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Abstract
Wildfire danger is often ascribed to increased temperature, decreased humidity, drier fuels, or
higher wind speed. However, the concurrence of drivers—defined as climate, meteorological and
biophysical factors that enable fire growth—is rarely tested for commonly used fire danger indices
or climate change studies. Treating causal factors as independent additive influences can lead to
inaccurate inferences about shifting hazards if the factors interact as a series of switches that
collectively modulate fire growth. As evidence, we show that in Southern California very large fires
and ‘megafires’ are more strongly associated withmultiple drivers exceedingmoderate thresholds
concurrently, rather than direct relationships with extrememagnitudes of individual drivers or
additive combinations of those drivers. Days with concurrent fire drivers exceeding thresholds have
increased more rapidly over the past four decades than individual drivers, leading to a tripling of
annual ‘megafire critical danger days’. Assessments of changing wildfire risks should explicitly
address concurrence of fire drivers to provide a more precise assessment of this hazard in the face
of a changing climate.

1. Introduction

The idea that climate change can push extremes even
further than expected shifts in averages has been well
explored, in both causes and consequences [1]. In
the literature, this concept has been applied with
respect to wildfire, capitalizing chiefly on air temper-
ature changes and their consequences for snowpack,
vapour pressure deficit (VPD), or potential evapo-
transpiration [2–4] with ever stronger extremes in
these values correlated to ever greater wildfire extent.
This is partly because in the context of ascription of
fire trends to underlying drivers, it is difficult to go
past single variables driven by temperature change
because model disagreement for other variables can
be high for the short historical record [5]. This can
create a difficulty in interpretation for outcomes like

wildfire, which are inherently driven by multiple
variables [6]. In particular, where interacting vari-
ables with limiting impacts on wildfire outcomes
exist, setting aside the influence of some variables
can be consequential to any capacity for generaliz-
ation or projection [7]. Furthermore, disregarding
interactions of multiple relatively common stressors
can lead to unintentional consequences and malad-
aptation, as compounding effects of multiple non-
extreme stressors can lead to an extreme impact.

In contrast, the application of concurrence, coin-
cidence, synchrony, or coordination of events that
are not extreme individually but produce extreme
outcomes or events, has received substantially less
attention in the context of ascription of fire trends in a
changing climate [8, 9]. As an example of concurrence
of drivers in a hazard context, themost extreme floods
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often occur when rain falls on an existing snowpack
[10], and it is the combination of the two drivers
together that ‘precipitates’ the extreme event. Sim-
ilarly, for fire, most field practitioners note that the
greatest growth in fire size occurs on hot, dry, AND
windy days. If any one of these factors is missing, the
fire may grow, but the most dangerous fire events
require all three [11]. This explains why in Southern
California, annual area burned is only moderately
correlated with the magnitude of climate variables
[12]. Importantly, it is not simply multivariate ana-
lysis that is needed to address concurrence since lin-
ear multivariate regression uses linear combinations
that represent additive interactions. Rather, a haz-
ard framework that accounts for collective impact of
switch-type (on-off) interactions among drivers on
fire growth—a binary multiplicative framework—
needs to be adopted, which is not practiced in the
great majority of studies examining relationships
between variables and fire [4, 6, 12]. Traditional
approaches like those described in table S1 (available-
online at stacks.iop.org/ERL/15/104002/mmedia)
typically examine the correlation between the
magnitude of a small number of drivers and
fire size.

In this manuscript, we approach the concept of
concurrence as an alternative framework for under-
standing the probability of very large fires and ‘mega-
fires’. We use this framework to examine two central
questions: (1) Is the concurrence of drivers exceeding
moderate thresholds (i.e. acting as on-off ‘switches’)
more important than the magnitude of individual
drivers? and (2) Is concurrence of drivers exceeding
moderate thresholds changing at a rate faster than
that of individual drivers? We explore these questions
in coastal Southern California, an area with extreme
vulnerability to wildfires given its large population
(19 million people) and extensive wildland urban
interface (WUI; zone of transition between wildland
and human development) and WUI growth [13].
This region also has unique seasonality and weather
patterns around its largest fires that set it somewhat
apart from the Western U.S. context employed in
many papers on fire [14]. Nevertheless, some general
principles can be drawn from this one well-sampled
example.

