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by 5 

Mohammad Sadegh Khorshidi, Philip E. Dennison, Mohammad Reza Nikoo, Amir AghaKouchak, Charles H. 6 

Luce, Mojtaba Sadegh 7 

S1. Methods: 8 

S1.1. Live fuel moisture (LFM) is the mass of water within a vegetation sample divided by the 9 

dry mass of the sample. Chamise (Adenostoma fasciculatum) is an evergreen shrub species 10 

commonly found throughout California chaparral (Hanes, 1977). Dennison and Moritz (2009) 11 

demonstrated that as chamise LFM declines, a critical threshold is reached below which large fire 12 

activity occurs. This threshold has recently been shown to coincide with leaf turgor loss point 13 

(Pivovaroff et al. 2019). Southern California fire departments and federal agencies operate an 14 

extensive network of LFM sampling sites, with 51 sites (Fig. S1) and 8,255 chamise LFM samples 15 

within our study region between 1992 and 2015 (total of 9,680 available chamise LFM samples 16 

between 1983 and 2017; National Fuel Moisture Database). The time interval between about 65 17 

percent of the successive records provided by NFMD is within 20 days (Fig. S8). We used spline 18 

interpolation to determine LFM on the discovery date of each fire, limiting the time between LFM 19 

samples to a maximum of 15 days. The temporally interpolated LFM value closest to the location 20 

of the fire record was then assigned to that fire (Dennison and Moritz, 2010). 21 

S1.2. Wind speed plays a crucial role in spreading fires, especially in regions with extensive fine 22 

fuels like Southern California. Coastal Santa Barbara County experiences northerly katabatic 23 

winds referred to as Sundowners, while the remainder of the study area is exposed to easterly and 24 

northeasterly katabatic winds termed Santa Ana winds. Santa Ana winds are most common from 25 

late fall to early winter (Raphael, 2003). Very low relative humidity during katabatic wind events 26 

desiccates dead fuels and increases vapour pressure deficit. We used a spline interpolation method 27 

to estimate the average wind speed during the first 48 hours from the discovery time of each fire 28 

(or the entire duration of the fire, whichever was shorter) at the closest grid cell center to the fire 29 

location, using the North American Regional Reanalysis’ 3-hourly 10 m above ground wind speed 30 
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at 32-km resolution. We acknowledge that the spatial resolution of wind data can introduce a level 31 

of uncertainty to our analysis as this does not capture local topographic roughness impacts. 32 

S1.3. 3-day Standardized Heatwave Index (SHI3) is a statistical metric of temperature anomaly 33 

introduced by Raei et al. (2018), which is based on a z-score of the average 3-day mean 34 

temperature for the target day with respect to the distribution of the observed mean daily 35 

temperatures in a period of one week before and after the target day in a 30+ year climate record. 36 

Various studies have shown the impact of increased temperature on wildfire activity. Moreover, 37 

Jolly et al. (2015) demonstrated the impact of heatwaves on increased global wildfire activity. 38 

Here, we used Parameter-elevation Regressions on Independent Slopes Model (PRISM)’s daily 39 

temperature at 4-km resolution to derive gridded 3-day SHI between 1982 - 2018. The SHI value 40 

of the center of the grid cell closest to the fire location on the discovery date was assigned to each 41 

fire. 42 

S1.4. 100- and 1000-hour Dead Fuel Moisture (FM100 and FM1000, respectively), Energy 43 

Release Component (ERC) and Burning Index (BI) are fire danger metrics introduced by U.S. 44 

National Fire Danger Rating System (NFDRS; Deeming, 1977) to determine fire potential. FM100 45 

and FM1000 indicate the moisture content of dead fuels with diameters 2.5-7.6 cm (1-3 inches) 46 

and 7.6-20.3 cm (3-8 inches), respectively. Hour values in FM100 and FM1000 represent time 47 

lags for a decay function that brings the fuel elements to equilibrium with ambient relative 48 

humidity. ERC is a weather-climate proxy derived from temperature, precipitation, solar radiation 49 

and relative humidity, and represents the amount of available energy at the flame front of a fire; 50 

whereas BI is a metric incorporating ERC and wind speed.  51 

S1.5. Vapour Pressure Deficit (VPD) is the difference between the air’s actual and saturation 52 

vapour pressure, and indicates evaporative demand and stress on live vegetation. Williams et al. 53 

(2015) found that VPD is one of the dominant indicators of fire activity in the southwestern U.S. 54 

We used GridMET’s (Abatzoglou, 2013) daily FM100, FM1000, ERC, BI, and VPD gridded data 55 

at 4-km resolution for our study. The values of closest grid cell center to the location of fire on the 56 

discovery date was assigned to each fire. 57 

 58 

 59 
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S2. Tables and Figures 61 

Table S1. Detailed literature review. Scope of each study, method, and the findings are 62 

presented. Findings are often quotes from the original paper. 63 

 64 

Reference Region Fire Size 

Threshold 

Years of Fire Record Drivers* Goal of Study 

(Modified Quote from the Source) 

Result 

(Modified Quote from the Source) 

Bessie and 

Johnson 

1995 

Subalpine Forests - 1954-1988 FM100, FM1000, 

TEMP, PREC, WS, RH 

Impact of weather and fuel on fire intensity and 

crown fire initiation 

Fire characteristics are strongly correlated with weather and fuel moisture  

Westerling 

et al. 2003 

western U.S. 

