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A B S T R A C T

Porous liquids (PLs) are newly developed porous materials that combine unique fluidity with permanent 
porosity, which exhibit promising functionalities. They have shown ability to efficiently absorb greenhouse gases 
such as carbon dioxide (CO2). Experimental measurement is one approach to determining the solubility of 
various greenhouse gases in PLs, which has drawbacks such as being expensive and time-consuming. Hence, 
simulation models are valuable to predict the solubility of CO2 in various PLs. This work aims to develop machine 
learning (ML) modeling methods for accurately estimating CO2 solubility under varying conditions (e.g. PLs, 
temperature, pressure). Adaptive Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization-ANFIS 
(PSO-ANFIS), Coupled Simulated Annealing-Least Squares Support Vector Machine (CSA-LSSVM), and Multi-
layer Perceptron Neural Network (MLP-NN) were established as the state of art algorithms for estimating CO2 
solubility. The models demonstrated accurate modeling results with average absolute relative deviation (AARD) 
of 12.98%, 8.67%, 3.17% and 6.64% for ANFIS, PSO-ANFIS, CSA-LSSVM and MLP-NN, respectively. This work 
has presented a powerful modeling tool with few parameters that need to be controlled, to precisely estimate CO2 
solubility in different PLs of complex structures.

1. Introduction

The swift advancement of human civilization since the Industrial 
Revolution has resulted in a notable surge in the global energy con-
sumption rate, reaching 15 terawatts (TW) in 2010 and is projected to 
climb to 27 TW by 2050 [1]. Conversely, our primary energy re-
quirements continue to be met by finite and nonrenewable fossil fuels, 
such as coal, petroleum, and natural gas [2]. Excessive dependence on 
these fossil fuels has not only contributed to air and water pollution, but 
also triggered a substantial escalation in CO2 emissions into the atmo-
sphere, leading to severe global alterations in climate and causing 
detrimental impacts on the environment [3]. In 2020, CO2 emissions 
stemming from the combustion of fossil fuels amounted to 34 billion 
tons and were anticipated to increase further [4]. The repercussions of 
the greenhouse effect are evident in global climate change, manifesting 
as phenomena like global warming, rising sea levels, and the melting of 

glaciers, posing a threat to the survival of humanity. The Intergovern-
mental Panel on Climate Change (IPCC) has proposed the restriction of 
the global average temperature rise to 1.5 ℃ within the next century as a 
long-term objective [5]. The most favorable approach for mitigating CO2 
emissions in power plants is considered to be post combustion capture 
technology, which has already found application in the electricity in-
dustry [6]. Out of the four post combustion methods, namely adsorption 
[7], absorption [8], membrane separation [9–11], and cryogenic sepa-
ration [12], absorption is regarded as the most viable option for large- 
scale implementation in CO2 capture. This preference is attributed to 
its notable CO2 capture efficiency and exceptional adaptability within 
existing power plants [13].

In absorption processes, alkanolamine aqueous solutions, specif-
ically monoethanolamine, serve as the absorbents. Despite their excep-
tional efficiency in CO2 separation, these solutions have certain 
drawbacks, including high consumption of renewable energy, 
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susceptibility to corrosion, and decomposition issues [14]. As a prom-
ising alternative, porous liquids (PLs) emerge as novel absorbents that 
combine the fluid characteristics of liquids with the porous nature of 
solid materials. Consequently, PLs are considered a favorable option for 
CO2 capture. Unlike traditional absorbents [15], PLs boast abundant 
pores, providing additional adsorption sites for CO2 and thereby 
enhancing the overall CO2 absorption capacity. In the realm of gas 
separation, PLs offer distinct advantages compared to solid adsorbents 
due to their liquid state, making them suitable for use in continuous 
separation processes based on solvents. Moreover, they exhibit advan-
tages over traditional liquid absorbents because the pores within PLs can 
be specifically designed to match the size and shape of the target gas. 
This tailored design capability enhances the selectivity of the target gas 
in mixed gas scenarios, resulting in increased effectiveness [16]. As a 
result, PLs exhibit numerous advantages over their traditional solid or 
liquid counterparts [17]. The fluidic nature of PLs enables easy inte-
gration into existing continuous flow liquid-based separation processes. 
Furthermore, their inherent permanent porosity enhances gas capture 
with selectivity based on size and shape [18], showcasing considerable 
potential for applications in gas adsorption, separation, and catalysis 
[19].