2. Methods

The intersection of seven southern California
counties and the boundaries of Omernik ecoregions
8 and 85 [15] defines our study area (figure S1).
Chaparral and grassland are the dominant vegeta-
tion types in the studied region (figures S1 and S2).
The U.S. Forest Service Fire Program Analysis Fire-
Occurrence Database (FPA FOD [16]) was used to
obtain records of all wildfires in this region between
1992 and 2015. FPA FOD contains 35 916 wildfires
between 1992 and 2015 within the study region,

with a minimum and maximum fire size of 0.004
and 113 336 ha, respectively. Since the study region
is extensively populated, the discovery date was
assumed to represent the fire start date.

We investigated eight different drivers of indi-
vidual fire size based on climatic, meteorological, and
biophysical variables: live fuel moisture (LFM), wind
speed, Standardized Heatwave Index (SHI3), 100 and
1000 h dead FuelMoisture (FM100, FM1000), energy
release component (ERC), burning index (BI), and
VPD. Definitions of these variables are provided in
sections S1.1–S1.5 in supplementary information, SI.
These variables were selected due to their previously
established correlation with fire sizes in the study
area, and importantly because they are widely used in
the fire literature and among practitioners. All eight
variables were estimated at the location and discov-
ery day of each wildfire between 1992 and 2015 (see
section S1 in SI).

Four fire size thresholds were used for this ana-
lysis. A 0 ha threshold includes all fires. ‘Large’ fires
were defined as fires in excess of 405 ha (1000 acres),
and ‘very large’ fires were defined as fires in excess
of 2025 ha (5000 acres) [6]. ‘Megafires’ were defined
as fires in excess of 27 000 ha (66 700 acres), corres-
ponding to the 99.98th percentile of fire size within
the study area. This value coincides with the 99th per-
centile of fires larger than 40 ha (100 acres).

We examined correlations between the eight indi-
vidual drivers and all fire, large fire, and very large
fire sizes. We also examined the redundant inform-
ation among the eight drivers to ensure that one vari-
able cannot be fully predicted by the others. We used
a normalized variant of mutual information named
redundancy measure, which adopts a value of zero
when two vectors are fully independent and a value
of one when one variable is completely redundant.
The redundancy measures of each pairwise combina-
tion of these eight variables, demonstrating that none
of the combinations are redundant, are provided
in table S2.

We then followed Dennison and Moritz [17] to
determine critical values for each driver resulting
in a steep increase in cumulative area burned. We
examined the cumulative fire sizes against ascend-
ing (positive correlation) or descending (negative cor-
relation) order of drivers’ values. Then, using piece-
wise linear regression, we determined the change-
points for each driver. The first change point that
corresponded with rapidly increasing cumulative fire
size was designated as a critical threshold for that
driver.

Using the concurrence framework, we sub-
sequently investigated the number of drivers meet-
ing or exceeding the critical condition for each fire,
based on populations of all fires, large fires, very large
fires, and megafires. Each driver having its critical
threshold exceeded can be thought of as a switch
that has been flipped to the ‘on’ position [18, 19].
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Thresholds exceeded for multiple drivers could lead
to increased probability of fires, large fires, very large
fires, or megafires. Conversely, a switch in the ‘off ’
position could limit fire spread even if other drivers
are at extreme values. Accordingly, we determined
the percentage of fires that were associated with 1,
2, 3,…, 8 critical drivers in each category of fire size.
Moreover, we investigated unique combinations of
concurring critical drivers that contributed to fire
sizes of various categories (all fires, and >25th, >50th,
>75th, >95th, >99th percentiles).

We then used kernel smoothing function estima-
tion to obtain smooth probability density functions
for large and very large fires in response to values
of LFM, wind, SHI3, FM100, FM1000, ERC, BI, and
VPD. We further expanded this analysis and estim-
ated the probability of large and very large fires in
response to critical values of various drivers given
critical combinations of other drivers.

