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Abstract

Approximate inference techniques are the cornerstone of probabilistic methods
based on Gaussian process priors. Despite this, most work approximately optimizes
standard divergence measures such as the Kullback-Leibler (KL) divergence, which
lack the basic desiderata for the task at hand, while chiefly offering merely technical
convenience. We develop a new approximate inference method for Gaussian
process models which overcomes the technical challenges arising from abandoning
these convenient divergences. Our method—dubbed Quantile Propagation (QP)—is
similar to expectation propagation (EP) but minimizes the L2 Wasserstein distance
(WD) instead of the KL divergence. The WD exhibits all the required properties
of a distance metric, while respecting the geometry of the underlying sample
space. We show that QP matches quantile functions rather than moments as in
EP and has the same mean update but a smaller variance update than EP, thereby
alleviating EP’s tendency to over-estimate posterior variances. Crucially, despite
the significant complexity of dealing with the WD, QP has the same favorable
locality property as EP, and thereby admits an efficient algorithm. Experiments
on classification and Poisson regression show that QP outperforms both EP and
variational Bayes.

1 Introduction

Gaussian process (GP) models have attracted the attention of the machine learning community due to
their flexibility and their capacity to measure uncertainty. They have been widely applied to learning
tasks such as regression [32], classification [57, 21] and stochastic point process modeling [38, 62].
However, exact Bayesian inference for GP models is intractable for all but the Gaussian likelihood
function. To address this issue, various approximate Bayesian inference methods have been proposed,
such as Markov Chain Monte Carlo [MCMC, see e.g. 41], the Laplace approximation [57], variational
inference [26, 42] and expectation propagation [43, 37].

The existing approach most relevant to this work is expectation propagation (EP), which approximates
each non-Gaussian likelihood term with a Gaussian by iteratively minimizing a set of local forward
Kullback-Leibler (KL) divergences. As shown by Gelman et al. [17], EP can scale to very large
datasets. However, EP is not guaranteed to converge, and is known to over-estimate posterior
variances [34, 27, 20] when approximating a short-tailed distribution. By over-estimation, we mean
that the approximate variances are larger than the true variances so that more distribution mass lies
in the ineffective domain. Interestingly, many popular likelihoods for GPs results in short-tailed
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posterior distributions, such as Heaviside and probit likelihoods for GP classification and Laplacian,
Student’s t and Poisson likelihoods for GP regression.

The tendency to over-estimate posterior variances is an inherent drawback of the forward KL di-
vergence for approximate Bayesian inference. More generally, several authors have pointed out
that the KL divergence can yield undesirable results such as (but not limited to) over-dispersed or
under-dispersed posteriors [11, 30, 22].

As an alternative to the KL, optimal transport metrics—such as the Wasserstein distance [WD, 55,
§6]—have seen a recent boost of attention. The WD is a natural distance between two distributions,
and has been successfully employed in tasks such as image retrieval [49], text classification [24] and
image fusion [7]. Recent work has begun to employ the WD for inference, as in Wasserstein generative
adversarial networks [2], Wasserstein variational inference [1] and Wasserstein auto-encoders [54].
In contrast to the KL divergence, the WD is computationally challenging [8], especially in high
dimensions [4], in spite of its intuitive formulation and excellent performance.

Contributions. In this work, we develop an efficient approximate Bayesian scheme that minimizes a
specific class of WD distances, which we refer to as the L2 WD. Our method overcomes some of the
shortcomings of the KL divergence for approximate inference with GP models. Below we detail the
three main contributions of this paper.

First, in section 4, we develop quantile propagation (QP), an approximate inference algorithm for
models with GP priors and factorized likelihoods. Like EP, QP does not directly minimize global
distances between high-dimensional distributions. Instead, QP estimates a fully coupled Gaussian
posterior by iteratively minimizing local divergences between two particular marginal distributions.
As these marginals are univariate, QP boils down to an iterative quantile function matching procedure
(rather than moment matching as in EP) — hence we term our inference scheme quantile propagation.
We derive the updates for the approximate likelihood terms and show that while the QP mean
estimates match those of EP, the variance estimates are lower for QP.

Second, in section 5 we show that like EP, QP satisfies the locality property, meaning that it is
sufficient to employ univariate approximate likelihood terms, and that the updates can thereby be
performed efficiently using only the marginal distributions. Consequently, although our method
employs a more complex divergence than that of EP (L2 WD vs KL), it has the same computational
complexity, after the precomputation of certain (data independent) lookup tables.

Finally, in section 6 we employ eight real-world datasets and compare our method to EP and
variational Bayes (VB) on the tasks of binary classification and Poisson regression. We find that
in terms of predictive accuracy, QP performs similarly to EP but is superior to VB. In terms of
predictive uncertainty, however, we find QP superior to both EP and VB, thereby supporting our claim
that QP alleviates variance over-estimation associated with the KL divergence when approximating
short-tailed distributions [34, 27, 20].

2 Related Work

The basis of the EP algorithm for GP models was first proposed by Opper and Winther [43] and then
generalized by Minka [36, 37]. Power EP [33, 34] is an extension of EP that exploits the more general
α-divergence (with α = 1 corresponding to the forward KL divergence in EP) and has been recently
used in conjunction with GP pseudo-input approximations [5]. Although generally not guaranteed
to converge locally or globally, Power EP uses fixed-point iterations for its local updates and has
been shown to perform well in practice for GP regression and classification [5]. In comparison, our
approach uses the L2 WD, and like EP, it yields convex local optimizations for GP models with
factorized likelihoods. This convexity benefits the convergence of the local update, and is retained
even with the general Lp (p ≥ 1) WD as shown in Theorem 1. Moreover, for the same class of GP
models, both EP and our approach have the locality property [50] and can be unified in the generic
message passing framework [34].

Without the guarantee of convergence for the explicit global objective function, understanding EP
has proven to be a challenging task. As a result, a number of works have instead attempted to
directly minimize divergences between the true and approximate joint posteriors, for divergences
such as the KL [26, 10], Rényi [30], α [23] and optimal transport divergences [1]. To deal with the
infinity issue of the KL (and more generally the Rényi and α divergences) which arises from different
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distribution supports [39, 2, 19], Hensman et al. [22] employ the product of tilted distributions as
an approximation. A number of variants of EP have also been proposed, including the convergent
double loop algorithm [44], parallel EP [35], distributed EP built on partitioned datasets [60, 17],
averaged EP assuming that all approximate likelihoods contribute similarly [9], and stochastic EP
which may be regarded as sequential averaged EP [29].

The L2 WD between two Gaussian distributions has a closed form expression [12]. Detailed research
on the Wasserstein geometry of the Gaussian distribution is conducted by Takatsu [53]. Recently,
this closed form expression has been applied to robust Kalman filtering [51] and to the analysis of
populations of GPs [31]. A more general extension to elliptically contoured distributions is provided
by Gelbrich [16] and used to compute probabilistic word embeddings [40]. A geometric interpretation
for the L2 WD between any distributions [3] has already been exploited to develop approximate
Bayesian inference schemes [14]. Our approach is based on the L2 WD but does not exploit these
closed form expressions; instead we obtain computational efficiency by leveraging the EP framework
and using the quantile function form of the L2 WD for univariate distributions. We believe our work
paves the way for further practical approaches to WD-based Bayesian inference.

3 Prerequisites

3.1 Gaussian Process Models

Consider a dataset of N samples D = {xi, yi}Ni=1, where xi ∈ Rd is the input vector and yi ∈ R is
the noisy output. Our goal is to establish the mapping from inputs to outputs via a latent function f :
Rd → R which is assigned a GP prior. Specifically, assuming a zero-mean GP prior with covariance
function k(x,x′;θ), where θ are the GP hyper-parameters, we have that p(f) = N (f |0,K), where
f = {fi}Ni=1, with fi ≡ f(xi), is the set of latent function values and K is the covariance matrix
induced by evaluating the covariance function at every pair of inputs. In this work we use the
squared exponential covariance function k(x,x′;θ) = γ exp

[
−
∑d
i=1(xi − x′i)2/(2α2

i )
]
, where

θ = {γ, α1, · · · , αd}. For simplicity, we will omit the conditioning on θ in the rest of this paper.

