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ABSTRACT
This study proposes a genetic programming (GP) approach for clas-
sification, integrating cooperative co-evolution with multi-view
synthesis. Addressing the challenges of high-dimensional data, we
enhance GP by distributing features across multiple populations,
each evolving concurrently and cooperatively. Akin to multi-view
ensemble learning, the segmentation of the feature set improves
classifier performance by processing disparate data “views”. In-
dividuals comprise multiple genes, with a SoftMax function syn-
thesizing gene outputs. An ensemble method combines decisions
across individuals from different populations, augmenting classi-
fication accuracy and robustness. Instead of exploring the entire
search space, this ensemble approach divides the search space to
multiple smaller subspaces that are easier to explore and ensures
that each population specializes in different aspects of the problem
space. Empirical tests on multiple datasets show that the classifier
obtained from proposed approach outperforms the one obtained
from a single-population GP executed for the entire feature set.
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1 INTRODUCTION
The quest for efficient and interpretable models is driven by the
need for informed decision-making in various domain knowledges
[9]. Genetic Programming (GP) is an evolutionary learning method
that seeks to address this challenge by evolving computer programs,
or individuals, to solve complex problems without predefined struc-
tures. Tree-based GP’s representation system, typically structured
as expressions comprising functional and terminal nodes, facilitates
the exploration of complex relationships between target and input
variables. This exploration, however, becomes increasingly chal-
lenging as the dimensionality of the dataset expands, demanding
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a more extensive search through potential combinations of nodes
[3].

To enhance GP’s efficiency and mitigate computational demands,
the development of Multi-tree Genetic Programming (MTGP) rep-
resents a significant advancement. The MTGP evolves multiple
genes within a single individual, allowing for the construction of
more complex models through the aggregation of multiple inde-
pendent programs or trees [8]. Despite MTGP’s advancements,
we face the persistent challenge of dimensionality in searching
for interpretable models, common across machine learning algo-
rithms, which can hinder efficient solution space exploration and
elevate computational costs. Addressing this issue, dimensionality
reduction techniques, including feature selection and extraction,
have been explored, though they risk information loss and may
oversimplify complex feature dynamics [4, 6].

Multi-view learning (MVL) and its extension, Multi-View Ensem-
ble Learning (MVEL), present innovative strategies to leverage data
from diverse origins or perspectives, enhancing model performance
through techniques like bagging, boosting, or stacking. These ap-
proaches, utilizing either natural views derived directly from varied
data sources or artificial views generated through data transforma-
tion, aim to mitigate over-fitting risks and improve model adapt-
ability in handling complex, high-dimensional datasets.

In the domain of evolutionary machine-learning the ensemble
learning approaches have been explored extensively [2]. However,
the novel MVEL method is yet to be investigated. In this study, we
propose the Multi-Population Ensemble GP (MPEGP) which serves
as a framework based on the concept of tree-based GP. The MPEGP
incorporates the benefits of the MVEL in search for an interpretable
classifier. The contribution of the present study in the domain of
knowledge can be summarized as follows:

• Utilizing a multi-population approach to emulate multi-view
learning, enabling independent evolution of populations
across diverse feature subsets representing distinctive “views”
of a dataset.

• Using simple SoftMax function to preserve simplicity and
interpretability of obtained ensemble models.

• Using an adaptive gradient descent fine-tuning strategy to
adaptively learn and adjust genes’ contributions in predictive
ability of individuals in response to the evolving populations.

• Integration of multiple views through ensembling synthe-
sized gene outputs that enhances classification accuracy and
model robustness.

• Selecting elite individuals based on fitness both in isolation
and in conjunction with individuals from other populations
to preserve diversity and create cooperation between popu-
lations.

The rest of the paper is organized as follows: section 2 presents
the proposed method, section 3 describes the benchmarking and
experimental setup to evaluate the proposed method’s efficiency,
section 4 discusses the obtained results, and section 5 concludes
the paper.

