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Abstract 

Erlotinib is a reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that acts by inhibiting signal-
ing pathways, resulting in the disruption of cancerous cell proliferation. Erlotinib is a promising anticancer agent 
mainly utilized in the mitigation of non-small cell lung cancer cells (NSCLC) and pancreatic tumor. Apart from NSCLC 
and pancreatic tumor, erlotinib has also been employed in different malignancies, including metastatic colorectal can-
cer, malignant glioma, breast cancer, gastrointestinal cancers, etc. Despite erlotinib’s distinctive qualities as a targeted 
drug, its applications are still limited by poor solubility, variable oral bioavailability, a high daily dose requirement, 
large protein binding, and primitive or acquired therapeutic resistance. Nanotechnology is a favorable approach 
to increase therapeutic effectiveness of erlotinib. It is one of the newest scientific field directed toward the diagnosis 
and targeted treatment of cancer. This technology aids in the distinction between normal and malignant cells, which 
overlays the strategy for targeted delivery. This manuscript discussed the advances of erlotinib nanoformulations 
in the management of different cancers. Moreover, the manuscript also comprises various research outcomes of erlo-
tinib nanoformulations with other therapeutic agents as combinational therapy. Erlotinib can be delivered to a precise 
target in the body utilizing different polymers, lipids, and metals.
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1  Background
Cancer is the leading cause of death globally [1]. In the 
previous few decades, considerable advancements have 
been made to diagnose and treat cancers [2]. Erlotinib 
(Fig. 1) is a US Food and Drug Administration-approved 
first-generation epidermal growth factor receptor (EGFR) 
tyrosine kinase reversible inhibitor [3]. The upregula-
tion of EGFR has been implicated in various aspects of 
tumor development and advancement, such as cellular 
proliferation, suppression of programmed cell death, 
metastasis, and the formation of new blood vessels [4]. 
Initially it was approved for the treatment of pancreatic 
cancer and NSCLC [5, 6]. Later, it was found that it could 
also treat several other malignant tumors, such as meta-
static breast cancer [7], metastatic colorectal tumor [8], 
gastrointestinal carcinomas (hepatocellular, biliary, and 
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gastroesophageal junction) [9, 10], squamous cells of 
the head and neck cancers [11], and relapsed malignant 
glioma [12]. Several clinical trials of erlotinib in combi-
nation or individually in the management of cancer have 
either been completed or are now ongoing [13]. Despite 
its widespread use in cancer therapy, erlotinib has been 
linked to several serious side effects, including acute 
renal failure and renal insufficiency, cardiac arrhythmias 
when combined with hepatotoxicity, gemcitabine, and 
hepatorenal syndrome, INR elevations when combined 
with warfarin, exfoliative skin disorders, and gastrointes-
tinal perforations that result in death [14].

TGF-α  and EGF  are examples of extracellular ligands 
that engage with the EGFR receptor, converting inactive 
monomers into active homo- or heterodimers by confor-
mational  modifications and  phosphorylation of tyrosine 
residues. These residues trigger a series of signaling path-
ways that lead to the development and proliferation of 
tumor cells. Erlotinib is a competitive, reversible EGFR 
inhibitor that binds to the cytoplasmic tyrosine kinase 
domain (ATP binding site) and stops signal transmis-
sion by stopping autophosphorylation [4]. This leads to 
an enhanced tumor cell apoptosis, decreased tumor cell 
growth, and differentiation (Fig. 2) [15–23].

Modifying high-affinity ligands or aptamers allows 
nanodrug delivery systems to actively target tumor cells 
and deliver chemotherapeutics [24]. Different biological 
ligands, their advantages, and limitations in nanocar-
riers are shown in Table  1. Through receptor-mediated 
endocytosis, ligands can facilitate the delivery and accu-
mulation of nanocarriers into the tumor site by attach-
ing themselves to the receptors expressed on cancer 
cells with ease. The drug can then be delivered to the 
target site; the structure and composition of nanocarri-
ers directly affect their ability to carry drugs [25]. Table 2 
presents various ligand-based active tumor-targeted 
nanocarriers.

This review covered numerous nanocarrier approaches 
for delivering erlotinib to increase its anticancer activity. 
Erlotinib’s water solubility, dissolution, and bioavailability 
can be increased by polymer, lipid, inorganic, and hybrid 

systems. This publication also covered erlotinib’s mecha-
nism of action and pharmacokinetics aspects. The manu-
script comprises various research outcomes of erlotinib 
nanoformulations with other therapeutic agents such as 
combinational therapy.

2  Main text
2.1  Therapeutic applications of erlotinib
In addition to NSCLC, metastatic breast tumors, colo-
rectal malignancy, and gastrointestinal tumors, erlotinib 
offers a wide range of therapeutic potential in other types 
of cancer. Different therapeutic applications and benefits 
of erlotinib are illustrated in Fig. 3.

NSCLC, one of the most often diagnosed malignancies 
and a heterogeneous class of tumors, is the main reason 
for cancer-related mortality globally. Tobacco use is the 
risk factor for developing this disease, although other risk 
factors, including exposure to radon gas and air pollu-
tion and the decay of isotopes that emit alpha particles, 
also play a role in disease progression [27, 28]. Erlotinib 
is one of the EGFR inhibitors that helps in the treatment 
of NSCLC [29]. Pérez-Soler et  al. evaluated the survival 
response and tumor response of erlotinib in fifty-seven 
NSCLC patients who received a 150  mg daily dose of 
erlotinib orally. The objective response rate, median 
survival time, and one-year survival rate were 12.3%, 
8.4 months, and 40%, respectively. Cutaneous rash (75%) 
and diarrhea (56%) were the most common drug-related 
toxicities. However, patients who experienced a rash 
had a significantly longer survival time. Results showed 
that erlotinib increased the overall survival response 
and improved symptoms with its well-tolerance ability. 
However, fifty-four patients reported symptoms at base-
line, including cough, dyspnea, and fatigue. Five patients 
had a partial response, and two patients achieved a com-
plete response, as determined by both the World Health 
Organization and the Response Evaluation Criteria in 
Solid Tumor criteria. Out of fifty-seven patients enrolled, 
thirty-five had adenocarcinoma, of which four responded 
to therapy (three partial and one complete response). 
Out of the remaining twenty-two patients (two not speci-
fied, nine with squamous cell carcinoma, and eleven 
with large-cell carcinoma), three responded to therapy 
(two with large-cell carcinoma and one with squamous 
cell carcinoma) [30]. Giaccone et  al. conducted a phase 
II study of erlotinib on fifty-three patients with advanced 
NSCLC. The study reported about 22% of the tumor 
response rate, with one complete response, eleven partial 
responses, and sixteen cases of stable disease. Two pro-
gressing patients exhibited EGFR point mutations (one 
with the T790M mutation). Ten non-responders exhib-
ited K-ras mutations. Phase II study findings showed 
considerable antitumor activity in first-line management 

Fig. 1 Chemical structure of erlotinib
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Fig. 2 Mechanism of action of erlotinib

Table 1 Ligands for active targeting of nanodrug delivery systems [26]

Ligands Advantages Disadvantages

Transferrin, antibodies High specificity Large size, low stability

Hyaluronic acid Can be used in nanoparticles production Overexpressed receptors in liver tissue

IL4RPep-1, RGD Small size, easy fabrication Cleavable by peptidase

GBI-10, AS-1411 High specificity, small size Cleavable by nuclease, high cost

Anisamide phenylboronic acid folate Low cost, small size Normal tissues also express targets
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of advanced non-small lung cancer cells. For NSCLC, it 
could be used as an alternative to chemotherapy [31]. The 
subsequent subsections provide a discussion on the ther-
apeutic applications of erlotinib.

