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Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior
performance in magnetic resonance imaging T2 contrast enhancement compared with spherical
nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with
dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and
biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1

Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron
microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following
internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and
mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this
preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.

Plain language summary: MRI is a powerful tool used in the diagnosis of cancer, strokes and other injuries.
An MRI scan can be improved with the use of iron oxide nanoparticles, which enhance the contrast of the
image. In this study we have developed cube-shaped iron nanoparticles (nanocubes), which have been
previously shown to be more effective at inducing contrast. We demonstrated that iron-based nanocubes
do not damage or induce stress in cells and work effectively as an MRI contrast agent. We further analyzed
how the nanocubes may affect cell functioning by investigating changes to protein levels in the cells. The
results of this study are promising steps towards using iron-based nanocubes as a tool to improve the clarity
of MRI scans for medical imaging and diagnosis. Future work must determine whether these nanocubes
work effectively and safely in an animal model, which is a critical step in progressing to their use in clinical
settings.

First draft submitted: 18 October 2023; Accepted for publication: 5 December 2023; Published online:
25 January 2024

Keywords: imaging • iron nanocubes • magnetic resonance imaging • nanomedicine • proteomics

The use of nanomaterials is widespread across numerous fields including sensing [1], catalysis [2], magnetic data
recording and biomedicine [3]. Magnetic nanoparticles are particularly valuable in therapeutic and diagnostic appli-
cations across many diseases due to their alterable properties and biocompatibility. Superparamagnetic nanoparticles
can be used as contrast agents to improve the sensitivity of MRI, a powerful and noninvasive imaging modality with
high spatial resolution [4–6], permitting the diagnosis of tumors, strokes and neurodegenerative diseases. Altering
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nanoparticle shape has a marked effect on the MRI contrast enhancement, and superparamagnetic iron nanocubes
have shown relaxivity up to four-times higher than spherical particles [7], rendering them an exciting new tool for
imaging.

The magnetic field of an MRI induces a signal from the small magnetic moment in each proton in tissues,
while MRI contrast agents interact with hydrogen atoms in tissues and induce signal changes by shortening
either their longitudinal relaxation times (T1-contrast agents) or transverse relaxation times (T2-contrast agents).
Magnetic nanoparticles produce a local magnetic field and increase the spin–spin or transversal relaxation of nearby
protons, resulting in a darkened image in T2 MRI. Increasingly, nanoparticle formulations in different shapes
and materials have been developed to improve magnetization values. Nanorods [8] and elongated nanoparticles
(∼100 nm length) [9] are advantaged by increased cellular uptake and have achieved high transverse relaxivity (r2

>340 s-1 mM-1). Multicore nanoparticles such as nanoflowers [10,11] and nanoclusters benefit from a high surface
area-to-volume ratio due to their ‘petals’ and multiple magnetic cores. For instance, iron oxide nanoflowers modified
with polyethylene glycol and a macrocyclic chelator MANOTA for radiolabelling were developed as dual-mode
PET/MRI imaging agents with high relaxivity values [12]. Further development is required to achieve uniform size
distributions and composition. Cubic-shaped nanoparticles have high magnetic moments, low surface anisotropy
and high crystallinity [13–15], which results in higher levels of magnetization than currently approved magnetic
nanoformulations. In a study comparing magnetic nanoclusters, nanorods and nanocubes in vitro, nanocubes were
superior in terms of relaxivity rates and tumor site delivery efficiency [16]. They are also advantageous in a variety
of other applications, demonstrating outstanding performance in magnetic hyperthermia treatment and have been
employed in noninvasive monitoring of macrophages with a 1.5 T clinical magnetic resonance scanner, targeting
tumors and metastases [17].

As well as conferring superior magnetic properties, the shape of the nanocubes alters the way in which they
interact with the cellular environment such as their uptake and movement through the cells. It has been well
documented that alterations to nanoparticle physical and chemical properties influence their biocompatibility,
uptake and efficacy [18,19]. For instance, rod-shaped particles are more readily internalized into the cell nucleus
compared with spherical particles, while functionalization of star-shaped particles [18] compared with spherical
particles influences the efficiency of their antigen targeting ability. While, on the other hand, spherical nanoparticles
show superior biocompatibility compared with other shapes such as rods [20], dendritic structures [21] and wire-
shaped nanoparticles [22]. Iron oxide nanocubes have demonstrated varying toxicological effects in different cell
types. In HeLa cells, dimercaptosuccinic acid (DMSA)-coated iron oxide nanocubes resulted in decreased cellular
viability after incubation for 24, 48 and 72 h, with a reduction of 78% viability after just 48 h at the lowest
concentration, as determined by the MTT cell viability assay [23]. Fe3O4/Gd2O3 nanocubes coated with nontoxic
3,4-dihydroxyhydrocinnamic acid did not reduce the proliferation rate of L929 cells [24]. Zinc and cobalt-doped
iron oxide nanocubes caused a decrease in cell viabilities in HeLa cells, while in RAW 264.7 cells, no toxicity
was detected at any of the tested concentrations [25]. These differing results, based on cell type, nanoparticle size,
coating and composition, necessitate comprehensive evaluations of all emerging nanoformulations for biomedical
application.

Disorders of the central nervous system are particularly difficult to treat due to the low permeability of the blood–
brain barrier, which prevents therapeutic and diagnostic agents from reaching the brain parenchyma. Due to their
biocompatibility and ability to be functionalized with therapeutics and targeting ligands, iron-based nanoparticles
are an excellent tool for targeted imaging and drug delivery for diseases within the brain [26] including, Alzheimer’s
disease [27,28] and Parkinson’s disease [29], as well as metastatic brain tumors [30]. As astrocytes are one of the first
cell types encountered at the brain–blood interface by intravenously injected agents, it is important to delineate
the impact of nanoformulations on this cell type. Astrocytes make up the highest proportion of cells in the central
nervous system of mammals, and play essential roles in neurotransmitter transmission, nutrient production for
neurons and regulation of endothelial cells, among others. Upon injury to the brain, astrocytes are activated to
either protect or induce toxicity to affected neurons in order to shield the neighboring brain tissue. The review by
Dai et al. summarizes the research investigating the responses of astrocytes to nanomaterials [31]. Upon exposure
to nanomaterials, astrocytes exhibit varying responses. Primary rat astrocytes [32] and U-251 glioblastoma cells [28]

exposed to DMSA coated iron oxide nanoparticles did not show a reduction in viability, while astrocytes exposed
to cobalt and chromium nanoparticles rescued neuronal DNA damage [33]. However, astrocytes have greater
sensitivity than neurons to SiO2 nanoparticles [34], with disturbances in cell morphology and changes to nucleic
acids, proteins and lipids, with the principal mechanism of toxicity related to alternations in secondary structures
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of protein in astrocytes. Similarly, SH-SY5Y neurons demonstrated more resistance to iron oxide nanoparticle
treatment compared with human-cultured astrocytes [35]. Consequently, an astrocytic cell line is a valuable model
for evaluating the central nervous system biocompatibility of nanoparticles.

Due to the superior magnetic properties of iron oxide nanocubes, they are a promising material for MRI contrast
enhancement. Nanoparticles with high relaxivity values require a lower dose to induce contrast, which reduces
the likelihood of side effects or accumulation of the particles in tissues. In this study, we evaluated DMSA-coated
iron core iron oxide shell nanocubes (DMSA-NCs) as a novel T2 MRI contrast agent and assessed their stability
and biocompatibility in U-251 glioblastoma cells. Transmission electron microscopy (TEM) demonstrated the
localization of DMSA-NC within the cells, and proteomics permitted elucidation of the cellular pathways that are
altered in response to interaction with the nanoparticles.