2 METHODOLOGY
2.1 Multi-Population Genetic Programming
As stated before, in learning tasks, an increase in the number of
features results in exponential growth of the search space—an effect
commonly referred to as the “curse of dimensionality”. One princi-
pal strategy to overcome this issue is MVEL, which segments the
dataset vertically, dividing it into multiple subsets of features that
provide unique perspectives or “view” of the dataset. Each subset
is then used to train distinct classifiers. This technique effectively
partitions the original expansive search space into several smaller,
more manageable subspaces, simplifying the learning task and
reducing the problem’s complexity. Subsequently, the classifiers’
output class label probabilities are synthesized using an ensemble
method to achieve a complete picture of the target class label.

In this paper, we propose the Multi-Population Ensemble Ge-
netic Programming (MPEGP) that incorporates the power of MVEL
within tree-based GP. While this approach allows for division of
the search space and enhance the ability of GP to handle large
datasets without increasing the risk of over-fitting, it preserves
the interpretability of obtained ensembles. It is noteworthy that
current framework is designed for classification tasks; nevertheless,
it can be adapted to address regression and feature learning tasks.
Figure 1 provides an overview of MPEGP. As illustrated, the fea-
tures characterizing an object (for instance, a cylinder) are divided
into multiple views capturing different angles (in this case, two
views from the top and side, symbolized by a circle and rectangle,
respectively). These views could be artificially constructed from a
single dataset, or obtained from multiple sources. Moreover, in Fig.
1 only two views are visualized; however, the MPEGP framework
is capable of handling more than two views.

Subsequently, the subsets of features representing views are as-
signed to two separate population (i.e. 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 and 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2)
of individuals. Each individual within the populations represents a
candidate solution, encoded as a set with variable number of genes.
The genes correspond to the arithmetic combination (expression
tree) of features subsets (views) that are evolved by genetic op-
erators within generations. The maximum number of genes per
individual is predefined, with individuals initially generated ran-
domly by one of the tree initialization methods. The predictive
classifier for each individual consists of a combination of its gene
outputs. These outputs are aggregated with a SoftMax function
(𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥1 and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥2), fine-tuned using an adaptive gradient
descent algorithm, to yield a probability distribution (pdf) over po-
tential class labels (𝑃 (𝑌 )). The fitness of each individual, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠1
and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠2, is calculated based on the closeness of this probability
distribution to the true class labels. Here, we use cross-entropy as
the measure of fitness for the individuals and the ensemble.

Next, an ensemble SoftMax function, 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥𝑒𝑛 combines the
predicted probabilities obtained from the pairs of the first tier clas-
sification models and undergoes a similar fine-tuning process. To
control the number of ensembles, the predicted probabilities from
an individual 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, 𝑗 only pairs with the corresponding in-
dividual 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙2, 𝑗 . This ensemble outputs the ensemble pdf of
class labels. The fitness of the ensemble (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑛) can be calculated
from the resulting ensemble pdf to assess the ensemble predictive
performance. Following fitness evaluation, individuals within each
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population are sorted based on their fitness scores. Selection for
reproduction is conducted separately within each population based
on 𝐹𝑖𝑡𝑛𝑒𝑠𝑠1 and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠2. Standard genetic operations—such as
crossover and mutation—are performed to generate new offspring,
ensuring diversity and the propagation of high-fitness genetic ma-
terial within each population.

An elite selection strategy is employed to ensure that the top-
performing individuals, according to a user-defined fraction, are
passed directly to the next generation. This selection is based on
both individual fitness scores within each population and the en-
semble fitness score. This dual-criterion approach allows for the
preservation of individuals that excel in their predictive capacity
both in isolation and in conjunction with the other population.
The introduction of ensemble fitness into the elite selection process
facilitates a cooperative co-evolution between the populations. Indi-
viduals that may not exhibit optimal fitness within their respective
populations but contribute significantly to the ensemble’s predictive
capability are retained. This mechanism promotes genetic diversity
and encourages a broader exploration of the solution space. The
adaptive gradient descent algorithm is critical to the fine-tuning
of gene weights, effectively determining the contribution of each
gene to the prediction outcome and ensures dynamic adjustment
of weights in response to the evolving populations.