Along with the prior, we assume a factorized likelihood p(y|f) =
∏N
i=1 p(yi|fi) where y is the set

of all outputs. Given the above, the posterior f is expressed as:

p(f |D) = p(D)−1p(f)

N∏
i=1

p(yi|fi),

where the normalizer p(D) =
∫
p(f)

∏N
i=1 p(yi|fi) df is often analytically intractable. Numer-

ous problems take this form: binary classification [58], single-output regression with Gaussian
likelihood [32], Student’s-t likelihood [27] or Poisson likelihood [63], and the warped GP [52].

3.2 Expectation Propagation

In this section we review the application of EP to the GP models described above. EP deals with the
analytical intractability by using Gaussian approximations to the individual non-Gaussian likelihoods:

p(yi|fi) ≈ ti(fi) ≡ Z̃iN (fi|µ̃i, σ̃2
i ).

The function ti is often called the site function and is specified by the site parameters: the scale Z̃i,
the mean µ̃i and the variance σ̃2

i . Notably, it is sufficient to use univariate site functions given that the
local update can be efficiently computed using the marginal distribution only [50]. We refer to this
as the locality property. Although in this work we employ a more complex L2 WD, our approach
retains this property, as we elaborate in subsection 5.2.

Given the site functions, one can approximate the intractable posterior distribution p(f |D) using a
Gaussian q(f) as below, where conditioning on D is omitted from q(f) for notational convenience:

q(f) = q(D)−1p(f)

N∏
i=1

ti(fi) ≡ N (f |µ,Σ), µ = ΣΣ̃−1µ̃, Σ = (K−1 + Σ̃−1)−1, (1)
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where µ̃ is the vector of µ̃i, Σ̃ is diagonal with Σ̃ii = σ̃2
i ; log q(D) is the log approximate model

evidence expressed as below and further employed to optimize GP hyper-parameters:

θ?=argmax
θ

logq(D)=

N∑
i=1

log(Z̃i/
√

2π)− 1

2
log|K+Σ̃|− 1

2
µ̃T(K+Σ̃)−1µ̃. (2)

The core of EP is to optimize site functions {ti(fi)}Ni=1. Ideally, one would seek to minimize the
global KL divergence between the true and approximate posterior distributions KL(p(f |D)‖q(f)),
however this is intractable. Instead, EP is built based on the assumption that the global divergence
can be approximated by the local divergence KL(q̃(f)‖q(f)), where q̃(f) ∝ q\i(f)p(yi|fi) and
q\i(f) ∝ q(f)/ti(fi) are refered to as the tilted and cavity distributions, respectively. Note that the
cavity distribution is Gaussian while the tilted distribution is usually not. The local divergence can
be simplified from multi-dimensional to univariate, KL(q̃(f)‖q(f)) = KL(q̃(fi)‖q(fi)) (detailed in
Appendix G), and ti(fi) is optimized by minimizing it.

The minimization is realized by projecting the tilted distribution q̃(fi) onto the Gaussian family,
with the projected Gaussian denoted projKL(q̃(fi)) ≡ argminN KL(q̃(fi)‖N (fi)). Then the pro-
jected Gaussian is used to update ti(fi) ∝ projKL(q̃(fi))/q

\i(fi). The mean and the variance of
projKL(q̃(fi)) ≡ N (µ?, σ?2) match the moments of q̃(fi) and are used to update ti(fi)’s parameters:

µ?=µq̃i , σ?2=σ2
q̃i
, (3)

µ̃i=σ̃
2
i

(
µ?(σ?)−2−µ\iσ−2\i

)
, σ̃−2i =(σ?)−2−σ−2\i , (4)

where µq̃i and σ2
q̃i

are the mean and the variance of q̃(fi), and µ\i and σ2
\i are the mean and the

variance of q\i(fi). We refer to the projection as the local update. Note that Z̃ does not impact
the optimization of q(f) or the GP hyper-parameters θ, so we omit the update formula for Z̃. We
summarize EP in algorithm 1 (Appendix). In section 4 we propose a new approximation approach
which is similar to EP but employs the L2 WD rather than the KL divergence.

3.3 Wasserstein Distance

We denote byM1
+(Ω) the set of all probability measures on Ω. We consider probability measures on

the d-dimensional real space Rd. The WD between two probability distributions ξ, ν ∈ M1
+(Rd)

can be intuitively defined as the cost of transporting the probability mass from one distribution to the
other. We are particularly interested in the subclass of Lp WD, formally defined as follows.

Definition 1 (Lp WD). Consider the set of all probability measures on the product space Rd × Rd,
whose marginal measures are ξ and ν respectively, denoted as U(ξ, ν). The Lp WD between ξ and ν
is defined as Wp

p (ξ, ν) ≡ infπ∈U(ξ,ν)

∫
Rd×Rd ‖x− z‖

p
p dπ(x, z) where p ∈ [1,∞) and ‖ · ‖p is the

Lp norm.

Like the KL divergence, the Lp WD it has a minimum of zero, achieved when the distributions are
equivalent. Unlike the KL, however, it is a proper distance metric, and thereby satisfies the triangle
inequality, and has the appealing property of symmetry.

A less fundamental property of the WD which we exploit for computational efficiency is:

Proposition 1. [46, Remark 2.30] The Lp WD between 1-d distribution functions ξ and ν ∈M1
+(R)

equals the Lp distance between the quantile functions, Wp
p(ξ, ν) =

∫ 1

0

∣∣∣F−1ξ (y)− F−1ν (y)
∣∣∣p dy,

where Fz : R → [0, 1] is the cumulative distribution function (CDF) of z, defined as Fz(x) =∫ x
−∞ dz, and F−1z is the pseudoinverse or quantile function, defined as F−1z (y) = minx{x ∈
R ∪ {−∞} : Fz(x) ≥ y}.

Finally, the following translation property of the L2 WD is central to our proof of locality:

Proposition 2. [46, Remark 2.19] Consider the L2 WD defined for ξ and ν ∈ M1
+(Rd), and

let fτ (x) = x − τ , τ ∈ Rd, be a translation operator. If ξτ and ντ ′ denote the probability
measures of translated random variables fτ (x), x ∼ ξ, and fτ ′(x), x ∼ ν, respectively, then
W2

2(ξτ , ντ ′) = W2
2(ξ, ν)− 2(τ − τ ′)T(mξ −mν) + ‖τ − τ ′‖22, wheremξ andmν are means of
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ξ and ν respectively. In particular when τ = mξ and τ ′ = mν , ξτ and ντ ′ become zero-mean
measures, and W2

2(ξτ , ντ ′) = W2
2(ξ, ν)− ‖mξ −mν‖22.

4 Quantile Propagation

We now propose our new approximation algorithm which, as summarized in Algorithm 1 (Appendix),
employs anL2 WD based projection rather than the forward KL divergence projection of EP. Although
QP employs a more complex divergence, it has the same computational complexity as EP, with the
following caveat. To match the speed of EP, it is necessary to precompute sets of (data independent)
lookup tables. Once precomputed, the resulting updates are only a constant factor slower than EP — a
modest price to pay for optimizing a divergence which is challenging even to evaluate. Appendix J
provides further details on the precomputation and use of these tables.

As stated in Proposition 1, minimizing W2
2(q̃(fi),N (fi)) is equivalent to minimizing the L2 distance

between quantile functions of q̃(fi) and N (fi), so we refer to our method as quantile propagation
(QP). This section focuses on deriving local updates for the site functions and analyzing their
relationships with those of EP. Later in section 5, we show the locality property of QP, meaning that
the site function t(f) has a univariate parameterization and so the local update can be efficiently
performed using marginals only.

4.1 Convexity of Lp Wasserstein Distance

We first show Wp
p(q̃(f),N (f |µ, σ2)) to be strictly convex in µ and σ. Formally, we have:

Theorem 1. Given two probability measures inM1
+(R): a Gaussian N (µ, σ2) with mean µ and

standard deviation σ > 0, and an arbitrary measure q̃, Wp
p(q̃,N ) is strictly convex in µ and σ.

Proof. See Appendix D.

4.2 Minimization of L2 WD

An advantage of using the Lp WD with p = 2, rather than other choices of p, is the computational
efficiency it admits in the local updates. As we show in this section, optimizing the L2 WD yields
neat analytical updates of the optimal µ? and σ? that require only univariate integration and the CDF
of q̃(f). In contrast, other Lp WDs lack convenient analytical expressions. Nonetheless, other Lp
WDs may have useful properties, the study of which we leave to future work.