Materials & methods
Chemicals & materials
Mesitylene (purity 98%) oleylamine (70%, technical grade), DMSA and triethylamine (purity ≥99.5%) were
purchased from Sigma-Aldrich (MO, USA). Toluene (99.5%), hexane (95%) and ethanol were purchased from
Chem-Supply Pty Ltd (Gillman, Australia). For in vitro experiments, Gibco Roswell Park Memorial Institute
(RPMI) 1640 media, trypsin/EDTA (0.25%) and phenol red, lactate dehydrogenase cytotoxicity assay, and protein
BCA assay were purchased from Thermo Fisher Scientific (Sydney, Australia), and fetal bovine serum (FBS), l-
glutamine and 1% antibiotic/antimycotic were purchased from Sigma-Aldrich. ROS/Superoxide detection kit was
sourced from Enzo Life Science (NY, USA). Materials used in experiments pertaining to proteomic analysis were as
follows: RIPA lysis buffer (Thermo Fisher Scientific), phenylmethylsulfonyl fluoride (Roche, Sydney, Australia) and
trypsin (Promega, Sydney, Australia).

Synthesis of Fe nanocubes
To synthesize the iron seeds, 0.3 g Fe(C5H5)(C6H7) was dissolved in a solution containing 6 ml mesitylene and
1.5 ml oleylamine. The reaction mixture underwent a 72-h reaction at 130◦C with 3 bar of hydrogen. After
cooling, the iron seeds were reprocessed in an argon-filled box for further growth. Nanocubes were generated by
introducing 1 ml of crude iron seed solution to a mixture of Fe(C5H5)(C6H7) iron precursor (0.1 g, 0.75 mmol),
6 ml mesitylene and oleylamine (0.5 ml, 0.75 mmol). This process was repeated twice followed another reaction
involving 3 ml of the crude iron seed solution in a mixture of Fe(C5H5)(C6H7) iron precursor (0.3 g, 0.75 mmol),
6 ml mesitylene and oleylamine (0.5 ml, 0.75 mmol). The nanocubes were centrifuged (4000 r.p.m., 30 min),
redispersed in toluene at a concentration of 100 mg nanoparticles/ml and subsequently coated with DMSA to
permit their dispersibility in water.

DMSA coating of Fe nanocubes
DMSA (50 mg) was added in a centrifuge tube and dissolved in acetone (25 ml). The solution was then sonicated
for 5 min. Hexane (50 ml) was added into the DMSA solution and an aliquot of Fe nanocubes solution (0.5 ml)
was further added. The DMSA-NC solution was stirred using a vortex for 20 min. Triethylamine (5 ml) was
added into the DMSA-NC solution, which was sonicated for 5 min. This previous step was repeated until a
total of 250 ml of triethylamine was added into the solution. Milli-Q water (50 ml) and hexane (100 ml) were
added into the DMSA-NC solution and the mixture was shaken and allowed to separate into two immiscible
layers. The water layer was collected and placed into a clean centrifuge tube. The DMSA-NCs wre centrifuged for
20 min at 10,000 r.p.m. and the black precipitates were collected and redispersed in ethanol (absolute, 50 ml).
The DMSA-NCs were again centrifuged for 20 min at 10,000 r.p.m. and the resultant black nanoparticles were
redispersed in Milli-Q water for further characterizations.

Characterization of particle size & zeta potential
The hydrodynamic diameter of the DMSA-NCs was assessed in various solutions: Milli-Q water, 1× PBS, RPMI
cell media and artificial cerebrospinal fluid (aCSF) using dynamic light scattering (DLS; Malvern Instruments;
Zetasizer Nano, Malvern, UK). In addition, the zeta potential of the DMSA-NCs in water was also measured by
this instrument. Each sample underwent triplicate measurements at 25◦C following a 120-s equilibration period,
with an 80-s acquisition time.
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For the analysis of size distribution in the dry state, TEM was conducted (Phillips CM200 field emission
TEM). Image analysis was conducted using ImageJ [36], with over 100 particles counted to calculate size and size
distribution. Dispersion of DMSA-NCs in aCSF was examined using TEM. Artificial CSF solution contained
119 mM NaCl, 26.2 mM NaHCO3, 2.5 mM KCl, 1 mM NaH2PO4, 1.3 mM MgCl2, 10 mM glucose and
2.5 mM CaCl2 dissolved in purified water.

MRI of DMSA-NCs
In vitro MRI assessments of DMSA-NCs were conducted as previously described [28] at room temperature (22◦C) on
a 9.4T Bruker (Karlsruhe, Germany) BioSpec Avance III 94/20 system equipped with a 72-mm internal diameter
quadrature radiofrequency coil and BGA-12S HP gradients with maximum strength 660 mT/m and slew rate
4570 T/m/s. Increasing concentrations (0.1, 0.2, 0.5, 1, 100 and 500 μM) of DMSA-NC in Milli-Q water were
prepared and Eppendorf tubes containing the solutions were secured in a rack 3D-printed in house for scanning.

A 2D Multi Spin Echo pulse sequence (64 spin echo images in coronal orientation, total echo time range:
10–662 ms) was used for image acquisition for nanoparticle T2 relaxation quantification. The sequence parameters
were as follows: TR = 10 000 ms, TE = 10.3 ms, 64 echoes, matrix size = 128 × 128, image in-plane resolu-
tion = 0.35 × 0.35 mm, slice thickness = 2 mm, eff. spectral BW = 78125 Hz, total acquisition time with 2 ADC
averages: 42 min. Calculation of T2 decay maps was completed by pixelwise fitting of a mono-exponential decay
to the echo time image series. Mean T2 relaxation times and 1/T2 relaxation rate (R2 in Hz) were calculated with
ROIs over the sample tubes in the images.

Lactate dehydrogenase assay to determine cytotoxicity
Cytotoxicity of the DMSA-NCs was evaluated in U-251 cells (American Type Culture Collection). Cells cultured
in RPMI 1640 media supplemented with 10% FBS, 1% l-glutamine, 1% antibiotic/antimycotic at 37◦C under
a humidified atmosphere of 5% CO2 as previously described [28], and subsequently seeded onto a flat-bottomed
24-well plate. Prior to treatments, DMSA-NCs were redispersed in solution by vortexing for 20 s followed by brief
sonication in a bath sonicator (five sonications of 3 s duration, with 5-s breaks). Cells were exposed for 24 h at 37◦C
to varying concentrations of DMSA-NC (0.1 μM-500 μM). Negative blank control cells were left untreated. All
samples were treated in triplicate. At the conclusion of the 24-h incubation, cell supernatants were collected and
cells underwent three washes with 1× PBS. Subsequently, 200 μl of 1× PBS was added to each well and sonicated
for 30 s with a probe sonicator to homogenize the cells. The LDH content of the supernatant was measured using
an LDH cytotoxicity assay. Protein level was detected using a Protein BCA assay kit and used for normalization of
the LDH measurements.