The evolutionary process continues over multiple generations
until a convergence criterion is met. Convergence is assessed based
on the stability of fitness scores across generations (stall genera-
tion), or a maximum number of generations is reached. The final
model is selected based on the highest ensemble fitness score (low-
est ensemble cross-entropy), representing the optimal combination
of predictive capacity from both populations. This structured ap-
proach enables the MPEGP to handle high-dimensional data with-
out increasing the risk of over-fitting, simplifies the learning task
and enhances predictive accuracy and robustness.

Figure 1: Overview of Multi-Population Ensemble Genetic
Programming.

3 EXPERIMENTAL DESIGN
3.1 Data Description
The evaluation of the (MPEGP) method is conducted using four
publicly available datasets, including Activity Recognition Using
Wearable Physiological Measurements (ARWPM) [1], Gene Expres-
sion Cancer RNA-Seq Data Set (GECR) [5], Gas Sensor Array Drift
Dataset at Different Concentrations (GSAD) [10], and Smartphone-
Based Recognition of Human Activities and Postural Transitions
Data Set (HAPT) [7]. Table 1 provides the characteristics of the
selected datasets. These datasets were selected to include both ends
of the spectrum of the number of features, classes and instances.
This selection of datasets can justify the consistency of obtained
results for datasets with different characteristics.

Table 1: Datasets’ description.

Dataset # Instances # Features # Classes
ARWPM 4, 480 533 4
GECR 801 20, 531 5
GSAD 13, 910 129 6
HAPT 10, 929 561 12

3.2 Experimental Setup
To evaluate the MPEGP performance against a benchmark model,
we consider the benchmark model to be the single-population of
MPEGP. In other words, all features within the datasets are assigned
to the first population of individuals in MPEGP and the number
of populations in MPEGP is set to 1. Moreover, the ensembling
module of MPEGP that combines the output class label pdfs of
multiple populations is disabled. Hereby, this version of MPEGP is
called “baseline GP”. On the other hand, two distinct views of the
four datasets are generated at the beginning of each run using the
training data via the SPFP algorithm proposed in [6]. In contrast to
the baseline GP, the features of views are assigned to two separate
population of individuals for MPEGP. Thus, the results obtained
from MPEGP is compared against the baseline GP. The individuals
in baseline GP can contain all features within a dataset, while the
individuals in MPEGP can contain only a subset of the features.
This allows for a fair assessment of MPEGP performance. For the
experiments, we performed 20 independent runs of MPEGP and
the baseline GP. For each of the 20 independent runs, the model
evolves over a maximum of 150 generations.

Individuals in MPEGP and baseline GP are limited to 5 and 10
maximum genes, respectively, to balance computational feasibility
and solution complexity. The population comprises 25 individuals,
with the maximum depth of each tree capped at 10. Initial tree
structures are generated using the ’Half-and-Half’ approach for
both models. The models adopt a tournament selection method
with a size of two. An elite fraction of 0.05 is also considered for
both models to preserve top-performing solutions. For genetic oper-
ations, the functional terminals include basic arithmetic functions:
addition (+), subtraction (-), multiplication (×), and division (/). The
crossover and mutation probabilities are set at 0.8 and 0.1, respec-
tively. The inclusion probability for constant terminals in trees is
set at 0.1, adding more versatility to the evolved expressions.
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4 RESULTS AND DISCUSSION
This comparative study was structured around 20 independent
evaluations. In each evaluation, the dataset underwent a random
division, allocating 60% for training, 10% for validation, and the
remaining 30% for testing purposes. Throughout these evaluations,
a key metric of interest was the best fitness achieved by the en-
sembles (referred to as ensemble fitness) alongside the best fitness
scores within each of the two populations (designated as the fitness
of population 1 and 2, respectively). These fitness metrics were
stored at each generation within the evaluations. Figure S1 visually
presents the temporal evolution of these fitness metrics for a ran-
domly selected run, color-coded as blue for ensemble fitness, red
for fitness of population one, and orange for fitness of population
two. For more comprehensive visualization of all runs, please refer
to the Supplementary Document.