(Bailey's ecosystem) 

Gridded data 1983-2000 PDSI - Wildfire frequency and area burned in the 

western U.S.  

- Relationships between PDSI and 

abnormal fire activity 

- Moisture anomalies are correlated to abnormal summer fire activity in Western U.S.  

- Area burned in shrub and grasslands are strongly dependent on fuel accumulation and antecedent climate conditions. 

Brown et al. 

2004 

western U.S. >40 ha (or the fires 

with more than 

750,000$ suppression 

cost) 

1980-2000 ERC Project wildfire changes in Western U.S. in 21st 

century. 

From 2070, CO2 will increase two folds and ERC will exceed the 60 threshold in two to three weeks. 

Westerling 

et al. 2006 

western U.S. >400 ha 1970-2003 TEMP, SDA and MD Extent of climate impact on recent change in 

wildfire activity 

Large wildfire activity increased from mid-1980s and it is associated with earlier snowmelt and increase in spring and summer temperature. 

Westerling 

and Bryant 

2008 

California >200 ha 1980–1999 EL, PREC, TEMP, SM, 

and SWE 

Project wildfire risks for California under climatic 

change scenarios 

Increased temperature promotes greater large fire frequency in some regions, while in other regions, lower precipitation and higher temperature reduce fine fuel 

availability and reduce fire risks. 

Spracklen et 

al. 2009 

Western U.S. 

ecosystems (Bailey 

et al. 1994) 

>400 ha 1970-2003 TEMP, RH, WS, 

PREC, FMC, and FSI. 

Climate change impact on wildfire activity 

carbonaceous aerosol concentrations in the 

western U.S.  

Higher temperature increases annual mean area burned. Consequently, increased area burned will double carbonaceous aerosol emissions by midcentury. 

Littell et al. 

2009 

Western U.S. 

ecoprovinces 

(Bailey et al. 1994) 

>405 ha 1916-2003 PREC, TEMP, and 

PDSI 

Impact of climatic variables on the area burned in 

different vegetation types in the western U.S. 

Area burned by wildfires are controlled by climate, despite fire suppression and fuel treatment practices. High temperature, low precipitation and PDSI promotes 

increased area burned. 

Dennison 

and Moritz 

2009 

LA County >1000 ha 1981–2006 PREC to determine 

critical LFM 

Determine critical live fuel moisture for large fires. The critical LFM threshold for LA County is 79%. The timing of this threshold is correlated with antecedent rainfall. Lower spring precipitation causes LFM decline in 

fire season, while higher winter precipitation could delay the timing of LFM threshold. 

Liu et al. 

2010 

Global - - KBDI  Project trend of global wildfire potential under 

climate change 

Fire potential escalates in the U.S., South America, central Asia, southern Europe, southern Africa, and Australia, and fire season becomes longer. The main drivers of 

more fire activity is warming and dryness. 

Abatzoglou 

and Kolden 

2011 

Western U.S. 

deserts 

- - ERC, TEMP, RH, 

PREC, WS, and state of 

the weather 

Changes in temperature thresholds, the timing and 

availability of moisture, large wildfires potential 

under climate projections 

Increased fire season and frequency in winters will alter vegetation cover and establishes invasive grasses. This will cause more lengthening of fire season in a 

feedback loop.  

Westerling 

et al. 2011a 

California >200 ha 1980-1999 TOPO, TEMP, PREC, 

WS, MD, RH, SM, 

SWE and vegetation 

type 

Hydroclimate and landsurface to predict large 

wildfire and burned area  

Increases are predicted in wildfire burned area which is risen with higher emissions pathway. 

Westerling 

et al. 2011b 

Greater Yellowstone 

ecosystem  

>200 ha 1972-1999 TOPO, TEMP, PREC, 

WS, MD, RH, SM, 

SWE and vegetation 

type 

Climate controls on large fires occurrence, size, 

spatial location 

Noticeable fire increases were predicted by all models by mid-century 

Abatzoglou 

and Kolden 

2011 

Alaska >1200 ha 1980-2007 TEMP, PREC, WS, and 

RH 

Impact of higher-frequency weather and lower-

frequency climate on fire increases in Alaskan. 

Increased freeze fire season and frequency in winters will alter vegetation cover, and favours cold-intolerant annual grasses and establishes invasive grasses. This will 

cause more lengthening of fire season in a feedback loop. 

Holden et al. 

2011 

Pacific Northwest 

U.S. 

>400 ha 1984-2005 snowmelt-induced 

streamflow timing and 

total annual streamflow 

Correlation of total area burned and its severity to 

snowmelt-induced streamflow timing and total 

annual streamflow metrics. 

Correlations of burned area and streamflow and its timing are significant. Area burned variability, which previously attributed solely to temperature, is primarily driven 

by precipitation and streamflow.  