Determination of reactive oxygen species/superoxide production
A total reactive oxygen species (ROS) detection kit was used to investigate the production of ROS/superoxide in
U-251 cells following treatment by DMSA-NC. Cells were seeded onto 96-well plates with black walls and incu-
bated overnight at 37◦C. Cells were exposed to three concentrations of DMSA-NC for 24 h. Each concentration
was replicated in six wells. After the incubation, the solution in each well was aspirated. ROS/superoxide detection
reagent (100 μl) was pipetted into each well, and the plate was placed into an incubator at 37◦C for 30 min. Fluo-
rescence readings were taken on a plate reader for fluorescein (total ROS; excitation/emission = 488 nm/520 nm)
and rhodamine (superoxide; excitation/emission = 550 nm/610 nm).

DMSA-NC internalization into cells
Internalization protocols were used as described in [28]. Briefly, to investigate the amount of iron taken up by cells
during a 24 h of treatment, U-251 cells were incubated with DMSA-NC (5 μg iron). After 24 h, the supernatant
from each well was collected and cells were washed using 1× PBS three times. Wash solutions were combined
with the supernatant to prevent loss of nanoparticles that had detached from the surface of cells. Subsequently,
each well was filled with 200 μl 1× PBS and cell homogenization was achieved through 30-s probe sonication.
Homogenized cells and supernatants were submitted with ICP-MS evaluation of iron concentration.

Separately, U-251 cells were seeded onto coverslips for analysis of the intracellular localization of DMSA-NC by
TEM. Cells were grown until they reached 70% confluency and treated with DMSA-NC (100 μM) for different
durations. After 5 min, 1, 6 and 24 h, the cells were fixed with 2% glutaraldehyde and 2% paraformaldehyde
(24 h, 4◦C). The coverslips with the fixed cells were then washed in 0.1 M sodium phosphate buffer (pH 7.4)
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prior to postfixation in 2% OsO4 in 0.1 M sodium phosphate buffer (60 min, 4◦C). Increasing concentrations
of ethanol were then used to dehydrate the samples. Subsequently, Procure 812 resin was used to infiltrate the
samples, followed by polymerization at 60◦C for 48 h. The samples were sectioned at 70 nm using a Leica EM
UC6 Ultramicrotome and collected onto carbon-coated copper mesh grids. Uranyl acetate and lead citrate was
used for poststaining. Images were taken on a Jeol JEM 1400 electron microscope (accelerating voltage 100 kV).

Proteomics analysis of U-251 cells treated with DMSA-NC
Cell culture & DMSA-NC treatment

Treatments for proteomics and sample preparation were conducted as described previously [28]. U-251 cells were
seeded onto T25 flasks and treated with a 100-μM concentration of DMSA-NC once they had reached 80%
confluency. Following a 24-h incubation at normal growth conditions, the media was replaced with fresh un-
supplemented media, then cells were collected using a cell scraper. Washes were conducted by pelleting the cells
by centrifugation for 5 min (500 × g, ambient temperature). Following aspiration of the media, the cells were
resuspended in 1× PBS. This was repeated three times. After the last wash, 200 μl of 1× PBS was added to the
vials, which were placed into -80◦C freezers until further analysis.

Cell lysis & protein digestion

RIPA lysis buffer containing protease inhibitor, 0.1 mM phenylmethylsulfonyl fluoride, was used to resuspend
cells treated with DMSA-NC after they had thawed. Disruption of cells was carried out with probe sonication
(5 × 5–10-s bursts). Between each sonication, the cells were briefly chilled on ice. Protein cysteine disulphides
reduction was carried out at 60◦C for 60 min in 2 mM tris(2-carboxyethyl)phosphine (TCEP), followed by the
addition of iodoacetamide for 10 min, ambient temperature for cysteine alkylation. Subsequently, elimination of
nonprotein components including detergents, reducing and alkylating agents was achieved by the addition of 1 ml
of cold acetone containing 1% HCl to each sample. For protein precipitation, samples were placed in a -20◦C
freezer for 12–14 h, then pelleted by centrifugation at 13,000 r.p.m. for 20 min (ambient temperature). Following
removal of the supernatant, the pellets were briefly air dried, then a lysis buffer containing 5% SDS and 100 mM
ammonium bicarbonate (pH 7.5) was added to the samples. S-Trap Mini spin traps (Protifi, NY, USA) were
used to capture and desalt proteins following the manufacturer instructions. Proteins were digested overnight at
37◦C in 1 μg sequencing-grade trypsin in 50 mM ammonium bicarbonate (100 μl), which was added to each
sample in the traps. Peptides were eluted from the S-trap by sequentially adding 100 μl each of 0.2% formic
acid and 50% acetonitrile containing 0.2% formic acid, then centrifugation at 4000 r.p.m. for 2 min, ambient
temperature, at each step. All the elutions were pooled and dried under vacuum centrifugation (SpeedVac, Thermo
Fisher Scientific). After drying, 50 μl of 1% formic acid containing 0.2% heptafluorobutyric acid was added to
the tubes to resuspend the peptides. A microspectrophotometer (DeNovix, DE, USA) was used to estimate protein
concentration (absorbance = 280 nm, mg/ml protein determined using the extinction coefficient of albumin).

Tandem mass spectrometry & database searching

For each set of biological triplicates, analysis was performed using the Q-Exactive Plus mass spectrometer (Thermo
Electron, Bremen, Germany) connected to a nano-LC, Dionex UltiMate 3000 high-performance liquid chromatog-
raphy system (Thermo Fisher Scientific, MA, USA), and equipped with an autosampler (Dionex, Amsterdam, The
Netherlands). The mass spectrometer parameters for data-dependent acquisition analysis and nano-LC conditions
that were used in this study have been described [28,37]. Peptides (∼3 μg on-column) were first captured onto a C18
cartridge (Acclaim PepMap 100, 5 μm 100 Å, Thermo Fisher Scientific Dionex), and subsequently switched to a
capillary column (25 cm length, 350 μm o.d., 75 μm i.d.) that contained reverse-phase packing (C18, Reprosil-Pur,
1.9 μm, 200 Å, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). The elution of peptides was achieved over
a 60-min run time and a binary gradient of 0–45% buffer B at 200 nl/min. The buffers were as follows: buffer
A (H2O/CH3CN of 98:2 containing 0.1% formic acid) and buffer B (H2O/CH3CN of 20:80 containing 0.1%
formic acid). The following mass spectrometer settings were used: ion-spray voltage 2000 V, capillary temperature
300◦C, positive ion mode, survey scan acquired (m/z 375–1750) and up to ten multiply charged ions (charge state
≥2+) isolated for MS–MS fragmentation.
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Figure 1. The physicochemical properties of DMSA-coated
iron core iron oxide shell nanocubes. (A) Transmission
electron microscope image of DMSA-coated iron core iron
oxide shell nanocubes (DMSA-NC), demonstrating the cubic
shape of the nanoparticles. (B) Dry diameter distribution of
DMSA-NCs, measured in >100 particles using ImageJ
software.

Table 1. The hydrodynamic sizes of DMSA-coated iron core iron oxide shell nanocubes in different solutions.
LM6 Milli-Q water 1× PBS aCSF RPMI media

Z-average (nm) 159.8 74.88 1505 168.1

PdI 0.178 0.197 0.519 0.305

RSD (%) 0.231 4.36 5.2 1.51

aCSF: Artificial cerebrospinal fluid; PBS: Phosphate-buffered saline; PdI: Polydispersity index; RSD: Relative standard deviation.