An important consideration in this analysis is the non-correspon-
dence of the best fitness values across the populations and the en-
semble. Theoretically, it might be expected that in certain genera-
tions, the fitness of one population could momentarily exceed that
of the ensemble, particularly if the corresponding individual from
the other population exhibits suboptimal performance. Nonetheless,
this anticipated occurrence was not witnessed during any of the
runs across all datasets, indicating the fitness of an ensemble should
always be equal or better that its constituents.

Further insight into the dynamics of individual and ensemble
performance is provided by Figure S2, which explores the fitness
ranking of individuals constituting the fittest ensemble within their
populations for a run randomly selected from the 20 trials. Notably,
the individuals contributing to the fittest ensemble were often not
the top performers within their respective populations. Moreover,
their simultaneous attainment of the top rank within their popu-
lations was exceedingly rare. This observation underscores a crit-
ical facet of the MPEGP’s design, which effectively promotes the
combination of individuals that form the most potent ensemble,
thereby preserving genetic diversity and enhancing the system’s
exploratory capabilities beyond that of single-population models.

To evaluate the performance differences between MPEGP and
baseline GP, we applied the Wilcoxon rank-sum test, aiming to de-
termine if the outcomes during the training, validation, and testing
phases significantly diverge at 𝛼 = 0.05 significance level. This non-
parametric statistical test compares two independent samples to
ascertain if there is a significant difference in their population mean
ranks. The null hypothesis posits no difference between the samples.
A p-value less than 0.05 indicates rejection of the null hypothesis,
with the sample exhibiting the lower mean deemed superior. Table
2 compiles the mean, standard deviation, andWilcoxon p-values for
these stages across the AWRPM, GECR, GSAD, and HAPT datasets.

The summarized results in the table, demonstrate the superior-
ity of the MPEGP-derived models over the baseline GP across all
metrics, with the exception of the training and validation phases
for the GECR dataset. The limited size of the validation dataset (80
instances) for GECR, combined with the baseline GP’s susceptibility
to over-fitting, led to significant variability in the cross-entropy
and statistically insignificant difference between the validation per-
formance of MPEGP comaperd to baseline GP models on GECR
dataset. From the testing phase results of the GECR dataset for the

Table 2: Mean and standard deviation of cross-entropy for
training, validation, and testing phases across 20 runs of
MPEGP and baseline GP on ARWPM, GECR, GSAD, and
HAPT datasets. Included are the p-values from theWilcoxon
rank-sum test, with superior performance highlighted in
bold.

ARWPM GECR GSAD HAPT
Train 0.0723 ± 0.0104 0.0516 ± 0.032 0.0098 ± 0.003 0.0195 ± 0.0028
Validation 0.1018 ± 0.0237 0.0886 ± 0.0454 0.0212 ± 0.0065 0.0269 ± 0.0037MPEGP
Test 0.1057 ± 0.0138 0.1613 ± 0.0837 0.026 ± 0.0063 0.0281 ± 0.0028
Train 0.1271 ± 0.0184 0.0175 ± 0.0187 0.0479 ± 0.0194 0.0344 ± 0.0097
Validation 0.1342 ± 0.0168 0.1569 ± 0.142 0.0514 ± 0.0198 0.0344 ± 0.0095Baseline GP
Test 0.1357 ± 0.0181 0.3316 ± 0.1829 0.054 ± 0.0198 0.0362 ± 0.0095
Train 9.17 ×10−8 2.1 ×10−4 6.8 ×10−8 1.23 ×10−7
Validation 4.68 ×10−5 0.57 1.38 ×10−6 1.2 ×10−4P-Value
Test 1.41 ×10−5 5.1 ×10−4 5.23 ×10−7 6.22 ×10−4

baseline GP, it is evident that the obtained classifier is prone to
over-fitting.

5 CONCLUSION
The method proposed in this paper synthesizes an individual’s
gene outputs and ensembles the predictions of individuals across
multiple populations to achieve a robust and interpretable model
of the target object. The results show that MPEGP outperforms
single-population GP of the same variant. This approach allows
for cooperation and co-evolution among individuals of different
populations by conserving individuals that create high performing
ensembles. While there is room for investigation of more aspects of
proposed MPEGP, the future works can focus on more sophisticated
variants of GP (e.g. strongly typed GP) for image and text datasets.
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