The optimal parameters µ? and σ? corresponding to the L2 WD W2
2(q̃,N (µ, σ2)) can be obtained

using Proposition 1. Specifically, we employ the quantile function reformulation of W2
2(q̃,N (µ, σ2)),

and zero its derivatives w.r.t. µ and σ. The results provided below are derived in Appendix A:

µ? = µq̃ ; σ? =
√

2

∫ 1

0

F−1q̃ (y)erf−1(2y − 1) dy = 1/
√

2π

∫ ∞
−∞

e−[erf−1(2Fq̃(f)−1)]2 df. (5)

Interestingly, the update for µ matches that of EP, namely the expectation under q̃. However, for
the standard deviation we have the difficulty of deriving the CDF Fq̃. If a closed form expression is
available, we can apply numerical integration to compute the optimal standard deviation; otherwise,
we may use sampling based methods to approximate it. In our experiments we employ the former.

4.3 Properties of the Variance Update

Given the update equations in the previous section, here we show that the standard deviation estimate
of QP, denoted as σQP, is less or equal to that of EP, denoted as σEP, when projecting the same tilted
distribution to the Gaussian space.

Theorem 2. The variances of the Gaussian approximation to a univariate tilted distribution q̃(f) as
estimated by QP and EP satisfy σ2

QP ≤ σ2
EP.

Proof. See Appendix E.

Corollary 2.1. The variances of the site functions updated by EP and QP satisfy: σ̃2
QP ≤ σ̃2

EP, and
the variances of the approximate posterior marginals satisfy σ2

q,QP ≤ σ2
q,EP.
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Proof. Since the cavity distribution is unchanged, we can calculate the variance of the site function as
per Equation (4) and conclude that the variance of the site function also satisfies σ̃2

QP ≤ σ̃2
EP. Moreover

as per the definition of the cavity distribution in subsection 3.2, the approximate marginal distribution
is proportional to the product of the cavity distribution and the site function q(fi) ∝ q\i(fi)t(fi),
which are two Gaussian distributions. By the product of Gaussians formula (Equation (4)), we know
the variance of q(fi) estimated by EP as σ2

q,EP = (σ̃−2EP + σ−2\i )−1 = σ2
EP and similarly σ2

q,QP = σ2
QP,

where σ2
EP and σ2

QP are defined in Theorem E. Thus, there is σ2
q,QP ≤ σ2

q,EP.

Corollary 2.2. The predictive variances of latent functions at x∗ by EP and QP satisfy:
σ2

QP(f(x∗)) ≤ σ2
EP(f(x∗)).

Proof. The predictive variance of the latent function was analyzed in [47, Equation (3.61)]:
σ2(f∗) = k∗ − kT∗ (K + Σ̃)−1k∗, where we define f∗ = f(x∗) and k∗ = k(x∗,x∗), and let
k∗ = (k(x∗,xi))

N
i=1 be the (column) covariance vector between the test data x∗ and the training

data {xi}Ni=1. After updating parameters of the site function ti(fi), the predictive variance can be
written as (details in Appendix I):

σ2
new(f∗) = k∗ − kT∗Ak∗ + kT∗ sis

T
i k∗/[(σ̃

2
i,new − σ̃2

i )−1 +Aii],

where σ̃2
i,new is the site variance updated by EP or QP, A = (K + Σ̃)−1 and si is the i’s column of A.

Since σ̃2
i,QP ≤ σ̃2

i,EP, we have σ2
QP(f∗) ≤ σ2

EP(f∗).

Remark. We compared variance estimates of EP and QP assuming the same cavity distribution.
Proving analagous statements for the fixed points of the EP and QP algorithms is more challenging,
however, and we leave this to future work, while providing empirical support for these analogous
statements in Figure 1a. and Figure 1b.

5 Locality Property

In this section we detail the central result on which our QP algorithm is based upon, which we refer
to as the locality property. That is, the optimal site function ti is defined only in terms of the single
corresponding latent variable fi, and thereby and similarly to EP, it admits a simple and efficient
sequential update of each individual site approximation.

5.1 Review: Locality Property of EP

We provide a brief review of the locality property of EP for GP models; for more details see Seeger
[50]. We begin by defining the general site function ti(f) in terms of all of the latent variables,
and the cavity and the tilted distributions as q\i(f) ∝ p(f)

∏
j 6=i t̃j(f) and q̃(f) ∝ q\i(f)p(yi|fi),

respectively. To update ti(f), EP matches a multivariate Gaussian distribution N (f) to q̃(f) by
minimizing the KL divergence KL(q̃‖N ), which is further rewritten as (see details in Appendix F.1):

KL
(
q̃‖N

)
= KL

(
q̃i‖Ni

)
+ Eq̃i

[
KL
(
q
\i
\i|i‖N\i|i

)]
, (6)

where and hereinafter, \i|i denotes the conditional distribution of f\i (taking fi out of f ) given fi,
namely, q\i\i|i = q\i(f\i|fi) and N\i|i = N (f\i|fi). Note that q\i\i|i and N\i|i in the second term in
Equation (6) are both Gaussian, and so setting them equal to one another causes that term to vanish.
Furthermore, it is well known that the term KL

(
q̃i‖Ni

)
is minimized w.r.t. the parameters of Ni by

matching the first and second moments of q̃i and Ni. Finally, according to the usual EP logic, we
recover the site function ti(f) by dividing the optimal Gaussian N (f) by the cavity q\i(f):

ti(f) ∝ N (f)/q\i(f) =���
��N (f\i|fi)N (fi)/(���

��q\i(f\i|fi)q\i(fi)) = N (fi)/q
\i(fi). (7)

Here we can see the optimal site function ti(fi) relies solely on the local latent variable fi,
so it is sufficient to assume a univariate expression for site functions. Besides, the site func-
tion can be efficiently updated by using the marginals q̃(fi) and N (fi) only, namely, ti(fi) ∝(

minNi KL(q̃i‖Ni))/q\i(fi)
)
.
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5.2 Locality Property of QP

This section proves the locality property of QP, which turns out to be rather more involved to show
than is the case for EP. We first prove the following theorem, and then follow the same procedure as
for EP (Equation (7)).

Theorem 3. Minimization of W2
2(q̃(f),N (f)) w.r.t. N (f) results in q\i(f\i|fi) = N (f\i|fi).

Proof. See Appendix F.

Theorem 4 (Locality Property of QP). For GP models with factorized likelihoods, QP requires only
univariate site functions, and so yields efficient updates using only marginal distributions.

Proof. We apply the same steps as in Equation (7) for the EP case to QP and we conclude that
the site function ti(fi) ∝ N (fi)/q

\i(fi) relies solely on the local latent variable fi. And as per
Equation (22) (Appendix F), N (fi) is estimated by minNi W2

2(q̃i,Ni), so the local update only uses
marginals and can perform efficiently.

Benefits of the Locality Property. The locality property admits an analytically economic form for
the site function ti(fi), requiring a parameterization that depends on a single latent variable. In
addition, this also yields a significant reduction in the computational complexity, as only marginals
are involved in each local update. In contrast, if QP (or EP) had no such a locality property, estimating
the mean and the variance would involve integrals w.r.t. high-dimensional distributions, with a
significantly higher computational cost should closed form expressions be unavailable.

6 Experiments

In this section, we compare the QP, EP and variational Bayes [VB, 42] algorithms for binary
classification and Poisson regression. The experiments employ eight real world datasets and aim to
compare relative accuracy of the three methods, rather than optimizing the absolute performance. The
implementations of EP and VB in Python are publicly available [18], and our implementation of QP
is based on that of EP. Our code is publicly available 1. For both EP and QP, we stop local updates,
i.e., the inner loop in Algorithm 1 (Appendix), when the root mean squared change in parameters
is less than 10−6. In the outer loop, the GP hyper-parameters are optimized by L-BFGS-B [6] with
a maximum of 103 iterations and a relative tolerance of 10−9 for the function value. VB is also
optimized by L-BFGS-B with the same configuration. Parameters shared by the three methods are
initialized to be the same.

6.1 Binary Classification

Benchmark Data. We perform binary classification experiments on the five real world datasets
employed by Kuss and Rasmussen [28]: Ionosphere (IonoS), Wisconsin Breast Cancer, Sonar [13],
Leptograpsus Crabs and Pima Indians Diabetes [48]. We use two additional UCI datasets as further
evidence: Glass and Wine [13]. As the Wine dataset has three classes, we conduct binary classification
experiments on all pairs of classes. We summarize the dataset size and data dimensions in Table 1.