Dillon et al. 

2011 

Western U.S. 

(ecoregions,) 

>405 ha 1984-2006 TOPO, TEMP, PREC, 

and SM 

Influence of topography, weather and climate on 

fire severity  

The degree of fire severity is influenced by topography, which is more impressive predicator, than weather and also climate. 

Finney et al. 

2011 

Continental U.S. - - ERC, WS Probabilistic wildfire risk assessment for the 

continental U.S. 

Fire size distribution can be determined by joint distributions of fire growth and conducive weather sequences opportunities.  

Parisien et 

al. 2012 

Western U.S. All fires from MTBS 

and Landfire 

1984-2008 FD, population, TOPO, 

WS, PREC, TEMP, 

density of lightning 

strikes, and primary 

productivity 

High-resolution estimates of wildfire probability. Wildfire probabilities is not uniform, and its response to environmental variables differs spatially. Humans are the main cause of wildfire activity. 

Liu et al. 

2013 

Entire U.S. - - KBDI and FFWI Impact of climate change on wildfire potential 

trends in the continental U.S. 

Fire potential have increased in recent decades. Based on projected KDBI, the same trend is expected for future. Larger fire potential variability is also expected for 

Pacific and Atlantic coastal regions. 
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Luo et al. 

2013 

Western U.S. - - HI Speed of wildfire growth under changing climate The projections predict more days and more successive days with increased risk for rapid wildfire growth. More erratic wildfires are expected in mountainous regions 

of western U.S. 

Yue et al. 

2013 

Western U.S. >10 ha 1980-2004 TEMP, RH, WS, RH, 

WS, PREC, FMC and 

FSI. 

Project wildfire activity during 2046-2065 Significant increases in future area burned, length of fire season and carbon emissions from wildfires are predicted. 

Flannigan et 

al. 2013 

Global - - CSR Climate change impact on global fire season 

severity and length in mid-century (2041–2050) 

and late century (2091–2100) 

Significant increases for CSR and fire season length are predicted. The largest increase is predicted for Northern Hemisphere at the end of the century.  

Abatzoglou 

and Kolden 

2013 

Western U.S.  >404 ha 1984–2010 PREC, TEMP, PDSI, 

SWE, SM, ERC, BI, 

FM100, FM1000, MD, 

CWD, FFMC, DMC, 

and Drought Codes. 

Large-scale climate–fire relationships in the 

western U.S. 

Fuel and soil moisture have stronger correlations to area burned than climate variables antecedent to fire season. Biophysical variables are better describers of wildfire 

activity than standard climate variables.  

Riley et al. 

2013 

Western U.S. >405 ha 1984-2005 ERC, PREC, PDSI, and 

SPI 

Correlations between drought and firedanger- 

rating indices  

Both area burned and fire frequency are strongly correlated with percentiles of short-term Energy Release Component and monthly rainfall. However, long-term 

Energy Release Component, monthly rainfall, Palmer Drought Severity Index and 24-month Standardized Precipitation Index percentiles are weakly correlated with 

those metrics.  

Barbero et 

al. 2014 

Contiguous U.S. 

(Omernik level II 

ecoregions) 

>404 ha 1984-2010 TEMP, RH, ERC, BI, 

ISI, FFWI, PREC, 

PDSI, and CWD. 

Model very large-fire (>5000 ha) occurrences 

probability over the continental U.S. from weather 

and climate forcing 

Above normal wet condition during growing seasons conducive to very large fires (VLF) increases the probability of VLFs in interannual timescales in rangelands 

while long-term droughts are the main driver of VLFs in forests. In short-term, fire weather is the main driver of VLFs in rangelands while dead fuel moisture is the 

main driver of VLFs in forests. 

Stavros et al. 

2014 

Contiguous western 

U.S. (Geographic 

Area Coordination 

Centers (GACC)) 

>404 ha 1984–2010 PDSI, TEMP, FFMC, 

DMC, FM100, 

FM1000, ERC, and BI. 

Project seasonal changes in the climatic potential 

for very large wildfires (VLWF≥50,000 ac~20,234 

ha)  

Both RCP 4.5 and 8.5 projections show significant increase of very large fire (VLF) probability for mid-21st century.  

Dennison et 

al. 2014 

Cestern U.S. 

(Omernik level III 

ecoregions) 

>405 ha 1984–2011 TEMP, PREC, and 

PSDI 

Regional trends in fire occurrence, total fire area, 

fire size, and day of year of ignition for 1984–2011 

The trend of large fire frequency and annual burned area is abruptly increasing during 1984 to 2011.  

Jin et al. 

2014 

Southern California >40 ha 1959-2009 TEMP, PREC, DP, RH, 

WS, and PDSI 

Controls on wildland fires in Southern California 

during periods with and without Santa Ana winds 

Models roughly explained seasonal and interannual number of Santa Ana and non-Santa Ana fires. Santa Ana fires’ frequency increased during the years with lower 

relative humidity and fall rainfall. Cumulative rainfall during three winter conducive to fires are strongly correlated with the number of non-Santa Ana fires. The 

number of extremely large Santa Ana fires is substantially increased in the past decade. 