Bioinformatics

The raw files from the LC-MS/MS were searched against the Uniprot human complete database downloaded
2022.08.30 using MaxQuant v2.1.3.0 (downloaded from www.maxquant.org). LFQ was employed as label-free
quantification method and the minimum ratio count was set to 2 and minimum number of neighbors to 3. All
further identification and quantification parameters were set as default.

Downstream statistical processing was performed on the Perseus computational platform version 2.0.6.0 (down-
loaded from www.maxquant.org/perseus) [38]. Raw intensity values were filtered by columns: ‘Only identified by
site’, ‘Reverse’, and ‘Potential contaminant’ to exclude false–positive hits. The filtered values log2-transformed and
the features not reaching 100% valid values in at least one group (each comparison) were filtered out. After that,
missing values were replaced from normal distribution (width 0.3 and down shift 1.8). Differentially expressed
protein between groups were analyzed with the student t-test to calculate the p-value.

The differentially expressed proteins (foldchange >1.2 or <0.8; p < 0.05) were used to analyze functional
enrichment. Gene ontology analysis of biological processes, molecular function and cellular components was
conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncif
crf.gov/) and visualized using GraphPad PRISM 9. Gene Ontology analyses use ‘gene product’ to refer to genes and
any structures encoded by the gene, i.e., proteins. Reactome pathway were analyzed with ‘clusterProfiler’ [39] and
‘ReactomePA’ [40] R software packages and visualize the result with the ‘enrichplot’ R software package. Protein–
protein interaction analysis of the identified differentially expressed proteins was employed using STRING version
11.5 (http://string-db.org) [41].

Statistical analyses
The mean and standard deviation (SD) for all experiments are expressed as mean ± SD. Statistical analysis was
performed by ANOVA followed by Tukey’s multiple comparisons post hoc test (for three groups or more) or student’s
t-test (between two groups). Significance was assigned at p < 0.05. Data were analyzed using GraphPad Prism
8.4.3 (GraphPad Software, CA, USA).

Results
DMSA-NC characterization
The iron nanocubes were characterized with high-resolution TEM to obtain selected area electron diffraction to
confirm the formation of Fe cube nanoparticles. From the selected area electron diffraction, the patterns produced
by the nanoparticles matched iron and iron oxide crystal structures, hence confirming the presence of Fe nanocubes
in the samples. This was previously reported in [42]. The DMSA-NCs had a cubic shape and a dry diameter
of 10.7 nm ± 0.9 nm (Figure 1). The hydrodynamic sizes of the nanoparticles were 159.8, 74.88, 1505 and
168.1 nm in water, 1× PBS, aCSF and RPMI cell media, respectively (Table 1). The surface of the DMSA-NCs
was negatively charged with a zeta potential of -26.7 ± 6.27 mV. Due to the large hydrodynamic size measurement
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Figure 2. DMSA-coated iron core iron oxide shell nanocubes show biocompatibility in U-251 cells. (A) Lactate dehydrogenase release
relative to control wells treated with Milli-Q was not significantly increased in U-251 cells, following 24-h incubation with increasing
concentrations. Data represent mean ± standard deviation (n = 3). Statistical analysis was carried out using one-way ANOVA. (B) Reactive
oxygen species (ROS) and (C) superoxide production did not increase in cells following 24-h incubation with DMSA-NC at all three
evaluated concentrations. Generation of ROS and superoxide in control and DMSA-NC-treated wells were significantly lower than cells
treated with a ROS inducer (pyocyanin) used as a positive control. Control wells were treated with Milli-Q water. Data represent mean
relative fluorescence intensity to the water measurement ± standard deviation (n = 6). One-way ANOVA with Tukey’s multiple
comparison’s test post hoc test was performed.
*Significant difference from positive control; p < 0.05.
DMSA-NC: Dimercaptosuccinic acid-coated iron core iron oxide shell nanocube.

of DMSA-NCs dispersed in aCSF, these particles were imaged using TEM to determine whether aggregation had
occurred (Supplementary Figure 1). The images show the salts present in the aCSF and DMSA-NCs well dispersed
in the salt matrix, with nanoparticle diameters corresponding to the measured dry diameter, demonstrating the
stability of the DMSA-NCs in aCSF. Furthermore, the solution was purified by filtration to remove the interference
in the image from the salts. Qualitatively, the particles were observed close together but not aggregated.

Cell viability & ROS/superoxide production
Exposing the cells to increasing concentrations of DMSA-NC was shown not to be detrimental to cell viability.
LDH is a marker of damage to the plasma membrane, as upon breakage it is released from the cell into the cytoplasm.
No increase in LDH was detected at any of the concentrations relative to control (Figure 2A). Oxidative stress is
one of the ways in which nanomaterials induce toxicity in cells. No increases in ROS production or superoxide
were observed in the cells following the addition of DMSA-NC, even at concentrations up to 500 μM (Figure 2B
& C).

DMSA-NC internalization into U-251 cells
Uptake of DMSA-NCs in U-251 cells was determined by ICP-MS, followed by TEM imaging to investigate the
distribution of the nanoparticles within cells. U-251 cells were incubated with a total of 5 μg iron and following
24 h approximately 95% of DMSA-NC were internalized. For the cellular localization experiments, cells were
incubated with 100 μM of DMSA-NC for 5 min, 6 h and 24 h, then fixed and visualized using TEM (Figure 3).
Agglomerates of nanoparticles near cell membrane protrusions can be observed within 5 min of incubation, as
well as inside endosomes and an autophagosome. At 1 h post-treatment, DMSA-NCs have entered endosomes
and lysosomes. DMSA-NCs are also observed in multivesicular bodies at 6 h post-treatment and within lysosomes,
which suggests their transport through the cell degradation pathway. Mitochondria and nuclei are visible in the
micrographs, devoid of DMSA-NCs, and no DMSA-NCs are observed unencapsulated in the cytoplasm. In
addition, organelle morphology appears normal, with no obvious changes induced by the presence of DMSA-NC.
Interestingly, at 5 min DMSA-NC were observed to agglomerate in a ring formation in the endosomes (Figure 3A,
inset, arrowhead).
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Figure 3. Transmission electron microscope analysis of DMSA-coated iron core iron oxide shell nanocube
internalization into U-251 cells over 24 h of incubation. Cells were incubated with 100 μM of DMSA-NC in RPMI
medium at 37◦C. Cells were collected for fixation and processing for transmission electron microscope imaging at
(A & B) 5 min, (C & D) 1 h, (E & F) 6 h and (G & H) 24 h following treatment.
AP: Autophagosome; ER: Endoplasmic reticulum; Lys: Lysosome; M: Mitochondrion; MVB: Multivesicular body; PM:
Plasma membrane.
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Figure 4. In vitro magnetic resonance imaging properties and relaxometry of DMSA-coated iron core iron oxide
shell nanocubes. (A) T2 and (B) T1 magnetic resonance imaging of DMSA-coated iron core iron oxide shell nanocubes
dispersed in Milli-Q at concentrations of 0, 0.01, 0.02, 0.05 and 0.2 mM Fe (left to right). The inverse curves of (C) T2
(R2) and (D) T1 (R1) versus concentration where gradient gives the r2 and r1 relaxivity, respectively, in mM Fe-1, s-1.