Prediction. We predict the test labels using models optimized by EP, QP and VB on the training
data. For a test input x∗ with a binary target y∗, the approximate predictive distribution is written as:
q(y∗|x∗) =

∫∞
−∞ p(y∗|f∗)q(f∗) df∗ where f∗ = f(x∗) is the value of the latent function at x∗. We

use the probit likelihood for the binary classification task, which admits an analytical expression for
the predictive distribution and results in a short-tailed posterior distribution. Correspondingly, the
predicted label ŷ∗ is determined by thresholding the predictive probability at 1/2.

Performance Evaluation. To evaluate the performance, we employ two measures: the test error
(TE) and the negative test log-likelihood (NTLL). The TE and the NTLL quantify the prediction
accuracy and uncertainty, respectively. Specifically, they are defined as (

∑m
i=1 |y∗,i− ŷ∗,i|/2)/m and

−(
∑m
i=1 log q(y∗,i|x∗,i))/m, respectively, for a set of test inputs {x∗,i}mi=1, test labels {y∗,i}mi=1,

and the predicted labels {ŷ∗,i}mi=1. Lower values indicate better performance for both measures.

1https://github.com/RuiZhang2016/Quantile-Propagation-for-Wasserstein-
Approximate-Gaussian-Processes
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Table 1: Results on benchmark datasets. The first three columns give dataset names, the number of
instances m and the number of features n. The table records the test errors (TEs) and the negative
test log-likelihoods (NTLLs). The top section is on the benchmark datasets employed by Kuss and
Rasmussen [28] and the middle section uses additional datasets. The bottom section shows Poisson
regression results. * indicates that QP outperforms EP in more than 90% of experiments consistently.

TE (×10−2) NTLL(×10−3)
Data m n EP QP VB EP QP VB
IonoS 351 34 7.9±0.5 7.9±0.5 18.9±6.9 215.9±8.4 215.9±8.5 337.4±70.8
Cancer 683 9 3.2±0.2 3.2±0.2 3.1±0.2 88.2±3.1 88.2∗±3.1 88.9±19.1
Pima 732 7 20.3±1.0 20.3±1.0 21.9±0.4 424.7±13.0 424.0∗±13.2 450.3±2.6
Crabs 200 7 2.7±0.5 2.7±0.5 3.7±0.7 64.4±8.2 64.3±8.4 164.7±7.5
Sonar 208 60 14.0±1.1 14.0±1.1 25.7±3.9 306.7±10.8 306.2∗±10.9 693.1±0.0
Glass 214 10 1.1±0.4 1.0±0.4 2.6±0.5 29.5±5.4 29.0∗±5.5 79.5±6.3
Wine1 130 13 1.5±0.5 1.5±0.5 1.7±0.6 48.0±3.4 47.4∗

±3.4 83.9±5.2
Wine2 107 13 0.0±0.0 0.0±0.0 0.0±0.0 18.0±1.2 17.8∗±1.2 26.7±1.9
Wine3 119 13 2.0±1.0 2.0±1.0 1.2±0.7 52.1±5.6 51.8∗±5.6 69.4±5.0
Mining 112 1 118.6±27.0 118.6±27.0 170.3±15.9 1606.8±116.3 1606.5±116.3 2007.3±119.8

Note: Wine1: Class 1 vs. 2. Wine2: Class 1 vs. 3. Wine3: Class 2 vs. 3.

Experiment Settings. In the experiments, we randomly split each dataset into 10 folds, each time
using 1 fold for testing and the other 9 folds for training, with features standardized to zero mean
and unit standard deviation. We repeat this 100 times for a random seed ranging 0 through 99. As a
result, there are a total of 1,000 experiments for each dataset. We report the average and the standard
deviation of the above metrics over the 100 rounds.

Results. The evaluation results are summarized in Table 1. The top section presents the results on
the datasets employed by Kuss and Rasmussen [28], whose reported TEs match ours as expected.
While QP and EP exhibit similar TEs on these datasets, QP is superior to EP in terms of the NTLL.
VB under-performs both EP and QP on all datasets except Cancer. The middle section of Table 1
shoes the results on additional datasets. The TEs are again similar for EP and QP, while QP has lower
NTLLs. Again, VB performs worst among the three methods. To emphasize the difference between
NTLLs of EP and QP, we mark with an asterisk those results in which QP outperforms EP in more
than 90% of the experiments. Furthermore, we visualize the predictive variances of QP in comparison
with those of EP in Figure 1a., which shows that the variances of QP are always less than or equal to
those of EP, thereby providing empirical evidence of QP alleviating the over-estimation of predictive
variances associated with the EP algorithm.

6.2 Poisson Regression

Data and Settings. We perform a Poisson regression experiment to further evaluate the performance
of our method. The experiment employs the coal-mining disaster dataset [25] which has 190 data
points indicating the time of fatal coal mining accidents in the United Kingdom from 1851 to 1962.
To generate training and test sequences, we randomly assign every point of the original sequence to
either a training or test sequence with equal probability, and this is repeated 200 times (random seeds
0, · · · , 199), resulting in 200 pairs of training and test sequences. We use the TE and the NTLL to
evaluate the performance of the model on the test dataset. The NTLL has the same expression as that
of the Binary classification experiment, but with a different predictive distribution q(y∗|x∗). The TE
is defined slightly differently as (

∑m
i=1 |y∗,i − ŷ∗,i|)/m. To make the rate parameter of the Poisson

likelihood non-negative, we use the square link function [15, 56], and as a result, the likelihood
becomes p(y|f2). We use this link function because it is more mathematically convenient than the
exponential function: the EP and QP update formulas, and the predictive distribution q(y∗|x∗) are
available in Appendices C.2 and H, respectively.

Results. The means and the standard deviations of the evaluation results are reported in the last row
of Table 1. Compared with EP, QP yields lower NTLL, which implies a better fitting performance
of QP to the test sequences. We also provide the predictive variances in Figure 1b., in the variance
of QP is once again seen to be less than or equal to that of EP. This experiment further supports our
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(a) Binary Classification (b) Poisson Regression

Figure 1: A scatter plot of the predictive variances of latent functions on test data, for EP and QP.
The diagonal dash line represents equivalence. We see that the predictive variance of QP is always
less than or equal to that of EP.

claim that QP alleviates the problem with EP of over-estimation of the predictive variance. Finally,
once again we find that both EP and QP outperform VB.

7 Conclusions

We have proposed QP as the first efficient L2-WD based approximate Bayesian inference method
for Gaussian process models with factorized likelihoods. Algorithmically, QP is similar to EP but
uses the L2 WD instead of the forward KL divergence for estimation of the site functions. When the
likelihood factors are approximated by a Gaussian form we show that QP matches quantile functions
rather than moments as in EP. Furthermore, we show that QP has the same mean update but a smaller
variance than that of EP, which in turn alleviates the over-estimation by EP of the posterior variance
in practice. Crucially, QP has the same favorable locality property as EP, and thereby admits efficient
updates. Our experiments on binary classification and Poisson regression have shown that QP can
outperform both EP and variational Bayes. Approximate inference with WD is promising but hard to
compute, especially for continuous multivariate distributions. We believe our work paves the way for
further practical approaches to WD-based inference.

Limitations and Future Work Although we have presented properties and advantages of our
method, it is still worth pointing out its limitations. First, our method does not provide a methodology
for hyper-parameter optimization that is consistent with our proposed WD minimization framework.
Instead, for this purpose, we rely on optimization of EP’s marginal likelihood. We believe this is one
of the reasons for the small performance differences between QP and EP.

Furthermore, the computational efficiency of our method comes at the price of additional memory
requirements and the look-up tables may exhibit instabilities on high-dimensional data. To overcome
these limitations, future work will explore alternatives to hyper-parameter optimization, improvements
on numerical computation under the current approach and a variety of WD distances under a similar
algorithm framework.

Broader Impact

It is likely that the majority of significant technological advancements will eventually lead to both
positive and negative societal and ethical outcomes. It is important, however, to consider how
and when these outcomes may arise, and whether the net balance is likely to be favourable. After
careful consideration, however, we found that the present work is sufficiently general and application
independent, as to warrant relatively little specific concern.
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Supplements for Quantile Propagation for Wasserstein-Approximate Gaussian Processes.