Jolly et al. 

2015 

Global - 1979-2013 BI, CFWI, and  AFFDI. Metric of fire weather season length, and map 

spatio-temporal trends from 1979 to 2013 

Fire weather season have lengthened across the globe. This lengthening is responsible for doubling of burned area during 1979 to 2013. 

Barbero et 

al. 2015a 

Eastern U.S. >202 ha 1984-2010 PDSI, ERC, and FFWI Relationships between climatic conditions and the 

occurrence of very large-fires (VLF, >3000 ha) in 

the Eastern U.S.  

Very large fires (VLF) are mostly occur after a long-term drought and during a sub-seasonal drought through low fuel moisture and lengthened fire-weather season. 

Barbero et 

al. 2015b 

Contiguous U.S. - - Follow up for Barbero 

et al. 2014. 

- Model very large fires (VLFs; Barbero et 

al. 2014) (>5000 ha),  

- Ensemble of 17 global climate models: 

VLF occurrence arising from 

anthropogenic climate change 

In the regions with most historic fire activity, the projections show the most increase in very large fires occurrence, burned area and season. The regions with most 

increase are Northern California and intermountain West. 

Williams et 

al. 2015 

Southwest U.S. 

(forests) 

- 1984–2013 PREC, TEMP, VPD, 

PET, MD, WS, SM, 

PDSI, KDBI, SPEI, and 

ERC 

Correlations between components of the water 

balance and burned area in the southwest U.S. 

forests 

- . 

Fifteen metrics are strongly correlated with annual burned area within forests, which causes more complication to accurately predict burned area. One of these 

metrices is spring and summer vapor pressure deficit. If an aggressive emission pathway is taken into consideration, vapor pressure deficit would exceed its 

highest record by 40% in the current mid-century. 
 

Westerling 

2016 

Western U.S. 

(forests) 

>400 ha 1970–2012 TEMP, SDA and MD Sensitivity of western U.S. forests to changes in 

timing of Spring snowmelt 

Wildfire frequency and burned area increased over the past two decades in both forests and non-forest areas across western U.S.. wildfire activity is strongly correlated 

with warming and earlier spring snowmelt. 

Abatzoglou 

and 

Williams 

2016 

Western U.S. 

(forests) 

>404 ha 1984–2014 ETo, VPD, CFWI, 

ERC, CWD, AFFDI, 

KBDI and PDSI 

Modelled climate projections to estimate the 

contribution of anthropogenic climate change to 

observed increases in eight fuel aridity metrics and 

forest fire area across the western U.S.. 

Fuel aridity is increased by anthropogenic climate change in forests of western U.S. in the past decades. Both fire season length and activity in the region is affected by 

climate change.  

Abatzoglou 

et al. 2016 

Western U.S. - 1992-2013 Cloud to ground 

lightning, ERC, VPD, 

PREC, and PDSI 

Controls on interannual variability in lightning-

caused fire activity 

The number of lightning strikes shows strong correlation with interannual fire frequency; however, it is poorly correlated with annual area burned. On the other hand, 

climatic conditions are strongly correlated with annual area burned. 

Schoennagel 

et al. 2017 

Western U.S. 

(forests) 

- - - An approach that accepts wildfire as an inevitable 

catalyst of change and promotes adaptive 

responses by ecosystems and residential 

communities to more warming and wildfire 

This study shows that reduction of fuels and current fuel treatment practices does not reduce wildfire activity. Thus, new approaches should be adopted to adapt 

residential communities and ecosystems to more wildfire activity.  

Taufik et al. 

2017 

Borneo Gridded data 1996-2015 Groundwater recharge Impact of hydrological droughts on wildfire 

activity 

Hydrological processes and data are more reliable forcing compared to climatic data for models predicting burned area.  

Balch et al. 

2017 

U.S. >405 ha 1992-2012 Monthly lightning 

density, FM1000 

Role of human activity on wildfires in U.S. Overall human-cause fire season is longer than lightening-cause season. Humans’ activity substantially increased fire frequency and burned area over the 21-year time 

span. Humans ignited fires account for 5.1 million km2 while lightening ignited fires caused only 0.7 million km2 in the same period. 
 

Chikamoto 

et al. 2017 

North America Not used - FD, SWC, and TEMP Multi-year dynamical prediction system with a 

high skill in forecasting wildfire probabilities and 

drought for 10–23 and 10–45 months lead time 

The state-of-the-art earth system model and ocean data assimilations show low frequency of rainfall, soil moisture and wildfire probabilities. These results agree with 

reanalysis data. 
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Abatzoglou 

et al. 2018a 

Contiguous U.S. 

(Bailey 

ecoprovinces) 

>40 ha 1992-2015  TEMP, VPD, fuel 

moisture and WS 

Differences in temperature, vapour pressure 

deficit, fuel moisture and wind speed for large and 

small lightning- and human-caused wildfires 

during the initial days of fire activity at ecoregion 

scales across the U.S. 

