of data involved, the criticality of data security
and privacy, the need for efficient data processing, and the potential for enhancing overall system
efficiency and user experience. This categorization allows for a focused examination of BlockFL’s
role in addressing the unique needs of each domain, paving the way for innovative applications
and advancements in IoT.

As shown in Figure 1, our work focuses on BlockFL tailored to various IoT applications with
the collation and analysis of the latest research. In contrast, prior works like [42, 88], and [5] focus
more on separate discussions of FL and Blockchain, while [169] pays less attention to specific IoT
scenarios, emphasizing theoretical analysis. In [100], authors discuss Blockchain as a solution to
existing FL issues, focusing more on how to optimize the performance of FL rather than discussing
the development of BlockFL. Research in [109] and [43] are concerned with specific domains within
IoT, and [7] and [128] only consider either Blockchain or FL aspects alone, which seem limited
compared to our work. Our research highlights the role of BlockFL in security and privacy, trust
and reliability, efficiency, and data diversity within four IoT domains: PIoT, IIoT, IoV, and IoHT. We
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analyze the distinct needs and challenges in those IoT domains, with the different development
focuses of BlockFL under different application areas.

BlockFL has shown growing popularity and potential as a novel solution in recent years. Fur-
ther survey work is necessary to synthesize current research and inform future developments. The
four IoT domains we discussed cover a broad spectrum, addressing the primary concerns of rele-
vant stakeholders and researchers. The challenges we pay attention to are the most mentioned in
the current research, which can not be ignored in future applications and developments related to
BlockFL. Issues of privacy and security are most frequently discussed in FL and Blockchain, hence
critical in BlockFL. Trust and reliability are emerging as new focus areas with increasing system
demands. Efficiency in learning and resource allocation is an ongoing challenge for BlockFL, espe-
cially in IoV scenarios, while addressing data diversity is crucial for practical applications in PIoT
and IoHT. Our analyses provide targeted insights into the future development and optimization
of BlockFL in different application scenarios, including enhancing security and privacy, building
trust and reliability, improving efficiency, and addressing data diversity.

Moreover, our work discusses the potential integration of other learning frameworks, such as
Split Learning, Transfer Learning, and Continuous Learning with BlockFL, which have not been
explored in other articles. By leveraging the techniques of these learning frameworks, BlockFL can
be further optimized in terms of efficiency and scalability, providing a more robust and feasible
application across various IoT scenarios. This integration paves the way for tailored solutions that
cater to specific needs within the diverse landscape of IoT applications, thereby enhancing the
practical utility and implementation success of BlockFL models.

The key contributions of this article are summarized as follows:

— We conduct a detailed analysis of BlockFL in four common scenarios, i.e., PIoT, IIoT, IoV, and
IoHT, and highlight the challenges faced by BlockFL in these contexts. We also examine the
advantages and disadvantages of BlockFL concerning these challenges comprehensively.

— We present an overview of the relationship between BlockFL, FL, and Blockchain, and per-
form a comparative classification of existing BlockFL applications and features in various
scenarios, focusing on four essential aspects: security and privacy, trust and reliability, effi-
ciency, and data heterogeneity.

— We analyze the common challenges and unique needs of BlockFL across different application
domains and find that combining existing technologies (including cryptography, anomaly
detection, compression techniques, and normalization) and enhancing the exploration of
Blockchain components can drive the development of BlockFL.

Our analysis reveals that features of decentralization and transparency make BlockFL a secure
and effective solution for distributed model training, while the overhead and compatibility still
need further investigation for the fruition of BlockFL. Considering diverse application domains,
our analysis also indicates that, besides the universal considerations of privacy protection, resource
constraints and data heterogeneity, each domain presents unique challenges, e.g., the requirement
of accommodating dynamic environments in IoV and the high demands of identity and permission
management in IoHT. It is anticipated that this article can serve as an informative guide for future
research efforts.

The rest of this article is organized as shown in Figure 2. Section 2 introduces the concepts and
definitions of FL, Blockchain, and BlockFL. Section 3 describes the different application scenarios of
BlockFL. Sections 4 – 7 illustrate the latest application BlockFL models focusing on these different
scenarios. The most prominent features of each reference are highlighted to show their advantages
and limitations. Section 8 summarizes the key lessons learned from the previous sections and puts
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Fig. 2. Overall structure of this article.

forward future research directions. Finally, the conclusion of this article and suggestions for the
follow-up works are presented in Section 9.

2 FEDERATED LEARNING, BLOCKCHAIN, AND BLOCKFL

This section introduces important concepts and models of FL and Blockchain, and analyzes the
basic framework of BlockFL that combines FL and Blockchain technologies.

2.1 FL

FL is a distributed ML framework [80] involving N training participants and an aggregator. Partici-
pants, such as mobile devices, utilize their local datasets D for the training process and share their
model parameters instead of their raw data. Meanwhile, the aggregator, such as a server, aggre-
gates the shared local models as a global model. The central aggregator acts as a model coordinator
rather than a data repository for the local data of the participants, preserving data privacy [152].
The structure allows the global model to benefit from diverse data sources without learning indi-
vidual datasets, as raw data is never shared.

In a typical FL process, there are four steps involved. By using {P1, . . . , Pi , . . . , PN } to denote
the N training participants, the typical FL process is shown in the Figure 3 and divided into the
following parts:

— First, the aggregator initializes the model and distributes it to all the participants;
— Next, the ith participant Pi trains the model using its local dataset Di . The participant then

obtains an improved model with an updatewi , which is achieved by minimizing a loss func-
tion F (wi ) as given by:w∗

i = arg min F (wi ), i ∈ N , where the loss function F (wi ) is chosen
differently depending on the FL algorithm to meet the model requirements of different sce-
narios;

— After local training, Pi transmits updated parameters to the aggregator for subsequent opti-
mization;

— Finally, the aggregator calculates the shared parameters with the aggregation algorithm and
updates the model according to the calculation results.

Then, the updated model is returned to the participants, and the next round of training begins.
These processes continue to loop until the model reaches the expected performance.

The model update in each loop is determined by the choice of the aggregation algorithm used in
the FL process. One of the most commonly used aggregation algorithms is FedAvg [80], which per-
forms aggregation by computing the average during the FL process. Specifically, FedAvg calculates
the shared parameters wG as follows:

wG =
1∑

i ∈N |Di |

N∑

i=1

|Di |wi , (1)

where |Di | represents the number of local training data in the dataset Di of participant Pi .
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Fig. 3. Traditional FL process: Firstly, participants download the global model from the central aggregator.

Then, participants perform local model training in parallel. Thirdly, participants upload their local models.

Finally, the aggregator performs global model aggregation. The process repeats until the global model

converges.

The FedAvg algorithm has limitations, such as the need to synchronize all updated parame-
ters at each iteration and the consideration of dataset size in weight calculation. To address the
limitations, several variants of FedAvg have been proposed to improve the effectiveness of aggre-
gation. Reisizadeh et al. [103] introduce FedPAQ, which allows for multiple local updates before
sharing parameters and controls participant selection. Li et al. [61] develop the FedProx algorithm,
which uses a proximal term to reduce the computing consumption of heterogeneous data. Wang
et al. [129] improve the FedMA algorithm, which applies a Bayesian non-parametric mechanism
to adjust the model size based on distribution heterogeneity.

2.2 Blockchain

As the underlying support of Bitcoin, Blockchain is a distributed ledger technology that uses
cryptographic techniques to secure and maintain a decentralized database [48]. Blockchain is de-
signed to provide independent internal verification, communication, transmission, and storage
while maintaining a reliable and transparent environment [156]. This technique has the potential
to meet various data requirements as it allows any peer to add new data and maintain synchronized
information according to specific rules.

The Blockchain is structured as a series of blocks that store transactional information. Each
block is comprised of two parts, i.e., the header and the body, as shown in Figure 4. The block
header includes hash values of the previous block and its own, enabling the blocks to link and
form a continuous chain [111]. The Merkle Root Hash locks all the transactions in the block such
that the transactions cannot be tampered without changing the root hash. The Nonce field reflects
the Blockchain consensus works. The body of the Blockchain holds detailed information about
transactions, which are cryptographically secured, ensuring the data it contains is immutable and
tamper-resistant once a block is added to the chain [123].

The features of Blockchain [81] have led to rapid development in existing industries, which can
be described as follows:

— Decentralization is the most significant feature of Blockchain. With the consensus algorithm,
Blockchain can verify and execute information transactions without requiring a trusted third
party.

— Immutability is an essential trait of Blockchain, as all peers approve the information newly
added through a decentralized consensus. Hence, it is difficult and expensive to change the
record of the Blockchain, which requires the consent of the majority.

— Auditability is also an important feature of Blockchain. Each transaction in the Blockchain
is accompanied by a unique hash and timestamp, and a copy of the Blockchain is held by all
peers, allowing every peer to audit any specific transaction.
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Fig. 4. The Structure of Blockchain Blocks.

— Blockchain is autonomous. With smart contracts, Blockchain can realize trust in physical
machines, not bothered by anyone’s interference.

Blockchains have already demonstrated their usefulness in the context of IoT [74, 75, 135], and
the capacity of Blockchains has been analyzed in [132, 133, 153] for IoT applications. According to
the application scenario, the Blockchain can be classified into three types [6], as follows:

— Public Blockchain: In the public Blockchain, all nodes participate in the consensus process
and have the right to publish new blocks and access the whole Blockchain. The public
Blockchain is the most completely decentralized, and most of the familiar Blockchain en-
tities belong to this category, such as Bitcoin and Ether.

— Private Blockchain: The nodes in a private Blockchain need permission to join the network
and participate in Blockchain activities. This type of Blockchain is suitable and often used
for a single organization or enterprise, which has control over the consensus process, and
thus, private Blockchain is not truly decentralized. Compared with public Blockchain, pri-
vate Blockchain is generally smaller in scale and controllable in access, making transactions
faster to process and the system easier to implement.

— Consortium Blockchain: Consortium Blockchain is based on the private Blockchain and built
a consortium network across multiple organizations. Permission is also necessary for the
nodes in the consortium Blockchain to become members of the Blockchain. The scale of the
consortium Blockchain can be larger and involves more participating nodes than that of the
private Blockchain, but in other performance characteristics, it is still consistent with the
private Blockchain.

A detailed comparison between the three Blockchain types is shown in Table 1. In terms of
the consensus process, all nodes of a public Blockchain can participate, while the consensus of a
private Blockchain is controlled by a single organization. A consortium Blockchain expands on
the private Blockchain to include multiple organizations. Correspondingly, a public Blockchain
has complete decentralization, and its access is public without requiring permission. By contrast,
private and consortium Blockchains, on the other hand, are only partially decentralized and more
controlled, where nodes need permission to access.