2.2  Pancreatic cancer
Pancreatic cancer, a devastating form of gastrointesti-
nal cancer, is characterized by delayed diagnosis and 
poor treatment outcomes [32]. Cigarette smoking, alco-
hol use, diabetes, pancreatitis, and obesity are the major 
risk factors that induce pancreatic cancer [33]. Erlotinib 
is used in the management of pancreatic tumors in asso-
ciation with gemcitabine. Han et al. enrolled thirty-seven 
patients (median age 61.5  years) to conduct a phase-II 
study of erlotinib in combination with gemcitabine in 
pancreatic cancer treatment. Results from this study 
demonstrated 12.5% overall response rate and 71.9% 

disease control rate. The overall survival and median pro-
gression-free survival were 6.7  months and 3.7  months, 
respectively. This combination provided an acceptable 
toxicity profile [34]. Further, Lu et al. evaluated antitumor 
efficacy of erlotinib in the BxPC-3 pancreatic cell line, 
triggered G1 arrest, and induced cell apoptosis and sup-
pressed capillary formation of endothelium. Results dem-
onstrated that erlotinib suppressed growth of the BxPC-3 
pancreatic cell line in a dose-dependent manner. At a 
concentration of 50 μmol/L, no significant change in cell 
growth was observed between 24 and 48 h, 72 and 96 h. 
Immunohistochemical staining revealed decreased EGFR 
expression, while reverse transcription-polymerase chain 
reaction revealed lower vascular endothelial cell growth 
factor expression in treated animals. It could be used as 
an adjunct in place of chemotherapy in the management 
of pancreatic cancer [35].

2.3  Squamous carcinoma of head and neck
Head and neck squamous cell carcinomas, which origi-
nate from the mucosal epithelium of the mouth, throat, 
and larynx, are the most common types of cancer in 
these regions [36]. Soulieres et  al. conducted a phase-II 
study to evaluate the effectiveness and security profile 
of erlotinib in patients with intermittent and metastatic 
squamous cell carcinoma of the head and neck. Results 
of one hundred and fifteen patients showed significant 
improvements in overall survival and disease stabilization 
with good tolerability. Disease stabilization was observed 
in 44 patients for 16.1. The median progression-free sur-
vival and the median overall survival were 9.6 weeks and 
6.0  months, respectively. However, rash and diarrhea 
were reported in 79% and 37% patients, respectively, as 
the most common drug-related toxicities [37]. In an addi-
tional study, Tsien et al. evaluated the inhibitory effect of 
erlotinib on twelve head and neck cancer patients. Erlo-
tinib inhibited pEGFR and reduced total EGFR protein in 
tumors. However, there was heterogeneity in EGFR inhi-
bition in the normal mucosa [38].

Table 2 Ligand-based active tumor-targeted nanocarriers [25]

Nanosystem Ligand Conjugation strategy Cancer type

Polymeric nanoparticles (NPs) Folic acid Amide bond Cervical adenocarcinoma

Polymeric NPs Folic acid Amide bond Lung carcinoma, cervical carcinoma

Micelles Biotin Ester bond Lung carcinoma

Liposomes Folic acid Covalent bond Cervical carcinoma

Liposomes Folic acid Covalent bond Breast cancer

Solid lipid nanoparticles (SLNs) Apolipoprotein E Electrostatic interaction Glioblastoma multiforme

Liposomes Hyaluronic acid Hyaluronic acid-phospholipid conjugate 
inserted in liposome

Pancreatic cancer

Fig. 3 Therapeutic applications and benefits of erlotinib in treating 
breast cancer, gastric cancer, NSCLC, and pancreatic cancer
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2.4  Malignant gliomas
Among primary malignant brain tumors, malig-
nant gliomas are the most prevalent. Several genetic 
changes that occur sequentially and cumulatively 
because of internal and external causes lead to the 
development of malignant gliomas [39]. Prados et  al. 
conducted phase I/II studies of erlotinib in combina-
tion with sorafenib in malignant gliomas. Observations 
demonstrated that the combination of both drugs is 
moderately well tolerated. Sorafenib affected pharma-
cokinetic (metabolism or clearance) of erlotinib sug-
gesting drug–drug interaction [40]. In another study, 
Prados et  al. conducted a phase-I study of temozolo-
mide in combination with erlotinib in patients with 
stable or recurrent malignant gliomas. On a 28-day 
treatment regimen, erlotinib was initiated at 100  mg 
orally once daily; the dose was increased by 50  mg/
day until it reached 500 mg/day. A total of 83 patients 
underwent examination. Fatigue, rash, and diarrhea 
were the most frequently reported adverse effects, 
which exhibited a mild to moderate intensity. Six of 
the 57 patients, including four with partial responses, 
had a progression-free survival of more than six 
months. Results displayed significant antitumor action 
with acceptable toxicities and demonstrated a well-tol-
erated combination in this disease [41].

2.5  Metastatic colorectal cancer
EGFR is a crucial target in the therapy of colorectal 
cancer because it controls the main signaling pathways 
that cancer cells use for survival, migration, adhesion, 
proliferation, and angiogenesis [42]. Townsley et  al. 
[43] conducted a phase-II study of erlotinib on 38 
patients with metastatic colorectal cancer at 150 mg of 
the daily oral dose. Results showed that erlotinib was 
well tolerated and had common side effects (diarrhea in 
23 patients and rash in 34 patients). Also, a correlative 
study following one-week treatment showed that the 
levels of phosphorylated EGFR (p = 0.008) and phos-
pho-extracellular signal-regulated kinase (p = 0.008) 
dropped significantly. One-third of patients had sta-
ble disease for a minimum of 8  weeks. Xu et  al. [44] 
analyzed safety and survival profile of erlotinib plus 
bevacizumab as maintenance therapy in patients with 
colorectal tumors that have spread to other parts of the 
body. In patients with metastatic colorectal cancer, the 
addition of erlotinib to bevacizumab as maintenance 
therapy significantly improved progression-free sur-
vival (hazard ratio 0.79; 95% confidence interval 0.68–
0.92; p = 0.002) and overall survival (hazard ratio 0.78; 
95% confidence interval 0.66–0.93; p = 0.006). Mild 
side effects were observed, which are controllable and 
reversible.

2.6  Metastatic breast cancer
Breast cancer is a malignancy that develops when cells 
in the breast grow out of control. It is characterized by 
the formation of lumps in the breast or nearby areas, 
alterations in the skin of the breast, or nipple discharge. 
Overexpression of EGER is associated with breast cancer 
[45]. Therefore, erlotinib, as an EGFR inhibitor, plays a 
crucial role in the management of breast tumors, either 
alone or in combination [46]. Dickler et  al. [47] con-
ducted a phase-II study on sixty-nine locally advanced 
or metastatic breast cancer patients. The patients were 
divided into cohort 1 (progression after anthracyclines, 
taxanes, and capecitabine, n = 47) and cohort 2 (progres-
sion after > 1 chemotherapy for advanced-stage disease, 
n = 22). Observation showed erlotinib (150  mg orally 
daily) as a monotherapy agent was well tolerated but 
had minimal activity in previously treated patients. Eight 
patients had stable disease and two patients had partial 
response. The median time to progression was 43  days 
for cohort 1 and 43 days for cohort 2. Dry skin, diarrhea, 
asthenia, nausea, rash, and anorexia were the common 
adverse events because of the anti-EGFR/human epider-
mal growth factor receptor 1 (HER1) activity in normal 
EGFR/HER1-expressing tissue. Britten et  al. [48] con-
ducted a phase I/II trial of erlotinib in combination with 
trastuzumab against metastatic breast cancer. In phase 
I trials, the patients enrolled were those who had previ-
ously received chemotherapy and/or trastuzumab for the 
treatment of metastatic disease. Patients who partici-
pated in phase II had never received chemotherapy for 
metastatic illness and were unfamiliar with trastuzumab. 
The observation revealed that erlotinib has minimal anti-
cancer activity in individual patients. The combination 
was well tolerated, and no pharmacokinetic interaction 
occurred. However, anorexia, alopecia, diarrhea, dry 
skin, fatigue, nausea, pruritus, stomatitis, and rash were 
the most common toxicities. The study does not ade-
quately address the efficacy of dual- or pan-ErbB therapy. 
However, this approach alone is unlikely to be sufficient 
in the treatment of metastatic disease.