So far, the primary applications of PLs have targeted gas adsorption. 
Consequently, earlier PLs were largely engineered for capturing gases 
such as CO2, CH4, and others [20]. For instance, Dai et al. primarily 
focused on CO2 adsorption using PLs [21]. Xin et al. [22] proposed a 
versatile and straightforward method for synthesizing type III PLs with 
reduced viscosity, following the principle of “like dissolves like.” A 
recent investigation by Gomes et al. [23] might offer novel insights for 
the development of high-efficiency PLs for CO2 capture under low 
pressure. Specifically, PLs incorporating ZIF-8 and phosphonium acetate 
or levulinate salts exhibit CO2 adsorption at low pressure, achieving a 
capacity of 1.5 mmol g-1 at 303 K and 2 bar. This is comparable to the 
performance of popular sorbent materials, such as ethanolamines (1.8 
mmol g-1 for N-methyl-diethanolamine at 40 ◦C and 1 bar) or solid 
amine sorbents (2.6 mmol g-1 for mesoporous silica functionalized with 
polyethyleneimine at 30 ◦C and 1 bar) [24]. Therefore, such research 
strengthens our belief that PLs could offer an enhanced solution for gas 
adsorption at low pressure with optimized designs.

Due to the difficulties involved in experimental measurements, given 
their time-consuming and expensive nature, the development of pre-
dictive methods to estimate the phase behavior of such systems is highly 
beneficial to support UN Sustainable Development Goals. Additionally, 
for the efficient design of processes dealing with mixtures of CO2 in ionic 
liquids, it is crucial to determine the operational conditions required to 
attain a desired level of CO2 solubility in the chosen ionic liquid solvent 
[25]. To investigate the application of ML techniques in CO2 capture 
processes, RBFNN, SVR, and XGBoost models were used for computing 
the equilibrium solubility of CO2 in blended amine solutions containing 
MEA-DEEA and MEA-MDEA [26]. Modeling techniques have also been 
suggested for CO2/PLs systems to calculate CO2 solubility.

Mukesh et al. [27] used the Redlich-Kwong cubic type EOS to esti-
mate the solubility behavior of CO2 in a porous ionic liquid (type-III). 
Atilhan et al. [28] used molecular simulation tools to investigate 
nanoscopic interactions CO2 capture in porous liquids. Quantum 
chemistry calculations using Density Functional Theory were used in 
their study. However, these models lack generality, and therefore there 
is a need to develop models that can be applied to estimate phase be-
haviors such as solubility in a wide range of CO2/PLs conditions [29].

Nevertheless, it is essential to consider that, for example, ionic liquid 
molecules consist of highly asymmetric neutral ion pairs characterized 
by a substantial dipole moment resulting from the charge distribution 
across the ion pair [30]. Additionally, given the quadrupole moment of 
CO2 molecules [30], any applied thermodynamic relations must be 
capable of accommodating these intense interactions. Moreover, it is 
crucial to account for the effects of elevated pressures commonly 
encountered in supercritical operations. The existing thermodynamic 

models mentioned earlier have primarily been tailored for specific sys-
tems due to these two factors, rather than applying to a range of systems 
with general applicability. Consequently, there arises a necessity to 
formulate general models capable of predicting the phase behaviors of 
diverse systems involving various types of ionic liquids, which are now 
being considered alternatives to conventional industrial solvents [25].

There are several studies on topics related to CO2 by utilizing ML 
techniques [31]. Some of these studies propose methods to predict CO2 
solubility in different solvents. For instance, artificial neural network 
(ANN) was used to predict CO2 solubility at equilibrium conditions in 
propanol-based solvents [32]. Another example relates to the estima-
tions of CO2 solubility in amine solutions, using ANN and ANFIS [33]. 
For eutectic mixtures, ANFIS and gene expression programming (GEP) 
were used as ML techniques [34]. The least square support vector ma-
chine (LSSVM) is also reported as a ML technique to predict CO2 solu-
bility [35]. However, there is a lack of systematic comparison between 
different ML models in their performance of modeling CO2 solubility in 
PLs.

As PLs can be complex chemicals, traditional modeling of CO2 sol-
ubility in PLs, such as thermodynamic models, can be highly compli-
cated, new ML models and methodology for input selection are proposed 
in this study. Therefore, the objectives of this study were to develop four 
ML modeling methods (ANFIS, PSO-ANFIS, CSA-LSSVM, MLP-NN) in 
estimating CO2 solubility in a diverse range of PLs; to assess the per-
formance of the different models by comparing predicted vs actual CO2 
solubility results in PLs; and to conduct statistical analysis of the 
modeling results.

