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Abstract: In this study, we present the stability analysis of a Nonlinear Model Predictive
Control (NMPC) of a 3D ground target tracking system model. The system model is derived
considering the 3D kinematic system model referenced to the ground target. The NMPC adeptly
track errors across five critical states: range, bearing angle, altitude, pitch angle, and speed.
This objective is achieved through the strategic utilization of yaw angle, pitch angle, and
acceleration as control inputs. A significant contribution of this paper is the establishment of
stability conditions within the Lyapunov framework for the closed-loop system. To demonstrate
the efficacy of our proposed model, we conducted simulations, which shows high accuracy in
tracking all designated states.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as piv-
otal technological assets, finding applications across di-
verse sectors such as agriculture, search and rescue, and
military operations (Wilson et al., 2022). Within the realm
of UAV technology, quadcopters and fixed-wing platforms
present distinctive advantages and challenges (Attenni
et al., 2023; Tahir et al., 2023; Zuo et al., 2022). While
fixed-wing UAVs boast enhanced autonomy and extended
range, they grapple with a fundamental constraint: the
inability to maintain stationary flight, necessitating con-
tinuous motion.

In the context of ground target tracking with fixed-wing
UAVs, the prevalent strategies involve overhead tracking
or circumnavigation of specified targets at predefined dis-
tances (Chen et al., 2019). Achieving this involves skillful
manipulation of circumnavigation angles to control direc-
tion and maintain desired distances, often implemented
through a 2D Dubins model but with 3D implementation
as well (Mbam and Kim, 2023).

Model Predictive Control (MPC) has gained prominence
in control theory due to its efficacy in addressing control
problems while accounting for system constraints (Mayne,
2014). Traditional MPC methodologies rely on linear ap-
proximations of systems, leading to well-studied convex
optimization problems with distinct global optimal solu-
tions (Rawlings, 2000). However, Nonlinear MPC needs
to deal with nonconvex optimization, posing challenges in
finding global optimum solutions due to nonlinearities in
the dynamic system model (Wolf and Marquardt, 2016).

Ensuring stability in MPC systems often hinges on Lya-
punov theory, where the selection of a Candidate Lya-
punov Function (CLF) within specific bounds plays a
crucial role. In linear applications, stability is attained
by adding a properly design terminal cost into the cost

function by solving the algebraic Riccati equation (Wei,
2021).

In recent years, NMPC applied to fixed-wings has gain
prominence. Authors at (Reinhardt and Johansen, 2021)
propose an NMPC for attitude and speed control for fixed-
wings. Moreover, at (Tian et al., 2022), authors proposed a
double-layer fuzzy adaptive NMPC for trajectory tracking
and energy management control. Notwithstanding these
developments, a number of unresolved issues still need to
be addressed, stability being prominent among them.

This paper presents the stability analysis of a NMPC
approach to control a 3D ground target tracking model.
Based on the 3D kinematics system model, a 5-states
and 3-inputs target tracking system model is derived.
With this, a local controller is design that stabilizes the
system within the terminal region. Sufficient conditions
of stability are given, and simulation results shows the
good performance of the controller on tracking the system
states’ references.

The structure of this paper unfolds as follows: Section 2
establishes foundational elements pertinent to this study
Subsequently, Section 3 expounds on the system’s dynamic
model using kinematics, leading to the derivation of the
ground target tracking model. Section 4 details the appli-
cation of nonlinear Model Predictive Control within this
system. The stability analysis is discussed in Section 5.
Section 6 presents simulation results, and section 7 en-
capsulates the conclusions and outlines avenues for future
exploration.

NOTATION

In this work, R signifies the set of all real numbers, whereas
R+ refers to the set of all non-negative real numbers.
We use A⊺ to indicate the transpose of a matrix A.
For a matrix A, its largest and smallest eigenvalues are
represented by λmax(A) and λmin(A), respectively. The



largest singular value of a matrix A is its induced norm.
The Euclidean norm is expressed as |·|. Furthermore,
the weighted squared Euclidean norm is given by the
expression |x|2P = x⊺Px.