2.7  Other gastrointestinal carcinomas
Gastrointestinal tract carcinomas involve the stom-
ach, colon, and rectum. A variety of environmental and 
genetic factors contribute to the development of gas-
trointestinal cancer [49]. Rohrberg et al. [50] conducted 
a phase II trial of erlotinib and bevacizumab on 102 
patients (66 male and 36 female) with an upper gastro-
intestinal tumor. Although the combination was well 
tolerated, there was no improvement in overall survival 
or progression survival rates. Diarrhea, skin reactions, 
and fatigue were the most common toxicities. Over-
all response rate, median progression-free survival, and 
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overall survival were 6%, 2.2  months, and 4.3  months, 
respectively. Plasma placental growth factor concen-
tration increased in most of the patients who received 
treatment. However, the interaction between urokinase 
plasminogen activator receptor domain I and soluble 
vascular endothelial growth factor receptor 2 and their 
potential predictive value warrant further preclinical and 
clinical evaluation. Philip et  al. [51] conducted a phase 
II study of erlotinib on 42 patients with advanced biliary 
cancer. In this study, over half of the enrolled patients had 
previously received treatment for their advanced biliary 
cancer. In 29 patients, tumor cell immunohistochemistry 
revealed HER1/EGFR expression. Two patients respond-
ing to erlotinib were HER1/EGFR positive. Erlotinib 
inhibited EGFR in biliary cancer, which improved the 
therapeutic effect. After six months of treatment, seven 
patients were progression free. Three patients had toxic-
ity-related dose reductions of erlotinib due to grade 2/3 
skin rash. The study concluded that erlotinib may offer a 
better treatment option for patients experiencing treat-
ment failure after cytotoxic therapy. These results reveal 
that erlotinib has a wide range of therapeutic uses, treat-
ing a variety of carcinomas.

3  Tarceva®—a commercially available erlotinib 
formulation

The US Food and Drug Administration has approved 
erlotinib for the treatment of NSCLC and pancreatic 
cancer. Tarceva® is Genentech’s (a division of Roche 
Pharmaceutical) commercially available product contain-
ing erlotinib for first-line and maintenance treatment of 
patients with locally advanced or metastatic NSCLC with 
EGFR activating mutations. Tarceva® is not prescribed 
for use in combination with platinum-based chemo-
therapy. Patients with locally advanced, unresectable, 
or metastatic pancreatic cancer can receive Tarceva® in 
combination with gemcitabine as their first-line treat-
ment. This product is available as a film-coated tablet 
for oral use. Diarrhea, dehydration, electrolyte imbal-
ance, and renal failure are common side effects reported 
for this product. Reports have documented rare cases 
of hepatic failure. Patients receiving Tarceva® are at 
increased risk of developing gastrointestinal perforation. 
There have been reports of bullous, blistering, and exfoli-
ative skin conditions. While it has shown efficacy in many 
patients, it does have limitations, such as limited absorp-
tion and bioavailability caused by poor water solubility, 
off-target effects, and the development of erlotinib resist-
ance over time, leading to treatment failure [6, 15, 46]. 
Generic version of Tarceva is manufactured by Alembic 
Pharmaceuticals, India; Apotex Inc., Canada; MSN Phar-
maceuticals Inc., USA; Natco Pharma Ltd., India; Ris-
ing Pharma Holdings Inc., New Jersey; Shilpa Pharma 

Life Sciences, India; Sun Pharmaceutical Industries Ltd., 
India; Teva Pharmaceutical Industries Ltd., Israel; and 
Zydus Pharmaceuticals, India. Exploring erlotinib nano-
formulations could improve its therapeutic effectiveness 
and patient outcomes in the treatment of different types 
of cancer by addressing these issues.

4  Nanoformulations for anticancer potential 
of erlotinib

Poor solubility and low oral bioavailability of erlotinib 
can often result in its suboptimal pharmacokinetic and 
pharmacodynamic profile. This implies that addressing 
issues related to solubility and bioavailability is crucial for 
optimizing the pharmacokinetic and pharmacodynamic 
profile of erlotinib. Antacids or proton-pump inhibi-
tors increase gastrointestinal pH reduces solubility and 
absorption of erlotinib. The apparent volume of distri-
bution of erlotinib is around 232 L. About 93% of erlo-
tinib is bound to alpha-1 acid glycoprotein and albumin 
[4]. In the gastrointestinal environment, it displays poor 
solubility, permeability, and instability (high  first-pass 
metabolism with rapid clearance). Additionally, it causes 
hematological adverse effects like anemia, thrombocyto-
penia, and neutropenia and shows dose-dependent severe 
side effects like rash, diarrhea, appetite loss, and frontal 
alopecia [52–54]. These challenges require the advance-
ment of an effective drug delivery strategy that not only 
increases treatment efficacy but also minimizes harm-
ful effects. Nanoparticles can alleviate these problems. 
Effective EGFR-TKIs nanoscale delivery technologies not 
only help to address fundamental challenges such as poor 
solubility and quick degradation but also help to decrease 
adverse effects by the selective accumulation at tumor 
tissues. With its controlled release mechanism, nano-
DDS can assist in extending the drug’s half-life. Nanofor-
mulations have significant advantages, such as extended 
blood circulation, high drug loading, lower cytotoxicity, 
and inadequate immunogenicity [55–57]. With the aid 
of nanotechnology, it is possible to simultaneously meas-
ure several targets with excellent selectivity and sensitiv-
ity [58]. Successful fabrication of several multifunctional 
agents at the nanoscale has been made possible by the 
swift advancement of nanotechnology, and these agents 
have enormous potential as nanomedicines for the detec-
tion, prevention, and management of disease [59].

Numerous nanoformulations, such as nanoparti-
cles, nanoemulsions, nanosuspensions, and nanocar-
riers, are available for enhancing the pharmacokinetic 
profile, tumor targeting, stability,  and biocompatibility 
of different  anticancer drugs, as well as to circumvent 
their limited bioavailability and solubility. As shown 
in Fig.  4, erlotinib nanoformulations are classified into 
four groups: polymer-based nanoparticles, inorganic 
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nanoparticles, lipid-based nanoparticles, and hybrid sys-
tem-based nanoparticles.

4.1  Polymeric nanoparticles
Polymeric NPs (PNPs) are colloidal macromolecules 
with submicron sizes between 10 and 1000  nm. PNPs 
act as a drug carrier, enabling their sustained release to 
the intended malignant areas [60]. Additionally, the use 
of PNPs increases stability, improves drug loading abil-
ity, and reduces undesirable toxicities [61]. Non-bio-
degradable polymers like polyacrylamide, polymethyl 
methacrylate (PMMA), polystyrene, and polyacrylates 

show toxicity. Therefore, to overcome these constraints, 
biodegradable polymers have been developed that help in 
optimizing drug release kinetics, minimizing toxicity, and 
boosting biocompatibility [62, 63]. Nowadays, tumor-
specific delivery in diseases such as cancer is no longer 
a nightmare because of the development of polymeric 
nanotechnology, which provides site-specific release and 
easy penetration into cancerous cells, etc. [64]. Consid-
erable stability, excellent structural design, variable and 
tunable solubility, lower immunogenicity, and strong 
cellular biocompatibility of nanoparticles make them 
appealing for medical applications. Furthermore, the 

Fig. 4 A comprehensive overview and multifaceted attributes of polymeric, lipidic, inorganic, and hybrid nanoparticles, which are instrumental 
in addressing a wide range of challenges and advancing numerous drug delivery applications
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antigenicity, three-dimensional geometric structure, and 
precise tissue/cell targeting capabilities of nanoparticles 
are also widely used in medical applications [65, 66].