2.3 BlockFL

The BlockFL model combines FL and Blockchain technologies, which can offer innovative solu-
tions in various sectors [42]. By monitoring, recording, certifying, and coordinating the FL process,
BlockFL offers the following advantages:

— Decentralization: Blockchain enables decentralized FL [59], where Blockchain consensus
mechanisms ensure consistent views across FL participants, and Blockchain smart contracts
can coordinate distributed learning processes in a decentralized way.

— Scalability and Robustness: BlockFL achieves high scalability and robustness by removing
the central aggregator [5]. BlockFL allows multiple FL tasks to run simultaneously and
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Table 1. Comparison of Different Blockchains

Feature Consensus Participant Decentralization Access
Permission

Required

Transactions

Procession

Public Blockchains All nodes Complete Public No Slow

Private Blockchains Single Organization Partial Controllable Yes Fast

Consortium Blockchains Multiple Organizations Partial Controllable Yes Fast

asynchronously and eliminate the single point of failure, leveraging Blockchain-based ro-
bust distributed infrastructure.

— Traceability and Auditability: Blockchain records the entire FL process immutable [50], en-
abling rollbacks to any point and providing a comprehensive audit trail for review.

— Anonymity and Privacy: The pseudo-anonymous mechanisms and privacy-preserving ad-
vances of Blockchain can break the link between FL updates and real identities of partici-
pants, enhancing the anonymity and privacy protection for FL tasks [14].

— Credibility and Trustworthiness: Blockchain provides tamper-resistant records of contribu-
tions in FL and Proof of Learning [57], ensuring transparency in reflecting the contributions
from each participant and fostering openness and trust in FL actions.

FL also enhances Blockchain by contributing crucially to its consensus algorithms. The models
and training data shared through FL, as detailed in sources [17, 136], improve the incentive struc-
tures of Blockchain. Additionally, the way of securing raw training data in FL increases the data
privacy aspect of Blockchain technology.

Architecture. A BlockFL system model [50] consists of two parts: the local learning process (run-
ning on mobile devices) and the integrated calculation process (implemented on the Blockchain). In
the BlockFL system, there are two main actors: participants (i.e., mobile devices) who use their local
datasets to learn preliminary models, and miners in the Blockchain who verify models and facilitate
aggregate calculations. The participants and miners can be either the same or different entities. The
process of a BlockFL model is shown in Figure 5. Compared to traditional FL, BlockFL introduces a
more complex process by adding miner validation and leader election, leveraging Blockchain tech-
nology to replace the role of traditional aggregators. The uploaded and downloaded global models
in BlockFL are stored in secure blocks, and model aggregations are completed through miner cam-
paigns. This eliminates the dependence on unreliable aggregators in FL, reducing associated risks
and improving the security and trustworthiness of the overall process. The BlockFL system can be
described as follows:

— Once an expected model is requested, a crowdsourcing task is created on the Blockchain. In-
terested participants begin the local learning process by downloading the initial model from
the Blockchain and training their local model with their respective datasets. The progress
of the training process depends on the factors, such as the amount of data and comput-
ing power available to the participants. With multiple training rounds, participants can get
their local models that achieve high performance on their local datasets. Then, participants
sign the hash values of their models with their private keys and send their models to the
Blockchain for privacy protection and security, which is different from the traditional FL
process.

— The BlockFL system operates within the Blockchain, which serves as permanent and im-
mutable storage for machine learning models. Transactions processed by the miners include
verifying the related signatures of the submitted model and scoring its contribution. In ver-
ification, the miners are responsible for rejecting the fake data from adversaries in the sub-
mitted models. The score of the model is a comprehensive parameter that considers both the
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Fig. 5. BlockFL Process: First, participants download the global model from Blockchain; Then, participants

perform local model training. Thirdly, participants upload their local models to Blaockchain; Next, miners

process transactions to verify and score; After that, miners conduct a leadership competition; Finally, the

leader elected generates a new block with the updated global model.

accuracy of the model and the size of the training dataset. The score affects the rewards of
participants who submit the model and is used to determine the weight of the global aggre-
gation. The miners compete to be the leader who generates a new block for the integrated
global model. The elected leader calculates the global model parameters based on the submit-
ted local models and their corresponding scores. The leader creates a new block consisting
of the calculated global model and the signatures and agreements of other participants. The
consensus protocol is based on Proof-of-X [155] or Byzantine Fault Tolerance (BFT) [15],
which ensures the security of the system by assuming that more than 1/2 or 2/3 of miners
are trustworthy, respectively.

— The global model in the Blockchain is regularly updated, prompting participants to down-
load and train it with their local datasets repeatedly. The iterative process of local learning
and integrated calculation continues until the global model researches the expected level of
accuracy and convergence.

Why BlockFL. BlockFL is a pioneering approach that integrates the privacy-preserving structure
of FL with the secure and transparent ledger system of Blockchain. While FL decentralizes model
training across various nodes, ensuring data privacy by keeping it local, it typically relies on a
central server for model aggregation, which can be a bottleneck [65]. Blockchain, known for its
immutable and auditable transaction records, provides a secure and decentralized system but can
be limited by scalability and energy consumption [25]. BlockFL capitalizes on the strengths of
both, utilizing the decentralized ledger of Blockchain to enhance the security and trustworthiness
of decentralized model training in FL. As shown in Table 2, we observe distinct tradeoffs across
efficiency, storage, communication, and computational overhead in FL, Blockchain, and BlockFL.
FL offers efficient local computations but faces limitations during global aggregation, while the
efficiency of Blockchain is dependent on post-mining processes. BlockFL achieves a balance by
integrating both the efficiency of FL and the overhead of Blockchain.

The storage, communication, and computation costs are evaluated in Table 2 following the
BlockFL architecture, in which each local model is certified via a single Blockchain transaction.
This could be done by saving the local model in the InterPlanetary File System (IPFS) and then
embedding the hash and reference of the local model in a transaction. We also consider a syn-
chronized FL process with R iteration. In each interaction, every FL participant contributes a local
model by training on the local dataset, and then the local models are aggregated. The storage costs
of FL, Blockchain and BlockFL are O(NFD + NFM), O(NBTS), and O(NFD + NFRM + NBTNFR),
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Table 2. A Comparison of FL, Blockchain and BlockFL

FL Blockchain BlockFL

Characteristics
Distributed model training
on local datasets.

Decentralized ledger;
Immutable transactions.

Combines FL with Blockchain; Decentralized
and secure collaborative model training.

Advantages
Enhanced privacy; Reduced
central data storage [128].

Enhanced security;
Transparency; Auditability [7].

Decentralization; Enhanced
security and privacy [100].

Limitations
Dependent on central aggregator [65];
Potential biases.

Scalability issues;
Energy-intensive [25].

Increased computational
and storage requirements

Efficiency
Medium (Efficient local computations,
limited by aggregation)

Medium to High
(Post-mining efficiency)

Medium (Balance of FL efficiency
and Blockchain overhead)

Storage O(NFD + NFM) O(NBTS) O(NFD + NFMR + NBTNFR)

Communication O(NFMR) O(NBTS + f (NB)S) O(NBNFMR + NBTNFR + f (NB )NFR)

Computation O(NFRCL + RCA) O(NBS + д(NB)S) O(NFRCL + NBRCA + NBNFR + д(NB)NFR)

NF and NB are the numbers of FL participants and Blockchain peers, respectively. D , M , and T are the sizes of a local dataset, an FL
model, and a Blockchain transaction, respectively. R is the number of FL iterations, S is the number of transactions in the Blockchain,
and S = NF R for synchronized BlockFL, assuming every local model update is certified by one transaction. CL and CA are the
computation costs of local training and FL aggregation, respectively. f (NB ) and д(NB ) are the communication and computation costs
of a transaction, respectively, and vary according to the Blockchain consensus protocols.

respectively, where NF is the number of FL participants, D is the average size of a local dataset, M
is the size of an FL model, NB is the number of Blockchain peers,T is the average transaction size,
S is the number of transactions on the Blockchain. In the case of BlockFL, all NFR local models are
logged, i.e., S = NFR, leading toO(NFRM) model storage andO(NBTNFR) Blockchain transaction
storage costs across Blockchain peers. The communication costs of FL, Blockchain and BlockFL
areO(NFMR),O(NBTS + f (NB)S), andO(NBNFRM +NBTNFR + f (NB)NFR), respectively, where
f (NB ) is the consensus communication cost of a transaction among NB Blockchain peers (which
varies according to the consensus protocol). In FL, NFR local models are transferred to the aggre-
gator. In BlockFL, NB Blockchain peers need to learn NFR models and model transactions and
then run consensus on the transactions. The computation costs of FL, Blockchain and BlockFL are
O(NFRCL +RCA),O(NBS +д(NB )S), and O(NFRCL +NBRCA +NBNFR +д(NB)NFR), respectively,
where CL is the local learning cost, CA is the aggregation costs, д(NB) is the consensus computa-
tion cost of a transaction among NB Blockchain peers depending on the consensus protocol. In
BlockFL, the local training process is similar to the local training in FL, but the aggregation is in-
dependently executed by NB peers with an aggregation cost of O(NBRCA). Blockchain peers also
need to verify and run consensus on NFR transactions.

Technical Features. Table 3 provides a comprehensive summary of the technical features of var-
ious BlockFL models, analyzing and comparing them based on factors such as training synchro-
nization, chain structure, consensus mechanisms, and permission. This analysis offers valuable
insights into the current state of development of popular BlockFL models.

However, the integration of Blockchain and FL introduces new security and privacy challenges.
Unlike traditional FL, where local models are only shared between participants and the central
aggregator, BlockFL allows all participants to access local models from each other, essentially ele-
vating the knowledge of the participants to the level of the central aggregator. Consequently, FL
participants can launch attacks that were previously exclusive to central aggregators in traditional
FL, such as attacks based on consensus algorithms [35] and inference attacks [115], where attackers
infer training data from model updates. The open network also raises concerns about Intellectual

Property (IP) protection. Participants can learn from the local models of others and then manipu-
late theirs to falsely claim learning contributions. Moreover, Byzantine failures, a common threat
in distributed systems, persist in BlockFL systems. For example, malicious participants may vote
on FL model updates in a biased manner, either independently or collusively [147].
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Table 3. Comparison of Technical Features of BlockFL Models

BlockFL

Models

Data

Sharing

FL

Sys-

tem

FL

Archit–

ectures

Synchro-

nization

Chain

Struc-

ture

Permi-

ssion

Conse-

nsus

Appli-

cation
Features

Autonomous
BFL [94]

Model
Sharing

Open
Distr-
ibuted

Sync
Block-
chain

Public PoW IoV
End-to-end trustworthiness assurance; Delay
minimization and block arrival rate optimization.

