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Simple Summary: The rare ovarian cancer subtypes ovarian clear cell carcinoma (OCCC) and Small
cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), can have mutations in members of
a complex known as SWI/SNF that regulates the accessibility of chromatin to factors involved in
DNA repair and gene expression. Some mutations in a particular complex member also occur in
endometrioid ovarian cancer (EnOC) and endometriosis. Patients with endometriosis have a greater
risk of developing OCCC and EnOC, with endometriosis frequently present at the time of diagnosis of
these malignancies. The OCCC and SCCOHT ovarian cancer subtypes are notoriously difficult to treat
with chemotherapies based on platinum-drugs that are standard-of-care for most cases of ovarian
cancer. Mutations in members of this chromatin-remodelling complex offer new opportunities for
molecular therapeutics using drugs that inhibit different aspects of cellular processes, including DNA
repair, epigenetic regulation, kinase activity, and immune checkpoints.

Abstract: SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-
remodelling complex in human malignancy, with over 20% of tumours having a mutation in a
SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic
of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A,
encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42–67% of
ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic
silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs
in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation
reported in 69–100% of SCCOHT cases and SMARCA2 silencing seen 86–100% of the time. Somatic
ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign
condition endometriosis, possibly as precursors to the development of the endometriosis-associated
cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC
and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and
SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for
pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic
inhibitors, as well as immune checkpoint blockade.
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1. Introduction

Ovarian cancer spans a number of different histopathological subtypes, most of which
have limited treatment options beyond surgical debulking and combination chemotherapy
consisting of systemic platinum-based drugs including carboplatin and the taxane pacli-
taxel [1]. In the most common subtype, high-grade serous ovarian cancer (HGSOC), Poly
(ADP-ribose) polymerase (PARP) inhibitors have been shown to increase both progression-
free survival (PFS) and overall survival (OS) in the presence of molecular aberrations in
genes such as BRCA1 and BRCA2 which encode proteins functioning in the homologous
recombination repair (HRR) pathway [2–6]. Anti-angiogenics targeting vascular endothelial
growth factor (VEGF), such as bevacizumab, are also in use, with clinical trials suggesting
the benefit of combining bevacizumab with the PARP inhibitor olaparib [5,6]. Therapeutic
targeting of mutations beyond those directly involved in the HRR pathway in ovarian
cancer is yet to emerge into the clinic. This is an area attracting extensive interest, especially
for treatment-resistant subtypes such as ovarian clear cell carcinoma (OCCC) and the rare
Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), both with a poorer
prognosis compared to HGSOC [7,8].

The intersection of genetics and epigenomics to drive chromatin remodelling in malig-
nancy provides further opportunities for both uncovering the fundamental mechanisms of
gene regulation and identifying new therapeutic targets. The ATP-dependent chromatin-
remodelling complex SWI/SNF (SWItch/Sucrose Non-Fermentable; also known as the
BAF complex) is an important junction for these intersections, with aberrations in SWI/SNF
complex members reported in around 20% of all human malignancies [9,10]. Mutations in
SMARCA4, that encodes one of catalytic subunits of SWI/SNF, occur in around 5–7% of
all human malignancies (reviewed in [11]). Similarly, mutations in ARID1A (AT-rich inter-
active domain-containing protein 1A) that encodes a DNA-binding subunit of SWI/SNF
have been reported in ~6% of human malignancies [12].

Subunits of the SWI/SNF complex are differentially mutated in distinct ovarian
cancer subtypes. For example, ARID1A is frequently mutated in OCCC and endometri-
oid ovarian cancer (EnOC) but rarely mutated in HGSOC and mucinous ovarian cancer
(MOC) [13–16]. ARID1B, the mutually exclusive paralogue of ARID1A, is mutated in
OCCC [17]. Both ARID1A and ARID1B are rarely mutated in SCCOHT [18]. Interestingly,
ARID1A is mutated in the benign condition endometriosis, with OCCC and EnOC de-
scribed as endometriosis-associated ovarian cancers (EAOC) [14,19–21]. SMARCA4 is the
predominant SWI/SNF complex member mutated in SCCOHT, with mutations reported
infrequently in OCCC and HGSOC [17,22,23]. Other subunits of SWI/SNF, specifically
SMARCA2, SMARCB1 and SMARCC1, are reported to be mutated at very low frequency
in OCCC or SCCOHT [17,24,25]. The abrogation of SWI/SNF complex members is not
only governed by genetic mutation, as SMARCA2 can be post-translationally silenced in
SCCOHT [26] and more rarely in OCCC [26,27]. Mutations and epigenetic silencing of
SWI/SNF complex members present therapeutic vulnerabilities, facilitating synthetic lethal
approaches for the treatment of ovarian cancer [28,29]. Mutated or epigenetically silenced
SWI/SNF subunits in ovarian cancer are depicted in Figure 1.
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Figure 1. The distribution of loss-of-function alterations in mammalian SWI/SNF (mSWI/SNF) chro-
matin-remodelling complex members across ovarian cancer histopathological subtypes. The sche-
matic uses the canonical BAF (cBAF) formation of the SWI/SNF complex to depict subunit involve-
ment. A loss-of-function alteration is defined as the presence of a pathogenic mutation in the encod-
ing gene and/or the loss of corresponding protein expression. “Higher association with the SWI/SNF 
complex” is defined as subtypes where over 20% of cases have alterations in at least one complex 
member. An exception was made for undifferentiated/dedifferentiated ovarian cancers due to lim-
ited incidence reporting. Complex members identified as altered in over 40% of a specific subtype 
are indicated in bold and underline. An alteration is presented as ‘rare’ if less than 10 cases were 
reported in the published literature or large cohort analyses (N ≥ 100) report an incidence less than 
10%. Distribution is based on data in Tables 2 and 3 and Tessier-Cloutier and colleagues [30]. Created 
with BioRender.com, Access Date: 9 August 2024. 

In this review, we outline the extent of SWI/SNF complex member mutations and 
epigenetic regulation in a range of histopathological subtypes of ovarian cancer. We show 
that mutations of SWI/SNF complex members predominantly occur in the less frequent 
and very rare subtypes of ovarian cancer that generally respond poorly to current stand-
ard-of-care therapies. Lastly, we discuss the therapeutic opportunities that mutations in 
SWI/SNF complex members may provide for the treatment of patients with these rarer 
subtypes of ovarian cancer. 

2. SWI/SNF Chromatin-Remodelling Complex 
SWI/SNF is critical to maintaining healthy cellular functions, including during em-

bryonic development and for stem cell pluripotency [31–33], in the development of male 
and female gametes [34,35], in cell cycle control [36], and in the DNA damage response 
where this complex is rapidly recruited to double-strand breaks (DSBs) [37,38]. There are 
three distinct forms of the mammalian SWI/SNF complex, specifically canonical BAF 
(cBAF), polybromo-associated BAF (PBAF) and non-canonical BAF (ncBAF), consisting of 
both common and distinct complex members encoded by 29 genes [39]. These distinct 

Figure 1. The distribution of loss-of-function alterations in mammalian SWI/SNF (mSWI/SNF)
chromatin-remodelling complex members across ovarian cancer histopathological subtypes. The
schematic uses the canonical BAF (cBAF) formation of the SWI/SNF complex to depict subunit
involvement. A loss-of-function alteration is defined as the presence of a pathogenic mutation in
the encoding gene and/or the loss of corresponding protein expression. “Higher association with
the SWI/SNF complex” is defined as subtypes where over 20% of cases have alterations in at least
one complex member. An exception was made for undifferentiated/dedifferentiated ovarian cancers
due to limited incidence reporting. Complex members identified as altered in over 40% of a specific
subtype are indicated in bold and underline. An alteration is presented as ‘rare’ if less than 10 cases
were reported in the published literature or large cohort analyses (N ≥ 100) report an incidence less
than 10%. Distribution is based on data in Tables 2 and 3 and Tessier-Cloutier and colleagues [30].
Created with www.BioRender.com, Access Date: 9 August 2024.