Poly-(ε-caprolactone) (PCL) can regulate drug release. 
It is biodegradability, and biocompatibility, resulting in a 
general reduction in toxicity and an improvement in the 
potency of the encapsulated therapeutics. These nano-
carriers can increase both in vitro and in vivo anticancer 
effectiveness. Therefore, Bruinsmaan et  al. formulated 
erlotinib-loaded nanocapsules using PCL. Resulting 
nanocapsules displayed significant antitumor activity 
against cancerous cells. In addition, nanocapsules caused 
2.5 times more cell death and stopped the growth of 
A549 cells compared to the erlotinib solution [67]. In an 
additional study, Marslin et al. [68] synthesized poly-(D, 
L-lactic-co-glycolic acid) (PLGA) nanoparticles of erlo-
tinib using sonication-solvent evaporation technique to 
evaluate subacute toxicity in rats. The histopathologi-
cal examination displayed that the internal body organs 
were considerably injured with the free drug, while less 
damage to internal organs was obtained with erlotinib-
loaded PLGA nanoparticles. Moreover, the resultant 
nanoparticles showed fewer adverse effects as compared 
to the free drug. Similarly, to investigate the in  vitro 

anticancer potential of erlotinib, Barghi et al. [69] formu-
lated erlotinib-loaded  polycaprolactone-polyethyleneg-
lycol-polycaprolactone (PCEC) nanoparticles by using 
solvent displacement method. The resulting nanoparti-
cles showed a sustained release profile of erlotinib, but its 
release rate decreased when carbolactone/polyethylene-
glycol molar ratio increased. Cell growth inhibition by 
erlotinib was time and dose dependent. Resulting nano-
particles showed excellent antiproliferative activity in 
comparison to free erlotinib.

Cyclodextrin creates a hydrophobic cavity that is 
nanometrically large and can easily fit non-polar visi-
tors that are the right size. As a result, cyclodextrin has 
been widely used to increase the bioavailability of several 
poorly soluble therapeutic agents. Varan et  al. [70] cre-
ated cyclodextrin nanoparticles of erlotinib to improve 
its bioavailability, solubility, and breakdown in the diges-
tive tract. The developed nanoparticles showed a signifi-
cant improvement in anticancer potential against lung 
and liver cancer cells and induced apoptosis by extracting 
cholesterol from cancerous cells (Fig. 5). Dora et al. [71] 
developed an erlotinib-loaded cyclodextrin nanosponge 
using the freeze-drying method. The resulting nanofor-
mulations showed a twofold increase in dissolution rate 

Fig. 5 Therapeutic benefits of erlotinib combination therapy with doxorubicin, valproic acid, fedratinib, paclitaxel, bevacizumab, si-RNA, and DAPT 
(a gamma secretase inhibitor)
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and improved bioavailability. Moreover, the nanosponges 
also displayed higher uptake efficiency in comparison to 
the plain drug.

Vaidya et  al. [72] synthesized cyclodextrin-modified 
erlotinib-loaded PLGA nanoparticles using solvent evap-
oration method. The resulting nanoparticles showed 
improved therapeutic efficacy against NSCLC with 
enhanced apoptosis and autophagy inhibition. Cyclo-
dextrin-modified PLGA nanoparticles showed superior 
anticancer potential in comparison to plain erlotinib. 
Chitosan was chosen as a polymer due to its biocompat-
ibility, biodegradability, safety, and bioadhesive proper-
ties. Its mucoadhesive properties extend the residual 
period at the site of absorption, and its cationic nature 
enables ionic cross-linking with multivalent anions.

Pandey et al. [73] developed chitosan nanoparticles of 
erlotinib-loaded by ionic gelation following probe soni-
cation technique. The developed nanoparticles showed 
a significant improvement in the circulation time of the 
drug, which provides efficient delivery of therapeutic 
agents at the targeted site. Nanoformulations exhibited 
considerable cytotoxic effects and a slow-release rate 
in comparison to marketed formulations. Similarly, to 
investigate the anticancer potential of erlotinib, Pandey 
et al. [74] synthesized chitosan nanoparticles of erlotinib. 
The resulting nanoformulations showed noteworthy anti-
cancer potential and stability for up to six months with-
out any transformation. Erlotinib is released slowly from 
chitosan nanoparticles in comparison to the marketed 
formulation, which also improves therapeutic efficacy 
and reduces adverse effects of erlotinib. To increase tar-
geted therapy against NSCLC, Saravanakumar et al. [75] 
synthesized aptamer AS1411-decorated erlotinib chi-
tosan nanoparticles. Aptamers stick to nucleolin, which 
is only found in cancer cells and not in healthy cells. This 
lets erlotinib get inside cancer cells deeply and release 
itself in a way that depends on the pH. A more precise 
payload targeting of cancer cells is possible with active 
targeted drug delivery. Such an active targeted drug deliv-
ery system is typically achieved by covalently attaching 
a monoclonal antibody (mAb) to the surface of a nano-
particle, which can detect and bind to a specific receptor 
expressed in cancer cells. In this context, Srinivasan et al. 
[76] developed antibody-functionalized chitosan nano-
particles of erlotinib. Nanoformulations showed that 
antibody-functionalized chitosan nanoparticles slowly 
released erlotinib as compared to non-functionalized chi-
tosan nanoparticles. Momin et  al. [77] formulated erlo-
tinib glutathione nanosponge using a one-step reaction 
between β-cyclodextrin and pyromellitic dianhydride. 
The resulting erlotinib-loaded glutathione nanosponge 
showed considerable cytotoxicity and excellent cancer 
inhibition in comparison to free erlotinib. Nanosponge 

containing erlotinib showed significant antiproliferative 
activity with higher cellular drug uptake. Glutathione-
responsive nanosponges showed site-specific delivery of 
drugs and bypassed exposure to non-target tissues.

To improve poor bioavailability of erlotinib Yang et al. 
[78] developed erlotinib-loaded nanoparticles by employ-
ing nanoparticulation utilizing fat and supercritical fluid. 
The resulting formulation displayed considerable inhibi-
tion of EGFR signaling and suppressed the proliferation 
of A549 cancerous cells. Owing to the improved solubility 
and bioavailability of erlotinib, nanoparticles containing 
erlotinib overcome side effects and fed-fasted bioavail-
ability variances. Li et al. [79] developed silk fibroin nan-
oparticles of erlotinib. Erlotinib-loaded nanoparticles 
displayed better bioavailability than the free drug. Apop-
tosis of cancerous cells leads to better anticancer effects 
of nanoparticles. Furthermore, nanoparticles showed 
considerable apoptosis and improved therapeutic effi-
cacy in comparison to free drugs. These studies showed 
that significant scientific efforts have been made globally 
to improve the targeted action and controlled release of 
therapeutic agents by using different polymers like cyclo-
dextrin and chitosan. Table 3 presents various study out-
comes based on PNPs.

4.2  Inorganic nanoparticles
Owing to their greater physicochemical characteristics 
(such as magnetic, thermal, optical, and catalytic per-
formance) and outstanding functionalities like imag-
ing, targeted drug administration, and controlled drug 
release, inorganic nanoparticles have been extensively 
utilized in the detection and treatment of malignancies. 
Inorganic nanomaterials utilized in cancer treatment 
include magnetic nanoparticles, silica nanoparticles, 
and iron oxide nanoparticles. These are effective in the 
treatment of tumors due to their prolonged systemic 
circulation, higher accumulation in tumors due to their 
improved permeability, enhanced drug stability, and 
regulated drug release in tumor cells [82, 83].