BAFL
[27]

Model
Sharing

Open
Distr-
ibuted

Async
Block-
chain

Public PoW PIoT
Faster convergence of the global model; Score for
secure evaluation;Dual strategy tradeoff parameters.

ChainsFL
[158]

Model
Sharing

Closed
Centr-
alized

Sync +
Async

Block-
chain
+DAG

Public
Raft +
Tangle

Consensus
PIoT

Two-layer Blockchain for security and scalability
enhancement; Synchronous and asynchronous
training combination for efficiency.

FedAC
[66]

Model
Sharing

Open
Centr-
alized

Async
Block-
chain

Public PoW PIoT
Considering a staleness coefficient; Avoidance of
single-point failures; Protection for cyberattacks.

FL-Block
[98]

Model
Sharing

Closed
Centr-
alized

Sync
Block-
chain

Public PoW IIoT
Only global updates pointer saved on-chain; Prevention
of single point failure; Elimination of poisoning attacks;
Optimal block generation rate analysis.

Hierarchical
BlockFL

[16]

Knowledge
Sharing

Open
Centr-
alized

Sync

Hierar-
chical
Block-
chain

Public PoK IoV
Knowledge sharing with one top chain and multiple
ground chains; Hierarchical FL with a bottom
knowledge aggregation middle layer.

MAS
BlockFL

[95]

Model
Sharing

Closed
Centr-
alized

Sync
Block-
chain

Autho-
rized

PoW IoHT
Parallel training of IoHT classifiers; Private Blockchain
for secure data sharing and privacy; Allow tasks
assigned to agents.

PermiDAG
[71]

Model
Sharing

Open
Centr-
alized

Async
Block-
chain
+DAG

Autho-
rized

DPoS +
Simplified

PoW
IoV

Hybrid scheme for efficiency; DRL algorithm for
participant selection; Two-stage quality verification.

Secure Data
Sharing

Scheme [70]

Computed
Results
Sharing

Closed
Centr-
alized

Sync
Block-
chain

Autho-
rized

PoQ IIoT
Permissioned Blockchain for data sharing; Integration of
differential privacy to FL; Improved resources utilization
and efficiency.

VFChain
[92]

Model
Sharing

Open
Centr-
alized

Sync
Block-
chain

Public PBFT PIoT
Committee for verifiable proofs; DSC for effective data
authentication; Multiple-model tasks DSC optimization.

Moreover, the additional computational and storage demands of Blockchain lead to efficiency
issues for BlockFL [159]. Energy consumption and new control costs arise from coordinating
Blockchain operations with FL processes, as shown in Table 2. From the learning efficiency stand-
point, empirical studies indicate that the convergence speed of BlockFL models slightly lags behind
traditional FL [152], signaling opportunities for further optimization. Ongoing research is increas-
ingly focused on enhancing the operational efficiency of BlockFL across various domains, which
is anticipated to augment its practical utility significantly.

3 APPLICATIONS OF BLOCKFL IN IOT

The BlockFL framework has been widely implemented in various scenarios to enhance security,
privacy, reliability, and efficiency. We analyze the key indicators and challenges based on the de-
velopment of BlockFL in different application domains. Existing studies on the integration of FL
and Blockchain are divided into four parts based on their application scenarios: PIoT, IIoT, IoV, and
IoHT, as shown in Figure 6.

Table 4 presents a comparative analysis of the varying scenarios within the IoT domain: PIoT,
IIoT, IoV, and IoHT. It outlines the differences in security and privacy requirements, data processing
needs, network environments, device diversity, and the key challenges faced by each scenario.

— For PIoT, security and privacy requirements range from medium to high, data processing
involves handling numerous small items, and it operates over both public internet and local
networks [23]. Device diversity is high, including simple sensors to smartphones, presenting
challenges such as complex smart services, large data volume, data heterogeneity, varying
capabilities, data sensitivity, and the need for privacy protection.

ACM Comput. Surv., Vol. 56, No. 10, Article 258. Publication date: June 2024.



258:12 Y. Jiang et al.

Fig. 6. Application scenarios of BlockFL: PIoT, IIoT, IoV, and IoHT. PIoT focuses on improving connectivity

and automation of everyday objects, while IIoT focuses on industrialized processes and productivity improve-

ments. IoV focuses on transportation, and IoHT focuses on medical health. All aspects of life and work are

encompassed by these four areas.

Table 4. Distinguishing IoT Scenarios: A Comparative Analysis of PIoT, IIoT, IoV, and IoHT

Scenario PIoT IIoT IoV IoHT

Security

and Privacy

Requirements

Medium to high
(Depending on
the application)

High (Especially
regarding the impact of
production processes)

High
(For driving safety)

High (Dealing
with sensitive personal

health information)

Data

Processing

Handling a massive
number of small items.

Processing complex datasets;
Real-time requirements

could be low.

Real-time data
processing is crucial.

Heterogeneous data
integration;

High privacy protection.

Network

Environment

Both public internet
and local networks

Mostly closed networks Dynamic networks
Secure and

controllable networks

Device

Diversity

High (From simple
sensors to smartphones)

Low (Industrial-
specific devices)

Medium to high
(In-vehicle devices

and sensors)

High (Including wearable
devices and medical
monitor equipment)

Key

Challenges

Complex smart services;
Large amount of small data;
Complex in data processing;

Data heterogeneity; Varying capabilities;
Data sensitivity; Privacy protection.

Complex intelligent collaboration;
Closed environment; Reliability

and stability of the system;
Scalability; Data security.

High delay; Dynamic
nature of the network;
Timeliness of the data;

Dynamic data flow.

Difficult identity
management; Privacy

protection; Data Security;
Trust.

— IIoT has high-security needs, especially considering the complex production processes [124].
It requires processing complex datasets and real-time responses within mostly closed net-
work environments. Device diversity is low, focused on industrial-specific devices. The chal-
lenges in IIoT encompass complex intelligent collaboration, the need for closed and stable
system environments, and issues related to scalability and data security.

— The IoV scenario, crucial for driving safety, demands high levels of security. It is character-
ized by the need for real-time data processing within dynamic networks. Device diversity
is medium to high, with in-vehicle devices and sensors [85]. The key challenges include
high delay, the dynamic nature of the network, ensuring timeliness of data, and managing
dynamic data flow.

— IoHT, dealing with sensitive personal health information, has high security and privacy de-
mands. Data processing in IoHT involves heterogeneous data integration within secure and
controllable network environments. Device diversity is high, ranging from wearable devices
to medical monitoring equipment [77]. The challenges faced by IoHT are managing complex
identities, protecting privacy, ensuring security, and maintaining trust.

4 SECURITY AND PRIVACY OF BLOCKFL FOR IOT

Security and privacy are crucial elements when it comes to FL and Blockchain technology, and
this importance carries over to BlockFL as well, making them areas of significant interest and
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concern. This section presents an analysis and comparison of BlockFL models from various appli-
cation domains with a focus on security and privacy. Compared to traditional FL, the integration
of Blockchain offers BlockFL a stronger and more scalable solution to support security and privacy
protection without depending on any centralized server.

4.1 PIoT

As PIoT applications become more widespread, the massive amounts of sensitive information used
for training models pose significant challenges to privacy protection. In recent years, data security
and privacy protection have garnered increased attention from researchers, particularly in relation
to data generated during the sensing, communication, and computation processes of PIoT.

FL is at risk of data leakage when facing adversaries with an honest-but-curious server [8] or
with Generative Adversarial Network (GAN) technology [37]. Although Blockchain can pro-
mote the development of decentralized and data-intensive applications [22], FL still relies on the
honesty of miners as all raw data are public. Therefore, traditional FL and separate Blockchain
technologies cannot satisfy the security and privacy requirements of PIoT scenarios. Hence, the
BlockFL, which combines the advantages of FL and Blockchain, has become a new research direc-
tion to solve security and privacy issues in the PIoT.

A number of researchers have proposed different solutions for addressing the challenges of se-
curity and privacy in FL with the integration of Blockchain technology. Awan et al. [10] present
a Blockchain-based PPFL model, which combines the FL framework with the decentralized trust
of Blockchain to ensure privacy preservation. To achieve this, the authors enhance a variant of
the Paillier cryptosystem to implement homomorphic encryption. Yin et al. [150] propose an FDC
framework based on FL and Blockchain, which leverages multiparty secure computation technolo-
gies to ensure data security. Wang et al. [131] discuss the Security Parameter Aggregation Mecha-
nisms in detail in their BlockFedML model. Furthermore, Ma et al. [72] propose a new group-based
Shapley value computation framework that is compatible with secure aggregation in a Blockchain-
based FL model. The approaches aim at addressing the privacy and security concerns in FL by
integrating Blockchain technology and novel cryptographic methods.

4.2 IIoT

The proliferation of IIoT has resulted in an exponential increase in the volume of data generated by
devices equipped by various industries. The value of the data, because of the sensitive information
it contains, has gained rise to concerns about data security. The leakage of IIoT data could result in
significant financial losses for the company, as well as disruption and disorder within the industry.

Ensuring data security is a crucial factor in determining the utility of the IIoT model. Wang
et al. [118] identify the security requirements for IIoT and investigate the advantages of integrating
Blockchain technology into IIoT applications. In a separate study, Blockchain is leveraged in edge
intelligence to optimize resource allocation in IIoT [163]. Additionally, FL has also been highlighted
in IIoT applications [149].

To satisfy differential privacy, Geyer et al. [31] propose a method to conceal the contribution of
each client during the training process. In the pursuit of safer data sharing, Lu et al. [70] build data
models with BlockFL structures, where only FL-generated data models are shared by Blockchain.
And thus, the model reduces the risk of raw data leakage and effectively protects data security. By
using homomorphic encryption and secure multi-party computation, the authors ensure that the
privacy of the raw data is maintained while enabling collaborative learning. Furthermore, Yazdine-
jad et al. [149] develop a block hunter framework based on cluster detection to automatically search
for attacks and threat risks in BlockFL networks.
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4.3 IoV

In IoV, practical models require large amounts of data sharing, which can include sensitive pri-
vate information such as frequently visited addresses, real-time road conditions, driving routes,
and driving preferences. Protecting privacy while participating in model training and sharing in-
formation with others is important and necessary in IoV applications [162], where the BlockFL
framework could play an influential role.