2. Theory of machine learning models

2.1. Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is a common model do for estimations in petroleum and 
chemical engineering. This model was first proposed with five combined 
algorithms to modify the fuzzy system and neural network [36–38]. 
Hybrid learning algorithms and back propagation method are usually 
used to train the ANFIS topology [39]. An ANFIS with two inputs and 
one output will have a mathematical formula (equation (1)) for a spe-
cific node I in the first layer [36]: 

O1
i = μAi

(x) (1) 

where x, O1
i , μAi 

are the input, output of the node, membership function 
associated with the linguistic label Ai, respectively. Each node has value 
in the range of 0 to 1 where membership function (MF) can define it. In 
this study, Gaussian type was used as the MF, defined by equation (2)
[40]: 

μA(x) = e−
(x− Z)2

2σ2 (2) 

where Z is the center of Gaussian MF, and σ2 represents the variance 
parameter. For the second layer, two other parameters of constant nodes 
and some weighted terms will be added and the correlation will be as 
shown in equation (3) [41]: 

O2
i = ωi = μAi

(x)μBi
(y) (3) 

where ωi represents the firing strength or weight of the i-th rule in the 
system. O denotes the output of layer, which can calculate the mean 
value for weighted terms, which is then applied in the third layer by 
equation (4) [42]: 

O3
i = ωi =

ωi

ω1 + ω2
(4) 

Multiplication of each average weight by its corresponding function 
is completed for the fourth layer by equation (5) [42]: 
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O4
i = ωifi = ωi(pix + qiy + ri) (5) 

where ri, qi and pi are the resulting and tunable parameters. The final 
value will be obtained by adding up all the stated outputs in the fifth 
layer by equation (6) [42]: 

O5
i =

∑

i
ωifi =

∑
iωifi
∑

iωi
(6) 

The schematic diagram of an ANFIS structure is shown in Fig. 1.

2.1.1. PSO
PSO is an algorithm to optimize the outputs stochastically. Its 

concept is formed on the based on how the group-living animals 
communicate and relocate [44]. The PSO has a searching process that 
firstly creates a population called a swarm- having separate parts as 
individuals that express particles. The corresponding positions deter-
mine possible resolutions to find an optimized solution for the problem. 
Every particle has a velocity which is a defining parameter for the par-
ticle during the searching process. In this work, the parameters of ANFIS 
were optimized by applying PSO [45–48].

2.2. CSA-LSSVM

The Support Vector Machine (SVM), initially introduced by Vapnik 
[49], is a pivotal ML method utilized for classifying or predicting target 
data within nonlinear systems [50]. Another formulation for SVM, 
known as the Least Squares Support Vector Machine (LSSVM), was 
developed [51]. LSSVM presents several advantageous features 
compared to SVM, including faster convergence, simpler calculations, 
and higher accuracy [51]. In LSSVM, the approach involves predicting 
an approximation function through the utilization of training data.

A dataset consisting of (xi, yi)n is considered, where xi, yi and n 
represent the input points, target points, and the total number of 
training data points, respectively. The LSSVM regression approach is 
applied to estimate any arbitrary function. This linear regression model 
is expressed as equation (7) [52]: 

f(x) = ωTφ+ b (7) 

where φ denotes nonlinear function where as ω shows weight vector and 
b is considered a constant term. To approximate the function, equations 
(8) and (9) are utilized [53]: 

minω, b, eJ(ω, e) =
1
2
‖ω‖2

+
1
2

γ
∑n

i=1
e2

i (8) 

yi = 〈ω, φ(xi)〉+ b+ ei (9) 

where ei and γ indicate error and regularization variables, respectively. 

To formulate the optimization problem, the Lagrangian function 
(equation (10) is constructed [54]: 

Llssvm =
1
2
‖w‖

2
+

1
2

γ
∑N

i=1
e2

i −
∑N

k=1
αk{(ω.φ(xk) ) + b + ek − yk} (10) 

where αk denotes the Lagrange multiplier. The optimization process is 
solved based on partial differential concept [55]: 

∂LLSSVM

∂w
= 0→w =

∑N

k=1
αkφ(xk) (11) 

∂LLSSVM

∂b
= 0→

∑N

k=1

αk = 0 (12) 

∂LLSSVM

∂ek

= 0→αk = γek k = 1,⋯,N (13) 