2. PRELIMINARIES

Take into account the following discrete-time autonomous
system model:

xk+1 = f(xk), f(0) = 0, (1)

where xk ∈ Rn.
Definition 1. K and KL Functions: If a function α : R+ →
R+ is continuous, monotonically increasing, and fulfills
α(0) = 0, it is categorized as a K-function. Additionally,
if α is a K-function with the feature that α(a) → ∞ as
a → ∞, then it is regarded as a K∞-function. On the
other hand, a function β : R+ × R+ → R+ is recognized
as a KL-function if it is continuous, β(·, k) is a K-function
for all k ≥ 0, and β(s, ·) is a non-increasing function for
all s ≥ 0, with β(s, k) → 0 as k → ∞.

Definition 2. (Lyapunov Stability): For the system (1), a
function V : Rn → R is identified as a Lyapunov function
within a subset A ⊂ Rn if, within A, there is a compact
set Ω, encompassing the neighborhood around the origin
x = 0, K∞-functions α1, α2, and α3 meeting the following
criteria:

V (|x|) ≥ α1(|x|),∀x ∈ A, (2a)

V (|x|) ≤ α2(|x|),∀x ∈ Ω, (2b)

V (f(|x|))− V (|x|) = ∆V (|x|) ≤ −α3(|x|),∀x ∈ A. (2c)

When A ≜ Rn, V is regarded as a global Lyapunov
function.

Theorem 1. ((Limon et al., 2009)). If the system (1) ad-
mits a Lyapunov function in A, then it is asymptotically
stable in A.

3. 3D GROUND TARGET TRACKING SYSTEM
MODEL

The system model introduced in this study takes into
account the kinematic relationship between the fixed-wing
UAV and a spatial location, with a specific focus on a
ground target as the reference point. Within this context,
we assume precise knowledge of the target’s positional co-
ordinates. The continuous-time kinematic representation
of the fixed-wing UAV concerning the ground target can
be denoted as follows:

ẋp = v cos(χ) cos(ψ), (3a)

ẏp = v cos(χ) sin(ψ), (3b)

żp = v sin(χ), (3c)

χ̇ = uχ, (3d)

ψ̇ = uψ, (3e)

v̇ = uv. (3f)

In this conceptual framework, xp, yp, and zp represent
the spatial coordinates of the UAV in a three-dimensional
context. Additionally, v denotes the UAV’s speed, while χ
and ψ respectively represent the pitch and heading angles
of the UAV (Zhang et al., 2018). Moreover, the control
inputs, namely uχ, uψ, and uv, govern the rates of change
for the pitch angle (χ), heading angle (ψ), and speed (v).
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Fig. 1. a) 3D Ground Target Tracking. (b) XY represen-
tation for angles relationship.

These control inputs are pivotal in orchestrating the UAV’s
maneuvers and ensuring effective ground target tracking.
The UAV’s operational dynamics necessitate the genera-
tion of adequate lift for sustained flight. Consequently, the
UAV’s speed v is confined within the interval [vmin, vmax].
Here, vmax denotes the maximum attainable speed for the
UAV, while vmin corresponds to the stall speed, which is
the minimum speed required to sustain lift.

3.1 Nonlinear 3D Ground Target Tracking System Model

Considering the Fig. 1b, the relationship between the
bearing angle, heading angle, and reference angle from the
ground target and the UAV is depicted as:

ϕ = ψ − θ − π, (4)

with ϕ = arctan 2(yp, xp), (4) implies ϕ̇ = ψ̇− θ̇. Moreover,
from Fig. 1a the distance between the UAV and the target
tracking is represented by:

r(t) =
√
(xp(t)− xGT )2 + (yp(t)− yGT )2 + (zp(t)− zGT )2

(5)
where xGT , yGT , zGT are the ground target position
coordinates. For simplicity, xGT = yGT = zGT = 0,
i.e. the ground target is at the origin of the 3D frame.
Furthermore, the derivative of the distance ṙ can be
depicted as:

ṙ =
1

2
√
x2p + y2p + z2p

(2xpẋp + 2ypẏp + 2zpżp)

= v(sin2 χ− cos θ cos2 χ).