Liu et al. [64] improve an optimized mask noise model upload algorithm for secure secret shar-
ing of model parameters. The authors also introduce a two-stage Intrusion Detection System

(IDS) utilizing the combination of FL and Blockchain in vehicles and roadside units to ensure data
security and privacy protection in IoV. Chen et al. [18] propose a novel Byzantine-fault-tolerant
Blockchain-based FL method named BDFL, which implements a publicly verifiable secret sharing
scheme to address privacy concerns in IoV. The experimental results on actual datasets demon-
strate the practicality of multi-object recognition while preserving privacy.

4.4 IoHT

In the IoHT, a large amount of sensitive information poses a significant risk of privacy breaches.
To address the issue and enable secure data sharing, BlockFL has been introduced as a promis-
ing approach for IoHT applications. Passerat-Palmbach et al. [91] propose a basic structure of
Blockchain-orchestrated FL and identify six critical elements of privacy and security requirements
in IoHT models:

— Ensuring data security sharing and processing in the Blockchain while maintaining privacy;
— refusing to generate data or fabricate value effectively;
— ensuring computation with FL and advanced cryptography;
— ensuring privacy through both software and hardware cryptography;
— establishing a suitable incentive mechanism to evaluate data quality;
— preventing poisoning attacks and mitigating the impact of poor data.

The requirements provide a comprehensive framework for developing secure and privacy-
preserving IoHT applications using Blockchain-orchestrated FL.

Based on the requirements, Połap et al. [95] develop a multi-agent system that divides specific
medical tasks into agent units for parallel training of classifiers with FL and uses Blockchain to
share and protect private data. Similarly, Aich et al. [1] design a BlockFL-based solution for the
secure sharing of healthcare data to address the fragmented nature of personal medical data. How-
ever, the approach has only been theoretically analyzed without using practical applications yet.

El Rifai et al. [26] conduct experiments on a diabetes dataset to evaluate the effectiveness of their
model, which utilizes BlockFL for secure knowledge sharing between medical centers while pre-
venting attackers from accessing the raw records of the patients. The experimental results demon-
strate the ability of the proposed approach to ensure data security and privacy protection. A hybrid
Blockchain-based FL framework [101] has been tested in the context of COVID-19 clinical trials,
which ensures the complete privacy of training data and supports reputation management, mak-
ing it more relevant to current healthcare applications. Another privacy-preservation framework
proposed by Singh et al. [117] also illustrates that the BlockFL technology can mitigate the risk
of exposing patient medical data, creating a transparent and secure environment for data sharing
and model training

4.5 Conclusion

Table 5 highlights models for IoT security and privacy in PIoT, IIoT, IoV, and IoHT. In PIoT, BC-
based PPFL [10] focuses on privacy with enhancements like a Paillier cryptosystem variant, facing
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Table 5. Comparison of BlockFL across IoT Domains for Security and Privacy

Security

and

Privacy

Dom-

ains
Model Objective Features Advantages Limitations

PIoT

BC-based
PPFL [10]

Privacy
preserving

Malicious client assumption;
Enhanced Paillier cryptosystem
variant.

Protecting data privacy; Overcome
random client dropouts; Identify
and exclude malicious client updates.

Parallelism issues;
Non-IID partitioned
data challenges.

FDC [150]
Secure
multiparty data
computation

Divide into private and public
data centers; Support scattered
data fragments.

Secure collaboration; Flexible and
efficient access control.

Efficiency; Challenges
for complex tasks and
large models.

Block-
FedML [131]

Secure
aggregation

Immutable audit trail;
Encrypted communications.

Defend against model input integ-
rity attacks; Protecting data privacy.

Lack of experimental
validation.

IIoT

BlockFL
Data Models
[70]

Secure data
sharing

Data model sharing instead of
data sharing; Integrate
differential privacy.

Privacy-preserving data sharing;
Collaboration among multiple
untrusted parties.

Utility optimization
of data map.

Block
Hunter [149]

Threat
hunting

Cluster-based anomaly
detection architecture.

Implementation of various
anomaly detection algorithms.

Limited resource
challenges; Evolving
attack.

IoV

Two-stage
IDS [64]

Autonomous
Driving Safety

Mask noise model upload algori-
thm; Trust evaluation algorithm.

Edge vehicles and roadside facilities
collaborate; Secure model sharing.

Limited resource
challenges.

BDFL
[18]

Autonomous
Vehicles Privacy-
preservation

Extended HydRand protocol;
Publicly verifiable secret sharing.

Byzantine-fault-tolerant; High
fidelity to models’ parameters.

Limited resource
challenges; Model
stealing threat.

IoHT

Multi-agent
System [95]

Private Data
Security

Division of complicated tasks into
individual objects; Agent with a
consortium mechanism.

Process medical data in real time;
Task segregation.

High latency; Class-
ifier optimization.

Lightweight
hybrid
BlockFL [101]

Privacy
preserving

Multiple encryption methods;
Lightweight differential privacy.

Target IoHT-powered edge devices;
Full encryption of dataset, model
training, and inferencing process.

Limited resource
challenges.

Secure Sys-
tem in Smart
Healthcare
[117]

Privacy
preserving

Distributed secure environment;
Cloud computing service.

Lightweight; Scalable;
Supports interoperability.

High latency;
Limited resource
challenges.

parallelism and non-IID data challenges. FDC [150] offers secure multiparty data computation with
flexible access control, though with efficiency concerns. BlockFedML [131] provides secure aggre-
gation with audit trails and encrypted communications but lacks experimental validation. For IIoT,
BlockFL Data Models [70] enhance secure data sharing with differential privacy but struggle with
utility optimization. Block Hunter [149] employs cluster-based anomaly detection for threat hunt-
ing, constrained by resource limitations. In IoV, a two-stage IDS [64] ensures safety in autonomous
driving with a mask noise model, limited by resources. BDFL [18] aims at privacy preservation in
autonomous vehicles using the HyRand protocol, facing scalability challenges. In IoHT, a multi-
agent system [95] secures medical data processing with real-time capabilities, hindered by latency.
A hybrid BlockFL [101] preserves privacy with encryption methods, yet with resource constraints.
Secure Architecture in Smart Healthcare [117] maintains privacy in a distributed environment,
dealing with latency and resource issues.

As shown in Figure 7, BlockFL models are making substantial strides in enhancing security and
privacy across various IoT domains, addressing specific challenges and pertinent objectives. In
PIoT, the emphasis is on preserving the privacy of vast amounts of sensitive consumer informa-
tion, while in IIoT, the focus shifts to securing corporate data to ensure industry stability [63]. For
IoV, the critical concern is secure information sharing to maintain the integrity of autonomous
driving safety, and in IoHT, the models underscore the need to protect sensitive healthcare infor-
mation, which is vital for maintaining patient trust and adhering to regulatory standards. Particu-
larly in IoHT, where the stakes are incredibly high due to the involvement of personal medical data,
BlockFL models are not only safeguarding privacy but also ensuring the security of data, which
directly impacts the quality of healthcare services [119]. By leveraging the inherent properties of
blockchain, such as immutability and decentralized consensus, along with the data localization
of FL, these models foster innovation in healthcare technologies by enabling secure data sharing
without compromising on privacy.
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Fig. 7. Application of BlockFL: Security and Privacy. The models applied in PIoT and IoHT place greater

emphasis on privacy protection, while those used in IIoT and IoV prioritize security. This reflects the different

priorities and concerns of each domain, highlighting the need for tailored approaches to security and privacy

protection in BlockFL.

5 TRUST AND RELIABILITY OF BLOCKFL FOR IOT

Apart from the improved security and privacy protection, the characteristics of immutability and
auditability in Blockchain provide a sense of trust and reliability to the BlockFL process. In this
section, we delve into the ways in which BlockFL addresses the trust and reliability problems and
examine the specific features of BlockFL-based models that are tailored to meet the unique needs
and characteristics of various application domains.

5.1 PIoT

The PIoT model has to ensure the trust and availability of information, and services to enable its
practical application. To avoid errors and losses in data transmission and communication, which
can have catastrophic consequences (e.g., the risk of poisoning attacks), [12] has demonstrated
the possibility of malicious workers manipulating model results by injecting poisonous data or
tampering with training data.

Existing studies have been developed to tackle the challenge of information errors and losses
during traditional FL training. Zhao et al. [166] design a method to address the issue by minimizing
the influence of low-quality participants. VerifyNet [143] introduces a verifiable framework that
verifies the integrity of the aggregated results of FL. However, the framework faces the problem
of susceptibility to single-point attacks due to its reliance on the central server.

The combination of Blockchain and FL technologies improves the reliability of PIoT models be-
cause of the auditability and decentralization provided by Blockchain. Peng et al. [92] improve the
VFChain system, enabling verification for the FL training process and recording verifiable proofs
in the Blockchain. Preuveneers et al. [96] introduce an anomaly detection model into the FL pro-
cess and utilize Blockchain technology to record its incremental updates. Kang et al. [47] propose
a metric called “reputation” to support reliable-worker selection, ensuring data integrity and pre-
venting tampering. By reducing the impact of adversarial data corruption, integrating Blockchain
and FL technologies can improve the robustness and stability of PIoT models. The work in [127]
applies the concept of reputation in a Blockchain-based fine-grained FL model to facilitate trust-
worthy collaborative training. The experiment in [120] shows that implementing the Blockchain
in FL improves the performance when adopting various types of corruption to the dataset of the
end-point adversary, including salt and pepper noise and circle occlusion. The FLchain scheme de-
veloped by Majeed et al. [73] outperforms traditional FL models in robustness as the provenance
of data is auditable.

5.2 IIoT

Real-world industries require reliable and stable IIoT models that can withstand environmental
disturbances and attacks. However, data flaws are common in the FL process as local datasets
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are easily disturbed by environmental factors [36]. The usage of Blockchain for the underlying
mechanism of the IIoT model can ensure the regular operation of the entire system so that the
machines can work honestly and normally [112].

To detect device failures and attacks in IIoT applications, Zhang et al. [164] introduce an op-
timization of an averaging algorithm called CDW-FedAvg that calculates the distance between
positive and negative class data. By combining the advantages of both FL and Blockchain, the
developed approach reduces the impact of device failures and improves the stability of the IIoT
system. Similarly, Qu et al. [99] develop a D2C paradigm for the IIoT model and a modified Mar-
kovian decision process to enhance performance when facing poisoning attacks.