∂LLSSVM

∂αk

= 0→(w.φ(xk) )+ b+ ek − yk = 0 k = 1,⋯,N (14) 

where α = [α1,⋯, αN], lv = [1,⋯1], Y = [y1, ⋯yN], and ω and ek are 
excluded to form equation (15): 

[
0 IT

N

IN Ω + γ− 1lN
][

b
α ] = [

0
Y ] (15) 

where Ω and IN present the kernel and identity matrices, respectively. 
The kernel function is outlined in equation (16): 

Ωij = φ(xi)φ(xj) = K(xi, xj) (16) 

The LSSVM methodology incorporates various types of kernel func-
tions, including the radial basis function, which is defined as follows: 

K
(
xi, xj

)
= e(

‖xi − xj‖
2

σ2 ) (17) 

Simulated annealing (SA) stands as a versatile optimization tech-
nique, drawing inspiration from the annealing process in solids. It was 
initially proposed by Kirkpatrick et al. [56] to tackle intricate modeling 
tasks. The primary objective of this method is to address limitations 
present in other optimization approaches, including the risk of being 
confined to local minima, non-differentiability of cost functions, and 
high computational expenses. To refine the SA approach, [57] intro-
duced a collection of techniques for globally optimizing continuous 
parameters, termed CSA. CSA ensures superior optimization capabilities 
compared to standalone SA approaches by creating a hybrid system that 
exchanges information to decide whether an uphill movement should be 
considered [58]. CSA-LSSVM have been used in many other regressions 
and prediction-based research [59–64].

Fig. 1. Structure of ANFIS model with two input parameters [43]. Copyright 2017, Reproduced with permission from Wiley.

F. Amirkhani et al.                                                                                                                                                                                                                             Separation and Puriϧcation Technology 359 (2025) 130445 

3 



Given the significant applicability of CSA [64], this study employs 
CSA, utilizing σ2 and γ as optimization variables to determine the 
optimal configuration of the LSSVM model’s tuning parameters. Fig. 2
shows the schematic of CSA-LSSVM algorithm.

2.3. MLP-NN

ANNs were developed based on the human nervous system, and have 
been used for regression analysis, function estimation, pattern identifi-
cation, and classification of problems. The ANN can mainly find a 
relation between input and output problems by attributing a function. 
The ANN has processing and interconnecting parts, known as weights 
and nodes, respectively [66]. Two famous ANNs are RBF and MLP. 
Neuron’s information processing is an approach to distinguish RBF from 
MLP. For RBF modeling, no connection between the input layers and the 
hidden ones is assumed. For MLP modeling, there is a relation between 
the hidden and the output layers. The number of neurons in output and 
hidden layers corresponds to unity and number of input parameters. The 
hidden layer specifies the function connecting the input variables and 
the output of the model [67].

ANNs are composed of synthetic neurons that function as basic 
processing units. Independent variables, serving as input variables, are 
introduced to the input layer and subsequently passed to the artificial 
neurons within the hidden layers, before finally reaching the output 
layer in sequence. A schematic illustration of the ANN structure is shown 
in Fig. 3 [68].

The strengths or weaknesses of connections between inputs and 
neurons are determined by the weight parameters. In this study, a feed- 
forward neural network (FNN) model with a modified Lev-
enberg–Marquardt optimization algorithm is employed for training. To 
generate the inputs along with their associated weight coefficients, 
biases are incorporated. The neuron’s output is determined using 
equation (18) [68]: 

nj = f

(
∑N

r=1
wjrxr + bj

)

(18) 

where nj denotes the neuron output. The function f serves as a transfer 
function through which the net output of each neuron is processed. wjr is 
a weight coefficient, xr is an input, and bj is a bias [68].

In this study, the logarithmic sigmoid function is utilized as the 
transfer function, defined in equation (19) [69]: 

f(x) =
1

1 + exp(− x)
(19) 

3. Data collection for CO2 absorption in PLs

The experimental data for CO2 absorption in PLs was obtained from 
literature search using the web of science. A range of diverse PLs were 
studied in this work including ZIF-8/[DBU-PEG]-[NTf2], ZSM-5/[DBU- 
PEG]-[NTf2], Silicalite-1/[DBU-PEG]-[NTf2], ZIF-8/[Bmim][NTf2], 
ZSM-5/[Bmim][NTf2], Silicalite/[Bmim][NTf2], [C2OHmim][Lys] 