Finally, to investigate the spatial and temporal
trends in the critical state of each driver and their con-
currence in the region during the study period, we
downscaledNARR’s wind data to 4 km resolution and
generated a gridded dataset of LFMat 4 km resolution
to make them consistent with GridMET and PRISM
datasets. To downscale wind data, we used Gaussian
process regressionmodels (GPR) at a daily resolution.
We extended this analysis to 1982–2018 to provide
a better picture of trends in various drivers of fire.
For each calendar day during 1982 to 2018, we fit-
ted a GPR model to average daily wind speed calcu-
lated via NARR’s 3-hourly wind speed data for the
entire study region. For LFM, we used support vec-
tor regression models to generate gridded daily time-
series of LFM during 1982 to 2018. We determined
that weekly precipitation and average weekly temper-
ature and relative humidity during the 21 weeks prior
to the LFM measurement yields the most accurate
model of LFM. We eliminated outlier data from the
9680 records of Chamise (Adenostoma fasciculatum)
LFM during 1983 to 2017, and randomly selected
75% of the retained LFM data for training and 25%
(out-of-sample) for testing.We used the coefficient of
determination (R2) and mean absolute relative error
(MARE) to evaluate model performance for train
and test stages. The final product is associated with
R2 = 0.85 andMARE= 0.07 for training andR2 = 0.8
and MARE = 0.066 for test stages (also see figure
S3). This LFM model is only used for spatial ana-
lysis. LFM values associated with each fire are estim-
ated through temporal interpolation (see section S1.1
in SI).

Using the modelled, downscaled and other grid-
ded data at 4 km resolution, we determined whether
or not each driver was critical in each day and each
grid cell between 1982 and 2018, which was then
used to determine the number of megafire critical
danger days per year per grid cell. We spatially aver-
aged the annual number of critical days for each

driver and concurrence of all drivers to determine a
mean number of critical days per year for the entire
region. This provided a time series of annual critical
days for each driver and concurrence of all drivers
to analyse their temporal trends. We also determine
the spatial distribution of critical conditions by aver-
aging the number of critical days for each and all
of the drivers between 1982 and 2018 for each grid
cell.

3. Results

3.1. Critical conditions for wildfires in Southern
California
Figures 1(a)–(c) shows linear correlation coefficients
between eight climatic, meteorological and biophys-
ical variables and individual fire sizes. Expectedly,
some of these variables can be correlated; however,
there exists non-overlapping information among
them that can inform our analysis (see table S2).
All eight drivers showed statistically significant lin-
ear correlations (p-value < 0.05) with individual fire
sizes (figure 1(a)). Stronger correlations were found
between all the drivers and size of large fires (>405 ha;
figure 1(b)). However, for very large fires (>2025 ha),
only wind, ERC, and FM100 were significantly cor-
related (p-value < 0.05) with fire size (figure 1(c)).
Further analysis will demonstrate that the reduced
number of variables that are significantly correlated
with very large fire size is partially due to the import-
ance of concurrence of critical conditions of multiple
drivers, rather than the magnitude of each individual
driver. Critical thresholds for various wildfire drivers
are listed in table 1 (also see figures 1(d)–(k)).