A Minimization of L2 WD between Univariate Gaussian and Non-Gaussian
Distributions

In this section, we derive the formulas of the optimal µ∗ and σ∗ for the L2 WD, i.e., Eqn. (5). Recall
the optimization problem: we use a univariate Gaussian distribution N (f |µ, σ2) to approximate a
univariate non-Gaussian distribution q(f) by minimizing the L2 WD between them:

min
µ,σ

W2
2(q,N ) = min

µ,σ

∫ 1

0

∣∣∣F−1q (y)− µ−
√

2σerf−1(2y − 1)
∣∣∣2 dy,

where F−1q is the quantile function of the non-Gaussian distribution q, namely the pseudoinverse
function of the corresponding cumulative distribution function Fq defined in Proposition 1.

To solve this problem, we first calculate derivatives about µ and σ:

∂W2
2

∂µ
= −2

∫ 1

0

F−1q (y)− µ−
√

2σerf−1(2y − 1) dy,

∂W2
2

∂σ
= −2

∫ 1

0

(F−1q (y)− µ−
√

2σerf−1(2y − 1))
√

2erf−1(2y − 1) dy.

Then, by zeroing derivatives, we obtain the optimal parameters:

µ∗ =

∫ 1

0

F−1q (y)−
√

2σerf−1(2y − 1) dy

=

∫ ∞
−∞

xq(x) dx−
√

2

2
σ

∫ 1

−1
erf−1(y) dy

= µq −
√

2σ

∫ ∞
−∞

xN (x|0, 1/2) dx

= µq,

σ∗ =
√

2

∫ 1

0

(F−1q (y)− µ)erf−1(2y − 1) dy
/∫ 1

0

2(erf−1)2(2y − 1) dy

=
√

2

∫ 1

0

F−1q (y)erf−1(2y − 1) dy
/∫ ∞
−∞

2x2N (x|0, 1/2) dx︸ ︷︷ ︸
=1

=
√

2

∫ 1

0

F−1q (y)erf−1(2y − 1) dy

=
√

2

∫ ∞
−∞

ferf−1(2Fq(f)− 1) dFq(f)

= −
√

1

2π

∫ ∞
−∞

f d e−[erf−1(2Fq̃(f)−1)]2

= 0 +

√
1

2π

∫ ∞
−∞

e−[erf−1(2Fq̃(f)−1)]2 df. (8)

B Minimization of Lp WD between Univariate Gaussian and Non-Gaussian
Distributions

In this section, we describe a gradient descent approach to minimizing an Lp WD, for p 6= 2, in
order to handle cases with no analytical expressions for the optimal parameters. Our goal is to use a
univariate Gaussian distribution N (f |µ, σ2) to approximate a univariate non-Gaussian distribution
q(f). Specifically, we seek the minimiser in µ and σ of Wp

p(q,N ); the derivatives of the objective
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function about µ and σ are:

∂µWp
p = −p

∫ 1

0

|ε(y)|p−1sgn(ε(y)) dy = −p
∫ ∞
−∞
|η(x)|p−1sgn(η(x))q(x) dx,

∂σWp
p = −p

∫ 1

0

|ε(y)|p−1sgn(ε(y))erf−1(2y − 1) dy = −p
∫ ∞
−∞
|η(x)|p−1sgn(η(x))erf−1(2Fq(x)− 1)q(x) dx.

where for simplification, we define ε(y) = F−1q (y) − µ −
√

2σerf−1(2y − 1) and η(x) = x −
µ−
√

2σerf−1(2Fq(x)− 1), with Fq and F−1q being the CDF and the quantile function of q. Note
the derivatives have no analytical expressions. However, if the CDF Fq is available, we can use
the standard numerical integration routines; otherwise, we resort to Monte Carlo sampling. In the
framework of EP or QP, q(x) ∝ q\i(x)p(yi|x) and q\i is Gaussian, so we may draw samples from a
Gaussian proposal distribution to obtain a simple Monte Carlo method.

C Computations for Different Likelihoods

Given the likelihood p(y|f) and the cavity distribution q\i(f) = N (f |µ, σ2), a stable way to compute
the mean and the variance of the tilted distribution q̃(f) = p(y|f)q\i(f)/Z where the normalizer
Z =

∫∞
−∞ p(y|f)q\i(f) df , can be found in the software manual of Rasmussen and Williams [47].

We present the key formulae below, for use in subsequent derivations:

∂µZ =

∫ ∞
−∞

f − µ
σ2

p(y|f)N (f |µ, σ2) df

∂µZ

Z
=

1

σ2

∫ ∞
−∞

f
p(y|f)N (f |µ, σ2)

Z
df − µ

σ2

∫ ∞
−∞

p(y|f)N (f |µ, σ2)

Z
dy

∂µZ

Z
=

1

σ2
µq̃ −

µ

σ2

=⇒ µq̃ =
σ2∂µZ

Z
+ µ = σ2∂µ logZ + µ,

∂2µZ =

∫ ∞
−∞
− 1

σ2
p(y|f)N (f |µ, σ2) +

(
f − µ
σ2

)2

p(y|f)N (f |µ, σ2) df

∂2µZ

Z
=

∫ ∞
−∞

(
− 1

σ2
+
µ2

σ4
+
f2

σ4
− 2µf

σ4

)
p(y|f)N (f |µ, σ2)

Z
df

∂2µZ

Z
= − 1

σ2
+
µ2

σ4
+

1

σ4
(σ2
q̃ + µ2

q̃)−
2µ

σ4
µq̃

∂2µZ

Z
= − 1

σ2
+
σ2
q̃

σ4
+

(µ− µq̃)2

σ4
= − 1

σ2
+
σ2
q̃

σ4
+

(
∂µZ

Z

)2

=⇒ σ2
q̃ = σ4

[
∂2µZ

Z
−
(
∂µZ

Z

)2
]

+ σ2 = σ4∂2µ logZ + σ2.

C.1 Probit Likelihood for Binary Classification

For the binary classification with labels y ∈ {−1, 1}, the PDF of the tilted distribution q̃(f) with the
probit likelihood is provided by Rasmussen and Williams [47]:

q̃(f) = Z−1Φ(fy)N (f |µ, σ2), Z = Φ(z), z =
µ

y
√

1 + σ2
,

and the mean estimate also has a closed form expression:

µ? = µq̃ = µ+
σ2N (z)

Φ(z)y
√

1 + σ2
.
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As per Equation (5), the computation of the optimal σ? requires the CDF of q̃, denoted as Fq̃. For
positive y > 0, the CDF is derived as

Fq̃,y>0(x) = Z−1
∫ x

−∞
Φ (fy)N

(
f |µ, σ2

)
df

=
Z−1

2πσy

∫ µ

−∞

∫ x−µ

−∞
exp

(
−1

2

[
w
f

]T [
v−2 + σ−2 v−2

v−2 v−2

] [
w
f

])
dw df

= Z−1
∫ k

−∞

∫ h

−∞
N
([
w
f

] ∣∣∣∣0, [ 1 −ρ
−ρ 1

])
dw df

(a)
= Z−1

[
1

2
Φ(h)− T

(
h,

k + ρh

h
√

1− ρ2

)
+

1

2
Φ(k)− T

(
k,

h+ ρk

k
√

1− ρ2

)
+ η

]

k =
µ√

σ2 + 1
, h =

x− µ
σ

, ρ =
1√

1 + 1/σ2
, x 6= µ, µ 6= 0,

where the step (a) is obtained by exploiting the work of Owen [45] and T (·, ·) is the Owen’s T
function:

T (h, a) =
1

2π

∫ a

0

exp
[
− (1 + x2)h2/2

]
1 + x2

dx,

and η is defined as

η =

{
0 hk > 0 or (hk = 0 and h+ k ≥ 0),
−0.5 otherwise.

Similarly, for y < 0, the CDF is

Fq̃,y<0(x) = Z−1

[
1

2
Φ(h) + T

(
h,

k + ρh

h
√

1− ρ2

)
− 1

2
Φ(k) + T

(
k,

h+ ρk

k
√

1− ρ2

)
− η

]
.

Summarizing the two cases, we get the closed form expression of Fq̃:

Fq̃(x) = Z−1

[
1

2
Φ(h)− yT

(
h,

k + ρh

h
√

1− ρ2

)
+
y

2
Φ(k)− yT

(
k,

h+ ρk

k
√

1− ρ2

)
+ yη

]

= Z−1

[
1

2
Φ(h)− yT

(
h,

k

h
√

1− ρ2
+ σ

)
+
y

2
Φ(k)− yT

(
k,

h

k
√

1− ρ2
+ σ

)
+ yη

]
.