In this review, we outline the extent of SWI/SNF complex member mutations and
epigenetic regulation in a range of histopathological subtypes of ovarian cancer. We show
that mutations of SWI/SNF complex members predominantly occur in the less frequent and
very rare subtypes of ovarian cancer that generally respond poorly to current standard-of-
care therapies. Lastly, we discuss the therapeutic opportunities that mutations in SWI/SNF
complex members may provide for the treatment of patients with these rarer subtypes of
ovarian cancer.

2. SWI/SNF Chromatin-Remodelling Complex

SWI/SNF is critical to maintaining healthy cellular functions, including during embry-
onic development and for stem cell pluripotency [31–33], in the development of male and
female gametes [34,35], in cell cycle control [36], and in the DNA damage response where
this complex is rapidly recruited to double-strand breaks (DSBs) [37,38]. There are three
distinct forms of the mammalian SWI/SNF complex, specifically canonical BAF (cBAF),
polybromo-associated BAF (PBAF) and non-canonical BAF (ncBAF), consisting of both com-
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mon and distinct complex members encoded by 29 genes [39]. These distinct forms each
have up to 15 members constituting mammalian chromatin-remodelling complexes [32].

The SWI/SNF complex has significant roles in transcription via its ability to modulate
DNA accessibility. This complex is highly enriched at gene enhancers that bind transcription
factors, where it is associated with the active chromatin mark histone H3 lysine 27 acetyla-
tion (H3K27ac) and has roles in directing lineage specificity [40,41]. SWI/SNF complexes
are also located at promoters and transcription start sites (TSSs) where they function to
regulate transcription [42]. Additionally, these complexes are known to preferentially asso-
ciate with chromatin enriched with the active histone mark of monoubiquitylated histone
H2B at lysine 120 (H2Bub1), which is reliant upon the histone writer Ring Finger Protein 20
(RNF20) [43,44]. Of note, SWI/SNF has antagonistic roles in transcription with proteins
from the Polycomb group (PcG) such as EZH2 (Enhancer of Zeste Homolog 2) as part of the
PRC2 (Polycomb repressor complex 2) that is associated with gene silencing via the catalysis
of the repressive mark trimethylation of histone H3 lysine 127 (H3K127me3) [45–47].

Here, we focus on SWI/SNF complex member genes and their proteins, that are either
mutated or themselves epigenetically regulated in rare subtypes of ovarian cancer. Specifi-
cally, we will review SMARCA4, SMARCA2, SMARCB1, SMARCC1, ARID1A and ARID1B.
SMARCA4 (SWI/SNF-Related, Matrix-Associated, Actin-Dependent Regulator of Chro-
matin, Subfamily A, Member 4) and SMARCA2 (SWI/SNF-Related, Matrix-Associated,
Actin-Dependent Regulator of Chromatin, Subfamily A, Member 2) are mutually exclu-
sive ATP-dependent helicases that are present in all of cBAF, PBAF and ncBAF. These
catalytic subunits are critical to chromatin remodelling, requiring ATP hydrolysis to enable
nucleosome sliding and histone eviction, modulating access to DNA [39,48,49].

Non-catalytic SWI/SNF complex members also have roles to play in ovarian tu-
morigenesis. cBAF has 12 complex members and is the only BAF complex to include
the mutually exclusive AT-rich interaction domain (ARID)-domain containing proteins
ARID1A and ARID1B that bind to DNA (also known as BAF250A and BAF250B (BRG/BRM-
associated factors A and B) [39,50]. SMARCB1 (SWI/SNF-Related, Matrix-Associated,
Actin-Dependent Regulator of Chromatin, Subfamily B, Member 1) is an evolutionarily
conserved subunit of SWI/SNF. The coiled-coil structural motif of the C-terminal domain
of SMARCB1 contains a basic alpha-helix that directly binds to the acidic patch region of
nucleosomes and is critical to the facilitation of chromatin remodelling [51]. SMARCC1
(SWI/SNF-Related, Matrix-Associated, Actin-Dependent Regulator of Chromatin Subfam-
ily C Member 1), is a chromodomain-containing protein and core member of SWI/SNF
that works as a scaffold to promote the stability of the complex, likely by preventing the
proteasomal degradation of key complex members [39,52]. For ease of navigating the
literature, the alternative nomenclature that is used for the SWI/SNF complex members
discussed in this review is summarised in Table 1.

When viewed as an entire complex, SWI/SNF is the most frequently mutated chromatin-
remodelling complex in human malignancy, with around 20% of human cancers har-
bouring a mutation in one of the SWI/SNF complex members (reviewed in [39,53]). Of
note, component genes of SWI/SNF can also carry heterozygous mutations in neurode-
velopmental and autism spectrum-like disorders including Coffin-Siris Syndrome [OMIM:
#135900], Nicolaides–Baraitser syndrome [OMIM: #601358], congenital hydrocephalus
and Hirschsprung’s disease [39,54]. The clinical association of mutated SWI/SNF com-
plex members with developmental disorders supports key roles for complex members in
determining cell fate [55]. SWI/SNF mutations could present viable therapeutic targets,
increasing the response to immune checkpoint blockade (ICB) therapy, likely due to the
differential expression of genes that stimulate the immune response. This would appear
to be applicable even in tumours with low mutational burden, traditionally thought to
respond poorly to immunotherapies [53].
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Table 1. Nomenclature for SWI/SNF (BAF) complex members mutated or otherwise lost in ovarian
cancer subtypes ˆ.

Gene Name Protein Names Function/Role

ARID1A ARID1A, BAF250A DNA binding subunit, paralogue of ARID1B
ARID1B ARID1B, BAF250B DNA binding subunit, paralogue of ARID1A
SMARCA2 SMARCA2, BRM mutually exclusive ATPase subunit
SMARCA4 SMARCA4, BRG1 mutually exclusive ATPase subunit

SMARCB1 SMARCB1, BAF47,
hSNF5, INI-1

core complex member binding directly to acidic
patch on nucleosomes

SMARCC1 SMARCC1, BAF155,
SRG3

core complex member promoting complex
stability

ˆ nomenclature used by referenced studies (for an exhaustive list of aliases, see Genecards https://www.genecards.
org, Access Date: 9 August 2024). Abbreviations: ARID1A (AT-rich interactive domain-containing protein 1A);
ARID1B (AT-rich interactive domain-containing protein 1B); BAF (BRG1-or BRM-associated factors); BAF47 (BRG1-
associated factor 47); BAF155 (BRG1/BRM-associated factor 155); BAF250A (BRG/BRM-associated factor A);
BAF250B (BRG/BRM-associated factor B); BRG1 (Brahma-related gene 1); BRM (Brahma); hSNF5 (human Sucrose
Non-Fermenting 5); INI-1 (Integrase Interactor 1); SMARCA2 (SWI/SNF-Related, Matrix-Associated, Actin-
Dependent Regulator of Chromatin, Subfamily A, Member 2); SMARCA4 (SWI/SNF-Related, Matrix-Associated,
Actin-Dependent Regulator of Chromatin, Subfamily A, Member 4); SMARCB1 (SWI/SNF-Related, Matrix-
Associated, Actin-Dependent Regulator of Chromatin, Subfamily B, Member 1); SMARCC1 (SWI/SNF-Related,
Matrix-Associated, Actin-Dependent Regulator of Chromatin Subfamily C Member 1); SRG3 (SWI/SNF-related
gene 3); SWI/SNF (SWItch/Sucrose Non-Fermentable; also known as the BAF complex).