(6)

Additionally, from (4),

ϕ̇ =
−yp

x2p + y2p
ẋp +

xp
x2p + y2p

ẏp =
−vr cos2 χ sin θ

r2 − z2p
, (7)

which results in an expression for the rate of change of the
bearing angle:

θ̇ =
vr cos2 χ sin θ

r2 − z2p
+ uψ. (8)

Considering the rate of change of the altitude żp, the rate
of change of the speed v̇ and the rate of change of the pitch
angle χ̇ at (3), the 3D target tracking model is depicted
as:



ṙ = v(sin2 χ− cos θ cos2 χ), (9a)

θ̇ =
vr cos2 χ sin θ

r2 − z2p
+ uψ, (9b)

żp = v sin(χ), (9c)

χ̇ = uχ, (9d)

v̇ = uv. (9e)

The steady-state analysis shows that, while v ≥ vmin, if
ṙ = θ̇ = żp = χ̇ = v̇ = 0 =⇒ χss = uχ,ss = uv,ss = 0,
rss = rd > zp,ss = zd, vss = vd, θss = {π/2, 3π/2},
uψ,ss = {−v/rd, v/rd}. The subsequent states tracking
error vector is defined as x = x̄ − xss, where
x̄ = [r, θ, zpχ, v] is the actual state value vector and
xss = [rss, θss, zp,ss, χss, vss] is the reference vector.
Similarly to the states, the inputs tracking error vector is
defined as u = ū−uss, where ū = [uψ, uχ, uv] is the actual
inputs vector, and uss = [uψ,ss, uχ,ss, uv,ss] represents
the steady-state input vector. Considering forward Euler
Method for discretization and tracking errors, we can
represent the model as a discrete-time tracking error form
nonlinear system model as follows:

xk+1 = h(xk) +Buk, (10)

where

B =


0 0 0
Ts 0 0
0 0 0
0 Ts 0
0 0 Ts

 ,
and h(xk) = [h1 h2 h3 h4 h5]

⊺
defined by:

h1(xk) = x1k+Ts(x5k+vd)(sin
2 x4k+sinx2k cos

2 x4k),

(11a)

h2(xk) = x2k+Ts

(
(x5k+vd) cos

2 x4k cosx2k

(x1k+rd)(1− sin2 x4k)
− vd
rd

)
,

(11b)

h3(xk) = x3k+Ts(x5k+vd) sinx4k, (11c)

h4(xk) = x4k, (11d)

h5(xk) = x5k, (11e)

where Ts is the sampling time. Note that the sub index k
denotes sampling instant.

3.2 Linearized 3D Ground Target Tracking System Model

Considering the nonlinear system presented in (10), and
the linearization point as xss = [rd, π/2, zd, 0, vd]

⊺, we
can obtain a linearized representation of the discrete-time
system model for the ground target tracking system as

xk+1 = Axk +Buk, (12)

with

A =


1 Tsvd 0 Tsvd 0

Tsvd
(r2d − z2d)

2
1

2Tsvdrdzd
(r2d − z2d)

2

Tsvdrd
r2d − z2d

Tsrd
r2d − z2d

0 0 1 Tsvd 0
0 0 0 1 0
0 0 0 0 1

 .
Moreover, the nonlinear system can be represented as:

f(xk, uk) = Axk +Buk + g(xk), (13)

where the discrepancy between the linear and nonlinear
system models is denoted by g(xk) = h(xk) − Axk. The

linear and nonlinear models become increasingly similar
as the states get closer to their references, meaning that
the gap between them tends to zero at this stage.