Stability is a crucial advantage of industrial automation, enabling control and prediction of
the operational status of machines. In Industry 4.0, researchers aim at enhancing the stability
of IIoT models by combining FL and Blockchain technologies. Hua et al. [39] conduct experi-
ments on heavy haul rail applications, replacing manual operation with intelligent control us-
ing a Blockchain-based asynchronous FL system. The simulation results demonstrated that the
proposed BlockFL system effectively achieves stable and smart control in real heavy-haul rail
applications.

5.3 IoV

The high mobility of vehicles in IoV introduces dynamically and rapidly changing environments,
leading to crucial timeliness of decisions, as autonomous driving and intelligent transportation sys-
tems require vehicles to respond quickly to real-world situations. Therefore, improving the speed
of vehicles’ model learning and information communication is a key issue in practical applications
and a prominent topic in research.

To accelerate model learning and information communication in the IoV, Pokhrel et al. [94]
develop a mathematical analysis to identify the delay in the BlockFL model, where participating
vehicles share their on-vehicle machine learning model updates via Blockchain and cooperate to
complete the FL process. The vehicles calculate the total end-to-end latency, including communi-
cation and consensus delays, and an online algorithm is proposed to adjust parameters in real time
to minimize the model delay.

To improve the intelligence of vehicles, different models are needed to process, analyze, and
respond to different application scenarios. Each model in the IoV requires diverse and vast data
that is collected from the vehicles, the neighbors, and the roadside units. Due to the variability
of the IoV, neighboring vehicles are in a constant state of flux, so vehicles in the IoV are often
unfamiliar with their surroundings. It is, therefore, essential to evaluate the credibility of the data
and identify any malicious attempts to compromise it.

Blockchain has been seen as an effective tool to integrate with FL as BlockFL to manage par-
ticipants and improve system reliability [148] to address the trustworthiness issue in the IoV. Per-
miDAG model developed by Lu et al. [71] uses a hybrid Blockchain with a directed acyclic graph to
perform asynchronous FL. The quality of shared parameters is verified to detect false information
and malicious data. Kang et al. [45] introduce a reputation system to judge participant trustworthi-
ness and design a distributed reputation calculation scheme for selecting trustworthy participants.
The authors present a stable many-to-one matching model for task assignment to achieve a trusted
win-win situation.

5.4 IoHT

In the realm of IoHT, trust and reliability are paramount, with the sector demanding robust frame-
works to guarantee data privacy and secure sharing of sensitive health information. This need

ACM Comput. Surv., Vol. 56, No. 10, Article 258. Publication date: June 2024.



258:18 Y. Jiang et al.

has been accentuated by the challenges posed by the COVID-19 pandemic [107], where concerns
about misinformation and malicious behavior have become rife. Moreover, the growing demand
for personalized medicine presents new challenges to traditional healthcare systems, requiring
innovations to accommodate individual patient needs [52].

In this context, the BlockFL model has gained attention for its potential to foster trust and reli-
ability in healthcare data management. Samuel et al. have illustrated this by proposing a BlockFL-
based infrastructure that not only enhances the dissemination of authentic COVID-19 information
but also offers a robust infrastructure against security attacks [107]. Similarly, Moulahi et al. cre-
ate a trusted Blockchain-based FL system capable of predicting diabetes risk, achieving significant
accuracy in their results and demonstrating the resilience of the system against cyberattacks [82].
Some work focuses on the trustworthiness, accountability, and fairness of FL systems in IoHT. A
BlockFL architecture is proposed in [68] design to improve these aspects by employing smart con-
tracts and a fair data sampler algorithm. It is demonstrated to be feasible, enabling accountability
and improving fairness in a COVID-19 X-ray detection use case.

Personalized precision medicine as a transformative approach to healthcare, which focuses
on customizing treatments and therapies for individual patients based on their unique medical
data [52], requires a high level of trust and reliability in managing sensitive health information,
facilitated by advanced technologies like Blockchain and FL. Ali et al. have explored the transfor-
mative potential of Blockchain-enabled FL for precision medicine with a representative dataset of
electronic medical records (EMRs) [4]. They emphasize the importance of trust and decentral-
ized data sharing and demonstrate the feasibility of BlockFL by simulating an EMRs system. To
address the need for personalized healthcare models and the challenges of potential risks, Lian
et al. propose a Blockchain-based personalized FL system for IoHT with personalization layers to
capture personalized features, which shows better results on heterogeneous medical data than a
one-size-fits-all global model [62].

5.5 Conclusion

Table 6 shows the comparative analysis of BlockFL across various IoT domains for Trust and
Reliability, which reveals distinct approaches tailored to the unique challenges of each sector. In
the realm of PIoT, models like VFChain [92] prioritize verifiability and auditability to enhance data
integrity, whereas IIoT solutions like the D2C paradigm [99] focus on resistance to sophisticated
cyber threats, reflecting the critical need for robust defense mechanisms in industrial settings. For
IoV, the BFL model underscores the importance of minimizing delays and ensuring data reliability
to support the dynamic nature of autonomous vehicles [94]. In the healthcare sector, IoHT, the
sensitivity of data in IoHT necessitates models that not only bolster system security but also ad-
dress the pressing need for accountable and fair data handling, as demonstrated by the COVID-19
X-ray Detection [68] and Personalized Healthcare models [62]. These innovations collectively un-
derscore the pivotal role of BlockFL in fortifying trust and reliability, with each domain benefiting
from bespoke features that address their specific security challenges and operational demands.

BlockFL models are crucial in reinforcing trust and reliability within the IoT sphere, as shown
in Figure 8. The models cater to the unique demands of each domain: PIoT focuses on data trans-
mission accuracy, IIoT on correcting data flaws due to environmental impacts, IoV on timely
decision-making for mobile units, and IoHT on safeguarding sensitive health data. Particularly in
IIoT, where uninterrupted operation in harsh conditions is common, the reliability requirements
highlight the importance of BlockFL models. The robust BlockFL frameworks counteract exploita-
tion threats and ensure continuous industrial activities, playing a key role in protecting against
economic and safety risks.
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Table 6. Comparison of BlockFL across IoT Domains for Trusty and Reliability

Trust

and

Reliability

Dom-

ains
Model Objective Features Advantages Limitations

PIoT

VFChain [92]
Verifiability
and
Auditability

Selected committee for aggre-
gation ; Novel authenticated data
structure.

High efficiency; Secure
committee rotation.

Time-consuming;
Limited resource
challenges.

Chained
Anomaly
Detection [96]

Anomaly
Detection

Permissioned Blockchain-based;
Audit of ML models.

Transparency over the distributed
training; Flexibility to apply
different frameworks.

Validity threats;
Global network-level
attack

Flchain [73] Robust
Integrated Multi-access edge
computing; Introduce the
global model state trie.

Ensure provenance;
Maintain auditable.

High latency;
Limited resource
challenges.

IIoT

CDW-FedAvg
[164]

Failure
Detection

Custom Merkle tree for data
record; Centroid distance
weighted federated averaging.

Enable verifiable integrity;
High detection accuracy.

Limited resource
challenges.

D2C
paradigm [99]

Attack
Resistance

Modified Markovian decision
process; Industry 4.0 model.

Improves the accuracy and
robustness against poisoning
attacks.

Attacker assumption;
Performance indexes
optimization.

Railway
Control [39]

Intelligent
Control

SVM-based model;
Mixing kernel function.

Asynchronous collaborative ML;
High accuracy with dynamic
weight factor changing.

Scalability
challenges.

IoV

BFL for
AVs [94]

Delay
Reduction

Controllable network and BFL
parameters; Exploit channel
dynamics to minimize delay.

Quantify the end-to-end delay;
Derive optimal block arrival rate.

Packet-level loss
issues; Limited re-
source challenges.

Hybrid
PermiDAG [71]

Reliability
Two-stage verification; Node
selection to minimize costs.

Guarantee the reliability of
shared data; High efficiency.

Limited resource
challenges.

Matching
Model [45]

Task
Assignment

Distributed reputation
calculation scheme based on
subjective logic model.

No risk of a single point of failure;
Win-win for both worker and
task publisher.

Many-to-many mat-
ching problem; Limited
resource challenges.

IoHT

X-ray
Detection [68]

Accounta-
bility and
Fairness

Smart contract-based data-model
provenance registry; Weighted fair
data sampler algorithm.

Enable accountability; Improve
fairness; High generalization and
accuracy.

Scalability
challenges.

Persona lized
Healthcare [62]

System
Security

Divide the model into base layers
and personalization layers.

Achieve personalized models;
Avoid single point of failure.

Vulnerable to infer-
ence attacks and model
inversion attacks.

Fig. 8. Application of BlockFL: Trust and Reliability. The high-speed changing environment of IoV requires

application models to have higher requirements for trust and stability. At the same time, models in PIoT

and IIoT also have specific demands for trust and stability. The sensitivity of health-related data necessitates

robust mechanisms to establish and maintain trust in IoHT.

6 EFFICIENCY OF BLOCKFL FOR IOT

In practical application scenarios, realistic conditions such as limited resources and restricted costs
must be taken into account, unlike in theoretical analysis. As a result, adjusting various factors and
seeking efficient solutions under limited conditions is a crucial topic in the development of BlockFL.
Because BlockFL comprises the resource-intensive learning process of FL and the block generation
process of Blockchain, balancing these two parts to achieve optimal system performance requires
careful consideration of multiple factors. This section focuses on the efforts of BlockFL to bal-
ance efficiency within resource constraints in various application domains through analysis and
discussion.
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6.1 PIoT

The practicality of the PIoT model is to enable intelligent PIoT devices and offer advanced ser-
vices. To accomplish this ambition, the PIoT model should exhibit high accuracy and efficiency
when executing tasks, which means optimizing algorithms and designing models for improving
performance under the condition of limited resources.

Accuracy is a key metric for model evaluation in PIoT models. Existing works have demonstrated
that BlockFL models integrating Blockchain and FL technologies outperform traditional FL and
separate Blockchain in various tasks. Liu et al. [66] proposed the FedAC model, which combines
asynchronous FL and Blockchain technologies, and achieved impressive accuracy rates of 98.96%
in horizontal data distribution and 95.84% in vertical data distribution, outperforming the accuracy
of its counterparts.

Efficiency is also an important metric for evaluating BlockFL models. To improve efficiency,
Ramanan et al. [102] present the BAFFLE model by using smart contracts in Blockchain to coor-
dinate the round delineation, model aggregation, and update tasks in FL. The model significantly
reduces the computational cost of the model because smart contracts are computerized transac-
tion protocols [122] that automatically execute the contractual terms. Feng et al. [27] develop two
complementary policies to ensure efficiency, i.e., controlling the block generation rate and dynam-
ically adjusting the number of training times in asynchronous FL. In ChainsFL [158], synchronous
and asynchronous training are combined to improve the efficiency of the model.