3. SWI/SNF Complex Members Are Primarily Mutated in Poorer Prognosis Ovarian
Cancer Subtypes and Endometriosis

Distinct subtypes of the group of ovarian cancers that harbour mutations of SWI/SNF
complex members in catalytic, DNA-binding and core-stabilising subunits have some
commonalities. In comparison to HGSOC that occurs in around 70% of all ovarian cancers,
SWI/SNF-mutated ovarian cancers occur more rarely, present at an earlier age, and are
more chemoresistant. With the exception of SCCOHT where both germline and somatic
mutations can occur, the mutations of genes encoding SWI/SNF complex members in
ovarian cancer occur somatically (see Table 2). While highly aggressive dedifferentiated
and undifferentiated ovarian carcinomas are not discussed in depth in this review, these
rare malignancies are also reported to have lost the expression of key SWI/SNF complex
members [30]. The mutation of ARID1A has also been observed in endometriosis, with
evidence suggesting that endometriotic lesions are precursors to the development of OCCC
and EnOC, with disease progression driven by loss of this tumour suppressor [56]. In the
following, we focus on the clinical nature and presentation of SWI/SNF-mutated ovarian
cancers and discuss the extent of SWI/SNF complex member mutations in these tumours.

3.1. Ovarian Clear Cell Carcinoma (OCCC)
3.1.1. Clinical Presentation and Epidemiology of OCCC

The median age of diagnosis of patients with OCCC has been reported as 55 years,
much lower than that for patients with the more frequently diagnosed serous ovarian
cancers at 64 years [7]. OCCC is one of the rarer ovarian cancer histopathological subtypes,
with reported differences in frequency based on race and geographical location. In North
America and Europe, OCCC is reported to constitute between 1–12% of all ovarian cancers;
however, in Asian countries, this frequency is higher [57]. In Korea, around 12.5% of
patients with ovarian cancer have OCCC [58]. A study conducted at Qingdao University
in China showed that 14.2% of women with ovarian cancer in a cohort of 697 patients
from a single hospital had OCCC [59]. In Taiwan, around 20% of patients with ovarian
cancer have been reported to have OCCC [60]. Japan demonstrates the highest frequency
of OCCC patients, constituting almost 27% of all patients with ovarian cancer [61]. The
Surveillance, Epidemiology, and End Results (SEER) study showed that 4.8%, 3.1%, and
11.1% of white, black, and Asian women, respectively, living with ovarian cancer in the
USA, have the OCCC subtype [7]. The drivers of these global differences in frequency are
currently unclear, although it is interesting to note that Asian women living in the USA
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have higher frequencies of OCCC compared to non-Asian women, suggesting that ethnicity
does play a role in the development of this subtype.

OCCC exhibits distinctive histopathological characteristics and clinical behaviours
compared to other ovarian cancer subtypes. Macroscopically, this tumour mostly presents
as a unilateral mass that is either solid, a mix of solid and cystic, or a predominantly cystic
mass. Microscopically, characteristic features often include a combination of solid, tubulo-
cystic and papillary patterns, with cells having large nuclei and abundant cytoplasmic
glycogen that give them a clear appearance [62–66]. Clear cell changes are also observed
mixed with other ovarian cancer subtypes [66]. OCCC is frequently found in conjunction
with endometriosis, with endometriotic lesions speculated to be the precursor lesion for
this malignancy [56,67].

OCCC tends to be diagnosed at an earlier FIGO (International Federation of Gynae-
cology and Obstetrics) stage than HGSOC, with studies reporting between 48.5 and 56.3%
of OCCC presenting at Stage I compared with 12–16.6% of serous ovarian cancers, and
between 9.9–11% of OCCC at Stage II compared with 5.5–7.2% of serous tumours [7,68].
Conversely, when considering advanced stages, 20.9–30.7% of OCCC were reported as
Stage III at diagnosis compared with 45.7–61.7% of serous tumours. Diagnosis with Stage
IV disease occurred in only 10.9–11.8% of OCCC compared with 16.2–35.2% of serous
tumours [7,68]. In a large meta-analysis, OCCC patients were shown to have a poorer
prognosis relative to tumour stage than other ovarian cancer subtypes, especially when di-
agnosed with advanced disease [69]. Furthermore, it has been shown that when diagnosed
at early stages, OCCC patients had better PFS times compared to patients with serous
ovarian cancer; however, OS was significantly decreased for these patients compared to
those with serous ovarian cancer [70]. Similar findings have been reported by others [59,71].
In the context of therapy, between 11–27% of women with OCCC respond to first-line
platinum-based therapy, with only 1–2% of women responsive to treatment once relapse
has occurred [68,72,73]. These studies clearly indicate that there would be benefits to
diagnosing OCCC in patients at an earlier stage; however, as for all ovarian cancer, OCCC
currently lacks early screening tests that would enable this goal.

3.1.2. SWI/SNF Complex Member Mutations in OCCC

Of the SWI/SNF complex members, ARID1A is the most frequently mutated in OCCC,
with studies reporting between 42–67% of these tumours with somatic ARID1A mutation
(Table 2) [13–15,17,74–79]. The immunohistochemical loss of ARID1A is seen in between
15–76% of OCCC (Table 3) [15,27,80–82]. ARID1A behaves as a tumour suppressor gene
in OCCC, with both alleles presumed to be affected by concomitant variants, specifically
mutations (deletions and insertions as well as nonsense mutations, all leading to premature
STOP codons that would truncate the normal protein) and loss of heterozygosity, or the
presence of presumably biallelic mutations [14,76]. In a study of 55 OCCC, the ARID1A
paralogue ARID1B was reported to be mutated in 18% of tumours (Table 2) [17]. Tumours
in which both ARID1A and ARID1B are mutated are reported to retain a wild-type allele of
ARID1B, providing evidence that a certain level of wild-type ARID1B is essential to avoid
synthetic lethality in ARID1A-mutant tumours [83]. An absence of functional ARID1A
would seem to result in dependency on its mutually exclusive paralogue ARID1B, the
depletion of which has been shown to destabilise SWI/SNF and inhibit cellular prolifera-
tion [84,85]. While this has yet to result in a new therapy for ARID1A-mutated tumours, the
identification of a drug(s) that targets and abolishes ARID1B function in ARID1A-mutated
tumours could represent a new therapeutic strategy for OCCC.