4. FORMULATION OF NMPC FOR 3D GROUND
TARGET TRACKING

In this section, we consider the discrete-time model for
ground target tracking as specified in (10), where the
state xk and control input uk are elements of Rn and
Rm, respectively. The primary goal is to minimize the cost
function described by:

VN (x0,
−→u ) =

N−1∑
i=0

L(xi, ui) + Vf (xN ), (14)

with the stage cost is expressed as L(xi, ui) = |xi|2Q + |ui|2R,
where Q and R are positive definite matrices. The predic-
tion horizon is denoted by N . The terminal cost is defined
as Vf (xN ) = |xN |2Pρ

with Pρ being a positive definite

matrix. Given tentative inputs uk over N , the sequence
of control actions −→u is as follows:

−→u = [(u0)
⊺, . . . , (uN−1)

⊺] ∈ Rm×N . (15)

The NMPC problem for the initial state x0 is formulated
as an optimal control problem as follows:

PN (x0) : V
opt
N (x0,

−→u ) = min−→u
VN (x0,

−→u ), (16a)

s.t.:

xi+1 = f(xi, ui), (16b)

ui ∈ U, (16c)

xi ∈ Rn, (16d)

xN ∈ Xf ⊆ Rn, (16e)

∀i ∈ {0, · · · , N − 1}.
The constraints (16b) and (16c) correspond to the system
and input constraints, respectively, while (16e) is the
terminal constraint, allowing the design of Xf to ensure
closed-loop stability. The optimal input vector −→u opt that
minimizes the cost function (14) is defined as:

−→u opt(x0) ≡ arg

{
min−→u∈U(x0)

VN (x0,
−→u )

}
. (17)

The set of feasible control actions that adhere to con-
straints (16c) to (16e) is indicated by U(x). Thus, the
optimal input sequence is stated as follows:

−→u opt(x0) = [(uopt0 )⊺, . . . , (uoptN−1)
⊺]⊺. (18)

Implementing −→u opt(x0) in the system (16b) results in the
optimal state trajectory:

−→x opt(x0) = [(x0)
⊺, (xopt1 )⊺, . . . , (xoptN )⊺]⊺. (19)

Then, it is possible to define the domain of attraction for
VN (x0) as follows

XN ≡ x0 ∈ R : U(x0) ̸= ∅, (20)

comprising all x0 ∈ Rn for which there is an input sequence−→u ∈ U(x0) holding the constraints (16c) through (16e). By
employing the receding horizon control principle, solving
PN (x0) in (16a) determines the NMPC law κN (xk) :
XN → U:

κN (x0) ≡ uopt0 . (21)

Lastly, considering (13), the NMPC loop for tracking a
ground target is denoted as:

xk+1 = f(xk, κN (xk)). (22)



5. STABILITY ANALYSIS

Here we focus on deriving sufficient conditions for the
NMPC loop’s stability in UAV ground target tracking,
outlined in (22). Even though the purpose of this analysis
is to ensure closed loop NMPC stability for the ground
target tracking system, we use standard linear tools to
derive sufficient stability conditions.

5.1 Terminal Local Controller κℓ(x)

A standard method for assuring stability in NMPC in-
volves the use of a known controller, which stabilizes the
nonlinear system at x ∈ Xf . Drawing inspiration from
this approach and utilizing conventional linear MPC tools,
coupled with the behavior of g(x) approaching zero as x
approaches zero, we propose a local controller based on
the characteristics of the optimal solution for a one-step
horizon (i.e., N = 1) (Aguilera et al., 2013) with ρ = 1.
The local controller is thus defined:

κℓ(x) = Kx, (23)

where

K = −(B⊺PB +R)−1B⊺PA. (24)

In light of this and the terminal cost, Xf in (16e) is defined
as follows:

Xf ≜ {x⊺Pρx ≤ ϱx : κℓ(x) ∈ U}, (25)

where ϱx is a positive real number chosen to maximize the
ellipsoid size such that for all x within the terminal region,
κℓ(x) remains within U in (13). Additionally, as the origin
is included in U, this ensures Xf is non-empty. Regarding
(13), the closed-loop system can be represented as:

xk+1 = AKxk + g(xk), (26)

with AK = A + BK. Considering g(·) to be twice differ-
entiable and satisfying g(0) = 0, there is a positive real
constant L that can be used in the following relationship:

|g(x)| ≤ L|x|, (27)

on the subset Xf ⊂ Rn, signifying that g(x) is locally
Lipschitz within Xf .
Theorem 2. Considering the positive constants: a1 =
λmin(P ), a2 = λmax(P ), b = 2L|AK |Pρ + L2 and