Provided the above, the optimal σ? can be computed by numerical integration of Eqn (8). For special
cases, we provide additional formulas:

(1)x = µ, µ 6= 0 : Fq̃(x) = Z−1
[

1

4
− ysign(k)

4
+
y

2
Φ(k)− yT (k, σ) + yη

]
;

(2)x 6= µ, µ = 0 : Fq̃(x) = 2

[
1

2
Φ(h)− yT (h, σ) +

y

4
− ysign(h)

4
+ yη

]
;

(3)x = µ, µ = 0 : Fq̃(x) =
1

2
− y

π
arctan(σ).

C.2 Square Link Function for Poisson Regression

Consider Poisson regression, which uses the Poisson likelihood p(y|g) = gy exp(−g)/y! to model
count data y ∈ N, with the square link function g(f) = f2 [56, 15]. We use the square link
function because it is more mathematically convenient than the exponential function. Given the cavity
distribution q\i(f) = N (f |µ, σ2), we want the tilted distribution q̃(f) = q\i(f)p(y|g(f))/Z where
the normalizer Z is derived as:

Z =

∫ ∞
−∞

q\i(f)p(y|g) df
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=

∫ ∞
−∞

1√
2πσ2

exp

(
− (f − µ)2

2σ2

)
f2y exp(−f2)/y! df

(a)
=

1√
2πσ2y! exp(µ2/(1 + 2σ2))

∫ ∞
−∞

f2y exp

(
− (f − µ/(1 + 2σ2))2

2σ2/(1 + 2σ2)

)
df

(b)
=

(
2σ2

1+2σ2

)y+ 1
2

√
2πσ2y! exp(µ2/(1 + 2σ2))

Γ

(
y +

1

2

)
1F1

(
−y;

1

2
;− µ2

2σ2(1 + 2σ2)

)
=

αy+
1
2

√
2πσ2y! exp(h)

Γ

(
y +

1

2

)
1F1

(
−y;

1

2
;− h

2σ2

)
,

α =
2σ2

1 + 2σ2
, h =

µ2

1 + 2σ2
(9)

where the step (a) rewrites the product of two exponential functions into the form of the Gaus-
sian distribution, (b) is achieved through Mathematica [59], Γ(·) is the Gamma function and

1F1

(
−y; 1

2 ;− h2

2σ2

)
is the confluent hypergeometric function of the first kind. Furthermore, we

compute the first derivative of logZ w.r.t. µ and then the mean of the tilted distribution:

∂µ logZ =

(
y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)
σ2

1F1

(
−y; 1

2 ;− h
2σ2

) − 1

)
2µ

1 + 2σ2

=⇒ µq̃ = σ2∂µ logZ + µ.

∂2µ logZ =

(
y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)
σ2

1F1

(
−y; 1

2 ;− h
2σ2

) − 1

)
2

1 + 2σ2
−(

2(1− y) 1F1

(
−y + 2; 5

2 ;− h
2σ2

)
3 1F1

(
−y; 1

2 ;− h
2σ2

) +
2y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)2
1F1

(
−y; 1

2 ;− h
2σ2

)2
)

2µ2y

σ4(1 + 2σ2)2

=⇒ σ2
q̃ = σ4∂2µ logZ + σ2

Finally, we derive the CDF of the tilted distribution q̃ by using the binomial theorem:

Fq̃(x) = Z−1
∫ x

−∞
p(y|g)N (f |µ, σ2) df

(a)
= A

∫ x

−∞
f2y exp

(
− (f − µ/(1 + 2σ2))2

2σ2/(1 + 2σ2)

)
df

= A

∫ x− µ

1+2σ2

−∞

(
f +

µ

1 + 2σ2

)2y

exp

(
− f2

2σ2/(1 + 2σ2)

)
df

(b)
= A

∫ x−β

−∞

[
2y∑
k=0

(
2y
k

)
fkβ2y−k

]
exp

(
−f

2

α

)
df

= A

2y∑
k=0

(
2y
k

)
β2y−k

[∫ 0

−∞
fk exp

(
−f

2

α

)
df +

∫ x−β

0

fk exp

(
−f

2

α

)
df

]
(c)
=
A

2

2y∑
k=0

(
2y
k

)
β2y−kα

k+1
2

[
(−1)kΓ

(
k + 1

2

)
+ sgn(x− β)k+1

(
Γ

(
k + 1

2

)
− Γ

(
k + 1

2
,

(x− β)2

α

))]

A =
Z−1√

2πσ2y! exp(µ2/(1 + 2σ2))
=

[
αy+

1
2 Γ

(
y +

1

2

)
1F1

(
−y;

1

2
;− h

2σ2

)]−1
, β =

µ

1 + 2σ2
,

where the step (a) has been derived in (a) of Eqn. (9), (b) applies the binomial theorem and (c)
is obtained through Mathematica [59]. And, the function Γ(a, z) =

∫∞
z
ta−1e−t dt is the upper
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incomplete gamma function and sgn(x) is the sign function, equaling 1 when x > 0, 0 when x = 0
and −1 when x < 0.

D Proof of Convexity

Theorem Given two probability measures in M1
+(R): a Gaussian N (µ, σ2) with mean µ and

standard deviation σ > 0, and an arbitrary measure q̃, the Lp WD Wp
p(q̃,N ) is strictly convex about

µ and σ.
Proof. Let F−1q̃ (y) and F−1N (y) = µ +

√
2σerf−1(2y − 1), y ∈ [0, 1], be the quantile functions

of q̃ and the Gaussian N , where erf is the error function. Then, we consider two distinct Gaussian
measures N (µ1, σ

2
1) and N (µ2, σ

2
2) and a convex combination w.r.t. their parameters N (a1µ1 +

a2µ2, (a1σ1 + a2σ2)2) with a1, a2 ∈ R+ and a1 + a2 = 1. Given the above, we further define
εk(y) = F−1q̃ (y)− µk − σk

√
2erf−1(2y − 1), k = 1, 2, for notational simplification, and derive the

convexity as:

Wp
p(q̃,N (a1µ1 + a2µ2, (a1σ1 + a2σ2)2))

(a)
=

∫ 1

0

|a1ε1(y) + a2ε2(y)|p dy
(b)

≤
∫ 1

0

(a1|ε1(y)|+

a2|ε2(y)|)p dy
(c)

≤ a1Wp
p(q̃,N (µ1, σ

2
1)) + a2Wp

p(q̃,N (µ2, σ
2
2)),

where steps (a), (b) and (c) are obtained by applying Proposition 1, non-negativity of the absolute
value, and the convexity of f(x) = xp, p ≥ 1, over R+ respectively. The equality at (b) holds iff
εk(y) ≥ 0, k = 1, 2,∀y ∈ [0, 1], and (c)’s equality holds iff |ε1(y)| = |ε2(y)|, ∀y ∈ [0, 1]. These
two conditions for equality can’t be attained simultaneously as otherwise it would contradict that
N (µ1, σ

2
1) is different from N (µ2, σ

2
2). So, Wp

p(q̃,N ), p ≥ 1, is strictly convex about µ and σ.

E Proof of Variance Difference

Theorem The variance of the Gaussian approximation to a univariate tilted distribution q̃(f) as
estimated by QP and EP satisfy σ2

QP ≤ σ2
EP.

Proof. Let N (µQP, σ
2
QP) be the optimal Gaussian in QP. As per Proposition 1, we reformulate the

L2 WD based projection W2
2(q̃,N (µQP, σ

2
QP)) w.r.t. quantile functions:

W2
2(q̃,N (µQP,σ

2
QP))=

∫ 1

0

|F−1q̃ (y)−µQP−
√

2σQPerf−1(2y−1)|2 dy=

∫ 1

0

(F−1q̃ (y)−µQP)2︸ ︷︷ ︸
σ2

EP

+(
√

2σQPerf−1(2y−1))2︸ ︷︷ ︸
σ2

QP

−2(F−1q̃ (y)−µQP)
√

2σQPerf−1(2y−1)︸ ︷︷ ︸
(A)

dy=σ2
EP−σ2

QP,

where for (A), we used
∫
µQPσQPerf−1(2y− 1) dy = 0 and the remaining factor can be easily shown

to be equal to 2σ2
QP. Furthermore, due to the non-negativity of the WD, we have σ2

EP ≥ σ2
QP, and the

equality holds iff q̃ is Gaussian.