Higher temperature, vapor pressure deficit and lower 100-hour fuel moisture play the main role in occurrence of large fires of both human and lightening -causes. Wind 

speed is more positively correlated to large human-caused wildfires compared to other types of fire.  

Abatzoglou 

et al. 2018b 

Global Gridded data 1997-2016 PREC, VPD, and ETo Patterns of interannual climate-fire 

relationships 

In the regions with weaker correlation between climatic variables and fire activity, fuel moisture shows strong negative correlation with wildfire burned area. On the 

other hand, precipitation measures conducive to fire season shows strong negative correlation with fire season and burned area in the regions with stronger correlation 

to climatic variables. Climatic variables only explain 33% of interannual global fire activity. 
 

Turco et al. 

2018 

Global Gridded data 1995-2016 SPI, SPEI, and TEMP - Seasonal forecast of burned area 

anomalies  

- Use the standardized precipitation index 

as the climate predictor for burned area 

More accurate climate predictions, yield more accurate global fire activity over the global burnable area (~60%). Through currently available seasonal predictions, the 

accuracy of fire season forecasts still remains significant in a large portion of globe (~40%). 
 

Viedma et al. 

2018 

West-central Spain >1 ha 1979-2008 TEMP, SPEI, CFWI, 

TOPO and landscape 

features 

The changing role of biophysical and human-

related factors on wildfires in a rural area in west-

central Spain. 

The authors composed various models with different variables. The models with topography, land use and land cover yielded the best accuracy of predicting fire 

activity. They concluded that other socio-economic, forest interface and climatic variables are minor variables. They also showed that as time went by, wildfires 

occurred in the less-prone areas and as they spread, they will become more hazardous for humans.  
 

Holden et al. 

2018 

Western U.S. 

(forests) 

>405 ha 1984-2015 TEMP, RH, and SWE - Near-surface air temperature and 

evaporative demand are strongly 

influenced by moisture availability  

- Their role in regulating fire activity 

The main driver of area burned in the forests of western U.S. is decreased summer rainfall. Considering the interactions of number of wetting days (WRD; days with 

rainfall ≥2.54 mm), temperature and vapor pressure deficit, the net effect of WRD anomalies on area burned was much greater than those of VPD. Their analyses show 

that the effects of both VPD and WRD are greater than snowpack on area burned. 

Crockett and 

Westerling 

2018 

Sierra Nevada >405 ha 1984-2014 TEMP, PREC, CWD Impact of droughts on wildfire severity The authors show that in fire extent and severity are greater during droughts (1984-2014). 

Keyser and 

Westerling 

2019 

Northern Rocky 

Mountains, Sierra 

Nevada Mountains, 

and Southwest 

>405 ha 1984-2014 TEMP, MD, location, 

TOPO, snowpack 

condition, and 

vegetation condition 

High severity area burned for the western U.S. and 

three sub-regions—the Northern Rocky 

Mountains, Sierra Nevada Mountains, and 

Southwest 

Their model elaborated high fire severity in western U.S. during summers of 1988 to 2002. Moreover, snowpack, vegetation type, location, elevation and spring 

temperature improved the model accuracy of predicting extreme fire severity in the aforementioned time space. 

Joseph et al. 

2019 

Contiguous U.S. >400 ha 1984-2016 RH, TEMP, PREC, WS 

and housing data 

Spatiotemporal prediction of wildfire size 

extremes with Bayesian finite sample maxima 

Statistical analyses show that temperature, dryness and housing are the main drivers of extreme wildfires. They influence fire size distribution through affecting fire 

frequency and size. 

Williams et 

al. 2019 

California >0.1 ha 1972-2018 FM1000, FFWI, SPI, 

TEMP, WS, VPD, and 

ETo 

Impact of observed climate change on wildfire 

activity in California 

Area burned by wildfires escalated as much as 400% in the space of 1972 and 2018. The most increase of area burned had occurred during summer which is due to 

warming and dryness. 

 65 

 66 

* Abbreviations:   67 

 68 

AFFDI: Australian Forest Fire Danger Index. 69 

BI: Burning Index. 70 

CFWI: Canadian Fire Weather Index. 71 

CSR: Cumulative Severity Rating. 72 

CWD: Climatic Water Deficit. 73 

DMC: Duff Moisture Codes 74 

DP: Dew Point. 75 

L: Elevation. 76 

ERC: Energy Release Component. 77 

ETo: Reference Evapotranspiration. 78 

FD: Fuel Density. 79 

FFMC: Fine Fuel Moisture Code. 80 

FFWI: Fosberg Fire Weather Index. 81 

FM100: 100-hour Fuel Moisture. 82 

FM1000: 1000-hour Fuel Moisture. 83 

FMC: Fuel Moisture Code. 84 

FSI: Fire Severity Index. 85 

HI: Haines Index. 86 

ISI: Initial Spread Index. 87 

KDBI: Keetch-Byram Drought Index. 88 

LFM: Live Fuel Moisture. 89 

MD: Moisture Deficit. 90 

PDSI: Palmer Drought Severity Index. 91 

PET: Potential Evapotranspiration. 92 

PREC: Precipitation. 93 

RH: Relative Humidity. 94 

SDA: Snowmelt Days Anomaly. 95 

SM: Soil Moisture. 96 

SPEI: Standardized Precipitation and Evapotranspiration Index. 97 

SPI: Standardized Precipitation Index. 98 

SWC: Soil Water Content. 99 

SWE: Snow Water Equivalent. 100 

TEMP: Temperature. 101 

TOPO: Topography. 102 

VPD: Vapour Pressure Deficit. 103 

WS: Wind Speed.104 
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Table S2. Overlap and redundancy among fire drivers. The normalized redundancy measure 105 