Cancers 2024, 16, 3068 7 of 25

Table 2. Mutations in genes encoding SWI/SNF complex members identified in primary ovarian
cancers of different histotypes.

Gene Histotype Mutated Reference

ARID1A OCCC 66.7% (32 of 48) Shibuya et al., 2017 [13]
OCCC 62% (24 of 39) Murakami et al. [75]
OCCC 57% (24 of 42) Jones et al. [76]
OCCC 55% (17 of 31) Wiegand et al. [79]
OCCC 49% (27 of 55) Schnack et al. [78]
OCCC 46% (55 of 119) Wiegand et al. [14]
OCCC 42% (23 of 55) Itamochi et al. [17]
OCCC 41.5% (17 of 41) a Kuroda et al. [15]
OCCC 7 of 9 Su et al. [74]

OCCC b 1 of 1 Kihara et al. [77]

EnOC 45% (9 of 20) a Kuroda et al. [15]
EnOC 30% (10 of 33) Wiegand et al. [14]
EnOC 21% (5 of 24) Wiegand et al. [79]
EnOC 1 of 7 Su et al. [74]

HGSOC 19% (6 of 32) Vaicekauskaitė et al. [16]
HGSOC 0% (0 of 76) Wiegand et al. [14]
HGSOC 0% (0 of 36) a Kuroda et al. [15]

MOC 2 of 6 a Kuroda et al. [15]

SCCOHT 1 of 6 Auguste et al. [18]
SCCOHT 1 of 1 Genestie et al. [86]
SCCOHT 1 of 1 Sanders et al. [87]

ARID1B OCCC 18% (10 of 55) Itamochi et al. [17]

SCCOHT 1 of 6 Auguste et al. [18]
SCCOHT 1 of 1 Genestie et al. [86]

SMARCA4 SCCOHT 100% (12 of 12) c Jelinic et al. [22]
SCCOHT 100% (10 of 10) Le Loarer et al. [88]
SCCOHT 92% (24 of 26) c Witkowski et al., 2014 [89]
SCCOHT 91.9% (10 of 11) a Jelinic et al. [90]
SCCOHT 83.3% (15 of 18) Lin et al. [91]
SCCOHT 79% (19 of 24) a,c,d Ramos et al. [25]
SCCOHT 69% (9 of 13) a,c,d Ramos et al. [92]
SCCOHT 8 of 8 c Moes-Sosnowska et al. [93]
SCCOHT 7 of 7 a Mazibrada et al. [94]
SCCOHT 5 of 6 Auguste et al. [18]
SCCOHT 2 of 2 Kupryjańczyk et al. [95]
SCCOHT 2 of 2 a,c Chandan et al. [96]
SCCOHT 1 of 1 c Sanders et al. [87]
SCCOHT 1 of 1 Li et al. [97]
SCCOHT 1 of 1 Gao et al. [98]
SCCOHT 1 of 1 c Pressey et al. [99]
SCCOHT 1 of 1 Mathey et al. [100]
SCCOHT 1 of 1 c Mehta et al. [101]
SCCOHT 1 of 1 c Pastorczak et al. [102]
SCCOHT 1 of 1 c Connor et al. [103]
SCCOHT 1 of 1 c David et al. [104]
SCCOHT 1 of 1 Bailey et al. [105]
SCCOHT 1 of 1 a c Lavrut et al. [106]
SCCOHT 1 of 1 a Fahiminiya et al. [107]
SCCOHT 1 of 1 a Gao et al. [108]
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Table 2. Cont.

Gene Histotype Mutated Reference

SCCOHT 1 of 1 a Aoyagi et al. [109]

OCCC 5% (3 of 55) Itamochi et al. [17]

HGSOC 1 of 1 c Muppala et al. [23]

SMARCA2 OCCC 2% (1 of 55) Itamochi et al. [17]

SMARCB1 SCCOHT 1 of 1 Simões et al. [24]
SCCOHT 1 of 1 Ramos et al. [25]

SMARCC1 OCCC 2% (1 of 55) Itamochi et al. [17]
Overlap between cohorts exists in some studies. Percentages are reported for cohort sizes ≥ 10. Abbreviations:
OCCC, ovarian clear cell carcinoma; EnOC, endometrioid ovarian cancer; MOC, mucinous ovarian cancer; HGSOC,
high-grade serous ovarian cancer; SCCOHT, Small cell carcinoma of the ovary, hypercalcemic type. Symbols:
a Corresponding immunohistochemical data are reported in Table 2; b with immature teratoma component; c

includes patients with confirmed germline mutation; d extensive overlap exists between cases in these reports.

Table 3. Immunohistochemical analyses of specific SWI/SNF complex members identified in primary
ovarian cancers of different histotypes.

Complex Histotype Loss of Expression Reference
Member

ARID1A OCCC 76% (31 of 41) a Kuroda et al. [15]
OCCC 55% (23 of 42) Yamamoto et al. [80]
OCCC 39% (44 of 112) Itamochi et al. [81]
OCCC 33% (30 of 92) Bennett et al. 2021 [27]
OCCC 15% (9 of 60) Katagiri et al. [82]

EnOC 60% (12 of 20) a Kuroda et al. [15]

HGSOC 19% (7 of 36) a Kuroda et al. [15]
HGSOC 0% (0 of 17) Katagiri et al. [82]

MOC 0 of 6 a Kuroda et al. [15]

ARID1B OCCC 15% (8 of 53) Sato et al. [85]

SMARCA4/ SCCOHT 100% (12 of 12) Karianian-Phillipe et al. [110]
BRG1 SCCOHT 97% (34 of 25) a Witkowski et al. [89]

SCCOHT 96% (54 of 56) b Clarke et al. [111]
SCCOHT 94% (16 of 17) Conlon et al. [112]
SCCOHT 92% (46 of 50) c Karnezis et al. [113]
SCCOHT 89% (16 of 18) Zheng et al. [114]
SCCOHT 88% (39 of 44) Genestie et al. [86]
SCCOHT 84% (16 of 19) a Ramos et al. [25]
SCCOHT 82% (14 of 17) a Ramos et al. [92]
SCCOHT 64% (7 of 11) a,d Jelinic et al. [90]
SCCOHT 2 of 2 a Chandan et al. [96]
SCCOHT 1 of 1 Aggarwal et al. [115]
SCCOHT 1 of 1 e Atwi et al. [116]
SCCOHT 1 of 1 a Lavrut et al. [106]
SCCOHT 1 of 1 a Fahiminiya et al. [107]
SCCOHT 1 of 1 Altmann et al. [117]
SCCOHT 1 of 1 a Gao et al. [108]
SCCOHT 1 of 1 Saylany et al. [118]
SCCOHT 1 of 1 a Aoyagi et al. [109]
SCCOHT 0 of 1 Coşkun et al. [119]
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Table 3. Cont.