In MRI, superparamagnetic iron oxide (SPIO) is 
used to monitor the distribution of NPs in  vivo. SPIO 
can also be used to track, target, and assess the effec-
tiveness of therapeutic interventions when it is com-
bined with certain small-molecule drugs. Hsu et  al. 
[84] formulated erlotinib-loaded superparamagnetic 
nanoparticles using quantitative resonance imaging 
and the Nuclear Factor Kappa-B Reporter Gene Sys-
tem (NF-κB). The resulting nanoformulations showed 
significant inhibition of tumor growth and activated 
intrinsic and extrinsic apoptotic pathways by inhibit-
ing NF-κB. Similarly, to boost the targeting of EGFR-
overexpressing pancreatic cancerous cells, Nebu et  al. 
[85] synthesized erlotinib-loaded gold nanoclusters 



Page 10 of 19Pahwa et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:69 

Ta
bl

e 
3 

Po
ly

m
er

ic
 n

an
op

ar
tic

le
s-

ba
se

d 
re

se
ar

ch
 fi

nd
in

gs

Ty
pe

 o
f 

na
no

fo
rm

ul
at

io
n

M
et

ho
d 

of
 

pr
ep

ar
at

io
n

Pa
rt

ic
le

 s
iz

e 
(n

m
)

Ze
ta

 p
ot

en
tia

l
En

tr
ap

m
en

t 
effi

ci
en

cy
D

ru
g 

re
le

as
e

Ce
ll 

lin
e

O
ut

co
m

es
Re

fs

A
lb

um
in

 n
an

op
ar

tic
le

s
D

es
ol

va
tio

n 
m

et
ho

d
10

.3
 to

 1
4.

0
–

44
%

–
PA

N
C

-1
, A

SP
C

-1
Re

du
ce

d 
dr

ug
 d

os
e 

re
gi

m
en

, g
oo

d 
cy

to
-

to
xi

ci
ty

 a
ct

iv
ity

[8
0]

A
lb

um
in

 n
an

op
ar

tic
le

s
Pr

ec
ip

ita
tio

n 
m

et
ho

d
11

2.
5 

±
 2

.8
 −

 2
1.

2 
±

 3
.2

 m
V

81
.2

%
5%

 a
t 1

 h
A

54
9

Si
gn

ifi
ca

nt
 tu

m
or

 
gr

ow
th

 in
hi

bi
tio

n,
 

su
pe

rio
r b

io
av

ai
la

bi
lit

y

[8
1]

Cy
cl

od
ex

tr
in

 n
an

o-
pa

rt
ic

le
s

N
an

op
re

ci
pi

ta
tio

n
88

 ±
 9

 to
 1

52
 ±

 8
 +

 6
2.

1 
±

 5
 

to
 +

 7
4.

9 
±

 7
 m

V
–

Ra
pi

dl
y 

in
 th

e 
fir

st
 

30
 m

in
H

ep
G

2,
 A

54
9

En
ha

nc
ed

 a
nt

itu
m

or
 

effi
ca

cy
[7

0]

PL
G

A
 n

an
op

ar
tic

le
s

So
lv

en
t e

va
po

ra
tio

n 
m

et
ho

d
21

0 
±

 8
–

61
.5

 ±
 3

.2
%

A
t p

H
 7

.4
 3

2 
±

 4
%

 
af

te
r 5

 d
ay

s
A

54
9,

 H
15

7,
 H

46
0,

 
H

40
06

En
ha

nc
ed

 th
er

ap
eu

tic
 

effi
ca

cy
[7

2]

Cy
cl

od
ex

tr
in

 n
an

o-
sp

on
ge

 c
om

pl
ex

Fr
ee

ze
 d

ry
in

g
37

2 
±

 3
1

 −
 3

2.
07

 ±
 4

.5
8 

m
V

–
71

.2
6 

±
 0

.5
4%

 
in

 6
0 

m
in

M
IA

 P
aC

a-
2 

an
d 

PA
N

C
-1

Im
pr

ov
ed

 d
is

so
lu

tio
n,

 
or

al
 b

io
av

ai
la

bi
lit

y,
 

an
d 

so
lu

bi
lit

y

[7
1]

C
hi

to
sa

n 
na

no
pa

r-
tic

le
s

–
19

5.
46

 ±
 1

.8
5 

to
 1

99
.1

3 
±

 2
.7

2
9.

55
 ±

 0
.2

8 
to

  −
 5

7.
46

 ±
 1

.3
6 

m
V

70
.9

4 
±

 1
.8

3 
to

 4
.2

8 
±

 1
.7

8%
–

A
54

9,
 N

IH
3T

3
Im

pr
ov

ed
 c

el
lu

la
r 

up
ta

ke
[7

5]

C
hi

to
sa

n 
na

no
pa

r-
tic

le
s

Io
ni

c 
ge

la
tio

n 
m

et
ho

d 
an

d 
pr

ob
e 

so
ni

ca
tio

n
13

8.
5

26
.9

 to
 2

5.
4 

m
V

49
.0

2 
±

 0
.2

4%
91

.5
7%

 in
 0

.1
 N

 H
C

l 
af

te
r 2

4 
h

A
54

9
En

ha
nc

ed
 c

yt
ot

ox
ic

 
eff

ec
t o

n 
A

54
9 

ca
nc

er
-

ou
s 

ce
ll 

lin
e

[7
3]

C
hi

to
sa

n 
na

no
pa

r-
tic

le
s

Io
ni

c 
ge

la
tio

n 
an

d 
sp

ra
y 

dr
yi

ng
17

0.
2

–
43

 ±
 0

.5
7%

89
.4

6%
 in

 0
.1

 N
 H

C
l 

af
te

r 2
4 

h
A

54
9

H
ig

he
st

 c
yt

ot
ox

ic
 

eff
ec

t o
n 

A
54

9 
ca

nc
er

-
ou

s 
ce

ll 
lin

e

[7
4]

C
hi

to
sa

n 
na

no
pa

r-
tic

le
s

–
23

7.
5 

±
 1

.8
27

.2
6 

±
 1

.8
8 

m
V

–
–

–
pH

 in
flu

en
ce

d 
dr

ug
 

re
le

as
e

[7
6]

PL
G

A
 n

an
op

ar
tic

le
s

So
ni

ca
tio

n-
so

lv
en

t 
ev

ap
or

at
io

n 
te

ch
-

ni
qu

e

21
7

–
22

.8
6%

60
%

 a
ft

er
 1

2 
da

ys
–

D
ec

re
as

ed
 d

ru
g-

in
du

ce
d 

to
xi

ci
ty

[6
8]

PC
EC

 n
an

op
ar

tic
le

s
So

lv
en

t d
is

pl
ac

em
en

t 
m

et
ho

d
–

 −
 2

4.
4 

to
  −

 2
6 

m
V

58
.7

 to
 4

4.
4%

A
54

9
–

In
cr

ea
se

d 
an

tit
um

or
 

eff
ec

t
[6

9]

G
lu

ta
th

io
ne

 n
an

o-
sp

on
ge

–
21

2 
±

 2
.4

5
−

 3
0.