Fig. 2. Schematic of CSA-LSSVM algorithm [65] Copyright 2014, Reproduced with permission from Elsevier Science Ltd.
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@GDX, and Al(fum)(OH)/PDMS. The PLs are identified by the names of 
the porous hosts and their percentage of mass in the porous liquids. For 
instance, PL No. 1 (Table 1) indicates that the host is ZIF-8, and its mass 
fraction in ZIF-8/[DBU-PEG]-[NTf2] liquid nanocomposite is 3.2 %. The 
input parameters that were considered in these models are the PLs 
number which were denoted as 1 to 8 (Table 1), PLs wt%, temperature 
(T, ◦C), and pressure (P, mbar). In addition, two-dimensional or three- 
dimensional molecular descriptors can be used as inputs of the models 
for the identification of PL type, but they require additional complicated 
calculations based on Quantitative Structure-Property Relationship 
(QSPR). Such parameters can be explored in the modeling process in 
future. These 300 data points were used to develop a trustful approach 
to estimate CO2 solubility in PL solvents. Of the total datasets, 75 % of 
the data were used as training and 25 % were used as testing data. The 
key factors that contribute to determining the CO2 solubility are listed in 
Table 1.

4. Application of machine learning models

In this work, ANFIS, PSO-ANFIS, CSA-LSSVM, and MLP-NN with 
Levenberg Marquardt were utilized to estimate CO2 solubility in the 
target PLs. By altering the neurons from 1 to 50, it was observed that the 
ANN structure with 13 neurons had the best accuracy and the lowest 
mean squared error (MSE). The MSE value for each neuron in predicting 
test and total data is represented in Table 2. The parameters of the op-
timum ANN model are provided in Table 3. The MSE The ANFIS model 
was developed based on Gaussian MF and genfis3 with six rules. An 
ANFIS model, enhanced by a PSO algorithm was used to assess the gas 
solubility in PLs. The PSO trained the Fuzzy C-means clustering (FCM) 
type ANFIS and determined the best values for the ANFIS parameters. 
These optimized values can be adjusted by different parametric studies 
to establish the PSO-ANFIS. The PSO task in the PSO–ANFIS model is to 
enhance the ANFIS to generate better connections between the input and 
the output. Moreover, as addressed in the literature, Gaussian type was 

Fig. 3. Scheme of ANN structure in this study.
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applied as MFs [73,74]. A trial-and-error process was used to evaluate 
the optimal values of the PSO parameters (Table 4). In this study, the 
suggested LSSVM model was integrated with CSA to achieve faster and 
more efficient convergence to optimal values. Employing this approach, 
the parameters σ2 and γ were determined to be 0.6319 and 113197.34. 
The computation time for ANN, ANFIS, PSO-ANFIS and CSA-LSSVM was 
< 1 min, < 1 min, about 6 min, and < 1 min, respectively. For applying 
the models, MATLAB R2010b was used in Dell LATITUDE 5530, with 
12th Gen − Intel® Core™ i7-1265U 1.8 GHz and 16 GB RAM.

5. Results and discussion

5.1. Accuracy of the developed models

Using the ML models developed in this work, CO2 solubility in 
different PLs was calculated. Fig. 4 depicts the models’ estimations 
versus the actual data point index to gain a realistic sense of model ac-
curacy, and the result indicates a good fit between model results and real 
measurements. Fig. 5 shows the anticipated values in comparison with 
the target values for ANFIS, PSO-ANFIS, CSA-LSSVM, and MLP-NN 
models. Here, the horizontal and vertical axes are experimental and 
anticipated CO2 solubility values in the tested PLs. The data points that 
are located close to isometric line show reliable estimation, and the 
anticipated values by all the developed models are acceptably close to 
the experimental data. Statistical parameters of MSE, R2, AARD and 
standard deviation (STD) were applied, as shown in equations (20)-(23)
to assess the integrity and accuracy of the models: 

MSE =
1
n
∑n

i=1

(
xexperimental

i − xestimated
i

)2
(20) 

R2 = 1 −

∑n
i=1

[
xestimated

i − xexperimental
i

]2

∑n
i=1
[
xestimated

i − xm
]2 , xm =

∑n
i=1xexperimental

i

n
(21) 

AARD(%) =
100
n
∑n

i=1

⃒
⃒
⃒xestimated

i − xexperimental
i

⃒
⃒
⃒

xexperimental
i

(22) 

STD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(

(
xestimated

i − xm
)2

n
)

√

(23) 

where xm is the average of experimental data, and n is the number of 
data.