Complex Histotype Loss of Expression Reference
Member

SCCOHT 0 of 7 a Mazibrada et al. [94]

OCCC 5% (1 of 20) Jelinic et al. [26]
OCCC 4% (15 of 360) Karnezis et al. [113]
OCCC 3% (1 of 37) Conlon et al. [112]
OCCC 2% (2 of 93) Ramos et al. [92]
OCCC 0% (0 of 105) Bennett et al. [27]

HGSOC 0% (0 of 1198) Karnezis et al. [113]
HGSOC 0% (0 of 204) Ramos et al. [92]
HGSOC 0% (0 of 42) Conlon et al. [112]
HGSOC 0% (0 of 33) Karianian-Phillipe et al. [110]

endometrioid
f 0% (0 of 268) Karnezis et al. [113]

EnOC 0% (0 of 38) Conlon et al. [112]
endometrioid

f 0% (0 of 36) Ramos et al. [92]

mucinous g 0% (0 of 110) Karnezis et al. [113]
mucinous g 0% (0 of 14) Ramos et al. [92]

LGSOC 0% (0 of 53) Karnezis et al. [113]
LGSOC (0 of 9) Ramos et al. [92]

SMARCA2/ SCCOHT 100% (45 of 45) h Karnezis et al. [113]
BRM SCCOHT 90% (9 of 10) Jelinic et al. [26]

SCCOHT 86% (31 of 36) Genestie et al. [86]
SCCOHT 7 of 7 a Mazibrada et al. [94]
SCCOHT 5 of 6 Auguste et al. [18]
SCCOHT 1 of 1 Sanders et al. [87]
SCCOHT 1 of 1 Mehta et al. [101]
SCCOHT 1 of 1 Simões et al. [24]
SCCOHT 1 of 1 Altmann et al. [117]

OCCC 8% (8 of 104) Bennett et al. [27]
OCCC 5% (1 of 20) Jelinic et al. [26]

SMARCB1/ SCCOHT 13% (2 of 16) Ramos et al. [25]
INI-1 SCCOHT 6% (3 of 50) Karnezis et al. [113]

SCCOHT 0% (37 of 37) Clarke et al. [111]
SCCOHT 0 of 1 Coşkun et al. [119]
SCCOHT 0 of 1 Mehta et al. [101]

OCCC 0% (0 of 150) Bennett et al. [27]
Percentages are reported for cohort sizes ≥10. There is extensive overlap in cohorts studied in Ramos et al.
[92], Ramos et al. [25], and Karnezis et al. [113]. Abbreviations: OCCC, ovarian clear cell carcinoma; EnOC,
endometrioid ovarian cancer; MOC, mucinous ovarian cancer; HGSOC, high-grade serous ovarian cancer;
SCCOHT, Small cell carcinoma of the ovary hypercalcemic type. Symbols: a Corresponding gene mutation data are
reported in Table 1; b 41 samples in this study previously published, including genetic and immunohistochemical
data; c SCCOHT cohort consists of 46 primary tumours, 2 patient-derived xenografts and 2 cell lines; d three
samples reported as “equivocal” for BRG1/SMARCA4 immunostaining and one with an in-frame deletion
showed the retention of BRG1/SMARCA4; e subsequent germline testing revealed a SMARCA4 mutation; f all of
endometrioid carcinoma, mixed carcinoma and borderline tumours; g both borderline and malignant mucinous
tumours; h all tumours reported for loss of BRM/SMARCA2 immunostaining had a mutation in either SMARCA4
(43 of 45) or SMARCB1 (2 of 45).
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A single study has reported additional SWI/SNF complex member mutations in
a small number of OCCC cases, specifically in both of the mutually exclusive ATPase
subunits SMARCA4 (3 of 55 tumours) and SMARCA2 (1 of 55 tumours), as well as in the
core scaffold subunit SMARCC1 (1 of 55 tumours) (Table 2) [17]. Furthermore, the loss
of SMARCA4 detected by immunohistochemistry has been reported in between 2–5% of
OCCC [26,92,112,113]. The immunohistochemical loss of SMARCA2 has also been reported
in OCCC in between 5–8% of cases [26,27]. The dual loss of SMARCA4 and SMARCA2 has
not been reported in OCCC [26,27]. A single immunohistochemical study of SMARCB1
in 105 OCCCs showed the retention of this protein [27]. It will be interesting to determine
whether additional mutations or otherwise dysregulated SWI/SNF complex members will
be identified in new studies of primary OCCCs.

3.2. Small Cell Carcinoma of the Ovary, Hypercalcaemic Type (SCCOHT)
3.2.1. Clinical Presentation and Epidemiology of SCCOHT

SCCOHT is an exceedingly rare and aggressive subtype of ovarian cancer, believed to
account for less than 0.01% of all ovarian malignancies [120]. Cells constituting primary
SCCOHT tumours have been described as small and round with hyperchromatic nuclei
and minimal cytoplasm [121]. The cell of origin has been under debate, although aspects
of its clinical presentation that include positive staining for the germ-cell markers SALL4,
OCT3/4, alpha-fetoprotein (AFP) and glypican 3 suggest that SCCOHT is most likely of
germ-cell origin [122]. Similarities between SCCOHT and malignant rhabdoid tumours
have been drawn, with one study suggesting that SCCOHT be renamed as ‘malignant
rhabdoid tumour of the ovary’ [123].

In contrast to other subtypes of ovarian cancer that generally, but not always, occur
in post-menopausal women, SCCOHT is predominantly diagnosed in the vastly different
demographic of infants, children and women of child-bearing age, with a median age
of onset of 25 years [8,124]. The youngest diagnosis of SCCOHT reported to date is in a
12-month-old child, while the oldest is a woman of 56 years [116,125]. A recent case report
described a 28-year-old woman diagnosed in the last trimester of pregnancy [118]. Patients
have reported with general symptoms including nausea, weight loss, constipation and
fatigue, as well as abdominal pain and/or swelling. Between 50–70% of patients with
SCCOHT have associated hypercalcaemia [8,126,127]. Immunohistochemical analyses of
primary tumours have observed elevated parathyroid hormone-related protein (PTHrp)
in some cases, suggesting that PTHrp may be the underlying cause of hypercalcaemia
in SCCOHT [128]. In a systematic review of 67 studies describing 306 SCCOHT patients,
elevation of the serum glycoprotein CA-125 was reported in around 80% [8].

The five-year OS for patients diagnosed at the earliest stage (FIGO Stage I) has been
reported as 51%, with patients diagnosed after this time (FIGO Stages II-IV) having a
reduced OS of only 24% [8]. Both familial and sporadic cases of SCCOHT have been
reported [124,125]. The international SCCOHT consortium has proposed consensus guide-
lines for the diagnosis and care of SCCOHT patients, including radical surgery, adjuvant
chemotherapy and radiotherapy [121]. Despite this, the risk of spread beyond the ovary
remains high and outcomes are poor [127]. While SCCOHT tumours are initially chemosen-
sitive, the time to recurrence can be short, with relapsed tumours displaying a reduced
response to chemotherapy [121,127].

3.2.2. SWI/SNF Complex Member Mutations in SCCOHT

SCCOHT tumours have a low tumour mutational burden (TMB), with studies report-
ing less than six mutations/Mb on a background of genomic stability and low copy number
changes [18,91]. The mutation of one of the SWI/SNF ATPases, SMARCA4, is the predomi-
nant mutation in SCCOHT, reported in between 69–100% of cases in studies of 10 or more
patients [22,25,88–92]. Similar results have been reported in studies of less than 10 patients,
as well as in many case studies [18,87,93–109]. Numerous studies have reported the pres-
ence of a germline SMARCA4 mutation in SCCOHT [22,25,87,89,92,93,96,99,101–104,106].
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This would indicate that at least in these tumours, SMARCA4 mutation is occurring as
an early event across the timeline of tumorigenesis. SMARCA4 mutation has also been
implied by immunohistochemical studies of SMARCA4 depletion in the absence of genetic
analyses [86,110–119]. Reports of SMARCA4 mutations and protein loss in SCCOHT are
summarised in Tables 2 and 3.