21
 ±

 0
.4

7 
m

V
92

.3
4 

±
 5

.3
1%

76
.8

9 
±

 0
.1

%
 re

le
as

e 
at

 1
68

 h
A

54
9

In
cr

ea
se

d 
ce

llu
la

r 
up

ta
ke

 a
nd

 e
xt

en
si

ve
 

dr
ug

 re
le

as
e

[7
7]

N
an

op
ar

tic
le

s
–

25
0

–
–

–
A

54
9

Re
du

ce
d 

si
de

 e
ffe

ct
s 

an
d 

de
cr

ea
se

d 
fe

d 
fa

st
ed

 b
io

av
ai

la
bi

lit
y 

va
ria

nc
es

[7
8]

Li
pi

d 
na

no
ca

ps
ul

es
In

te
rf

ac
ia

l d
ep

os
iti

on
17

1
−

 8
 m

V
99

%
–

A
54

9
H

ig
he

r c
yt

ot
ox

ic
ity

, 
ov

er
co

m
e 

tu
m

or
 

re
cu

rr
en

ce

[6
7]

Si
lk

 fi
br

oi
n 

na
no

pa
r-

tic
le

s
–

21
9 

±
 5

.7
–

7.
7%

10
0%

 a
ft

er
 7

 d
ay

s
4T

1
En

ha
nc

e 
dr

ug
 b

io
-

av
ai

la
bi

lit
y

[7
9]



Page 11 of 19Pahwa et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:69  

enveloped with magnetic iron oxide nanoparticles. 
Resulted nanoparticles show a significant ability to 
kill EGFR overexpressing pancreatic tumor cells and 
show signs of pH-triggered release. Erlotinib-loaded 
nanoparticles displayed selective targeting of pancre-
atic cells in comparison to free drugs. The core–shell 
nanocomposites enhanced the uptake and cytotoxicity 
of erlotinib in pancreatic cancer cells. In an additional 
study, Mohammadzadeh-Asl et al. [86] developed erlo-
tinib-loaded magnetic nanoparticles. Erlotinib-loaded 
magnetic nanoparticles displayed three times the sig-
nal enhancement as compared to erlotinib. The signal 
enhancement method could be used for tumor cell 
detection via interacting with overexpressed cancer-
ous cells. Ali et al. [87] formulated erlotinib-loaded iron 
oxide nanoparticles using the alkaline co-precipitation 
method. Resulted nanoparticles displayed that cellular 
uptake and intracellular accumulation were higher in 
comparison to non-erlotinib conjugated nanoparticles. 
Erlotinib-loaded nanoparticles showed excellent antitu-
mor effects with targeting properties against cancerous 
cells. Owing to the ultra-small size of the erlotinib-
loaded nanoparticles, it is a tremendous candidate for 
magnetic resonance imaging in metastatic brain cancer.

Numerous alterations in the context of magnetic and 
iron oxide nanoformulations enhanced the overall diag-
nosis and treatment process with higher efficacy. More-
over, this concept also improved the accumulation of 
drugs at the target site. Table 4 presents various study 
outcomes based on inorganic nanoparticles.

Zhou et al. [88] synthesized erlotinib-loaded injectable 
flowing solution of mesoporous silica NPs (MSNs) using 
thermosensitive poly(d,l-lactide)-poly(ethylene glycol)-
poly(d,l-lactide) hydrogel. The MSNs showed prolonged 
peritumoral and intratumoral drug retention. He et  al. 
[89] designed a novel erlotinib and doxorubicin loaded 
pH-sensitive charge conversion nanocarrier using a syn-
thetic zwitterionic  oligopeptide  lipid (1,5-dioctadecyl-
l-glutamyl2-histidyl-hexahydrobenzoic acid) for lung 

cancer therapy. The amino-functionalized MSNs were 
obtained by coating them with oligopeptide  lipid. The 
faster release of erlotinib than doxorubicin during cel-
lular transport was due to its presence in the exterior 
lipid bilayer. Lipid-coated nanocarriers became more 
positive at tumor intracellular pH and enhanced Cou-
lombic repulsion with amine-functionalized MSNs, 
leading to increased sequential staggered release of pay-
loads. In  vivo study demonstrated that pH-sensitive 
charge conversion co-delivery nanoparticles suppressed 
tumor growth in  Lewis lung carcinoma tumor bearing 
mice with no systemic toxicity. Erlotinib-loaded mag-
netic MSNs of  Fe3O4 core coated with mesoporous silica 
and poly-(ethyleneimine)-conjugated folic acid released 
63% payload and had negligible hemolytic activity. The 
synthesized drug-loaded magnetic MSNs inhibited the 
proliferation of HeLa cell lines. Folic acid-conjugated 
nanoparticles showed higher cytotoxicity in HeLa cells 
[90].

Cellular uptake study demonstrated internalization of 
desmethyl erlotinib-loaded quantum dots. In A549 cell 
lines resistant to erlotinib, quantum dots conjugated with 
desmethyl erlotinib demonstrated an  IC60 of 2.5 μM [91]. 
Rahmanian et al. [92] reported a graphite rod electrode-
based electrochemical sensor for determining erlotinib 
that was modified by a ternary nanohybrid comprising 
copper nanoparticles, nitrogen-doped graphene quan-
tum dots and polyaniline, graphene oxide. This sensor 
system showed the electrocatalytic activity toward erlo-
tinib between 1  nM and 35  μM, a sensitivity of 1.3604 
μA/μM, and a detection limit of 0.712 nM. The developed 
system successfully monitored erlotinib in the drug-
injected aqueous solution, urine, and serum samples. 
The study concluded that the developed electrochemi-
cal sensor system has the sensor capability for erlotinib 
monitoring in biological samples. The surface function-
alization of nitrogen-doped carbon nanodots by erlotinib 
has been explored as a fluorescent contrast agent for 
live pancreatic cancer cell imaging. This enables in vitro 

Table 4 Inorganic nanoparticles-based research findings

Type of nanoformulations Particle size (nm) Drug release Cancer cells used Outcomes Refs.

Superparamagnetic nanoparticles – – CL1-5-F4 Enhanced therapeutic efficacy 
against lung cancer, inhibited apoptotic 
mechanisms

[84]

Magnetic iron oxide nanoparticles 41.8 ± 2.4 78.3% at pH 5 L-929, PANC-1 pH-dependent release, selective target-
ing of EGFR overexpressing pancreatic 
cells

[85]

Magnetic nanoparticles 110.8 – A549 Enhanced surface Plasmon resonance 
signal

[86]

Iron oxide nanoparticle 6.06 ± 0.9 to 4.28 ± 1.1 70% at pH 5 after 2 h CL1-5-F4 Exhibited significant therapeutic and tar-
geting properties

[87]
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targeting of human pancreatic cancer cell lines that are 
overexpressed to the EGFR. The confocal fluorescence 
microscopic images show uniform fluorescence staining 
on human pancreatic cancer cell lines and localized fluo-
rescence staining on the central region of normal L929 
mouse fibroblast cells, confirming its potential in cellular 
imaging [93].

4.3  Hybrid system‑based nanoparticles
Hybrid nanoparticles combine the properties of differ-
ent nanoparticles, which makes them more unique [94]. 
Some of the benefits of hybrid systems over non-hybrid 
platforms are lower rates of encapsulation and structural 
disintegration, higher stability, premature release, and 
unspecific release kinetics [95].

Nanoparticles have evolved from having a simple core–
shell structure to one that is more complex. This strategy 
made it possible to incorporate several features into a 
single drug delivery platform. To make lipid hybrid nano-
particles of erlotinib, Mandal et al. [96] used a single-step 
sonication method and polycaprolactone as a polymer. 
The resulting erlotinib nanoparticles showed a biphasic 
release pattern and a considerable decline in cell viabil-
ity as compared to the free drug. Erlotinib nanoparticles 
displayed good storage stability. The resulting formulation 
enhanced cellular uptake in comparison to the plain drug. 
Fathi et al. [97] synthesized thermosensitive, folate-conju-
gated o-maleoyl-modified chitosan micellar nanoparticles 
for site-specific delivery of erlotinib. Folate-conjugated 
micelles were delivered rapidly and successfully to the tar-
geted cancerous cells. Folate-conjugated micelle chitosan 
nanoparticles of erlotinib showed an improved cytotoxic 
effect as compared to plain erlotinib nanoparticles and 
displayed temperature-dependent release. Avedian et  al. 
[90] synthesized erlotinib-loaded folic acid labeled pH-
sensitive mesoporous magnetic nanoparticles. The result-
ing formulation showed a higher cytotoxic effect and 
inhibition of HeLa cancer cell line proliferation.