F Proof of Locality Property

Theorem Minimization of W2
2(q̃(f),N (f)) w.r.t. N (f) results in q\i(f\i|fi) = N (f\i|fi).

Proof. We first apply the decomposition of the L2 norm to rewriting the W2
2(q̃(f),N (f)) as below

(see detailed derivations in Appendix F.2):

W2
2(q̃,N )=inf

πi
Eπi
[
‖fi−f ′i‖22+W2

2(q
\i
\i|i,N\i|i)

]
, (10)

where the prime indicates that the variable is from the Gaussian N , and for simplification, we use the
notation πi for the joint distribution π(fi, f

′
i) which belongs to a set of measures U(q̃i,Ni). Since

18



q\i(f) is known to be Gaussian, we define it in a partitioned form:

q\i(f) ≡ N
([
f\i
fi

] ∣∣∣∣ [m\imi

]
,

[
S\i S\ii
ST
\ii Si

])
, (11)

and the conditional q\i(f\i|fi) is expressed as:

q\i(f\i|fi) = N (f\i|m\i|i,S\i|i), m\i|i = m\i + S\iiS
−1
i (fi −mi) ≡ afi + b, (12)

S\i|i = S\i − S\iiS−1i ST
\ii.

We define a similar partioned expression for the Gaussian N (f ′) by adding primes to variables and
parameters on the r.h.s. of Equation (11), and as a result, the conditional N (f ′\i|f

′
i) is written as:

N (f ′\i|f
′
i) = N (m′\i|i,S

′
\i|i), m

′
\i|i = m′\i + S′\iiS

′−1
i (f ′i −m′i) ≡ a′f ′i + b′, (13)

S′\i|i = S′\i − S
′
\iiS

′−1
i S′ T\ii . (14)

Given the above definitions, we exploit Proposition 2 to take the means out of the L2 WD on the r.h.s.
of Equation (10):

W2
2 (q̃,N ) = inf

πi
Eπi
[
‖fi − f ′i‖22 + ‖m\i|i −m′\i|i‖

2
2

]
+ W2

2

(
N (0,S\i|i),N (0,S′\i|i)

)
︸ ︷︷ ︸

(A)

. (15)

Minimizing this function requires optimizing m′i,m
′
\i, S

′
i, S
′
\i and S′\ii. As S′\i is only contained in

S\i|i and isolated into the term (A), it can be optimized by simply setting

S′\i|i=S\i|i
Eqn. (14)
=⇒ S

(n)∗
\i =S\i|i+S

′
\iiS

′−1
i S′ T\ii . (16)

As a result, (A) is minimized to zero. Next, we plug in expressions ofm\i|i andm′\i|i (Equation (12)
and Equation (13)) into optimized Equation (15):

min
S′\i

(15)=inf
πi

Eπi
[
‖fi−f ′i‖22+‖afi−a′f ′i+b−b′‖22

]
, (17)

wherem′\i is only contained by b′. Thus, we can optimize it by zeroing the derivative of the above
function aboutm′\i, which results in:

b′ = b+ aµq̃i − a′m′i
Eqn. (13)
=⇒ m

(n)∗
\i = S′\iiS

′−1
i m′i + b+ aµq̃i − a′m′i, (18)

where µq̃i is the mean of q̃(fi). The minimum value of Equation (17) thereby is (see details in
subsection F.3):

min
m′\i

(17) = (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i
+ ‖a′‖22S′i − aTa′

[
σ2
q̃i

+ S′i + (µq̃i −m′i)2
]
(19)

where σ2
q̃i

is the variance of q̃(fi). This function can be further simplified using the quantile based
reformulation of W2

2(q̃i,Ni) (see details in Appendix F.4) which results in:

(19)=W2
2(q̃i,Ni)+‖a‖22σ2

q̃i
−2

3
2aTa′cq̃iS

′ 12
i +‖a′‖22S′i︸ ︷︷ ︸

(B)

. (20)

Now, we are left with optimizing m′i, S
′
i and S′\ii. To optimize S′\ii, which only exists in the above

term (B), we zero the derivative of (B) w.r.t. S′\ii and this yields:

a′∗ = 2
1
2 (S′i)

− 1
2 cq̃ia

Eqn. (13)
=⇒ S′∗\ii = (2S′i)

1
2 cq̃ia, (21)

and the minimum value of Equation (20) is

min
S′\ii

(20) = W2
2(q̃i,Ni) + ‖a‖22(σ2

q̃i
− 2c2q̃i). (22)

The results of optimizingm′i and S′i in the above equation have already been provided in Equation (5):
m′∗i = µq̃i and S′∗i = 2c2q̃i . By plugging them into Equation (21) and Equation (18), we have

19



a′∗ = a and b′∗ = b. Finally, using Equation (16), we obtain q\i(f\i|fi) = N (f\i|afi+b,S\i|i) =
N (f\i|a′fi + b′,S′\i|i) = N (f\i|fi) , which concludes the proof.

F.1 Details of Eqn. (6)

KL(q̃(f)‖N (f)) =

∫
q̃(f) log

q̃(f\i|fi)q̃(fi)
N (f\i|fi)N (fi)

df

=

∫
q̃(fi) log

q̃(fi)

N (fi)
dfi +

∫
q̃(fi)

∫
q̃(f\i|fi) log

q̃(f\i|fi)
N (f\i|fi)

df\i dfi

= KL
(
q̃(fi)‖N (fi)

)
+ Eq̃(fi)

[
KL
(
q̃(f\i|fi)‖N (f\i|fi)

)]
q̃(f\i|fi) =

q̃(f)

q̃(fi)
∝
p(f)���

�p(yi|fi)
∏
j 6=i tj(f)

q\i(fi)��
��p(yi|fi)

= q\i(f\i|fi). (23)

F.2 Details of Eqn. (10)

W2
2 (q̃(f),N (f)) ≡ inf

π∈U(q̃,N )
Eπ
(
‖f − f ′‖22

)
= inf
π∈U(q̃,N )

Eπ
(
‖fi − f ′i‖22

)
+ Eπ

(
‖f\i − f ′\i‖

2
2

)
(a)
= inf
π∈U(q̃,N )

Eπi
[
‖fi − f ′i‖22 + Eπ\i|i

(
‖f\i − f ′\i‖

2
2

) ]
(b)
= inf

πi
Eπi
[
‖fi − f ′i‖22 + inf

π\i|i
Eπ\i|i

(
‖f\i − f ′\i‖

2
2

) ]
= inf

πi
Eπi
[
‖fi − f ′i‖22 + W2

2(q̃\i|i,N\i|i)
]

(c)
= inf

πi
Eπi
[
‖fi − f ′i‖22 + W2

2(q
\i
\i|i,N\i|i)

]
,

where the superscript prime indicates that the variable is from the Gaussian N . In (a), πi =
π(fi, f

′
i) and π\i|i = π(f\i,f

′
\i|fi, f

′
i). In (b), the first and the second inf are over U(q̃i,Ni) and

U(q̃\i|i,N\i|i) respectively. (c) is due to q̃(f\i|fi) being equal to q\i(f\i|fi) (refer to Eqn. (23)).

F.3 Details of Eqn. (19)

min
m′\i

Eqn. (17)

= inf
πi

Eπi
[
‖fi − f ′i‖22 + ‖a(fi − µq̃i)− a′(f ′i −m′i)‖22

]
= inf

πi
Eπi
[
‖fi − f ′i‖22

]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′i − 2aTa′Eπi

(
fif
′
i − µq̃im′i

)
= inf

πi
Eπi
[
‖fi − f ′i‖22

]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′i + aTa′Eπi

(
‖fi − f ′i‖22 − f2i − (f ′i)

2 + 2µq̃im
′
i

)
= inf

πi
Eπi
[
‖fi − f ′i‖22

]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′i + aTa′Eπi

(
‖fi − f ′i‖22 − (fi − µq̃i)2−

2fiµq̃i + µ2
q̃i
− (f ′i −m′i)2 − 2f ′im

′
i + (m′i)

2 + 2µq̃im
′
i

)
= (1 + aTa′)W2

2(q̃i,Ni) + ‖a‖22σ2
q̃i

+ ‖a′‖22S′i − aTa′
(
σ2
q̃i

+ µ2
q̃i

+ S′i + (m′i)
2 − 2µq̃im

′
i

)
= (1 + aTa′)W2

2(q̃i,Ni) + ‖a‖22σ2
q̃i

+ ‖a′‖22S′i − aTa′
[
σ2
q̃i

+ S′i + (µq̃i −m′i)2
]
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F.4 Details of Eqn. (19)