The above parameters are widely used in regression analysis and 
prediction, and have been reported in many publications [43,75–78]. 
The results (Table 5) show that of the four models, the R2 values are very 
high (≥ 0.94) while MSE values are very small (≤ 0.0041). However, 
CSA-LSSVM has the lowest %AARD for the total and test data. It can be 
concluded that all the developed models predicted the CO2 solubility 

Table 1 
Experimental data used in this study.

PL PL 
No.

PL 
(wt 
%)

T (◦C) P (mbar) CO2 uptake 
(mmol/g)

Ref.

ZIF-8/[DBU- 
PEG]- 
[NTf2]

1 3.2, 
10, 
20, 
30

25 496.3–10000 0.016–1.56 [70]

ZSM-5/[DBU- 
PEG]- 
[NTf2]

2 5.3 25 47.50–10000 0.011–0.46

Silicalite-1/ 
[DBU- 
PEG]- 
[NTf2]

3 2.1 25 356.3–10000 0.009–0.38

ZIF-8/ 
[Bmim] 
[NTf2]

4 2.9 25 212.8–10000 0.013–0.66

ZSM-5/ 
[Bmim] 
[NTf2]

5 3.3 25 200.9–10000 0.013–0.62

Silicalite/ 
[Bmim] 
[NTf2]

6 2.9 25 82.74–10000 0.008–0.63

[C2OHmim] 
[Lys]@GDX

7 30, 
40, 
55, 
70, 
80

40 0–1000 0.239–1.29 [71]

Al(fum)(OH)/ 
PDMS

8 12.5 25–75 1000–5000 0.147–0.97 [72]

Table 2 
MSE of each neuron in ANN.

Test MSE Neuron Test MSE Neuron Total MSE Neuron Total MSE Neuron

0.0561 1 0.0034 23 0.0679 1 0.0034 45
0.0365 2 0.0033 39 0.0379 2 0.0032 50
0.0195 48 0.0032 32 0.0117 31 0.0032 6
0.0126 3 0.0032 17 0.0111 3 0.0031 18
0.0102 31 0.0031 44 0.0100 12 0.0030 9
0.0096 12 0.0031 6 0.0098 48 0.0030 23
0.0074 37 0.0031 5 0.0097 16 0.0029 21
0.0073 16 0.0030 8 0.0071 32 0.0029 34
0.0058 41 0.0030 34 0.0066 37 0.0028 10
0.0052 33 0.0030 10 0.0053 4 0.0028 46
0.0052 50 0.0027 46 0.0051 36 0.0028 8
0.0050 42 0.0027 24 0.0050 42 0.0027 30
0.0049 28 0.0027 21 0.0050 25 0.0026 15
0.0048 29 0.0026 18 0.0045 29 0.0026 17
0.0045 25 0.0026 35 0.0043 7 0.0026 27
0.0045 4 0.0024 27 0.0041 33 0.0026 26
0.0043 19 0.0024 26 0.0038 41 0.0025 11
0.0042 14 0.0023 47 0.0038 44 0.0022 24
0.0041 20 0.0023 49 0.0037 19 0.0022 38
0.0041 7 0.0022 38 0.0037 14 0.0021 49
0.0037 40 0.0021 15 0.0036 28 0.0020 35
0.0036 11 0.0019 36 0.0036 40 0.0019 47
0.0035 9 0.0019 43 0.0035 20 0.0017 43
0.0035 45 0.0017 22 0.0035 5 0.0015 22
0.0035 30 0.0005 13 0.0034 39 0.0008 13
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with high accuracy. In comparing the model performance between the 
training, validation and test datasets, better results were obtained in the 
training stage, except for the MLP-NN model. The MSE and R2 values for 
the test set of the MLP-NN model are slightly better than the training 
dataset, which could be due to the randomness in dividing data and the 
model structure.

Table 6 show the value of %AARD of the estimated values by 
developed models obtained for each PL. The results show that CSA- 
LSSVM presented the lowest %AARD for all PLs except [C2OHmim] 
[Lys]@GDX in which MLP-NN presented the lowest %AARD for 
[C2OHmim][Lys]@GDX. The results demonstrate that all models, 
especially CSA-LSSVM and ANN can be used for the estimation of CO2 
solubility in PLs at different temperatures, pressures and wt% of PLs. 
Therefore, these two models can be used for predicting CO2 solubility in 
new PLs in future.