To overcome the resistance to erlotinib, Li et  al. [98] 
formulated aptamer-loaded chitosan-anchored liposo-
mal complexes of erlotinib. The resulting formulation 
displayed superior biostability and binding properties 
for EGFR-mutated cancerous cells. Aptamer-loaded chi-
tosan-anchored liposomal complexes of erlotinib exhibit 
excellent stability by preventing drug leakage and nano-
particle aggregation. Fathi et  al. [99] reported erlotinib-
loaded thermosensitive gold hybrid nanoparticles using 
chitosan as a copolymer in an additive-free reducing-
based reaction. Nanoparticles displayed temperature-
dependent release with a higher cytotoxic effect and 
cellular uptake.

Kim et al. [100] synthesized nanocapsules of PEGylated 
polypeptide lipid to improve the antitumor potential of 

erlotinib. Erlotinib-loaded nanocapsules displayed dose-
dependent cytotoxicity in lung cancerous cells. Further-
more, it exhibited significant therapeutic efficacy with 
greater tumor inhibition. Erlotinib-loaded lipid nanocap-
sules showed a pH-dependent release profile and a con-
siderable antitumor effect. To improve the stability and 
anticancer potential of erlotinib in the management of 
lung cancer, Tan et al. [101] developed pH-sensitive and 
redox-responsive lipid nanoparticles. Erlotinib-loaded 
lipid nanoparticles were prepared by emulsification and 
solvent evaporation method using poly-(acrylic acid)-
cystamine-oleic acid. In  vitro cytotoxicity and in  vivo 
tumor growth inhibition of erlotinib-loaded lipid nano-
particles were superior in comparison to the erlotinib 
solution. Furthermore, nanoparticles revealed a sustained 
drug release profile after 72 h. These outcomes revealed 
that hybrid nanoformulation overcomes the pitfalls of 
single agents and improves the pharmacokinetic behav-
ior of therapeutic agents. Table 5 reports various hybrid 
nanoparticle-based therapeutics.

4.4  Lipid‑based nanoparticles
A potential colloidal transporter for bioactive organic 
substances is lipid-based nanoparticle systems. Large 
thermal and temporal stability, high loading, and ease 
of preparation are some of the benefits of lipid-based 
nanoparticles. Moreover, delivery of chemotherapeutics 
using lipid nanocarriers reduces drug dose and its toxic-
ity, reduces resistance, and maintain drug levels in tumor 
while protecting healthy tissues [102, 103].

SLNs are solid lipid-based nanoscale drug delivery sys-
tems. As phase emulsifiers, surfactants (such as phospho-
lipids) are typically needed in these systems to combine 
the internal lipid phase with the external water phase 
of SLN dispersions. Naseri et al. [104] formulated SLNs 
using self-nanoemulsification method. The resulting 
nanoparticles showed inhibition of cell growth depend-
ing upon dose and time, with high entrapment efficacy. 
Erlotinib-loaded SLNs were spray-dried into microparti-
cles with better flowability and showed good potential for 
lung cancer via the pulmonary route. Nanoparticles also 
displayed great cytotoxicity in comparison to the free 
drug. Similarly, Bakhtiary et  al. [105] synthesized SLNs 
of erlotinib by hot homogenization to treat NSCLC. 
Erlotinib-loaded nanoparticles improved the cytotoxic 
effect on A549 cancerous cells in NSCLC. Nanoparticles 
displayed enormous potential for localized delivery of 
erlotinib in the lung. Furthermore, nanoparticles of erlo-
tinib showed excellent anticancer potential on the A549 
cancerous cell line as compared to the free drug. The 
resulting nanoparticles showed a sustained drug release 
pattern and could be a promising management modality 
for NSCLC. To further improve the therapeutic potential 
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of erlotinib, Vrignaud et al. [106] developed an erlotinib-
loaded lipid nanocarrier using reverse micellar incorpo-
ration. The resulting formulation demonstrated nearly 
40% pancreatic cancerous cell lysis in comparison to the 
free erlotinib formulation. The nanocarrier of erlotinib 
showed improved antiproliferative activity.

To enhance the oral bioavailability and water solubil-
ity of erlotinib, Truong et  al. [107] developed an erlo-
tinib-loaded solid self-emulsifying drug delivery system 
(SEDDS). A dissolution study demonstrated that formu-
lation had higher in vitro drug release in comparison to 
pure drug powder. Furthermore, it also showed enhanced 
solubility and bioavailability of erlotinib-loaded SEDDS 
as compared to erlotinib powder. In an additional study, 
Dora et  al. [108] formulated a phospholipid complex of 
erlotinib using the solvent evaporation method. In vitro 
drug release studies of the resulted formulation displayed 
improved release of erlotinib from the erlotinib phospho-
lipid complex. Erlotinib-loaded phospholipid displayed 
a twofold increased cellular uptake in comparison to the 
free drug. Resulted phospholipid complex showed 1.7-
fold increased bioavailability, improved therapeutic effi-
cacy and solubility, and reduced toxicity in comparison to 

the free drug. The above studies suggest that lipid nano-
particles are biocompatible and enhance therapeutic effi-
cacy with lesser side effects. Table 6 reports various lipid 
nanoparticle-based therapeutics.

5  Combination therapy
Combination therapy, which combines two or more 
anticancer drugs or multiple therapeutic modalities, 
can increase treatment effectiveness, lower tumor drug 
resistance, and lessen adverse effects [109]. Salient bene-
fits of combination therapy are described in Fig. 5. When 
erlotinib is used alone for a long time, it can cause resist-
ance. Combining it with other anticancer drugs may have 
some benefits, such as better antitumor effects, a better 
pharmacokinetic profile, and lessened resistance prob-
lems that come with using a single drug. In addition to 
therapeutic applications, this approach is also cost-effec-
tive [110]. When different anticancer drugs are mixed 
together in nanoformulations, the therapeutic dose is 
lowered. This may also make it possible to target more 
than one target at the same time, which greatly reduces 
drug resistance [111]. Combining erlotinib with pacli-
taxel, cisplatin, doxorubicin, and other drugs has been 

Table 5 Studies reported on hybrid nanoparticles-based therapeutics

Type of 
nanoformulations

Methods of 
preparation

Particle size 
(nm)

Entrapment 
efficacy

Zeta potential Drug release Cancer cells 
used

Outcomes Refs.

Lipid hybrid NPs Single step 
sonication

170 66%  − 15 
to  − 30 mV

50% after 3 h A549 Enhanced 
uptake effi-
ciency
Reduction 
in cell viability

[96]

Folate-conjugated 
chitosan micellar 
NPs

– 100 –  − 10.6 mV At 25 0C and 37 
0C, 77%, 90% 
after 48 h, 
respectively

OVCAR-3, A549 Temperature-
dependent 
release, site-
specific delivery

[97]

Thermosensitive 
gold hybrid NPs

Additive-free 
reducing-based 
reaction

83–105 –  + 0.6 mV – A549 High stability 
at different 
pH, excellent 
antitumor effect

[98]

Aptamer-conju-
gated chitosan 
anchored liposomal 
complexes

– 179.4 ± 1.16 – 35.70 ± 0.43 mV 60% at pH 5.5 PC-9, H1975 Suppression 
of cell growth, 
apoptosis over-
come resistance

[90]

PEGylated polypep-
tide lipid nanocap-
sule

– ∼200 95%  − 20 mV – NCI-H358 
and HCC-827

Improved anti-
tumor effect, 
pH-dependent 
release

[100]

Poly(acrylic acid)-
cystamine-oleic 
acid-based lipid NPs

Emulsification 
and solvent 
evaporation 
method

170 85% -32 mV – A549, NCI-
H460, HUVEC

Improved stabil-
ity and antican-
cer potential, 
higher tumor 
inhibition 
efficacy

[101]