We first use Proposition 1 to reformulate the L2 WD W2
2(q̃i,Ni) as:

W2
2(q̃i,Ni) =

∫ 1

0

(
F−1q̃i

(y)−m′i −
√

2S′ierf−1(2y − 1)
)2

dy,

=

∫ 1

0

(F−1q̃i
(y)−m′i)2 + 2S′ierf−1(2y − 1)2 − 2

√
2S′ierf−1(2y − 1)(F−1q̃i

(y)−m′i) dy,

=

∫ 1

0

(F−1q̃i
(y)− µq̃i + µq̃i −m′i)2 dy + S′i − 2

√
2S′icq̃i ,

= σ2
q̃i

+ (µq̃i −m′i)2 + S′i − 2cq̃i
√

2S′i,

where F−1q̃i
(y) is the quantile function of q̃(fi) and cq̃i ≡

∫ 1

0
F−1q̃i

(y)erf−1(2y − 1) dy. Next, we
plug this reformulation into Eqn. (19):

Eqn. (19) = W2
2(q̃i,Ni) + aTa′W2

2(q̃i,Ni) + ‖a‖22σ2
q̃i

+ ‖a′‖22S′i − aTa′
[
σ2
q̃i

+ S′i + (µq̃i −m′i)2
]

= W2
2(q̃i,Ni) + aTa′

[
((((

(((
(((

σ2
q̃i

+ (µq̃i −m′i)2 + S′i − 2cq̃i
√

2S′i

]
+ ‖a‖22σ2

q̃i
+ ‖a′‖22S′i

− aTa′
[
((((

(((
(((

σ2
q̃i

+ S′i + (µq̃i −m′i)2
]

= W2
2(q̃i,Ni)− 2cq̃i

√
2S′ia

Ta′ + ‖a‖22σ2
q̃i

+ ‖a′‖22S′i

G More Details of EP

We use the expressions q̃(f) = q\i(f)p(yi|fi)/Zq̃ and q\i(f) = q(f)/(ti(fi)Zq\i), and the deriva-
tion of KL(q̃(f)‖q(f)) = KL(q̃(fi)‖q(fi)) is shown as below:

KL(q̃(f)‖q(f)) =

∫
q̃(f) log

q\i(f)p(yi|fi)
Zq̃q(f)

df

=

∫
q̃(f) log ��

�q(f)p(yi|fi)
Zq\iZq̃�

��q(f)ti(fi)
df

=

∫
q̃(fi) log

p(yi|fi)
Zq\iZq̃ti(fi)

dfi

=

∫
q̃(fi) log

q\i(fi)p(yi|fi)
Zq\iZq̃q

\i(fi)ti(fi)
dfi

=

∫
q̃(fi) log

q̃(fi)

q(fi)
dfi

= KL(q̃(fi)‖q(fi))

H Predictive Distributions of Poisson Regression

Given the approximate predictive distribution f(x∗) = N (µ∗, σ
2
∗) and the relation g(f) = f2, it is

straightforward to derive the corresponding g(x∗) ∼ Gamma(k∗, c∗)
2 where the shape k∗ and the

scale c∗ are expressed as [56, 61]:

k∗ =
(µ2
∗ + σ2

∗)
2

2σ2
∗(2µ

2
∗ + σ2

∗)
, c∗ =

2σ2
∗(2µ

2
∗ + σ2

∗)

µ2
∗ + σ2

∗
.

2Gamma(x|k, c) = 1
Γ(k)ck

xk−1e−x/c.
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Furthermore, the predictive distribution of the count value y ∈ N can also be derived straightfor-
wardly:

p(y) =

∫ ∞
0

p(g∗)p(y|g∗) dg∗

=

∫
Gamma(g∗|k∗, c∗)Poisson(y|g∗) dg∗

=
cy∗(c∗ + 1)−k∗−yΓ(k∗ + y)

y!Γ(k∗)
= NB(y|k∗, c∗/(1 + c∗)),

where g∗ = g(x∗) and NB denotes the negative binomial distribution. The mode is obtained as
bc∗(k∗ − 1)c if k∗ > 1 else 0.

I Proof of Corollary 2.2

Since the site approximations of both EP and QP are Gaussian, we may analyse the predictive
variances using results from the regression with Gaussian likelihood function case, namely the well
known Equation (3.61) in [47]:

σ2(f∗) = k(x∗,x∗)− kT∗ (K + Σ̃)−1k∗, (24)

where f∗ = f(x∗) is the evaluation of the latent function at x∗ and k∗ =
[k(x∗,x1), · · · , k(x∗,xN )]T is the covariance vector between the test data x∗ and the training
data {xi}Ni=1, K is the prior covariance matrix and Σ̃ is the diagonal matrix with elements of site
variances σ̃2

i .

After updating the parameters of a site function ti(fi), the term (K + Σ̃)−1 is updated to (K +

Σ̃ + (σ̃2
i,new − σ̃2

i )eie
T
i )−1 where σ̃i,new is the site variance estimated by EP or QP and ei is a unit

vector in direction i. Using the Woodbury, Sherman & Morrison formula [47, A.9], we rewrite
(K + Σ̃ + (σ̃2

i,new − σ̃2
i )eie

T
i )−1 as

(K + Σ̃ + (σ̃2
i,new − σ̃2

i )eie
T
i )−1

≡ (A−1 + (σ̃2
i,new − σ̃2

i )eie
T
i )−1

= A−Aei[(σ̃2
i,new − σ̃2

i )−1 + eTi Aei]
−1eTi A

≡ A− si[(σ̃2
i,new − σ̃2

i )−1 +Aii]
−1sTi

= A− 1

(σ̃2
i,new − σ̃2

i )−1 +Aii
sis

T
i

whereA = (K+Σ̃)−1 and si is the i’th column ofA. Putting the above expression into Equation (24),
we have that the predictive variance is updated according to:

σ2
new(f∗) = k(x∗,x∗)− kT∗Ak∗ +

1

(σ̃2
i,new − σ̃2

i )−1 +Aii
kT∗ sis

T
i k∗.

In EP and QP, the first two terms on the r.h.s. of the above equation are equivalent. As the site
variance provided by QP is less or equal to that by EP, i.e., σ̃2

i,QP ≤ σ̃2
i,EP, the third term on the r.h.s.

for QP is less or equal to that for EP. Therefore, the predictive variance of QP is less or equal to that
of EP: σ2

QP(f∗) ≤ σ2
EP(f∗).

J Lookup Tables

To speed up updating variances σ2
QP in QP, we pre-compute the integration in Equation (5) over a

grid of cavity parameters µ and σ, and store the results into lookup tables. Consequently, each update
step obtains σ2

QP simply based on the lookup tables. Concretely, for the GP binary classification, we
compute Equation (5) with µ, σ and y varying from -10 to 10, 0.1 to 10 and {−1, 1} respectively.
µ and σ vary in a linear scale and a log10 scale respectively, and both have a step size of 0.001.
The resulting lookup tables has a size of 20001× 2001. In a similar way, we make the lookup table
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Algorithm 1 Expectation (Quantile) Propagation

Input: p(f), p(yi|fi), ti(fi), i = 1, · · · , N , θ
Output: q(f) approximate posterior

1: repeat
2: compute q(f) ∝ p(f)

∏
i ti(fi) by (1)

3: repeat
4: for i = 1 to N do
5: compute q\i(fi) ∝ q(fi)/ti(fi) cavity
6: compute q̃(fi) ∝ q\i(fi)p(yi|fi) tilted
7: if EP then
8: ti(fi) ∝ projKL[q̃(fi)]/q

\i(fi) by (3)(4)
9: else if QP then

10: ti(fi) ∝ projW[q̃(fi)]/q
\i(fi) by (5)(4)

11: end if
12: update q(f) ∝ p(f)

∏
i ti(fi) by (1)

13: end for
14: until convergence
15: θ = argmaxθ log q(D) by (2)
16: until convergence
17: return q(f)

for the Poisson regression. In the experiments, we exploit the linear interpolation to fit σ2
QP given

µ ∈ [−10, 10] and σ ∈ [0.1, 10], and if µ and σ lie out of the lookup table, σ2
QP is approximately

computed by the EP update formula, i.e., σ2
QP ≈ σ2

EP. On Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, we observe the running time of EP and QP is almost the same.
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