σ = λmin(Z
∗), with Z∗ = Pρ

−1/2(Q∗)Pρ
−1/2. Moreover,

Q∗ ∆
= Q + K⊺RK, and Q∗

ρ ≡ ρQ∗ with ρ ≥ 1. If Vf in
(14) is designed such that Pρ solves the Riccati equation:

A⊺
KPρAK − Pρ +Q∗

ρ = 0, (28)

and g(x) is limited as shown in (27), alongside the condi-
tion

ρσ ≥ b, (29)

then κℓ(x) in (23) acts as a local stabilizer controller within
the terminal region for the system (10).

Proof. By invoking Theorem 1, the first two conditions
are met with α1(s) = a1s

2 and α2(s) = a2s
2. This confirms

that inequalities (2a) and (2b) are satisfied for all x ∈ Xf .
Continuing with direct computation, we arrive at:

∆Vf (xk) + L(xk, κℓ(xk)) =

− x⊺k(Q
∗
ρ −Q∗)xk+2g(xk)

⊺PρAKxk+g(xk)
⊺Pρg(xk).

(30)

Noting (27) and letting xk = x, L can be determined by
assessing |x|Pρ within Xf and identifying its upper bound,
as shown:

L = max
0<|x|Pρ≤ϱx

|g(x)|Pρ

|x|Pρ

, (31)

which implies that

g(x)⊺Pρg(x) ≤ L2|x|2Pρ
. (32)

Moreover

2g(x)⊺PρAKx = 2(g(x)⊺Pρ
1/2)(Pρ

1/2AKx),

≤ 2L|AK |Pρ |x|2Pρ
.

(33)

Similarly to (33)

x⊺(Q∗)x ≥ σ|x|2Pρ
. (34)

Consequently, from (30), the following is inferred:

∆Vf (x) + L(xk, κℓ(x)) ≤ −((ρ− 1)σ − b)|x|2Pρ
, (35)

therefore,
∆Vf (x) ≤ −(ρσ − b)|x|2Pρ

. (36)

Condition (2c) is held with α3(s) = a3s
2 by (29), where

a3 = (ρσ − b),

following that

∆Vf (x) ≤ −a3|x|2Pρ
, ∀x ∈ Xf . (37)

The previous result allows us to establish the following
relationship:

Vf (xk+1) ≤ γVf (xk), ∀x ∈ Xf . (38)

Considering inequality (37),

Vf (xk+1) ≤ Vf (xk)− a3|xk|2Pρ
≤ (a2 − a3)|xk|2Pρ

, (39)

with a3 ≤ a2 =⇒ γ = 1 − a3/a2 ∈ [0, 1]. By iterating
(38), it is possible bound |xk|2Pρ

as:

|xk|2 ≤ a2
a1
γk|x0|2, (40)

implying that limk→∞ |xk| = 0 with x0 ∈ Xf . Conse-
quently, κℓ(x) in (23) is a stabilizing local controller within
the terminal region for (13).

Remark 1. The conclusions drawn from Theorem 2 indi-
cate that under the condition where (29) is fulfilled within
the set U, the single-step controller defined in (23) effec-
tively ensures local stability within the region Xf . This
implies that if a state xk lies in Xf , then its successor state
xk+1 will also reside in Xf , thereby rendering Xf as an
invariant set. These insights are pivotal for the formulation
of Theorem 3, which aims to establish the stability criteria
for the multi-step NMPC.