The loss or depletion of SMARCA2, but not SMARCA2 mutation, is reported in
SCCOHT concomitant with SMARCA4 mutations, implying epigenetic mechanisms of
SMARCA2 silencing [18,24,26,86,87,94,101,113,117] (Tables 2 and 3). The loss of both the
SWI/SNF ATPases is exceedingly rare in human malignancy, as cancer cells normally
need at least one of these ATPases to be functioning in order to survive, proliferate and
metastasise [113]. Rare variants of non-ovarian cases of concomitant SMARCA2 and
SMARCA4 loss have been reported for cancer types including lung [88,129], endome-
trial [130], gastrointestinal tract [131], sinonasal undifferentiated carcinoma [132], and
rhabdoid tumours [133]. The key survival mechanisms of this intriguing dual loss of
the mutually exclusive SWI/SNF ATPases SMARCA4 and SMARCA2 remain to be de-
termined. It has been reported that after the dual loss of SMARCA4 and SMARCA2,
the residual SWI/SNF complex can still bind to accessible chromatin but results in dis-
rupted transcriptional regulation that impacts upon the expression of genes involved in
cellular processes and behaviours, including differentiation, epithelial–mesenchymal tran-
sition (EMT), metastasis, DNA repair, apoptosis, adhesion, immunity, metabolism, drug
metabolism, proliferation and angiogenesis [134,135].

The mutation of SMARCB1, one of the most conserved subunits of SWI/SNF, is
rarely reported in SCCOHT. A 19-year-old woman presented with a highly aggressive
case of SCCOHT that was found to have a somatic nonsense point mutation in SMARCB1
with loss of the wild-type allele and a low TMB of less than two mutations/Mb [24].
The patient received high-dose chemotherapy and stem cell transplantation; however,
disease progression was rapid and she died 11 months after the presentation of initial
symptoms. A homozygous frameshift SMARCB1 mutation in a SCCOHT tumour has also
been reported [25] (Table 2). The immunohistochemical loss of SMARCB1 has been reported
in 6% (3 of 50) [113] and 13% (2 of 16) [25] of SCCOHT tumours studied (Table 3). Mutation
of ARID1A and ARID1B has also been infrequently reported in SCCOHT [18,86,87] (Table 2).

3.3. Endometrioid Ovarian Cancer (EnOC) and Other Ovarian Cancer Subtypes—Links to
Abrogated SWI/SNF

Similar to OCCC, EnOC has also been associated with the presence of endometriosis,
with these two subtypes together referred to as EAOCs [14,19–21,56]. A large systematic
review and meta-analysis found a 2.3-fold higher risk of EnOC in women with endometrio-
sis [136]. EnOC is a distinct ovarian cancer subtype accounting for up to ~15% of all ovarian
cancers [137]. It tends to be diagnosed at an earlier stage (FIGO Stages I–II), and as a
result, most patients have a more favourable prognosis than other ovarian cancer sub-
types [138]. In addition to its association with endometriosis, EnOC is also associated with
Lynch syndrome [139] and can occur in patients who have endometrial cancer [138,140].
Relative to SCCOHT and OCCC, there are fewer reports investigating SWI/SNF complex
members in EnOC. ARID1A mutations have been reported in between 21–45% of cases of
EnOC [14,15,74,79] (Table 2). Furthermore, the immunohistochemical loss of ARID1A has
been reported in 60% (12 of 20) of EnOC cases [15]. In studies of EnOC, mixed carcinoma
and borderline tumours did not identify the immunohistochemical loss of SMARCA4
(Table 3) [92,112,113].

Tables 2 and 3 also summarise the involvement of SWI/SNF complex members in
ovarian cancer subtypes other than OCCC, EnOC and SCCOHT. ARID1A mutations have
been reported in a single study in 2 of 6 cases of MOC [15]; however, the same study did not
report a corresponding loss of ARID1A following immunohistochemical analyses. Further,
correlations observed between ARID1A mutations and CD8 and PD-L1 (programmed
death ligand 1) levels in other ovarian cancer subtypes were not observed for MOC in
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this study [15]. Immunohistochemical studies of borderline and malignant MOC have
not shown a loss of SMARCA4 [92,113]. Two immunohistochemical studies in low-grade
serous ovarian cancer (LGSOC) reported a retention of SMARCA4 [92,113]. Of note,
mutation of ARID1A has been reported infrequently in HGSOC [14–16], with a single
case report of a SMARCA4 mutation in HGSOC [23]. This patient presented at 57 years
of age, and her SMARCA4 mutation was found to be germline. It is important to note
that this patient also had a BRCA2 variant of unknown significance that could not be
excluded as a driver mutation of her HGSOC. Further, SMARCC1, referred to as BAF155,
is proposed to be methylated by the arginine methyltransferase CARM1 (Coactivator-
Associated Arginine Methyltransferase 1) in HGSOC, typically without mutations in BRCA1
or BRCA2 [141]. While interesting, additional studies of CARM1 amplification and BAF155
methylation leading to down-regulation in primary ovarian tumours would be required to
draw further conclusions.

3.4. Endometriosis and the SWI/SNF Complex

Globally, endometriosis is believed to affect 5–10% of women of reproductive age [142],
however, this figure increases for certain groups of patients, such as those who are symp-
tomatic [143]. Despite these high frequencies, the exact cause of this chronic condition has
not been determined, with theories including retrograde menstruation and endometriotic
lesions being of stem cell origin [144]. Numerous studies have reported an elevated risk
of developing ovarian cancer in patients with endometriosis [64,66,67,145–151]. The most
recent and one of the largest of these studies by Barnard and colleagues investigated the
Utah Population Database and reported a 4.2-fold higher ovarian cancer risk in women
with endometriosis compared to those without, and a 9.7-fold greater risk for women with
ovarian endometriomas and/or deep-infiltrating endometriosis [145]. Similar results were
also seen in an earlier study, whereby a higher proportion of these ovarian cancers were
OCCC or EnOC [136]. Endometriosis has been identified in between 21–51% of women
with OCCC and 23–43% of women with EnOC [146,152,153].

Identical mutations in ARID1A have been identified in OCCC and synchronous en-
dometriotic lesions, providing a strong argument for malignant OCCC arising from these
apparently benign lesions [67]. Should this be the case, it would suggest that at least in
OCCC associated with endometriosis, the loss of ARID1A is an early event in the timeline
of tumorigenesis. Endometriotic lesions occurring without EAOCs or distant from an
ARID1A-deficient EAOC have shown diffuse immunoreactivity for ARID1A [80]. The
immunohistochemical loss of ARID1A in endometriotic lesions has been suggested as a
putative prognostic biomarker for ovarian cancer risk [149]. The potential involvement of
other abrogated SWI/SNF complex members in endometriosis is currently unknown. The
underlying factors driving the malignant transformation of endometriotic lesions remain
to be fully elucidated, with suggestions including exposure to oestrogen or an imbalance of
oestrogen receptors, oxidative stress, inflammatory processes, local nutrient availability
and metabolic reprogramming [19]. Whether ARID1A defects present an actionable target
in endometriosis also remains to be determined, with the types of drugs discovered to treat
malignancy needing to be considered in a different context for potential management of a
predominantly benign chronic condition.