5.2. Effects of input parameters on CO2 absorption

This part presents the intricacies of CO2 adsorption and solubility in 
tested PLs, employing both experimental data and model results to un-
derstand the dynamics of gas capture. It also evaluates the efficacy of 
these PLs under different conditions, highlighting the role of PL wt%, 
ionic liquids, and polymer frameworks in enhancing CO2 capture ca-
pabilities. Through a comparison of experimental results with results 

Table 3 
The parameters of the optimum ANN model.

No. of 
neuron

Activation 
function

Training 
function

Input-to-hidden layer 
weights

Hidden-to-output layer 
weights

Input-to-hidden layer 
bias

Hidden-to-output layer 
bias

13 logsig trainlm − 1.605407641 − 2.398934285 4.667523302 − 0.930436315
− 5.873688764 − 4.791949484 3.388719217

4.206560575 − 3.456662989 − 5.904947868
0.407451586 − 3.313063395 2.534438846
2.371211204 − 2.672258534 2.976970477

− 2.524364649 − 5.23304348 − 2.709247429
− 3.107074887 2.037353588 − 2.61480374

2.162605746 1.206215307 − 1.194174788
2.015669156 − 4.072891622 − 2.36054217

− 2.222918928 − 1.276478957 − 3.129859452
− 5.169629449 3.065997794 − 5.926180115

8.789907394 1.364055099 4.156422334
− 0.496704753 13.29864177 41.43791644

Table 4 
Properties of the PSO-ANFIS model.

Variable Value

Iterations 400
Particles 2500
Initial inertia weight 0.7
Inertia weight damping ratio 0.89
Cognitive acceleration (C1) 1
Social acceleration (C2) 2
Number of fuzzy rules 10

Fig. 4. Experimental CO2 solubility versus estimated data at testing and training stages.
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from the computational models, insights are gleaned into the mecha-
nisms driving CO2 solubility and adsorption in these innovative mate-
rials. The exploration in this section underscores the potential of PLs in 

addressing environmental challenges and sets the stage for future 
research directions aimed at optimizing PLs for more efficient CO2 
capture, reflecting a significant step forward in the quest for sustainable 
environmental solutions.

Fig. 6 is concerned with the comparison between model estimations 
and experimental data regarding the CO2 adsorption capability of ZIF-8/ 
[DBU-PEG]-[NTf2] with 20 wt% at ambient temperature [70]. This 
comparison is crucial for the validation of the model’s results against 
actual observed data. The enhancement of CO2 capturing capacity, 
attributed to the high surface area and porosity of ZIF-8/[DBU-PEG]- 
[NTf2] when incorporated into porous liquids, is demonstrated. The 

Fig. 5. Regression plots between the experimental and estimated CO2 solubility.

Table 5 
Statistical analyses result for the developed models.

Parameter Train Validation Test Total

ANFIS
R2 0.9790 0.8739 0.9715 0.9692
MSE 0.0026 0.0135 0.0030 0.0037
STD 0.3507 0.3132 0.3206 0.3444
% AARD 12.88 11.64 14.35 12.98
PSO-ANFIS
R2 0.9927 0.9610 0.9904 0.9898
MSE 0.0009 0.0041 0.001 0.0012
STD 0.3519 0.3179 0.3294 0.3472
% AARD 8.13 7.29 12.29 8.67
CSA-LSSVM
R2 0.9941 0.9922 0.9917 0.9937
MSE 0.0007 0.0008 0.0008 0.0007
STD 0.3531 0.3255 0.3258 0.3491
% AARD 2.79 2.92 5.26 3.17
MLP-NN
R2 0.9931 0.9977 0.9943 0.9937
MSE 0.0008 0.0002 0.0006 0.0007
STD 0.3553 0.3294 0.3307 0.3519
% AARD 5.49 2.81 14.94 6.64

Table 6 
AARD (%) of the developed models for the estimation of CO2 solubility in PLs.

PL ANFIS PSO- 
ANFIS

CSA- 
LSSVM

MLP- 
NN

ZIF-8/[DBU-PEG]-[NTf2] 7.73 6.04 0.79 4.76
ZSM-5/[DBU-PEG]-[NTf2] 40.71 23.35 2.29 15.85
Silicalite-1/[DBU-PEG]- 