5.2 Stability Analysis for Multi-step NMPC

Under the direction of the stabilizing local controller
specified in (23), this subsection explores the requirements
that the multi-step NMPC loop (22) must be met in order
to guarantee its stability. The main tactic is to make
sure the NMPC directs the system from any initial state
x0 ∈ XN to the terminal region and makes sure the final
xN state predicted by the system falls inside Xf .
Theorem 3. Considering Z = Pρ

−1/2(Q)Pρ
−1/2, Z∗ as per

Theorem 2, and ξ = λmin (Z). If xN ∈ Xf , Pρ in Vf
satisfies (28), and

b ≤ (ρ− 1)σ + ξ, (41)

then the stability of the system in (22) is assured



Proof. Drawing from Theorem 2, condition (2a) is satis-
fied if α1(s) = a1s

2. Employing the local controller κℓ(x)
as defined in (23), we propose a suboptimal yet feasible
control sequence given by:

ũ =
[
κℓ(x)

⊺, κℓ(x1)
⊺ , · · · , κℓ(xN−1)

⊺
]⊺
.

Building upon the insights from Theorem 2, we establish
the following relationship:

|xN−1|2Q+|κℓ(xN−1)|2R+|xN |2Pρ
=|xN−1|2Q∗+|xN |2Pρ

. (42)

Rewriting (42) in the context of (26), we get:

|xN−1|2Q∗+|xN |2Pρ
= |xN−1|2Q∗+|g(xN−1)|2Pρ

,

+ 2g(xN−1)
⊺PρAKxN−1 + |AKxN−1|2Pρ

.
(43)

Analogous to (34), we can assert the following relationship:

|xN−1|2Q∗ ≤ η|xN−1|2Pρ
, (44)

where η = λmax(Z
∗). Additionally, utilizing (32) and (33),

we deduce:

|xN−1|2Q∗ + |xN |2Pρ
≤ (η + τ)|xN−1|2Pρ

, (45)

where τ = b + |AK |2Pρ
. Extending the multi-step cost

function (42) to incorporate xN−2 and considering (45),
we arrive at:

|xN−2|2Q∗+|xN−1|2Q∗ + |xN |2Pρ
≤

|xN−2|2Q∗ + (η + τ)|xN−1|2Pρ
.

(46)

With (26), xN−1 is expressed in terms of xN−2. Proceeding
with this iterative process and considering optimality, we
can state:

V optN (x,−→u opt(x)) ≤ VN (x, ũ(x)) ≤(N−2∑
j=0

ητ j + τN−1

)
|x|2Pρ

, ∀x ∈ Xf .
(47)

Consequently, α2(s) = c2s
2 holds according to (2b), with

c2 =

(N−2∑
j=0

ητ j + τN−1

)
.

Given the optimal control sequence as stated in (18), the
optimal cost in (14) is described by:

V optN (x) = VN (x,−→u opt(x)). (48)

Taking into account the stabilizing local controller shown
in (23), ũ is defined as a feasible but suboptimal sequence

ũ =
[
(uopt1 )⊺, · · · , (uoptN−1)

⊺, (κℓ(xN ))⊺
]⊺
. (49)

By constraint (16e), xN ∈ Xf , and taking into account
both optimality and ũ:

V optN (xk+1) ≤ VN (xk+1, ũ), (50)

we establish the following relationship by juxtaposing both
(48) and (50):

∆V optN (xk) ≤ VN (xk+1, ũ)− V optN (xk)

= −L(xk, κN (xk)) + L(xN , κℓ(xN )) + ∆Vf (xN ).
(51)

In alignment with (34),

L(xk, κN (xk)) ≥ ξ|xk|2Pρ
. (52)

Therefore, from (36),

∆VN (xk) ≤ −(ξ + (ρ− 1)σ − b)|xk|2Pρ
, ∀x ∈ XN , (53)

fulfilling condition (41), (2c) is satisfied with α3(s) = −c3s2,
where

c3 = ξ + (ρ− 1)σ − b.

With the previous analysis, and considering that for an
instant t > 0, x ∈ Xf , we obtain that

V optN (xk+1) ≤ V optN (xk)− c3|xk|2Pρ
. (54)

Considering (47) and establish the following relationship:

V optN (xk+1) ≤ γnV
opt
N (xk), (55)

with γn = 1 − c3/c2 =⇒ γn ∈ [0, 1). By iterating (56),
the cost function is bounded by:

V optN (xk) ≤ γknV
opt
N (xt), (56)

which implies that when k → ∞ =⇒ V optN →
0,∀ k > t, x ∈ Xf . Furthermore, by the two first
conditions at (2) and iterating (56), we can establish that

|xk|2 ≤ c2
c3
γkn|xt|2, (57)

showing that limk→∞ ∥xk∥ = 0 with xt ∈ Xf . The
fixed-wing UAV system controlled by NMPC given in
(22) is guaranteed to be stable after the three stability
requirements in (2) are met.