(MacKay 2003) among various combinations of pairs of LFM, Wind, SHI3, FM100, FM1000, 106 

ERC, BI, and VPD is presented. The normalized redundancy measure is calculated on the series 107 

of these climatic, meteorological and biophysical variables corresponding to all fires. A value of 108 

zero corresponds to zero mutual information between the two variables, whereas a value of one is 109 

associated with one variable being completely redundant with the knowledge of the other.  110 

 111 

 LFM Wind SHI3 FM100 FM1000 ERC BI VPD 

LFM 1 0.35 0.38 0.37 0.38 0.39 0.32 0.37 

Wind 0.35 1 0.37 0.38 0.38 0.40 0.33 0.36 

SHI3 0.38 0.37 1 0.42 0.43 0.43 0.35 0.42 

FM100 0.37 0.38 0.42 1 0.46 0.48 0.40 0.43 

FM1000 0.38 0.38 0.43 0.46 1 0.51 0.41 0.43 

ERC 0.39 0.40 0.43 0.48 0.51 1 0.42 0.43 

BI 0.32 0.33 0.35 0.40 0.41 0.42 1 0.36 

VPD 0.37 0.36 0.42 0.43 0.43 0.43 0.36 1 

 112 

 113 

 114 

 115 

 116 

 117 

 118 
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 119 

Table S3. Pearson correlation coefficients (r) and associated p-values between drivers and 120 

fire sizes of different categories. 121 

 122 

Fire 

Size (ha) 

Pearson Correlation 

LFM Wind SHI3 FM100 FM1000 ERC BI VPD 

r p r p r p r p r p r p r p r p 

0 -0.01563 3.00E-03 0.04086 3.95E-08 0.02168 3.98E-05 -0.03146 2.47E-09 -0.02564 1.18E-06 0.03332 2.67E-10 0.03957 6.27E-14 0.03223 9.98E-10 

2 -0.04192 1.00E-02 0.11789 4.08E-08 0.06046 0.00018 -0.08493 1.42E-07 -0.07175 8.83E-06 0.08829 4.45E-08 0.10464 8.54E-11 0.06673 3.59E-05 

4 -0.04708 2.00E-02 0.14259 1.13E-08 0.06901 0.00039 -0.09526 9.47E-07 -0.0794 4.44E-05 0.09812 4.41E-07 0.11718 1.57E-09 0.07479 0.00012 

40 -0.07105 3.00E-02 0.19127 8.16E-07 0.09586 0.0033 -0.12704 9.56E-05 -0.10103 0.00195 0.1293 7.14E-05 0.14867 4.81E-06 0.09416 0.0039 

120 -0.09517 3.00E-02 0.21481 2.13E-05 0.10646 0.01495 -0.14231 0.00111 -0.11121 0.011 0.14219 0.00112 0.165 0.00015 0.09896 0.02375 

405 -0.10792 8.00E-02 0.24236 0.00029 0.13044 0.03028 -0.17906 0.00283 -0.15194 0.01149 0.17757 0.00307 0.18118 0.00252 0.12788 0.03371 

2025 -0.13569 1.80E-01 0.20847 0.04493 0.12268 0.20807 -0.16533 0.08879 -0.15092 0.12073 0.18793 0.05256 0.1564 0.10768 0.13743 0.15808 

 123 

  124 

Table S4. Kendall correlation coefficients (r) and associated p-values between drivers and 125 

fire sizes of different categories. 126 

 127 

Fire 

Size (ha) 

Kendall Correlation 

LFM Wind SHI3 FM100 FM1000 ERC BI VPD 

r p r p r p r p r p r p r p r p 

0 0.00165 0.67067 9.66E-06 0.99859 0.01218 0.0014 -0.0162 2.12E-05 -0.00285 0.45533 0.02638 4.46E-12 0.03996 1.04E-25 0.10561 5.33E-169 

2 -0.04937 1.10E-05 0.10447 7.79E-13 0.05044 4.53E-06 -0.11352 5.66E-25 -0.09721 9.73E-19 0.10892 4.06E-23 0.1153 1.04E-25 0.10157 2.59E-20 

4 -0.03469 0.00994 0.10607 3.52E-10 0.05672 1.64E-05 -0.11465 3.06E-18 -0.09346 1.25E-12 0.10579 9.26E-16 0.11909 1.49E-19 0.10906 1.19E-16 

40 -0.03436 0.12726 0.09777 0.00019 0.06241 0.00443 -0.10965 5.72E-07 -0.08251 0.00017 0.10841 7.65E-07 0.14297 7.05E-11 0.09205 2.69E-05 