[NTf2]
29.39 13.96 3.53 8.47

ZIF-8/[Bmim][NTf2] 32.30 24.89 5.52 6.41
ZSM-5/[Bmim][NTf2] 19.98 19.17 1.62 7.91
Silicalite/[Bmim][NTf2] 13.65 15.90 2.06 37.70
[C2OHmim][Lys]@GDX 8.83 4.91 4.25 3.28
Al(fum)(OH)/PDMS 6.03 5.57 0.70 5.39
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effectiveness of the model in capturing the nuances of CO2 adsorption 
behavior in these systems is highlighted along with the reliability of the 
model and the potential of ZIF-8/[DBU-PEG]-[NTf2] in CO2 capture 
applications [79]. Fig. 7 shows the comparison for CO2 solubility in 12.5 
wt% Al(fum)(OH)/PDMS under varied operational conditions [72]. The 
system of Al(fum)(OH)/PDMS, which combines a metal–organic 
framework with polydimethylsiloxane (a silicone type), is shown to have 
a specific affinity towards CO2. The variations in operational conditions, 
which include temperature, pressure, and the presence of other gases, 
are seen to influence CO2 solubility. The accuracy of the model across a 
spectrum of conditions is tested. The adaptability and efficiency of Al 
(fum)(OH)/PDMS as a medium for CO2 solubility offer insights into its 
applications in gas separation technologies [80]. Fig. 8 focuses on the 
experimental and estimated CO2 adsorption capacities in [C2OHmim] 
[Lys]@GDX with varying contents at 40 ◦C [71]. It assesses the model’s 
ability to estimate CO2 adsorption across different compositions of 
[C2OHmim][Lys]@GDX, emphasizing the impact of chemical composi-
tion and concentration on CO2 capture efficiency. [C2OHmim][Lys] 
@GDX, a novel type of ionic liquid-based porous liquid, is shown where 
specific interactions between the ionic liquid and CO2 are exploited to 
enhance CO2 capture [81].

In order to evaluate the model performance, CO2 solubility in 

different PLs at the same conditions is compared (Table 7). As the results 
show, at the pressure of 5000 mbar, 3 wt% of PL, and temperature of 
25 ◦C, LSSVM predicted that ZSM-5/[Bmim][NTf2] yields the highest 
CO2 capture, and ANN predicted that Al(fum)(OH)/PDMS yields the 

Fig. 6. Comparison of experimental and estimated CO2 solubility in 20 wt% ZIF-8/[DBU-PEG]-[NTf2] at ambient temperature.

Fig. 7. Comparison of experimental and estimated CO2 solubilities in 12.5 wt% Al(fum)(OH)/PDMS at different operational conditions.

Fig. 8. Comparison of experimental and estimated CO2 solubility of 
[C2OHmim][Lys]@GDX with different wt% at 40 ◦C.
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highest value.
Collectively, these figures illustrate the innovative application of PLs 

in CO2 capture technology, highlighting the complex relationship be-
tween material composition, operational conditions, and CO2 adsorp-
tion/solubility. Through the comparison of experimental data with 
model estimations, the utility of models in guiding the development and 
optimization of new PLs for environmental applications is validated. 
These analyses contribute valuable insights into the design and appli-
cation of PLs in addressing the crucial challenge of CO2 capture and 
sequestration, marking a significant advancement in the field of sus-
tainable environmental technologies.

6. Conclusions

In this study, a novel approach for estimating CO2 solubility in 
various PLs is proposed, utilizing the ML models including ANFIS, PSO- 
ANFIS, MLP-NN, and CSA-LSSVM. CSA-LSSVM showed the best accu-
racy with the lowest ARRD value (3.17 %) compared to other models 
with AARD of 6.64 %, 8.67 % and 12.98 % for MLP-NN, PSO-ANFIS and 
ANFIS models. The findings indicate that CSA-LSSVM achieved the 
lowest AARD for all PLs except [C2OHmim][Lys]@GDX for which MLP- 
NN recorded the lowest AARD. This research offers a reliable method for 
estimating CO2 solubility in diverse PLs, providing researchers and 
practitioners with a practical tool that relies on minimal number of 
dependent parameters to estimate CO2 absorption in PLs. Through this 
work, a significant advancement can be made in the field of CO2 capture, 
by offering a reliable and efficient tool for the development of new PLs 
tailored for enhanced CO2 absorption capabilities. The ML models 
developed here will support the researchers and industrialists to accu-
rately predict CO2 capture by PLs in various operational situations, to 
operate the CO2 capture systems under optimized and desired condi-
tions, and for advanced control of such systems. Therefore, such ML 
modeling tools provide guidance for CO2 capture by new PLs in future. 
The accurate, efficient, and cost-effective models can be highly com-
plementary for experimental measuring of CO2 capture by PLs.
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