6. SIMULATIONS

Table 1. System and Controller Parameters

Parameter Symbol Value Units

Reference range rd 150 m
Reference altitude zd 50 m
Reference speed vd 4 m/s

Reference bearing angle θd π/2 rads
Sampling time Ts 1 s
Simulation time Tsim 150 s
Terminal region Xf 3.2649 -
Scaling factor ρ 2.5 -

Prediction horizon N 10 -
Lipschitz constant L 0.5265 -

This section evaluates the NMPC system’s performance by
simulating its behavior in a controlled environment. The
pivotal system parameters employed in these simulations
are enumerated in Table 1. The system parameters can be
observed in Table 1. Utilizing these parameters, matrices
A and B at (12) are defined by

A =


1 4 0 4 0

−0.0002 1 0.0001 −0.0302 0.0075
0 0 1 4 0
0 0 0 1 0
0 0 0 0 1

 , B =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

 ,
(58)

where xk ∈ R5 and uk ∈ R3. Considering also the following
weighting factors

Q = diag([0.008, 0.09, 0.05, 0.04, 0.9]),

R = diag([1, 1, 1]).
(59)

Matrices P and K can be designed solving algebraic
Riccati equation at (28). Furthermore, with ρ = 2.5, so
Q∗
ρ is determined. The design of this local controller also

allows for the determination of the terminal region Xf , as
delineated in equation (60),

Xf = {x⊺Pρx ≤ ϱx = 3.1733}. (60)

Aligned with Theorem 3, the Lipschitz constant that
bounds the nonlinearities is defined as L = 0.5265. Finally,
under condition (41), the system’s stability is verified:

ξ + (ρ− 1)σ = 0.2782 > 2L∥AK∥Pρ
+ L2 = 0.2762.

For simulation purposes, a scenario is considered wherein



Fig. 2. UAV Trajectory.

Fig. 3. System states evolution. (a) Range, altitude and
speed. (b) Bearing angle and pitch angle.

the target remains stationary. The UAV commences with
initial conditions xo = [212.83,−π/4, 20, 0, 0]. Figure 2
illustrates the UAV’s trajectory over the course of the
simulation. It is evident that the UAV successfully attains
the desired altitude before achieving and sustaining the
required proximity to the target. Moreover, Figure 3a
demonstrates the deviations in system states. It is appar-
ent that within 20 seconds, the UAV aligns with the al-
titude reference, followed sequentially by range and speed
alignment. Furthermore, Figure 3b depicts the progression
of the bearing and pitch angles. Consistent with earlier
observations, these two states converge to their respec-
tive references, maintaining minimal error margins, which
highlights the controller’s performance.

7. CONCLUSION

This paper presents the stability analysis of a NMPC
specifically tailored for fixed-wing UAV engaged in precise
three-dimensional ground target tracking. The proposed
NMPC framework, governing five state variables and three
control inputs, ensures system stability while effectively
accounting for the distinctive attributes of these UAVs,
particularly through judicious consideration of input con-
straints. The proposed stability analysis relies on the de-
sign of a suitable local stabilizing controller within a termi-
nal region. Simulations results were conducted for a ground
target tracking problem, the NMPC cost function was
design in order to satisfy the sufficient stability conditions

proposed in this work. These results shows that the system
is stable, moreover, a good performance is achieved, were
the state variables remains within negligible error margins.
Future research directions include enhancing the robust-
ness of the proposed framework against model inaccura-
cies, conducting empirical implementations in real-world
settings, and exploring advanced computational strategies
for efficiently addressing complex nonconvex optimization
problems.
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