3.2. Compounding effects of various drivers
enlarge fire sizes
Fire drivers exceeding their critical thresholds pro-
mote larger fires compared to fire drivers below
their critical thresholds, even though these thresholds
were found at relatively moderate values (figure 2).
Critical values of wind (>2.3 m s−1), for example,
are associated with large (>405 ha) and very large
(>2025 ha) fire probability of 0.37 (figure 2(a); orange
line) and 0.17 (figure 2(b); orange line), respectively,
whereas these probabilities plummet to 0.2 and 0.05
(figures 2(a) and (b); blue line) if the wind speed
is not critical. Similar behaviour is observed for all
drivers of fire with the most pronounced impacts
associated with wind and VPD for large fires, and
wind, BI, ERC, FM100, FM1000, VPD and SHI3 for
very large fires (figure S4). However, the concurrence
of critical conditions for multiple drivers can grow
fire sizes even larger than the critical state of each
driver individually. For example, if LFM and SHI3
are in their critical states, a critical level of wind speed
prompts large and very large fire probabilities of 0.45
and 0.21 (figures 2(a) and (b); red line), respectively,
which are 22% and 25% higher than the state where
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Figure 1. Fire-climate/weather relationship and critical threshold for each fire driver. Pearson correlation coefficient
(color-coded) between individual fire sizes (FS) and various climatic, meteorological and biophysical drivers for (a) FS≥ 0 ha (all
fires), (b) FS≥ 405 ha (large fires), and (c) FS≥ 2025 ha (very large fires). Depicted correlation coefficients (a), (b), (c) are
significant at the 5% level with the line widths signifying p-values (also see tables S3–5). Critical thresholds for (d) live fuel
moisture (LFM), (e) wind, (f) 3 d standardized heatwave index (SHI3), (g) 100 h dead fuel moisture (FM100), (h) 1000 h dead
fuel moisture (FM1000), (i) energy release component (ERC), (j) burning index (BI), and (k) vapour pressure deficit (VPD)
derived through piecewise linear regression analysis against cumulative fire size for each driver.

Table 1. Critical thresholds for wildfire drivers.

Driver: LFM Wind SHI3 FM100 FM1000 ERC BI VPD

Threshold: 88.4% 2.3 m s−1 (10 m above ground) −0.27 9.4% 12.5% 618 kJ m−2 43.3 1.5 kPa

the constraint of being critical (‘concurrence’) is not
imposed upon LFM and SHI3 (figures 2(a) and (b);
orange line). Put more simply, LFM and SHI3
switches already being ‘on’ increase the probabil-
ity of large and very large fires when the variables
shown in figure 2 exceed their thresholds. Further,
table S6 lists ten example fires with driver values that
are not individually extreme, but their concurrence
corresponded with large fires. The Aliso (971 ha;
March 2002) and Antonio (596 ha; May 2002) fires
are clear examples of wildfires with multiple non-
extreme drivers (below 70th percentile when driver
is positively correlated with fire size, or above 30th
percentile when driver is negatively correlated).
Not a single driver for either of these two fires was
extreme, however, the compounding effects of mul-
tiple non-extreme but critical drivers permitted their
growth.

3.3. Megafires are strictly multi-driver events
Although megafires are infrequent, they constitute a
large portion of the total area burned in the West-
ern U.S. Total area consumed by the 9 megafires
(>27 000 ha) from nearly 36 000 fires in our study
region accounts for more than 36% of the total area
burned in the period of 1992–2015. All of the mega-
fires in our study area occurred when at least seven
drivers were critical, and one third occurred when
all eight drivers were critical (figure 3(a)). As smaller
fire sizes are included in the analysis, wildfires with
lower number of critical drivers emerge (figures 3(a)
and S5). For example, while the concurrence of 7–8
drivers remains themost frequent descriptor for large
and very large fire sizes, there are few instances of very
large fires with only one critical driver (figure 3(a)).
Smaller size fires can be impelled by any combination
of one to eight critical drivers (figure 3(a)). Figure S5

4



Environ. Res. Lett. 15 (2020) 104002 M S Khorshidi

Figure 2. Compounding effects of multiple drivers grow fire sizes. Probabilities of observing (a) large (>405 ha) and (b) very large
(>2025 ha) fires when various drivers are not critical (blue line), are critical (beyond thresholds; orange line), and are critical when
LFM and SHI3 are also critical (red line). Fires of >40 ha are used in this analysis. Black hexagons show the borders of each figure.

shows the top 7 combinations of concurring critical
drivers for different fire size categories.