4. SWI/SNF Abrogation in Ovarian Cancer Represents Therapeutic Vulnerabilities

Pharmacological targeting of the effects of mutant SWI/SNF complex members, with a
specific focus on mutant ARID1A and SMARCA4 for the purpose of treating patients with
OCCC or SCCOHT, span a number of drug classes. These include immunotherapeutics,
kinase inhibitors, inhibitors of the DNA damage response including PARP inhibitors, and
epigenetic inhibitors (Figure 2).
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tostat [162]. Therapeutic drugs tested in SCCOHT patients include nivolumab [163], ipilimumab 
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Figure 2. Therapeutic drugs investigated in patients with OCCC or SCCOHT and pre-clinical models
of these tumours. Molecular targeted therapies including immune checkpoint inhibitors, epige-
netic inhibitors, PARP inhibitors and kinase inhibitors have been trialled in patients with OCCC
or SCCOHT, as well as in vitro and in vivo pre-clinical models ˆ of these malignancies. Where pa-
tients did not respond to, or tolerate, a drug, this is indicated by #. Drugs listed were administered
to patients or tested in pre-clinical models either as monotherapies or in conjunction with other
drug(s). A higher TMB is reported for OCCC, indicated by a green arrow, while SCCOHT has a
low TMB, indicated by a red arrow. Both OCCC and SCCOHT have TILs. Both tumour types have
high levels of PD-L1. Therapeutic drugs tested in OCCC patients, include pembrolizumab [154],
durvalumab [155], toripalimab [156], olaparib [157], everolimus [156], and dasatinib [158], and in pre-
clinical models include iBET-762 [159], ACY1215 [160], CPI203 [159], ceralasertib [161] and tulmimeto-
stat [162]. Therapeutic drugs tested in SCCOHT patients include nivolumab [163], ipilimumab [163],
pembrolizumab [103,164], durvalumab [108], olaparib [108,163], tazemetostat [165], abemaciclib [163],
palbociclib [108] and ponatinib [163], and in pre-clinical models include GSK126 [166], OTX015 [167],
tazemetostat [166,168] and palbociclib [169]. Drugs trialled in patients were on occasion administered
either sequentially, informed by patient response, or together. Drug combinations of this nature in
OCCC patients included pembrolizumab (combined with bevacizumab and cyclophosphamide) [154],
pembrolizumab (combined with bevacizumab and olaparib) [157], and toripalimab (combined with
everolimus) [156]. Drug combinations trialled in SCCOHT patients included pembrolizumab (fol-
lowing cycles of cisplatin/etoposide and carboplatin/paclitaxel) [103], nivolumab and ipilimumab
(followed by ponatinib, abemaciclib and olaparib) [163]. In a single case report, a SCCOHT patient
was administered six lines of chemotherapy of multiple drugs that included durvalumab, olaparib
and palbociclib [108]. Abbreviations: ATR, Ataxia-telangiectasia-mutated (ATM) and RAD3-related;
BET, bromo- and extra-terminal domain family; CDK4/6, cyclin-dependent kinases 4 and 6; CTLA-4,
cytotoxic T-lymphocyte-associated protein 4; EZH1/2, Enhancer Of Zeste 1/2 Polycomb repressive
complex 2 subunit; HDAC6, histone deacetylase 6; mTOR, mammalian target of rapamycin; OCCC,
ovarian clear cell carcinoma; PARP, Poly (ADP-ribose) polymerase; PD-1, programmed cell death
protein 1; PD-L1, programmed death-ligand 1; SCCOHT, Small cell carcinoma of the ovary, hypercal-
caemic type; TILS, Tumour-infiltrating lymphocytes; TMB, tumour mutational burden. Both tumour
types also have high levels of PD-L1. Created with www.BioRender.com, Access Date: 9 August 2024.
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4.1. Immunotherapy

Most ovarian cancer subtypes, and especially the most frequently diagnosed HGSOC,
at best show only modest responses to immunotherapy, with clinical trials suggesting
responses as low as 8% of patients [170–173]. This does not appear to be the case for OCCC
and SCCOHT, with ICB being trialled on patients with SCCOHT and OCCC. The knockout
of ARID1A has been shown to increase levels of CD274 and the protein it encodes—PD-L1,
the predominant ligand of programmed death 1 (PD-1)—both in vitro and in vivo [160,174].
Wild-type ARID1A and ARID1B are located at the promoter of CD274 in OCCC cells (shown
in the human OVCA429 and RMG1 cell lines, as well as mouse ovarian ID8-Defb29/Vegf
cancer cells), although ARID1B was not able to influence the levels of CD274 in ARID1A
knockout (KO) cells [160]. CRISPR-Cas9 KO of ARID1A in ID8 cells investigated in both an
intraperitoneal and an orthotopic model showed increased tumour-infiltrating lymphocytes
and PD-L1 levels and a greater response to an anti-PD-L1 antibody compared to WT
ARID1A tumours, with lower tumour burden and prolonged survival [174]. All of these
factors suggest that a response to ICB is likely in the presence of ARID1A mutation.

ARID1A is a binding partner of the mismatch repair (MMR) protein MSH2, although
it does not appear to regulate MSH2, or other MMR genes (MLH1, MSH3, MSH6, PMS1
and PMS2), at the transcriptional level [174]. OCCC has a higher TMB than other ovarian
cancer subtypes, although this is not seen in all cases [15,175]. Like SCCOHT, OCCC has
a relatively low level of copy number abnormalities, possibly due to the loss of ARID1A
causing defects in telomere cohesion leading to the removal of defective chromosomal
changes during mitosis [176]. The anti-PD-L1 monoclonal antibody durvalumab that
blocks the binding of PD-L1 and PD-1, as well as CD80, has been trialled in OCCC (www.
ClinicalTrials.gov, NCT03405454) [155]. A combination of pembrolizumab (anti-PD-1
monoclonal antibody), bevacizumab (anti-angiogenic anti-VEGF monoclonal antibody)
and cyclophosphamide has been trialled in a small number of patients with OCCC, with
durable responses observed, but also treatment-limiting toxicities [154]. ICB has been
the focus of other studies in OCCC with mixed results in individual patients [156,177].
Investigation of an OCCC molecular signature that maximises the likelihood that a patient
will respond to ICB is warranted [178].

In contrast to OCCC, SCCOHT tumours have low TMB and are genomically stable, but
like OCCC have low copy number variations [18,91]. This molecular profile would suggest
that SCCOHT may not be responsive to immunotherapy; however, many tumours have
been shown to have high PD-L1 expression in both tumour and stromal cells accompanied
by robust associated T-cell infiltration [90]. It is possible that the loss of SMARCA4 in
SCCOHT reprograms the transcriptional landscape to influence tumour immunogenicity,
creating an environment that is more permissive to ICB [90].