MRI of DMSA-NCs
A concentration gradient of DMSA-NCs was imaged by MRI to evaluate the transverse T2 relaxation and
longitudinal T1 relaxation times at 9.4 T. Higher concentrations of DMSA-NCs resulted in darker scans at T2
(Figure 4A). The relaxivities were as follows: r2 = 122.59 Hz/mM and r1 = 0.1697 Hz/mM.

Proteomic analysis of U-251 cells after DMSA-NC exposure
Proteomic analysis was undertaken on whole-cell homogenates of U-251 cells following treatment of cells with
100 μM DMSA-NCs or no treatment for 24 h (three replicate incubations under each condition). Untreated cells
were used as control cells. A list of all deregulated proteins can be found in Supplementary Table 1. Figure 5 shows
the differentially expressed proteins in these comparison groups, and the 20 most significant differentially expressed
proteins. Compared with the untreated cells, a total of 99 proteins were differentially expressed, including 56
upregulated and 43 downregulated.

Gene ontology & Reactome

The functional enrichment of gene ontology terms of the 92 differentially expressed proteins was analyzed using
DAVID online software [43,44]. Up- and down-regulated proteins were analyzed separately, and proteins were clas-
sified according to their biological roles, molecular function and cellular compartment (Figure 6 & Supplementary
Table 2).

Gene ontology of biological processes revealed that proteins involved in RNA splicing (RBM39, SF3B3, SF3A2,
THRAP3, U2AF1, SRSF4, SRRM1), cytoplasmic translation (RPS26, RPS27, RPL34, RPLP0, RPL13A, RPS24),
translation (RPS26, MRPS17, RPS27, RPL34, MRPS23, RPLP0, RPL13A, MRPL28, RPS24), mRNA processing
(RBM39, KHDRBS1, SF3A2, THRAP3, SRSF1, HNRNPA2B1, U2AF1, SRSF4, SRRM1) and mRNA splic-
ing, via spliceosome (SF3B3, SF3A2, SRSF1, HNRNPA2B1, HNRNPU, U2AF1, PRPF40A, SRSF4, PLRG1,
SNRPC, SNRNP200, SRRM1), were deregulated.

In terms of molecular function, binding functions including RNA binding (KHDRBS1, DAZAP1, DNMT1,
RPL34, SRSF1, RPLP0, HMGB3, HNRNPU, U2AF1, YBX3, FBL, FIP1L1, PSMD4, TCOF1, MYO18A, EX-
OSC3, RAE1, RBM39, CPSF7, SF3A2, MRPS23, MRPL28, RPL13A, NAP1L1, PRPF40A, SRRM1, RPS26,
RPS27, THRAP3, SARNP, SUB1, HNRNPA2B1, SRSF4, CEBPZ, SLIRP, CALR, SNRPC, SNRNP200, RPS24,
LUC7L2), protein binding (MRPS17, ARF4, DAZAP1, TRAM1, RPL34, PDCD6, RPLP0, HMGB3, HN-
RNPU, TXNDC12, SMC3, AP2A2, YBX3, HK1, FBL, PSMD4, FTH1, PSMD3, MYO18A, FLOT1, RCC1,
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Figure 5. Protein expression in U-251 cells following treatment with DMSA-NC. (A) Volcano plot showing the
differentially expressed proteins (DEPs) caused by DMSA-coated iron core iron oxide shell nanocube exposure. All
DEPs (FC >1.2 or <0.8; p < 0.05) are represented as red dots (upregulated proteins) and blue dots (downregulated
proteins). (B) Venn diagram illustrating the number of upregulated and downregulated proteins following DMSA-NC
treatment compared with control. (C) A heatmap depicting the DEPs (FC >1.2 or <0.8; p < 0.05) between the two
groups of samples using hierarchical clustering. (D) The fold-changes of the ten most significantly upregulated DEPs
and the ten most significantly downregulated DEPs. (E–F) The protein–protein interaction networks of the (E) up and
(F) downregulated proteins in U-251 cells following DMSA-NC treatment compared with control cells analyzed using
the STRING database. Each node represents a protein, and the colored lines represent the known or predicted
protein–protein interactions.
DMSA-NC: Dimercaptosuccinic acid-coated iron core iron oxide shell nanocube.
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Figure 6. Gene ontology and pathway-enrichment analysis of deregulated proteins by exposure to DMSA-coated iron core iron oxide
shell nanocubes in U-251 cells. (A) Enriched gene ontology terms for biological processes, cellular components and molecular functions
for deregulated proteins, ordered by p-value (FDR). (B) Enriched gene ontology from (A) showing the number of up- and down-regulated
proteins for each term. (C) Top ten significant Reactome pathways from enrichment analysis using differentially expressed proteins. The
size of dots represents the count of enriched proteins, and the color of the dots represents the Benjamini–Hochberg adjusted p-values.

TMPO, HMGN1, MRPS27, IGFBP5, IGFBP3, MRPS23, RECQL, CACYBP, PRPF40A, PLRG1, BAZ1B,
ATP1B1, ATAD3A, ARFGAP1, SRRM1, RCN2, TMX3, PRKAR1A, THRAP3, SUB1, ETHE1, SARNP,
FKBP8, PSME2, SRSF4, SNRPC, SNRNP200, DLD, LUC7L2, FTL, KHDRBS1, SEC23A, DNMT1, SF3B3,
SRSF1, U2AF1, SDCBP, TCOF1, RBBP4, FIP1L1, EMC3, HMOX1, EXOSC3, RAE1, rRBM39, CPSF7,
SLC16A1, SF3A2, MBOAT7, MRPL28, NAP1L1, L1CAM, PEX14, RPS26, RPS27, HNRNPA2B1, CYCS,
CALR, ANP32B, SLIRP, LAMTOR3, CDS2), mRNA binding (RPS26, KHDRBS1, DAZAP1, CPSF7, SRSF1,
RPL13A, SRSF4, SLIRP, CALR, SNRPC, LUC7L2) and nucleic acid binding (RBM39, DAZAP1, CPSF7, SF3B3,
SF3A2, RECQL, SRSF4, SLIRP, SNRNP200, YBX3) were deregulated. In addition, deregulated were proteins
involved in the structural constituent of the ribosome (RPS26, MRPS17, RPS27, RPL34, MRPS23, RPLP0,
RPL13A, MRPL28, RPS24).