120 -0.0832 0.00601 0.11616 0.00068 0.05273 0.07221 -0.09561 0.00111 -0.05598 0.05628 0.08896 0.00242 0.14636 6.03E-07 0.04561 0.11991 

405 -0.09414 0.02469 0.13319 0.00338 0.09609 0.01748 -0.19221 1.99E-06 -0.14823 0.00025 0.16612 3.97E-05 0.22183 4.09E-08 0.06636 0.10078 

2025 -0.11562 0.09472 0.11245 0.11115 0.03687 0.57552 -0.15117 0.0212 -0.16282 0.01306 0.18116 0.00574 0.15294 0.01974 0.13318 0.04238 

 128 

 129 

 130 

 131 
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 132 

Table S5. Spearman correlation coefficients (r) and associated p-values between drivers and 133 

fire sizes of different categories. 134 

 135 

 136 

Fire 

Size (ha) 

Spearman Correlation 

LFM Wind SHI3 FM100 FM1000 ERC BI VPD 

r p r p r p r p r p r p r p r p 
0 0.00246 0.64717 -0.0005 0.94675 0.01684 0.00141 -0.0222 2.58E-05 -0.00323 0.53997 0.03601 8.74E-12 0.05454 4.45E-25 0.14583 6.57E-170 

2 -0.07213 1.13E-05 0.15189 1.37E-12 0.07406 4.48E-06 -0.16604 4.52E-25 -0.14196 1.08E-18 0.15936 3.37E-23 0.16801 1.22E-25 0.14836 2.74E-20 

4 -0.05086 0.01032 0.15399 6.73E-10 0.08319 1.88E-05 -0.16774 4.16E-18 -0.13739 1.36E-12 0.15544 9.71E-16 0.17464 1.62E-19 0.16097 8.82E-17 

40 -0.05065 0.12979 0.14315 0.00024 0.09243 0.00461 -0.16248 5.65E-07 -0.12306 0.00016 0.16332 4.93E-07 0.21288 4.49E-11 0.13768 2.32E-05 

120 -0.12358 0.00595 0.17243 0.00068 0.07973 0.06872 -0.14213 0.00113 -0.08444 0.05384 0.13387 0.00218 0.22016 3.77E-07 0.06823 0.119461772 

405 -0.13785 0.02623 0.19933 0.00305 0.14113 0.01899 -0.28513 1.47E-06 -0.21815 0.00026 0.24718 3.29E-05 0.33388 1.30E-08 0.09983 0.097914209 

2025 -0.15699 0.12264 0.16868 0.10602 0.04998 0.6092 -0.21955 0.02308 -0.22667 0.01888 0.25987 0.00687 0.21633 0.02522 0.19192 0.047662947 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 
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Table S6. Ten representative fires with their drivers. These are relatively large (>100 ha) to 156 

large (>405 ha) fires that are driven by the concurrence of non-extreme but critical variables. These 157 

drivers are not extreme individually, but when combined created the extreme impact. The critical 158 

thresholds for all drivers are provided for comparison. Divergence from critical threshold values 159 

(∆) are calculated as the driver value minus the threshold. For clarity, the delta-values that shows 160 

the driver is not critical are shown in red. While these values are not extreme, concurrence of at 161 

least two critical drivers caused fire growth.  162 

 163 

# Fire Name 
Latitu

de 

Longitu

de 
Date 

Fire 

Size 

(ha) 

LFM 

(%) 

Win

d 

(m/s

ec) 

SHI3 
FM100 

(%) 

FM10

00 

(%) 

ERC 

(kJ/m2) 
BI 

VPD 

(kPa) 

∆ 

LF

M 

∆ 

Wind 

∆ 

SHI3 

∆ FM 

100 

∆ FM 

1000 
∆ ERC ∆ BI 

∆ 

VPD 

1 ALISO 33.442 -117.394 21-Mar-02 971.25 142.46 2.73 -0.18 10.84 12.97 568.21 36.62 0.95 54.06 0.43 0.09 1.44 0.47 -49.79 -6.68 -0.55 

2 ANTONIO 33.592 -117.617 13-May-02 595.7 98 3.62 0.35 11.2 14.13 534.73 38.58 1.64 9.6 1.32 0.62 1.8 1.63 -83.27 -4.72 0.14 

3 OTAY 28 32.585 -116.835 15-Apr-96 567.37 139.41 0.46 0.28 11.16 14.92 507.99 32.16 1.6 51.01 -1.84 0.55 1.76 2.42 -110.01 -11.14 0.1 

4 EVENING 33.869 -117.684 21-Apr-02 360.98 108.05 2.83 -0.94 11.72 12.75 557.88 35.6 0.93 19.65 0.53 -0.67 2.32 0.25 -60.12 -7.7 -0.57 

5 NICHOLS 33.717 -117.351 2-Jul-95 343.98 90 3.31 -0.37 10.96 13.09 572.8 40.5 1.92 1.6 1.01 -0.1 1.56 0.59 -45.2 -2.8 0.42 