Mesoporous mag-
netic NPs

– 213 – -27.3 mV to 39.4 63% at lower 
pH

HeLa Superior 
antiproliferative 
effect

[90]
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Table 6 Research findings based on lipid nanoparticles

Type of 
nanoformulation

Methods of 
preparation

Particle size 
(nm)

Zeta potential 
(mV)

Entrapment 
efficacy (%)

Drug release Cancer cells 
used

Outcomes Refs

SLNs Self-nanoemulsi-
fying method

300 to 800 −18 to −32 80–85 – – Higher cytotox-
icity

[104]

Lipid nanocarrier Phase inversion 
temperature

85 ± 1.4 −17.5 53 ± 1.4 – BxPC-3 Improved 
antiproliferative 
activity

[105]

SLNs Hot homogeni-
zation

 > 100 – 78.21 12% at 8 h A549 Improved anti-
cancer ability

[106]

PEGylation 
liposomes

Thin film hydra-
tion

102.4 ± 3.1 – 85.3% ± 1.8 62% at 12 h – Enhanced bio-
availability

[107]

Phospholipid 
complex

Solvent evapora-
tion

183.37 ± 28.61 −19.52 ± 6.94 – 60.4% in 8 h Caco-2 Improved 
bioavailability, 
therapeutic effi-
cacy, solubility

[108]

Table 7 Recent research findings on erlotinib combination therapy in different cancers

Drugs/active 
moieties

Nanoformulations Diseases Cell lines In vitro cytotoxicity Apoptosis analysis Refs

Paclitaxel and erlotinib Solid lipid core nano-
capsules

NSCLC NCI-H23 threefold decrease 
than free drugs

Significant increase 
in apoptosis rate 
than free drugs

[111]

Erlotinib and doxo-
rubicin

PNPs Triple-negative breast 
cancer

MDA-MB-468 Increased cytotoxic 
effect

– [110]

Doxorubicin/erlotinib pH-sensitive charge 
conversion nanocar-
rier

Lung carcinoma A549 IC50 (5.81 μg/mL) Increased cell apop-
tosis

[89]

Doxorubicin/erlotinib Double emulsion 
nanoparticles

Cancer SCC7 Exhibit significant 
cytotoxic effect

– [112]

Erlotinib and DAPT 
(a gamma secretase 
inhibitor)

Peptide functionalized 
nanoparticles

Triple-negative breast 
cancer

MDA-MB-231 Improved cytotoxicity – [113]

Erlotinib and fed-
ratinib

Biodegradable nano-
particles

NSCLC NSCLC, H1650 Increased cytotoxicity 
against NSCLC cells

– [114]

Erlotinib and bevaci-
zumab

pH-sensitive lipid 
polymer hybrid nano-
particles

NSCLC NSCLC, A549, H1975 Increased cytotoxicity 
than free drugs

– [115]

Paclitaxel and erlotinib PLGA nanoparticles Breast cancer – – – [116]

Doxorubicin and erlo-
tinib

Liposomal nanopar-
ticles

Glioblastoma – – Higher apoptotic 
effect

[117]

Erlotinib and valproic 
acid

Liquisolid formulation Lung cancer HCC827 2 to fivefold increased 
cytotoxicity

Combination 
improved apoptotic 
effect (around 60%)

[118]

Co-delivery of erlo-
tinib and oxygen

Liposomal complexes Lung carcinoma A549, H1975, 
and PC-9

Concentration-
dependent cytotoxic 
effect

Induced apoptosis [119]

Erlotinib/ssurvivin 
shRNA co-delivery

Aptamer modified 
nanocomplexes

NSCLC PC-9 and H1975 Enhanced cytotoxicity Stronger apoptotic 
effect

[120]

Erlotinib Chitosan-based self-
assembles theranos-
tics

Lung cancer PC-9 and A549, H1975 – – [121]

Erlotinib and doxo-
rubicin

Gold nanocages – A431, MCF-7 – Significant apoptosis 
effect

[122]
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shown to improve anticancer efficacy. Recent research 
findings on erlotinib nanoformulations in combination 
with other drugs are summarized in Table 7. Results from 
the above findings suggest that combination therapy can 
be an effective tool against lethal diseases like cancer as it 
aids in mitigating the resistance problem.

6  Future perspectives
Erlotinib, an EGFR-targeted drug, is effective against 
pancreatic cancer, NSCLC, and colorectal cancer. Despite 
its potential use in cancer treatment, it has low solubil-
ity, low bioavailability, and various side effects that can 
be mitigated by nanotechnology. There could be a lot of 
benefits to using erlotinib nanoformulations, such as bet-
ter tumor targeting, fewer side effects, and better com-
pliance. Despite the aforementioned benefits, erlotinib 
nanoformulations are still required to be examined in 
numerous areas, like large-scale production in a cost-
effective manner. Patents and clinical trial sections still 
needed to be studied, and optimizing erlotinib resistance 
could increase cancer patients’ survival. More research 
needs to focus on better understanding of mechanism 
of action of nanoformulations, their long-term effects, 
and drug clearance mechanisms. The heterogeneity of 
tumor cells, their intricate tumorigenic pathways, and a 
high dose of cytotoxic chemotherapeutic drugs can cause 
side effects. Designing targeted nanoscale delivery sys-
tems with increased antitumor activity and decreased 
drug toxicity is therefore crucial. Cancer detection and 
therapeutic management have been profoundly impacted 
by nanotechnology, which can significantly impact tissue 
distribution and cellular uptake. Polymers and moieties 
used as delivery vehicles in erlotinib nanoformulations 
may produce hazardous byproducts, resulting in systemic 
adverse effects. Regulating the polymer concentration 
can be a potential strategy to achieve the desired thera-
peutic action against different cancers. Moreover, differ-
ent chemically modified polymers can also be a sturdy 
approach toward targeted action. Nanoformulations have 
demonstrated potential in improving bioavailability and 
tumor-targeting capabilities of chemotherapeutic agents, 
including erlotinib. Therefore, it is reasonable to expect 
that erlotinib nanoformulation may provide better thera-
peutic results in comparison to conventional therapies. 
The translation of erlotinib nanoformulations from pre-
clinical investigations to clinical applications will greatly 
contribute to the progress of cancer treatment. Most of 
the scholarly literature has been focused on preclinical 
in  vitro cell-based assays or in  vivo animal models. The 
progression of human clinical trials is crucial for assess-
ing the real-world efficacy and safety of these innova-
tive formulations. Biomarker-driven selection of patient 
cohorts based on tumor characteristics, genetic profiles, 

and treatment response parameters can optimize treat-
ment outcomes and minimize the risk of adverse events.

7  Conclusion
This communication addressed several nanocarriers 
explored for delivering erlotinib to enhance its anti-
cancer activity. Lipid-based, polymer-based, inorganic, 
and hybrid systems have been reported to improve 
erlotinib’s characteristics, such as its dissolution, and 
bioavailability. Combinations of erlotinib and other 
therapeutic agents that have been explored to prevent 
tumor resistance and augment the erlotinib potential 
are discussed. The present manuscript also highlights 
the importance of the mechanism of action and phar-
macokinetic aspects of erlotinib. This article illustrates 
several pivotal studies, including preparation methods, 
physicochemical characteristics, delivery effectiveness, 
and potential benefits of the erlotinib nanoscale deliv-
ery system that results in improved tumor microenvi-
ronment responsiveness and targetability. Moreover, 
nanosystem-based combination therapy of erlotinib 
with other medicaments to demonstrate synergistic 
anticancer potential is also discussed. The influence 
of siRNA and polymeric derivatives in cancer treat-
ment has also been clearly illustrated. Different scien-
tific studies have shown that a significant therapeutic 
response can be successfully achieved with a potential 
tool like nanotechnology. Numerous outcomes from 
different studies have been cautiously illustrated and 
summarized systematically in the current manuscript.
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