In response to DMSA-NC treatment, nuclear proteins (nucleoplasm: KHDRBS1, DAZAP1, DNMT1, SF3B3,
PDCD6, SRSF1, HNRNPU, U2AF1, SMC3, FBL, SDCBP, FIP1L1, PSMD4, TCOF1, RBBP4, SPR, PSMD3,
RCC1, HMOX1, EXOSC3, RAE1, HMGN1, RBM39, CPSF7, SF3A2, RECQL, CACYBP, PRPF40A, PLRG1,
BAZ1B, SRRM1, RPS26, RPS27, THRAP3, SARNP, SUB1, ETHE1, HNRNPA2B1, PSME2, SRSF4, ANP32B,
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SNRPC, SNRNP200, RPS24 nucleus: DAZAP1, PDCD6, RPLP0, HMGB3, HNRNPU, SMC3, YBX3, FBL,
PSMD4, FTH1, PSMD3, MYO18A, IDH3B, RCC1, TMPO, HMGN1, IGFBP3, RECQL, RPL13A, CACYBP,
PLRG1, SRRM1, THRAP3, SUB1, SARNP, SRSF4, SNRPC, SNRNP200, DLD, KHDRBS1, DNMT1, SF3B3,
SRSF1, SDCBP, RBBP4, HMOX1, EXOSC3, RAE1, RBM39, CPSF7, SF3A2, NAP1L1, PEX14, RPS27, HN-
RNPA2B1, CYCS, CEBPZ, CALR, ANP32B, SLIRP, RPS24, nuclear speck: RBM39, SF3A2, THRAP3, SARNP,
SRSF1, HNRNPU, U2AF1, PRPF40A, SRSF4, PLRG1, LUC7L2, SRRM1, nuclear matrix: HNRNPA2B1,
HNRNPU, PRPF40A, SMC3, SRRM1), ribosomal proteins (ribosome: RPS26, MRPS17, MRPS27, RPS27,
RPL34, MRPS23, RPLP0, RPL13A, MRPL28, RPS24, cytosolic ribosome: RPS27, RPL34, RPLP0, RPL13A,
RPS24), membrane proteins (KHDRBS1, ARF4, RPLP0, HNRNPU, FBL, SDCBP, PSMD3, MYO18A, FLOT1,
HMOX1, TMPO, CPSF7, SLC16A1, MBOAT7, RECQL, RPL13A, NAP1L1, PRPF40A, ATP1B1, PEX14,
RPS26, PRKAR1A, CPD, HNRNPA2B1, FKBP8, PSME2, CALR, SNRNP200, RPS24, FTL, CDS2), pro-
teins involved in the spliceosome (catalytic step 2 spliceosome: SF3B3, SF3A2, SRSF1, HNRNPA2B1, HN-
RNPU, U2AF1, PLRG1, SNRNP200, SRRM1, spliceosomal complex: SF3B3, SF3A2, HNRNPA2B1, U2AF1,
PLRG1, SNRPC, SNRNP200, SRRM1, U2-type prespliceosome: SF3A2, PRPF40A, SNRPC, LUC7L2), extra-
cellular exosome (HSP90AB2P, ARF4, SLC16A1, PDCD6, RPL34, RPLP0, CACYBP, ATP1B1, RPS26, FBL,
SDCBP, SPR, THRAP3, SUB1, CPD, FTH1, PSMD3, HNRNPA2B1, FLOT1, PSME2, CALR, ANP32B,
LAMTOR3, FTL), cytosol proteins (HSP90AB2P, KHDRBS1, ARF4, DAZAP1, SEC23A, RPL34, PDCD6,
RPLP0, HNRNPU, SMC3, YBX3, AP2A2, HK1, SDCBP, FIP1L1, PSMD4, TCOF1, RBBP4, SPR, FTH1,
PSMD3, HMOX1, EXOSC3, TMPO, MRPL28, RPL13A, CACYBP, PEX14, ARFGAP1, SRRM1, RPS26,
RPS27, PRKAR1A, MAP7D1, FKBP8, PSME2, CYCS, CALR, RPS24, FTL) and ribonucleoprotein complex
(DAZAP1, HNRNPA2B1, RPLP0, RPL13A, HNRNPU, SLIRP) were deregulated.

Enrichment analysis using differentially expressed proteins of Reactome pathways are represented in Figure 6C
(Supplementary Table 3). The top ten significant Reactome pathways were determined to be processing of capped
intron-containing pre-mRNA (p < 0.0001), mRNA splicing – major pathway (p < 0.0001), mRNA splicing
(p < 0.0001), translation (p < 0.0001), regulation and suppression of SLITs, and ROBOs (p < 0.0001), major
pathway of rRNA processing in the nucleoulus and cytosol (p < 0.0001), rRNA processing in the nucleus and
cytosol (p < 0.0001), mRNA 3′-end processing (p < 0.0001), RNA polymerase II transcription termination
(p < 0.0001), transport of mature transcript to cytoplasm (p <0.0001). In addition, further associations were
discovered using semantic similarity analysis as confirmation and supplementary information (Supplementary
Figure 2). The top 30 significantly altered Reactome pathways were associated with eukaryotic decay (nonsense-
mediated mRNA decay) acid, metabolism by acid derivatives, rRNA nucleus cytosol nucleolus, transport mature
3′-end transcript and splicing capped pathway pre-mRNA.

Discussion
We developed DMSA-coated nanocubes that effectively induce T2 MRI contrast enhancement and characterized
their biocompatibility in a glioblastoma cell line using cell toxicity assays, TEM and proteomics (Figure 7). Taken
together, these results contribute to the current state of knowledge of the cellular response to DMSA-coated
nanoparticles and the influence of the shape of the core. Magnetic nanomaterials increase MRI sensitivity and can
therefore improve diagnosis of various diseases including cancer and neurodegenerative illnesses.

Colloidal stability and low toxicity are required for biomedical applications of nanomaterials. Previously, studies
have shown that magnetic nanoparticles increase in size in suspension because of the formation of aggregates in
solution or the attachment of ions and proteins present in the solution to the particle coating [45]. In this study,
the DLS-measured hydrodynamic diameter of DMSA-NC was smallest in 1× PBS, had a small increase in size in
distilled water and cell media, and was the highest when suspended in aCSF. TEM imaging of DMSA-NC dispersed
in aCSF showed DMSA-NC to be distributed throughout the salt matrix with no aggregation, and DLS analyses of
aCSF alone showed a peak of approximately 800 nm (not shown). In solutions containing salt or other compounds,
DLS favors larger particles, which interfere with the nanoparticle readout. Furthermore, when nanoparticles are
exposed to cell media, the proteins present in the media form a protein corona on the surface of the particles. The
composition of this corona is determined by the nanoparticle’s physical properties as well as the composition of
the biological media. For instance, silver nanoparticles incubated in complete Dulbecco’s Modified Eagle Medium
containing FBS for only 1 h bound to 45–85 different proteins [46]. The dynamics and constituents of protein
coronas require further characterization as they impact cell internalization, toxicity mechanisms, can improve
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Figure 7. Schematic representation of the study. The generated DMSA-coated iron core iron oxide shell nanocubes
(DMSA-NCs) were first characterized using transmission electron microscopy, dynamic light scattering and magnetic
resonance imaging to determine the shape, size and relaxivity of the nanoparticles. Subsequently, U-251 cells were
treated with DMSA-NCs for in vitro assessment of cytotoxicity, cellular internalization of the nanoparticles and
proteomics analysis. The in vitro studies showed no cytotoxicity, almost total nanoparticle internalization within 24 h
and the DMSA-NC localization within cell organelles. Proteomics determined that among other pathways, proteins
involved in translation, iron processing and extracellular exosomes were deregulated.
Parts of the figure were drawn using images from Servier Medical Art. Servier Medical Art by Servier is licensed under
a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
DLS: Dynamic light scattering; DMSA-NC: Dimercaptosuccinic acid-coated iron core iron oxide shell
nanocube; LC-MS/MS: Liquid chromatography with tandem mass spectrometry; ROS: Reactive oxygen species; TEM:
Transmission electron microscopy.

particle stability by preventing agglomeration of particles due to increased steric hindrance [47] alter elimination
rates, and in addition can influence their relaxivity [48].