6.2 IIoT

In research and analysis, the existing studies assume that devices participating in model training
have unlimited energy and ample computing power. However, in the real-world, industrial ma-
chines used in manufacturing often fall short of theoretical ideals. Due to the cost considerations,
such equipment is subject to constraints on capacity, energy, communication ability, and other
aspects. For instance, machines with limited computing power require more time to train and
update the model, while those with poor wireless channel conditions take longer to transmit in-
formation. Therefore, it is essential to flexibly adjust model parameters based on actual conditions
and enhance model performance under resource limitations.

To address the problem of resource constraints, Nishio et al. [89] develop the FedCS model,
which selects suitable training participants. By excluding unqualified machines, as many partic-
ipants as possible can join the training process under limited conditions, making it suitable for
actual industrial applications. In addition to participant selection, adjusting other model parame-
ters is also effective. Qu et al. [98] consider a range of factors, including communication, delays,
and computation cost, to determine the optimal block generation rate in FL-Block, an autonomous
FL system based on Blockchain.

Reducing energy consumption can be utilized to address the resource issues in BlockFL training.
Lu et al. [69] improve a compression technique to reduce communication costs without sacrificing
performance. The authors consider the instability and complexity of the network connections in
the IIoT model, allowing machines to join or leave the training process more freely. Kang et al. [44]
employ a gradient compression scheme to replace complete gradients with sparse but important
gradients, effectively reducing communication overhead.

6.3 IoV

The dynamic nature of vehicular networks introduces a challenge in resource allocation. Despite
the advancements in in-vehicle computing and communication technologies, there still exists a
gap in achieving optimal solutions for model learning in theory. This is especially true in the
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case of BlockFL, where vehicles need to conduct multiple rounds of communication and require
high computational power. Hence, exploring ways to adjust parameters effectively to meet the
requirements under limited resources is an important research direction in IoV.

Chai et al. [16] improve a hierarchical FL algorithm that leverages Blockchain technology to
include multiple ground chains and one top chain, resulting in reduced computation and shar-
ing consumption. The experimental results show the effectiveness of the hierarchical structure.
Pokhrel et al. [93] introduce a Blockchain-empowered FL system for drones in 6G networks aimed
at disaster response systems. The authors focus on the impact of transmission parameters such as
power and the number of miners on energy consumption through modeling and simulation that
offer valuable insights and potential research directions for future work in this field. The negative
impact of the energy limitation problem of drones on the service time is also discussed in a data
collection BlockFL scheme [41].

6.4 IoHT

Efficiency and resource management emerge as non-negligible concerns in IoHT, underscoring
the need for solutions that optimize data processing and minimize energy consumption. The dy-
namic and distributed nature of IoHT devices, which collect vast amounts of patient data, poses
significant challenges in terms of bandwidth usage, storage capacity, and computational load [161].

Traditional centralized data processing models often struggle with these challenges, leading
to inefficiencies and potential risks. The application of Blockchain-empowered FL addresses these
issues by decentralizing data analysis, thus reducing the need for data to be transmitted to a central
server for processing. Lakhan et al. [56] introduce an FL-based Blockchain system to minimize
energy consumption and delay in healthcare applications, showcasing the potential of BlockFL
in meeting the stringent requirements of healthcare workloads with resource constraints. While
Muazu et al. [83] demonstrate how edge computing, combined with BlockFL, can optimize resource
management in IoHT, reducing computing costs while enhancing security and privacy. The above
studies collectively underscore the transformative impact of BlockFL on IoHT, highlighting the
role of BlockFL in achieving efficiency within the healthcare domain, especially with the rapid
development of healthcare-based cyber-physical systems [67].

6.5 Conclusion

Table 7 presents models designed to boost efficiency in four domains. In PIoT, the BAFFLE
model [102] enhances computational performance by segmenting parameter space, reducing costs
but grappling with complexities in large models. BAFL [27] intertwines power with model utility
for learning efficiency, though optimization remains a challenge. For IIoT, ChainsFL [158] uses a
DAG-based network for better efficiency and scalability, despite resource limitations. FL-Block [98]
leverages fog computing for cost-effective communication and consensus, yet faces stability issues.
PAFLM [69] optimizes utility via edge network ML, with synchronization hurdles. In IoV, Hierar-
chical BlockFL [16] and BlockFL for Drones [93] focus on knowledge sharing and efficient consen-
sus in IoT drones, contending with scalability in dynamic environments. For IoHT, FL-BETS [56]
addresses task scheduling with risk quantification, balancing resource allocation and fraud vul-
nerability. Edge-empowered BlockFL [83] aims at resourcing optimization through mixed-model
programming, improving allocation and reducing consumption, yet faces scalability issues.

BlockFL is instrumental in enhancing efficiency across IoT applications, with a notable impact
in the IoV domain. As shown in Figure 9, BlockFL models in PIoT aim for high efficiency within
limited resources to unlock advanced consumer services [3], while stakeholders and researchers
in the IIoT focus on tackling cost-related performance gaps in manufacturing [28]. The IoV sector
benefits from the ability of BlockFL to manage dynamic network resources effectively, optimizing
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Table 7. Comparison of BlockFL Across IoT Domains for Efficiency

Efficiency

Dom-

ains
Model Objective Features Advantages Limitations

PIoT

BAFFLE
[102]

Computation-
al Performance
Improvement

Decompose parameter space
into distinct chunks.

Boost computational perfor-
mance; Reduce the gas costs.

Privacy Risk; Challe-
nges for complex task.

BAFL [27]
Learning
Efficiency

Entropy weight method; Model
the energy consumption and
delay as a Pareto problem.

High efficiency; High performan-
ce; Preventing poisoning attacks.

Challenges in deplo-
ying to real-world.

ChainsFL
[158]

Efficiency and
Scalability

Raft-based shard networks and
Refined DAG-based main chain;
Combinition of synchronous and
asynchronous training.

High scalability; High FL eff-
iciency; Eliminate the impact
of stale models.

Limited resource
challenges.

IIoT

FL-Block
[98]

Effective Fog
Computing

Consider communication, consen-
sus delays, and computation cost.

Derive the optimal block generation
rate; Resistance to poisoning attacks.

Scalability
challenges.

PAFLM [69]
Effective ML
for Edge
Network

Compress the communications;
Allow the node to join or quit;
Data dual-weights correction.

Low communication costs; Low risk
of privacy breach; High flexibility

Asynchronous
optimization.

IoV

Hierarchical
BlockFL [16]

Effective
Knowledge
Sharing

Light-weight PoK consensus;
Multi-leader and multi-player
non-cooperative game.

Reduce the computation consum-
ption; Suitable for the dynamic
vehicular scenarios.

Challenges in deplo-
ying to real-world;
Scalability challenges.

BLockFL
for Drones
[93]

Energy
Calculation

Quantify the probability of occu-
rrence of forking events.

Pragmatic analyses of the expected
energy consumption.

Performance optimi-
zation; Scalability
challenges.

IoHT

FL-BETS
[56]

Task
Scheduling

Execution on the distributed fog
and cloud nodes; Consider both
hard and soft constraint.

Minimize energy consumption and
delay; Satisfy the deadlines of
healthcare workloads.

Vulnerable to
mobility fraud.

Edge-
empowered
BlockFL [83]

Resource
Management

Paillier encryption; Mixed integer
nonlinear programming .

Maximize resource allocation;
Minimize energy consumption and
transmission delay.

Scalability
challenges.

Fig. 9. Application of BlockFL: Efficiency. In PIoT, IIoT, and IoV, a variety of resource and economic factors

may limit the implementation of BlockFL models. Therefore, it is crucial for application models, particularly

those used in IIoT, to consider the balance and optimization between model performance and resources for

efficiency.

real-time data processing for safer and more efficient transportation. Unlike its counterparts,
BlockFL for IoV distinctly targets the swift allocation of resources amidst the dynamism of the
network. This precision in IoV allows quick data handling and optimizes the decision-making
process for safer and more efficient traffic systems [141]. In the realm of the IoHT, BlockFL is
critical for managing the efficiency of distributed devices, ensuring swift data handling while con-
serving resources. The unique challenges of each domain are addressed through the collaborative
model training in BlockFL, demonstrating the versatility and necessity of BlockFL in achieving
efficiency and resource management capability in the IoT ecosystem.

7 DATA DIVERSITY OF BLOCKFL FOR IOT

The quality and quantity of training data are crucial factors determining the performance of any
data-driven ML model, making the expansion of training data richness and diversity an essential
issue that cannot be overlooked in model optimization, including BlockFL. This section emphasizes
the efforts made by BlockFL to increase the diversity of training data for performance improvement.

ACM Comput. Surv., Vol. 56, No. 10, Article 258. Publication date: June 2024.



Blockchained Federated Learning for Internet of Things: A Comprehensive Survey 258:23

These efforts include establishing an effective incentive mechanism to encourage more participants
in model training, as well as addressing heterogeneous problems to enhance the capability.

7.1 PIoT

Accurate judgments and correct decisions rely on the large amount and diversity of data. So in-
creasing the enthusiasm of devices for participation in the model training is an effective action for
optimizing the accuracy of PIoT models, which requires the model to have a reasonable incentive
mechanism.

The Blockchain has shown its ability to provide an effective incentive mechanism based on
the performance of participants. More and more recent research works have been done to imple-
ment Blockchain into PIoT applications, especially with the FL that can safely combine massive
devices to train a model. Without requiring honest participants, Short et al. [116] offer rewards on
a Blockchain network according to the quality of contributions in FL. Martinez et al. [79] propose
an in-depth workflow to record and reward the contributions of participants. In the work of Kim
et al. [51], Blockchain is used to separate participating users as nodes and induce them to join the
FL efficiently.

Besides, in order to attract more participants to join BlockFL to improve data diversity and model
performance, more work is devoted to designing more reasonable and attractive incentive mecha-
nisms. An effective incentive mechanism combining reputation management with smart contracts
is proposed by Kang et al. [46] to motivate high-quality devices to join the model learning process.
Zhao et al. [167] design an incentive mechanism to award participants with a novel normaliza-
tion technique. Weng et al. [139] propose a DeepChain framework with a value-driven incentive
mechanism to force the participants to train the model following the rules. Kumar et al. [55] also
develop a value-driven incentive mechanism to encourage the positive actions of the contributors
by introducing Blockchain technology via Ethereum.