The 2003 Cedar fire (∼113 336 ha) is a vivid
example of multi-driver compound megafire events
(figures 3(b)–(j)). Fuelled by extremely dry vegeta-
tion and expanded rapidly by high wind speeds to
a growth rate of 1000–1500 ha per hour [20], the
Cedar fire destroyed 2800 structures and claimed
14 lives [21]. Concurrence of critical conditions for
all eight drivers at the start date of fire contributed
to the rapid growth of this fire (figures 3(c)–(j)).
Close examination depicts that BI, ERC, FM100
and wind were oscillating between critical and non-
critical conditions from late June to late October
2003 and VPD, LFM, SHI3 and FM1000 predomin-
antly remained at the critical level in the same period;
but at the start date of the fire, all variables con-
currently became critical (figures 3(c)–(j)). By the
containment date, 11 d after the fire started, many of
the driving variables (BI, VPD, wind, SHI3, FM100,
FM1000 and ERC) retreated from critical conditions
(figures 3(d)–(j)). The Thomas fire in December
2017 (∼114 000 ha; outside of our study period)
was also the result of compounding effects of low
fuel moisture (LFM = 54%, FM1000 = 9.6%), heat-
wave (temperatures of 1.3 standard deviation above
normal, SHI3 = 1.3), extreme biophysical variables
(ERC= 744 KJ m−2 and BI= 66), and most import-
antly extreme Santa Ana winds (wind= 6.6 m s−1).

Althoughmany of the examined drivers are highly
correlated, detailed information-theoretical analysis

using the concepts of entropy, mutual information
and redundancy shows that each driver provides
a certain level of unique information that can
help further resolve fire-climate/weather relation-
ships (table S2). Normalized redundancy—defined
by mutual information of two variables divided by
their joint entropy—ranging between 0 (no redund-
ancy) and 1 (full redundancy) is an appropriate
index to measure the relative dependency of each
two drivers. The lowest levels of relative redund-
ancy are observed between BI and LFM (0.32), wind
(0.33) and SHI3 (0.35). Maximum relative redund-
ancy occurs between ERC and FM1000 (0.51) and
FM100 (0.48), which is expected given the direct
dependence of the ERC formulation on these two
measures [22]. While there is a high level of redund-
ancy between ERC and dead fuel moisture indices,
there is still some level of unique information that can
help refine critical conditions. The various time scales
of fuel moistures can become synchronized during
extended dry spells, but occasional summer wetting
would cause desynchronization of the fuel moistures
for different fuel sizes, leading to, for example, low
fuel moisture in fine fuels while coarse fuels are still
slightly damp.

3.4. Megafire critical danger days tripled in four
decades
In the early 1980s, concurrence of critical conditions
of all eight studied drivers occurred roughly 15 d
per year in our study region, which has escalated to
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Figure 3. Large fires are multi-driver events. (a) Number of critical drivers for fires of various sizes. (b) Map of the Cedar Fire, and
daily time series of (c) LFM, (d) wind, (e) SHI3, (f) FM100, (g) FM1000, (h) ERC, (i) BI, and (j) VPD during summer and fall of
2003. All drivers had become critical (red zone) before the start of the Cedar Fire (vertical dashed line).

more than 50 d in the late 2010s (figure 4(b)). This
marks a more than tripling of the number of mega-
fire critical danger days in coastal Southern Califor-
nia between 1982 and 2018. Frequency of annual crit-
ical days for each individual driver of fire, except for
wind speed, also shows an increasing trend in the
studied region (figures 4(c)–(j)), which collectively
contributed to tripling the megafire critical danger
days. Most importantly, the rate of increase in the
number of all variables being synchronously critical
(figure 4(b)) is higher than the rate of increase for
each individual driver (figures 4(c)–(j)).

4. Discussion

Through a detailed quantitative analysis of nearly
36 000 individual fires in Southern California, we
show that that fire-climate/weather studies should
consider various climatic, meteorological and bio-
physical variables simultaneously within a concur-
rence framework that accounts for synchronization
of multiple variables. We already know that mega-
fires are the result of the compounding effect of many
drivers (see table S1), but ‘additive’ statistical mod-
els that are used in the literature to relate fire sizes to
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Figure 4.Megafire season in Southern California tripled in four decades. (a) Spatial distribution of annual number of days
averaged over the period of 1982–2018 that all eight drivers exceeded critical thresholds in the study region. Spatially averaged
number of days in each year that values of (b) all eight drivers, (c) LFM, (d) wind, (f) SHI3, (h) FM100, (j) FM1000, (l) ERC,
(n) BI, and (p) VPD exceeded critical thresholds in the study region.