The present DMSA-NCs demonstrated excellent MRI contrast enhancement, with an r2 relaxivity of
122.59 mM-1s-1 at 9.4 T. Previous efforts focused on manipulating shape and size to increase saturation magne-
tization have determined that nanocubes consistently outperform other configurations [49,50]. Recently developed
dual-mode contrast agents can induce T1 and T2 relaxation effects by doping iron oxide nanocubes with other
paramagnetic metals, and therefore enhance diagnostic accuracy. Highly monodisperse and crystalline 9.7-nm mag-
netite nanocubes were synthesized for T1- and T2-weighted MRI showing r1 and r2 relaxivities of 5.23 mM-1·s-1

and 89.68 mM-1·s-1, respectively, at 3 T [51]. Zinc-cobalt ferrite nanocubes were evaluated in MRI, MPI and for
magnetic hyperthermia treatment [52], and dual-mode Fe3O4/Gd2O3 nanocubes from T1–T2 dual-mode MRI
with r1 = 67.57 ± 6.2 mM-1·s-1 and r2 = 24.2 ± 1.46 mM-1·s-1 [24].

We investigated the in vitro biocompatibility of DMSA-NCs using the U-251 glioma cell line as a cell model.
Following 24-h incubation, the cells internalized approximately 95% of DMSA-NCs. Previous studies have shown
that incubation and uptake of iron oxide nanoparticles by various cells can affect cell viability, including in
microglial [53], Alexander, Huh7 and HepG2 cells [54], when treated at high doses of 50 μg/ml. In our study, cell
viability in response to DMSA-NCs was determined by evaluating LDH release following 24-h treatment with the
nanocubes and no significant differences in LDH release were observed. Furthermore, DMSA-NCs did not cause
oxidative stress in cells, as ROS and superoxide production were not significantly impacted.

Electron microscopy showed that DMSA-NCs clustered around the periphery of the cell prior to being engulfed
in membrane extensions, suggesting macropinocytosis as the endocytic mechanism. Additional evidence for a
clathrin-independent route of internalization was the presence of coated vesicles devoid of DMSA-NCs visible near
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the periphery of the cell. Within 5 min of incubation, DMSA-NCs could be observed within an autophagosome
as well as in clusters in endosomes, lysosomes and multivesicular bodies during the other time points. The electron
microscopy results suggest the involvement of either the lysosome-degradation pathway or the journey of the DMSA-
NC to exocytosis. Similarly, Sedra et al. found that amine-functionalized iron oxide nanoparticles were localized
in multivesicular bodies, then incorporated into the membrane vesicles in the intracellular region and efficiently
secreted from the cells 6 days after intracellular delivery [55]. Interestingly, some DMSA-NCs could be observed
clustering in ring formations. Although this is outside the scope of the present study, the magnetic interaction
in closed ring-shape clusters under a magnetic field can increase the thermal effect of magnetic hyperthermia
therapy [56]. In recent years, nanocubes have been extensively researched for magnetic hyperthermia applications
in cancer treatment and tumor ablation due to the exceptional heating efficiency, or specific absorption rates, of
nanocubes. As such, the observed tendency of the present DMSA-NCs to form rings within cellular organelles
could be exploited for enhanced magnetic hyperthermia treatments.

A discovery proteomics approach was conducted to further elucidate the cellular response to DMSA-NCs in
this study and determine what cellular pathways are perturbed following their treatment. The cells were treated
at a dose of 100 μM iron (35.5 μg Fe) to a confluent T-25 flask of cells, which at confluency has a cell density
of 2.8 × 106 cells. Following treatment with DMSA-NC, deregulation of proteins predominantly involved in
the translation machinery, influencing mRNA splicing and RNA binding, was observed. The alteration to these
mechanisms suggests that internalization of DMSA-NCs causes cells to modify their structure and adjust protein
expression by varying DNA and RNA replication processes. Gene ontology and Reactome pathway analysis showed
that proteins involved in the composition and regulation of the spliceosomal complex and pre-mRNA processing,
as well as ribosomal proteins and translation pathways, were altered. Furthermore, iron storage and processing
proteins were expectedly altered following treatment with DMSA-NCs.

The intracellular ferritin complex is composed of FTH1 and FTL, which play a key role in iron metabolism and
maintenance of iron homeostasis in cells. In accordance with previous work using iron oxide nanoparticles [57,58],
DMSA-NC treatment resulted in an upregulation of both these proteins. Ferritin plays an important role in iron
storage and homeostasis in cells and protects cells from iron-induced ROS. While iron is an essential component
of cell processes, including mitochondrial functioning, cell proliferation and transport of oxygen, an excess of
labile iron in cells can induce ferroptosis. Ferroptosis is a programmed lysosome-dependent cell death mechanism
that results from iron overload, as intracellular iron ions oxidize lipids via the Fenton reaction, producing hydroxyl
radicals or peroxide radicals [59]. Upregulation of FTL prevents oxidative stress and the accumulation of iron and
reduces ferroptosis. The upregulation of ferritin complex proteins and the localization of DMSA-NCs within
lysosomes in the EM results provides an indication that within 24 h some degradation of DMSA-NCs into iron
ions within the cell had commenced. In addition, another protein involved in cellular iron recycling and regulation,
HMOX1 was upregulated following DMSA-NC treatment. HMOX1 plays a cytoprotective and antioxidant role in
cells either by inducing or inhibiting ferroptosis in stressed cells [60,61]. Interestingly, in a study where C17.2 neural
stem cells were treated with 25 μg Fe/ml dextran-coated superparamagnetic iron oxide nanoparticles, HMOX1
expression levels similarly increased after 24 h; however, this increase was transient and reduced over the 7-day testing
period [62]. Taking these results together with the lack of significant increases in ROS or superoxide production, we
demonstrate that an increase of iron processing within cells following DMSA-NC treatment occurs, suggesting the
initiation of degradation mechanisms within 24 h of treatment, which protect the cells from damage.

Reactome pathway and functional enrichment analysis revealed differentially expressed proteins associated with
processing of capped intron-containing pre-mRNA, mRNA splicing, RNA polymerase II transcription termination
and translation. As a metabolically and energetically demanding process, protein synthesis is tightly regulated
during times of cellular stress to direct energy towards adaptation and maintenance of homeostasis in the face
of a stressor. This response is reversible, with translation resuming to its previous rate upon the removal of the
stressful stimulus. To facilitate cellular adaptability to exogenous stressors, alternative splicing and cleavage and
polyadenylation processes [63] permit cells to alter their transcriptomic output by modulating gene expression
during transcription, and we observed deregulation of proteins involved in these processes. Splicing of pre-mRNA
is carried out by a spliceosomal complex consisting of small nuclear ribonucleoprotein particles (snRNPs) U1, U2,
U4/U6 and U5, and non-snRNP protein factors [64]. Members of the snRNP family, U5 SNRNP200 and U1
SNRPC were up- and down-regulated, respectively, and U2 SF3B3 was downregulated. In addition, SRSF proteins
(SRSF1, SRSF4, SRRM1 and RBM39) and hnRNPs (HNRNPU, HNRNPA2B1) were upregulated following
DMSA-NC treatment. SRSF proteins hnRNPs bind to pre-mRNA and typically activate or inhibit splice site
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usage, respectively, with their opposing actions contributing to the specificity of the spliceosomal machinery [65].
For instance, SRSF1 promotes the use of specific splice sites through its direct interaction with splicing factor
U2AF1 [66], which is involved in the recognition of the 3′ splice site during pre-mRNA splicing. Both SRSF1
and U2AF1 were upregulated following DMSA-NC treatment. Furthermore, the U1 snRNP complex is involved
in the regulation of alternative polyadenylation [67], along with other deregulated proteins including CPSF7, a
subunit of the of cleavage factor CFIm, and FIP1L1, a key component of the cleavage and polyadenylation factor
complex and recruited by cleavage factor Im subunit CPSF6 to enhance polyadenylation site usage [68]. Induction
of alternative splicing has been demonstrated with other nanomaterials, including silver nanoparticles [69] and zinc
oxide nanoparticles [70], while activation and regulation of alternative polyadenylation is influenced by increased
cell proliferation [71,72], activation of neurons [73] and stressed cells [63]. Taken together, the results depict altered
cellular transcription dynamics in response to DMSA-NCs and warrant further investigation to determine the
extent to which gene expression is impacted.