Introducing repeated competition for FL is also feasible [125] as rational participants want to
maximize their profits. Also, based on the hypothesis of rational man, Xuan et al. [146] propose
a double-layer FL platform based on Blockchain with an incentive mechanism to ensure that
rational workers can gain the maximum benefit by remaining honest. Desai et al. [24] create a
general Blockchain-based FL framework to detect and punish attackers automatically. An honest
trainer [11] is presented to gain fairly partitioned profit, rewarding contributions, and punishing
the malicious.

7.2 IIoT

In the realm of IIoT, the diversity of training data plays a pivotal role in enhancing model per-
formance, particularly in applications that demand high precision and reliability across various
industrial sectors. The application of BlockFL emerges as a powerful solution, as it provides in-
centives for IIoT data owners, encouraging participation and thereby enriching the diversity and
quantity of training data.

Recent research highlights the significance of incentive mechanisms in enhancing the diversity
of training data for IIoT systems, addressing a critical challenge for the deployment of BlockFL. The
blockchain and FL-based secure data-sharing scheme introduced in [144], incorporating model pa-
rameter validation and incentives into the consensus algorithm, directly addresses the challenge of
data diversity by encouraging a broader participation base. Wang et al. have introduced an incen-
tive mechanism for resource allocation in Blockchain-based FL, facilitating optimal participation
by rewarding training and mining efforts [137]. The mechanism addresses the dual challenges of
encouraging participation and managing resource constraints, thereby supporting the collection
of diverse training data across IIoT devices.
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The studies present innovative solutions that not only incentivize participation but also ensure
the security and fairness of data contributions, crucial for the IIoT environment where data origi-
nates from a vast and varied array of sources. A Blockchain-based FL system, FGFL [30], focuses on
a fair incentive mechanism, designed to attract high-quality workers and deter malicious actors by
rewarding substantial and genuine contributions. Similarly, the Blockchain-enabled FL framework
proposed by Witt et al. [140] aims at balancing contributions fairly, tackling the diversity challenge
by ensuring that a wide range of participants are motivated to contribute their unique data. This
framework uses Federated Knowledge Distillation with compressed soft-labels to promote honest
participation through an incentive-compatible ecosystem.

7.3 IoV

In addressing the challenge of enhancing the diversity of training data within IoV, integrating
BlockFL has proven to be a promising solution. The methodologies and frameworks developed in
recent research focus on leveraging BlockFL to overcome data silos while promoting the diversity
and quality of the data involved in training ML models.

For instance, frameworks like IoV-SFL [126] introduce secure and efficient data-sharing mecha-
nisms, utilizing advanced encryption techniques and ML models to process diverse and heteroge-
neous data types while enhancing model performance. Fu et al. have incorporated a supervision
game into a hierarchical Blockchain-supported FL architecture for autonomous driving, which
demonstrates a significant stride in managing heterogeneous data within the IoV ecosystem [29].

Other studies emphasize the importance of incentive mechanisms to attract quality data con-
tributions. Wang et al. have proposed BPFL, a Blockchain-based privacy-preserving FL scheme
for IoV, enhancing Multi-Krum technology with homomorphic encryption [130]. Additionally, a
reputation-based incentive mechanism is developed to encourage honest participation and data
sharing. Similarly, BESIFL is introduced by Xu et al. [145], leveraging Blockchain for decentral-
ization, integrating mechanisms for malicious node detection and incentive management, thereby
improving FL performance by ensuring the participation of credible nodes. The paradigm under-
scores the importance of a secure and incentivized environment for handling diverse data and
enhancing the overall efficacy of federated learning in IoV.

7.4 IoHT

When discussing how to enrich the diversity of training data, the heterogeneity of healthcare data
is a significant issue in the context of IoHT due to the diversity of medical equipment and the
complexity of application scenarios. Because of the variability in data format and characteristics
across different medical institutions, it is impractical to enforce a standardized structure for all
data in IoHT. For example, Computed Tomography (CT) images may vary in size, pixel density,
and data format, so addressing the heterogeneity of healthcare data is an important consideration
for developing effective IoHT solutions.

To address the challenge of heterogeneity in healthcare data, Kumar et al. [54] improve a
Blockchain-empowered FL model with the data normalization technique. The authors utilize
capsule-network-based segmentation and classification to detect patterns of COVID-19 from var-
ious types of lung CT scans. By leveraging the Blockchain and FL technologies, the presented
BlockFL model caters to the particularities of the IoHT.

7.5 Conclusion

Table 8 provides an assessment of BlockFL applications across various IoT sectors, highlighting
their role in managing data diversity. DeepChain [139] in PIoT incentivizes nodes for collabora-
tive training, ensuring fairness but facing synchronization issues. DAM-SE [146] promotes honesty
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Table 8. Comparison of BlockFL across IoT Domains for Data Diversity

Data

Diversity

Dom-

ains
Model Objective Features Advantages Limitations

PIoT

DeepChain
[139]

Encouraging
Participation

Incentive mechanism and transa-
ction processing for collaborative
training. Non-interactive zero-
knowledge for auditability.

Confidentiality, auditability,
and fairness; Compatibility
and liveness properties.

Limited resource
challenge;
Efficiency issues.

DAM-SE
[146]

Encouraging
Honesty

Double-layer aggregation based
on security evaluation; Maximum
benefit for remaining honest.

Low communication cost;
Defend against poisoning
attacks and free-rider attacks.

Scalability challenges;
Efficiency issues.

BlockFLA
[24]

Punishment
for Malicious

Automatically detect attacker
with monetary penalties.

High generalizability; Succe-
ssfully penalize attackers.

Limited resource
challenges.

Flchain [11]
Fair
Incentive

Distributed trust and incentive
among trainers; Reward for
misbehavior detector and compen-
sation for affected trainers.

Fair profit partition; Timely
misbehavior detection and
model purchase.

Time-consuming;
Privacy risk.

IIoT

Secured Data
Sharing [144]

Encouraging
Participation

PoC consensus mechanism;
Adaptive differential privacy.

Encourage contribution of local
privacy data and computing po-
wer; Identify poisoning attacks.

Scalability challenges.

FGFL [30]
Fair
Incentive

Reputation and contribution indic-
ators; Punishment and elimination
mechanisms.

Assess the trustworthiness and
utilities in real time; Attack-
resistance and profit-sharing.

Limited resource
challenges.

IoV

BPFL [130]
Encouraging
Participation

Reputation-based incentive mecha-
nism; Multi-Krum combined
with holomorphic encryption.

Encourage honest participation;
Achieve ciphertext-level model
aggregation and model filtering.

Efficiency issues.

BESIFL [145]
Encouraging
Participation

Contribution-based incentive me-
chanism with a token-based reward
scheme; Accuracy-based malicious
node detection.

Improve performance through
incentive and credible nodes
selection; Enhance security.

Privacy risk;
Efficiencyissues.

IoHT
COVID-19
Detection
[54]

Heterogeneous
Data
Processing

Data normalization technique;
Capsule Network-based segmen-
tation and classification.

High detection accuracy;
Better generalization;
Secure data sharing.

Limited resource
challenges.

Fig. 10. Application of BlockFL: Data Diversity. In order to increase data diversity and optimize BlockFL, the

PIoT model should consider incentives to encourage greater participation, while the IoHT domain presents

a challenge with regard to heterogeneous problems that require more attention from the model. The impor-

tance of data diversity in IIoT and IoV is to help improve model accuracy and address data silos issues.

with a cost-effective aggregation model, balancing strong data privacy against scalability and de-
lay challenges. Blockfla [24] combats malicious intent by building trust indices, trading off with
potential system overhead. FleChain [11] ensures equitable participation yet deals with model con-
vergence. In IIoT, Secured Data-sharing [144] and FGFL [30] focus on fair compensation and attack
resilience, respectively, each facing overhead and resource scalability issues. For IoV, BPFL [130]
and BESIFL [145] use reputation-based and contribution-based incentives to enhance participa-
tion and data security, confronting node failure and efficiency impacts. In IoHT, COVID-19 Detec-
tion [54] employs a Capsule Network for secure data sharing in medical contexts, with limitations
in resource availability.

Figure 10 delineates a structured analysis of the impact of data diversity on the effectiveness
of BlockFL across varied IoT domains. Within PIoT, the framework emphasizes the critical role
of incentive mechanisms in model training processes. In the realm of IIoT, the precision and
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performance of models are of utmost importance, thereby requiring the implementation of secured
data-sharing schemes, maintaining data integrity, and improving operational efficiency. The IoV
sector seeks to establish secure and incentivizing environments, aiming at attracting a rich vari-
ety of datasets and address the challenges of data silos. In the domain of IoHT, the focus shifts to
tackling the heterogeneity of medical data, with sophisticated applications such as processing CT
Imaging, developed to navigate the diversity of medical devices and the intricacies of healthcare
application scenarios.

8 LESSON LEARNED AND OPEN CHALLENGES OF BLOCKFL FOR IOT

The combination of FL and Blockchain has demonstrated significant potential in advancing next-
generation digital developments. Through theoretical analysis and related experiments, existing
studies confirm the application value of integrating BlockFL technologies in various fields. But
the works are limited and remain largely theoretical. The throughout review of the BlockFL in IoT
reveals several essential challenges and unresolved issues when considering the implementation
and development of BlockFL.

This section will highlight potential future research directions for BlockFL, exploring both gen-
eral open issues faced across all application domains, as well as domain-specific challenges.

8.1 General Challenges of BlockFL in Different Application Scenarios

In the 5G/6G era, BlockFL is set to thrive due to unprecedented data speeds, lower latency,
and higher reliability [106]. These advanced networks enhance real-time interactions between
Blockchain nodes and FL participants, contributing to more efficient data exchange, model updat-
ing, and consensus. The increased data transmission speeds also aid in the quick synchronization
of Blockchain ledgers and fast sharing of FL model updates, bolstering the scalability and effi-
ciency of BlockFL systems. With the evolution of 5G and the advent of 6G technologies, however,
BlockFL faces new challenges in maintaining efficiency and security. The ultra-low latency of these
networks demands real-time data processing and decision-making in BlockFL systems [20]. For in-
stance, autonomous driving requires millisecond-precise decision-making utilizing the low latency
of these networks. Additionally, the higher data throughput of 5G/6G networks increases resource
demands, necessitating more efficient BlockFL algorithms [152], especially in contexts like smart
cities where vast sensor data needs to be managed without overwhelming network nodes.