the driver magnitudes do not reflect this knowledge.
With additive regressionmodels, extrememagnitudes
of one variable can compensate for low values of
another. A concurrence framework, however, ensures
that synchronous impacts of critical states of all
drivers is factored into the analysis. Hot-Dry-Windy
Index ([19]); is an important step towards formulat-
ing the synchronous impacts of multiple fire drivers.
However, this index is a multiplicative function of
only weather variables (not directly including fuel
moisture), and does not address critical thresholds
of drivers. Machine learning-based approaches may
provide an alternative means for studying concur-
rence in fire-climate/weather relationships [23].

As climate change shifts precipitation patterns,
adds background warming to the system, and fosters
concurrence of multiple extremes [24], a paradigm
shift to incorporate multiple drivers in a concur-
rence framework for modelling future fire activity
is urgently needed. This paradigm shift is particu-
larly important for Southern California, as projec-
ted future precipitation in this region is associated
with wetter winters and drier spring-summer-fall
seasons [25]. Shift of precipitation timing is par-
ticularly significant as it extends the dry season
to late fall and early winter when hot and intense
downslope Santa Ana winds peak. Although kata-
batic winds’ overall activity in this region is projected
to decrease in early fall and late spring, their intensity
and frequency is not projected to change signific-
antly during November–January, which coincides

with a potentially extended dry season to increase
the probability of concurrence of critical conditions
of multiple fire drivers [26]. Anthropogenic warm-
ing only adds to the complexity of this phenomenon
through enhancing the likelihood that warmer tem-
peratures co-occur with precipitation deficit and
other fire drivers, and through escalating the prob-
ability that precipitation deficit causes drought in
California [27, 28].

Climate change will not only change probabilit-
ies of weather and fuel synchrony, it will likely also
change the nature of the fuels themselves, with poten-
tial vegetation type changes resulting from more fre-
quent fire disturbance and shifted weather during
reestablishment [29]. Interactions between fire, cli-
mate, and introduced species could further com-
plicate such changes [30]. Climate volatility [31]—
rapid shifts between dry and wet conditions—for
example, fosters growth of annual grasses and poten-
tially invasive species, which grow quickly in the pres-
ence of abundant moisture in winter and early spring
and provide ample dry fine fuels in summer and
fall. While coastal Southern California fire regimes
are currently flammability limited [32], changes in
fuels could result in changes to both driver critical
thresholds and concurrence.

Neglecting the multi-driver nature of wildfires
and their synchronous interactions will underestim-
ate the risks and costs associated with changes in
fire activity resulting from climate change [33]. An
increasing climatic risk for fire, however, does not
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necessarily lead to an actual trend in the area burned
nor does it lead to actual fires (figure S6). Indeed, the
total area burned in the study region does not show
an increasing trend (figure S7). Total area burned
depends on various factors including ignition, fuel
availability, climatic and weather drivers, and human
controls, among others. Nonetheless, increasing crit-
ical megafire danger days is associated with grave
socioeconomical implications even in the absence of
fire. For example, the Fall 2019 intentional black-
outs in California that impacted millions of people
for several days were used to avoid fire ignitions
by power transmission lines during high fire danger
periods.

Through consideration of concurrence, we quant-
itatively show how probability of large, very large,
and megafires can be explained as drivers acting as
‘switches’ as they exceed critical thresholds, rather
than simply to themagnitude of drivers. Currentmet-
rics used for operational assessment of fire danger
(e.g. ERC, BI, and LFM) either do not account for
increased fire danger due to the concurrence of mul-
tiple critical drivers or do not have well-defined crit-
ical conditions that capture this concurrence (e.g. ‘red
flag warnings’ issued by the National Weather Ser-
vice forecast office). Concurrence of drivers can be
assimilated into operational fire danger indices, but
should be tailored to individual regions based on spe-
cific fuel, climate, and weather characteristics.
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