6 PEDLEY 34.021 -117.481 12-May-10 290.04 89 3.37 -1.4 12.17 13.32 566.03 41.84 1.39 0.6 1.07 -1.13 2.77 0.82 -51.97 -1.46 -0.11 

7 YSABEL 33.085 -116.883 13-Jun-92 263.05 86 3.62 -0.39 14.48 15.35 427.44 30.76 1.17 -2.4 1.32 -0.12 5.08 2.85 -190.56 -12.54 -0.33 

8 BANNER 33.063 -116.554 9-Jun-99 199.51 90 3.86 -0.86 9.28 11.9 644.99 51.22 1.32 1.6 1.56 -0.59 -0.12 -0.6 26.99 7.92 -0.18 

9 SHOOTING 34.31 -118.367 1-May-97 194.25 90 3.93 -0.04 9.77 9.38 744.71 51.39 1.43 1.6 1.63 0.23 0.37 -3.12 126.71 8.09 -0.07 

10 166 34.964 -119.842 12-Jul-11 140.43 86.04 0.83 -0.58 8.46 10.11 729.12 48.16 1.68 -2.36 -1.47 -0.31 -0.94 -2.39 111.12 4.86 0.18 

Critical Values 88.4 2.3 -0.27 9.4 12.5 618 43.3 1.5         

 164 
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 165 

 166 

 167 
Figure S1. Geographic location of the study region. The boundaries of the region (blue line not 168 

including the islands), the Southern California counties (white line) and Level III EPA ecoregions 169 

8 and 85 (gray line; Omernik 1987) are shown. The distribution of vegetation cover (LNADFIRE, 170 

2014) and the location of chamise fuel moisture measurement sites between 1979 and 2017 (red 171 

triangles; USFS 2018) and the location and size of wildfires during 1992 to 2015 (yellow circles; 172 

Short 2017) are also depicted. 173 
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 174 

Figure S2. Histogram of vegetation type frequency in the study area. Chaparral and grassland 175 

are the dominant vegetation types in coastal southern California. Y-axis represents fraction of area 176 

occupied by each vegetation type. 177 

 178 
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 179 
Figure S3. Performance of the Support Vector Regression. SVR model (Drucker et al. 1997) 180 

model is used to create the gridded LFM dataset. Black dots represent observed LFM values (x-181 

axis) versus modelled LFM values (y-axis) for the train data (75% of all available data) and the 182 

test data (the remaining 25% of the available data). The selected SVR model yields 𝑅2=0.85 and 183 

MARE=0.07 for train and 𝑅2=0.8 and MARE=0.066 for test stages.  184 

 185 

 186 

 187 
Figure S4. Compounding effects of multiple drivers grow fire sizes. Probabilities of observing 188 

a) large (>405 ha) and e) very large (>2025 ha) fires when various drivers are critical (red line) 189 

and not critical (blue line). Probabilities of observing large (>405 ha) fires when various drivers 190 

are critical (red) and not critical (blue) given b) LFM and FM100, c) SHI3 and BI, and d) FM100, 191 

FM1000 and ERC are critical. Probabilities of observing very large (>2025 ha) fires when various 192 

drivers are critical (red) and not critical (blue) given f) LFM and FM100, g) SHI3 and BI, and h) 193 

FM100, FM1000 and ERC are critical. Only fires of larger than 40 ha (100 acre) are used in this 194 

analysis. 195 
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 196 

 197 
Figure S5. Concurrence of critical conditions of drivers for fires of different size categories 198 

in the study region between 1992 and 2015. Only fires of larger than 40 ha (100 acre) are 199 

included in the analysis. Top x-axis shows percentage of fires in each size category observing 200 

concurrence of critical conditions of the drivers described in the middle panel. Fire size categories 201 

include: larger than 0th percentile (100 acre; 40 ha), 25th, 50th, 75th, 95th, and 99th percentiles of all 202 

fires larger than 40 ha. a) Concurrence of critical conditions of certain drivers explained in the 203 

middle panel creates the fires, and b) Number of critical drivers for fires of each category. 204 

 205 
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 206 
Figure S6. Megafire season (the interval between the first and the last day of the year that all 207 

drivers were critical in 75% of all the grid cells) between 1992 and 2015. The circles show the 208 

large fires’ (>=2025 ha) discovery date (day of the year). 209 

 210 

 211 
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 212 

Figure S7. Seasonal cumulative fire size and normalized precipitation anomaly between 1992 213 

and 2015. Extreme fall fire season is associated with above normal precipitation in spring and 214 

below normal precipitation in summer. 215 

 216 

 217 

 218 

 219 

 220 

 221 
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 222 
Figure S8. Distribution of temporal lags between successive observations of LFM. U.S. Forest 223 

Service’s (USFS) National Fuel Moisture Database (NFMD 2018) provide 9,680 records of 224 

chamise fuel moisture measurements between 1983 and 2017 from 51 chamise fuel moisture sites 225 

in Southern California. Most of the successive measurements at each site were performed within 226 

10 to 20 days interval.  227 

 228 

 229 

 230 

 231 
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