Anti-PD-1 ICB with pembrolizumab has been trialled in SCCOHT patients with en-
couraging results [90,164], although not all SCCOHT patients respond to ICB [103,164].
A 34-year-old patient diagnosed with FIGO Stage II SCCOHT with a somatic SMARCA4
mutation was reported to have a remarkable response of over 5 years of survival post recur-
rence, treated with ICB plus anti-angiogenic therapy and CDK4/6 (cyclin-dependent kinase
4 and 6) inhibitors [108]. A 21-year old patient diagnosed with SCCOHT and a germline
SMARCA4 mutation underwent high-dose chemotherapy followed by an autologous stem
cell transplant and a combination of drugs, including nivolumab (anti-PD-1 monoclonal
antibody) and ipilimumab (anti-CTLA-4 (Cytotoxic T-Lymphocyte Associated Protein 4)
monoclonal antibody), as well as the multi-tyrosine kinase inhibitor ponatinib and abe-
maciclib (selective CDK4/6 inhibitor), surviving at least three years post diagnosis [163].
Clinical trial activity focused on ICB for SCCOHT patients, including in combination with
other therapies, have been undertaken or are currently active [108,121]. As for OCCC,
decisions regarding ICB in SCCOHT patients will benefit from determining molecular
signatures that are congruent with response to ICB drugs.

www.ClinicalTrials.gov
www.ClinicalTrials.gov
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4.2. Kinase Inhibitors

Drugs in the receptor tyrosine kinase family have been shown to have selective benefit
in SCCOHT cell lines with the dual loss of SMARCA4 and SMARCA2 [179]. Unbiased syn-
thetic lethal screens using a short hairpin RNA (shRNA) targeting the human kinome in a
SMARCA4/SMARCA2-deficient model of SCCOHT led to the identification of CDK4/6 in-
hibitors as a molecular target therapy for this malignancy [169]. The molecular mechanism
underpinning this sensitivity is low levels of cyclin D1 in SMARCA4-deficient cells, given
that SMARCA4 directly regulates the transcription of the cyclin D1 gene CCND1 [169].
As noted above, treatment responses in SCCOHT have been observed with ponatinib
and abemaciclib in conjunction with other therapies, including ICB [163]. Dasatinib, a
second-generation multi-tyrosine kinase inhibitor administered as a monotherapy, did
not show treatment benefits for OCCC [158]. The loss of ARID1A has been linked to the
activation of MAPK signalling [180], sensitivity to PI3K/AKT/mTOR inhibitors and ATR
inhibitors [161,181], as well as aurora kinase inhibition [182], warranting further investi-
gation for the development of molecularly targeted therapies against ARID1A-mutated
ovarian cancers.

4.3. PARP Inhibitors

The SWI/SNF complex plays an active role in modelling the accessibility of chromatin
to accommodate complexities of the DNA damage response [38,183]. In cells with intact
SWI/SNF, ARID1A is recruited to DSBs through its association with the DNA damage
checkpoint kinase ATR [174]. In cells lacking ARID1A, there is a delay in the recruitment of
repair factors to sites of DNA damage. Further, in ARID1A null cells, increased PARP activ-
ity has been reported, making these cells susceptible to PARP inhibition with olaparib, and
especially in conjunction with ionising radiation therapy [181]. This increased sensitivity of
ARID1A null cells to PARP inhibition is seen both in vitro and in vivo [174]. Some OCCC
cell lines are sensitive to PARP inhibitors in vitro [184]. The alkylating agent temozolomide
(TMZ) combined with PARP inhibition has also been shown to induce replication fork
instability and apoptosis in ARID1A mutant ovarian cancer xenografts [185]. An OCCC
patient with an ARID1A mutated tumour achieved a partial and sustained response to the
combination of olaparib, pembrolizumab and bevacizumab [157]. A compelling case for
the use of PARP inhibitors in SCCOHT is yet to be made, given that olaparib is not always
well tolerated in these patients [108,163].

4.4. Epigenetic Inhibitors

The interaction of the SWI/SNF complex with other epigenetic complexes and regula-
tors offers opportunities for therapeutic interventions based on synthetic lethal relationships
with mutant SWI/SNF complex members. To date, the exploration of epigenetic inhibitors
to treat either OCCC or SCCOHT has been predominantly confined to pre-clinical models
only. In this vein, the antagonistic relationship of SWI/SNF and the PRC2 has raised
the pharmacological inhibition of the PRC2 catalytic subunit EZH2, a histone methyl-
transferase, in ARID1A mutant cells, including OCCC, as a potential therapy [186–188].
The second-generation EZH2 inhibitor tulmimetostat has shown promise in pre-clinical
models of ARID1A mutated malignancies, including OCCC [162]. EZH2 inhibition is also
under investigation for the treatment of SCCOHT. The EZH2 inhibitor tazemetostat (EPZ-
6438) has displayed efficacy in pre-clinical models of SCCOHT with SMARCA4/SMARCA2
loss [166,168], as has the EZH2 inhibitor GSK126 [166]. It remains to be determined whether
strong responses in SCCOHT patients will be generally achieved [189], however, a Phase
I/II trial for tazemetostat (NCT02601950) failed stage 2 futility that needed a confirmed
partial response or complete response in at least five patients based on the RECIST 1.1
criteria [165].

Preclinical models of SCCOHT have also demonstrated responses to pan-HDAC
inhibitors, including quisinostat, and in combination with EZH2 inhibitors at sub-lethal
doses have worked synergistically to induce apoptosis both in vitro and in vivo [189]. Using
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the same strategies of targeting mutant SWI/SNF, the HDAC6 inhibitor ACY1215 combined
with anti-PD-L1 antibody reduced tumour burden and eliminated ascites in an in vivo
model of ARID1A-inactivated OCCC [160]. Lastly, the BET (bromodomain and extra-
terminal domain) family of proteins classified as epigenetic readers is being considered
for inhibition in both OCCC and SCCOHT. BET inhibitors JQ1 and iBET-762 have shown
efficacy in in vitro and in vivo models of ARID1A mutant OCCC [159]. Combination drug
treatments with the BET inhibitor CPI203 and select PI3K-AKT inhibitors showed efficacy
in preclinical models of OCCC, although this appeared to be independent of ARID1A
mutation status [190]. Combinations of the BET inhibitor OTX015 that targets BET family
member BRD2 (bromodomain containing 2) and MEK (mitogen-activated protein kinase
kinase) inhibitors have also shown efficacy in preclinical models of SCCOHT, although this
does not appear to be specific for tumours with concomitant SMARCA4 and SMARCA2
loss [167].

5. Conclusions

Mutation and epigenetic silencing of SWI/SNF complex members are associated with
the poorer prognosis, chemoresistant subtypes of ovarian cancer occurring in younger
patients. In the case of SCCOHT, this disease can occur in infants. ARID1A mutation
is present in endometriosis, and given that OCCC and EnOC are identified as EAOCs,
this points to the involvement of abrogated SWI/SNF as an early driver of tumorigenesis.
Studies investigating the mechanistic behaviour of mutant SWI/SNF complex members
are revealing potential therapeutic opportunities for the treatment of patients with OCCC
and SCCOHT that have already demonstrated clinical benefit for some patients. A deeper
understanding of mutant SWI/SNF in ovarian and other cancers, as well as in endometrio-
sis, may reveal new opportunities for the pharmacological inhibition of the key molecular
targets associated with these diseases.
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