As BlockFL navigates these technological advancements, it also encounters universal challenges
in IoT scenarios, underscoring the need for tailored solutions in various applications. While each
considered IoT scenario has its unique characteristics, they share foundational challenges in data
security, privacy, resource limitation, scalability, and data diversity. All scenarios involve data col-
lection, transmission, and processing, often with sensitive information, necessitating robust se-
curity and evolving privacy protection [9]. The limited computing power and energy resources
of IoT devices pose scalability challenges as the IoT ecosystem expands. Moreover, data diver-
sity in terms of device capabilities and communication protocols requires intelligent processing
techniques for efficient BlockFL deployment [40]. These challenges vary significantly across sce-
narios. For example, IoHT involves health-related data requiring strict compliance with healthcare
regulations [49], while IIoT might focus more on protecting industrial processes and proprietary
information [78]. The degree of resource limitation and scalability requirements can differ. PIoT
devices might be more constrained in terms of battery life and processing power [114], whereas
IIoT settings might prioritize the scalability of solutions across vast industrial networks with vary-
ing computational capacities [142]. The type and level of heterogeneity can vary widely; IoV deals
with mobility-related data and connectivity challenges unique to vehicular networks [84], while
IIoT must accommodate a wide range of industrial equipment and operational technologies.
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Table 9. Potential Synergies between BlockFL and Related Technologies

Technology Description
Challenges Solved by

Combining with BlockFL
Example Features and Benefits

Cryptography
Mathematical algorithms for
security and sensitive
information protection.

Data Security
and Privacy

PPFL Model [10]
Enhance a variant of the Paillier cryptosystem to

implement homomorphic encryption.

FDC Framework [150]
Leverages multiparty secure computation

technologies to ensure data security.

Fed-DFE Model [121]
Uses the interactive key generation algorithm to

avoid collusion attack.

Anomaly
Detection

Techniques to identify
unusual patterns or outliers in
data.

Data Security
and Privacy,
Reliability

Block Hunter

Framework [149]

Based on cluster detection to automatically search

for attacks and threat risks.

Anomaly

Detection [96]

Utilizes Blockchain to record the incremental

updates of anomaly detection.

CDW-FedAvg

Algorithm[164]

Calculates the distance between positive and

negative class data to detect failures and attacks.

Optimization
Methods for finding the best
solution for a given problem
and conditions.

Resource
Limitation

Dual-policy BAFL

Model [27]

Develops two complementary policies to control

block-generation rate and adjust training rounds.

FL-Block Scheme [98]
Considers delays, communication and computation
cost to determine the optimal block generation
rate.

Disaster

ResponseSystem [93]

Discusses the effect of the number of miners,
computing power, transmission capacity, and
channel dynamics.

Compression
Technique

Techniques for reducing data
size while maintaining
integrity and usefulness.

Resource
Limitation,
Scalability

PAFLM [69]
Reduces communication costs without sacrificing

performance.

Decentralized

FEL Model [44]

Replaces complete gradients with sparse but
important gradients to reduce communication
overhead.

Data
Normalization

Techniques for transforming

data into a standardized form.
Heterogeneity

Pathological

Detection [54]

Deals with the data collected by different kinds of

CT scanners effectively.

Table 9 summarizes potential technologies for future BlockFL development. In terms of security
enhancement and privacy protection, the integration of encryption and secure computing tech-
nologies has been effective [10, 121, 150]. Combining BlockFL with various encryption algorithms
and noise addition methods [154, 160] or multi-party security technologies can further enhance
Blockchain-based FL models. Additionally, data processing techniques like compression [44, 69]
and normalization [54], along with smart contracts [76] and sharding mechanisms [151, 165], are
suggested to address resource limitations and data heterogeneity, enhancing the capabilities of
BlockFL.

Furthermore, ongoing research is needed to delve deeper into combining Blockchain and FL.
Current BlockFL models mainly employ Blockchain for aggregation in the FL process, with less
emphasis on enhancing Blockchain through FL. Intermediate results in BlockFL, such as the quality
of local models, could be utilized in the consensus calculations of Blockchain [70], thus reducing
the costs of computational and communication resources. Exploring new consensus methods and
smart contract technologies based on BlockFL presents promising avenues for further develop-
ment. This research should also address issues typically associated with Blockchain, such as the
collusion of the miners and the challenges of hybrid-Blockchain structures [134, 157].

8.2 Unique Challenges of BlockFL in Different Application Scenarios

The integration of BlockFL across different IoT applications presents unique challenges due to the
distinct nature of each field. Table 10 summarizes these challenges and their solutions. In PIoT, the
complexity arising from personalized smart services is addressed using transfer and split learning
technologies to enhance personalization and privacy. IIoT leverages transfer learning to improve
intelligent collaboration, boosting efficiency and cutting costs. For IoV, high latency is tackled
through online and continuous learning technologies, enhancing safety and traffic flow. In IoHT,
the focus is on handling sensitive medical data securely, utilizing consortium Blockchains and split
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Table 10. Unique Challenges of BlockFL in Different Application Scenarios

Scenario Unique Challenges Reasons Solutions Key Insights

PIoT Complex smart services Personalized needs
Transfer learning technology;

Split learning technology.

Enhances personalization;
Adapts to user preferences;

Preserves privacy.

IIoT
Complex intelligent

collaboration
Automation Transfer learning technology.

Improves multitask efficiency;
Reduces costs;

Shares knowledge across domains.

IoV Long delay
Real-time changing
traffic environments

Continuous learning technology.
Enables real-time adaptation;

Optimizes traffic flows;
Ensures safety and efficiency.

IoHT
Challenging

identity management
Permission requirements
for access to medical data

Consortium Blockchains;
Split learning technology.

Restricts access; Secures
medical data; Supports

collaborative healthcare research.

learning for secure data handling and collaborative research. This table encapsulates the diverse
challenges and innovative solutions tailored to the unique needs of different IoT scenarios.

In large-scale PIoT and IIoT, collaborative intelligence and meeting personalized needs have
emerged as a new research direction. As existing studies have focused on optimizing a single task,
the increasing demand for multitasking collaboration and cooperation requires a complex system
to analyze and coordinate the relationship and connection of multitasking and multi-objective.
To enable intelligent coordination, the models should explore transfer learning technology and
other related novel technologies in combination with BlockFL models. In particular, the process of
industrialization requires more consideration of the costs of large-scale implementation.

In IoV, ensuring the stability of the system in high-speed movement is a crucial research direc-
tion. A large number of vehicles in the IoV application scenarios are constantly moving at high
speeds and changing positions in real time, which poses a considerable challenge to the stability
and reliability of the network and connection. To address this issue, researchers can increase the
calculation effectiveness, reduce model delay, and consider optimizing and innovating BlockFL
models by imitating online learning algorithms. Moreover, future vehicles in 6G are expected to
support cross-domain communication across the ground, underwater and air [33], so stability in
combination with new devices and technologies, such as over-the-air computing, should also be
taken into account [168].

In IoHT, permission and identity management of participants are critical challenges due to the
high sensitivity of medical data. Consortium Blockchains are more suitable for implementation
in IoHT, with the high professional knowledge required by participants to analyze and manage
medical-related data. The involvement of medical organizations can make the management of
IoHT models highly controllable and convenient, and multiple participation can improve the accu-
racy and other performance of IoHT models. Thus, researchers should explore how to incentivize
participation in BlockFL while considering the problem of membership management.

8.3 Other Learning Framework as Solution for BlockFL

In addressing future research on BlockFL, it is imperative to broaden the scope to include vari-
ous frameworks of distributed learning, such as split learning, transfer learning, and continuous
learning. This expansion is crucial for offering a holistic view of the distributed learning landscape,
enabling the identification of synergies and potential integrations that could further enhance the
capabilities and applications of BlockFL across diverse IoT scenarios.

Integrating learning frameworks like Split Learning, Transfer Learning, and Continuous Learn-
ing with BlockFL offers the potential to leverage the strengths of both FL and Blockchain
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technologies while addressing their respective weaknesses. By doing so, we can create a learn-
ing ecosystem that is robust against data privacy issues, adaptable to new data, and capable of
continuous improvement without centralized data storage.

Split Learning is a distributed learning framework that divides a neural network model be-
tween client and server sides [105]. Clients compute with local data and send intermediate re-
sults to a server for further processing. This method, combined with BlockFL, enhances privacy
and efficiency. Clients handle initial training stages and only transfer intermediate results to a
Blockchain-based server, which aggregates them securely and updates the Blockchain ledger with
the enhanced model. This integration with BlockFL offers scalable, privacy-preserving solutions
in IoT environments, benefiting from the security and transparency of Blockchain.

Transfer Learning applies knowledge from one domain to solve problems in another and is
particularly useful in PIoT and IIoT within BlockFL contexts [138]. By incorporating it into BlockFL,
pre-trained models on Blockchain nodes can be refined by new participants using their data, thus
reducing training time while maintaining privacy. This approach also facilitates cross-domain ap-
plications, allowing knowledge transfer from one IoT sector to another (e.g., from IoHT to IoV),
accelerating intelligent system deployment across varied IoT ecosystems.

Continuous Learning focuses on systems that learn and evolve over time, accumulating and
adapting to new data while retaining previous knowledge [90]. Incorporating this into the BlockFL
framework could enhance adaptability. The approach involves regularly updating Blockchain mod-
els with insights from client data. Clients contribute to ongoing learning, facilitating continuous
model evolution, which ensures data integrity and lineage for auditing purposes. In dynamic IoT
settings, this enables BlockFL systems to adapt to new patterns and changes, maintaining relevance
and effectiveness in applications such as IoV and IoHT, where continuous learning and updating
are essential.

9 CONCLUSION AND FUTURE WORK

In this article, we have divided the different application scenarios for the conjunction of FL and
Blockchain into four important IoT domains: PIoT, IIoT, IoV, and IoHT. We have introduced the
status quo and current requirements in each application field and classified the different mod-
els according to the solved issues. In addition, we have summarized the common challenges in
these areas, such as outstanding issues in privacy security, system scalability, and data hetero-
geneity, and provided several possible future research directions for different fields. The specific
challenges encountered by BlockFL development in various application domains have been also
highlighted, along with some recommendations for further investigation. Our research has shown
that BlockFL, as a highly secure and efficient approach for distributed model training, offers supe-
rior performance compared to traditional FL in all IoT application domains thanks to its decentral-
ized structure and transparency.

In our future work, we plan to do further research on optimizing the performance of existing
models and improving the practicability of applications. Designing new types of Blockchain-based
FL model with high privacy security and high accuracy is also a feasible direction for our follow-up
works.
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