Finally, 24 extracellular exosome proteins were deregulated (HSP90AB2P, ARF4, SLC16A1, PDCD6, RPL34,
RPLP0, CACYBP, ATP1B1, RPS26, FBL, SDCBP, SPR, THRAP3, SUB1, CPD, FTH1, PSMD3, HNRNPA2B1,
FLOT1, PSME2, CALR, ANP32B, LAMTOR3, FTL). Exosomes are derived from late endosomes and are
exocytosed as extracellular vesicles, cellular debris or cargo to facilitate intercellular communication, and can be
purified out of cells for therapeutic uses using nanotechnology (reviewed in [74]). Exosomes are involved in the
transfer of ferritin-bound iron across blood–brain barrier endothelial cells and are a mechanism for transporting
iron into the brain [75]. They are a potential transfer mechanism for nanoparticles between cells, as the secretion of
exosomes containing inorganic nanoparticles has been demonstrated in cells previously incubated with nanoparticles
for 24–48 h. This has been shown using iron oxide nanoparticles [76,77], gold nanoparticles [78] and porous silicon
nanoparticles [79] across various cell types.

The deregulation of numerous proteins involved in extracellular exosomes suggests a potential externalization
route for the DMSA-NC within 24 h of treatment. The blood–brain barrier is made up of three cellular layers com-
prising of endothelial cells, pericytes and astrocytes [80], and has long been a major obstacle in the development in
diagnostic and therapeutic agents that target the brain. Further work would help determine whether DMSA-NCs
are communicated between cells as exosomal cargo, permitting DMSA-NC entry into the brain via the circulatory
system. Moreover, the use of exosomes in the development of treatments for diseases has received copious attention
in recent times. Nanoparticles have demonstrated themselves as an excellent tool for isolating exosomes, and their
large surface area allows them to be tagged with targeting ligands to improve specificity, rendering DMSA-NCs as
a potentially powerful new tool in this field.

Taken together, these data support the hypothesis that at the treatment dose used in this study, DMSA-NCs are
not acutely toxic to U-251 cells. The observed changes to the proteome following treatment show that DMSA-
NCs induce modest perturbations to cells as they are endocytosed and transported between organelles; however,
compensatory mechanisms and iron-processing mechanisms are activated. Our measures of LDH and oxidative
stress demonstrated that DMSA-NC did not induce toxicity within cells, and the deregulation of spliceosomal
machinery determined by proteomic analysis suggests cells maintain resilience in the face of the nanomaterials
by altering their transcriptomic output. Iron-processing activity signalled that nanoparticle degradation within
cells begins within 24 h. Electron microscopy demonstrated that intact nanocubes were still present at the 24-
h time point; however, as DMSA-NCs degrade further, the increase of labile iron can tip the intracellular balance
and induce the initiation of ferroptosis pathways. Therefore, evaluation of iron processing at later time points
is essential. Degradation kinetics are important to determine because not only do they verify that nanomaterials
are safely eliminated and will not accumulate in the body, they also affect the magnetization and therefore MRI
contrast-enhancing ability of the nanoparticles. Therefore, these results inform future research into contrast agent
delivery and imaging timescale. Furthermore, future characterization of nanoparticle–cell interactions will benefit
from investigation of alternative splicing events. While it is outside of the scope of this study, splicing events are
implicated in the cancer cell viability during chemotherapy. As research into nanomaterials as therapeutic delivery
agents continues to increase, the results of this study can inform future development of oncotherapeutics.

While in this preliminary bioevaluation of DMSA-coated iron core iron oxide shell nanocubes we have demon-
strated their potential as stable and highly biocompatible MRI T2 contrast agents, this study has several key
limitations. We have shown DMSA-NC biocompatibility with U-251 glioblastoma cells; however, other cells in
the body with which DMSA-NCs would interact may have differential responses. For instance, previously in
vivo administration of iron oxide nanoparticles resulted in upregulation of autophagy and lysosomal activation in

www.futuremedicine.com 317



Research Article Ulanova, Gloag, Kim et al.

the splenic macrophages of treated rats [81]. SH-SY5Y neurons have previously demonstrated lower uptake and
susceptibility to iron oxide nanoparticle induced cytotoxicity than astrocytes [35] while other iron oxide nanopar-
ticles induced alterations to cell apoptosis and cancer development pathways [82]. These examples demonstrate
that the effect nanoparticles differs across cell types and differences in nanoparticle formulations, thus future
studies must employ various biological models including different cell types, organoids and in vivo assessments of
biocompatibility.

Furthermore, quantitative discovery proteomics identified alterations to protein expression with high accuracy
and resolution. However, with the elucidation of changes to the transcription machinery, a more precise evaluation
of the post-transcriptional modifications to proteins will confirm the biocompatibility of the particles, in particular
with studies conducted over multiple time points. Finally, it is important to determine the precise elimination route
and kinetics to ensure nanoparticles do not accumulate in tissues and result in toxicity over the long term. In vivo
studies, investigating DMSA-coated spherical nanoparticles of a similar size, have detected nanoparticles in tissues
to over 3 months postadministration [83,84] with no evidence of long-term toxicity. However, particle degradation
dynamics differ between spherical and cube-shaped particles, thus it is not prudent to extrapolate these results
to the present nanoparticles. Previous reports have shown the edges of cube-shaped nanoparticles are prone to
enhanced biodegradation kinetics, particularly in lysosomal compartments of cells with the edges of the cubes more
vulnerable than the faces [85]. Nanocubes experienced partial degradation leaving smaller, spherical particles, mostly
at the endosome edges after 27 days of cellular exposure [85]. On the other hand, spherical nanoparticles coated
with DMSA [83] and other coatings [85,86] have been shown to degrade particle by particle over time, with some
particles remaining intact longer than others. Therefore, the next steps prior to translation of these nanoparticles
to clinical settings include determining their stability and retention in an in vivo model.

Conclusion
In this study, we evaluated DMSA-NCs as a potential T2 MRI contrast agent. Iron-based nanocubes have been
previously demonstrated to exhibit superior MRI contrast-enhancing capabilities, and for this reason are a favorable
candidate for imaging. DMSA-NCs were nontoxic to U-251 glioblastoma cells and did not induce increases
to reactive oxygen species, including superoxide. Furthermore, proteomics allowed determination of the protein
interactions resulting in cells following exposure to DMSA-NCs. The alterations in protein profiles provided insights
regarding the safety of DMSA-NCs, which contributes to the growing literature of the impacts of nanomaterials
on the body. Particles that achieve higher magnetization require lower doses for sufficient contrast enhancement,
mitigating the potential for adverse events in patients. The promising biocompatibility of these particles and
favorable MRI contrast enhancement support the need for further development of this formulation.

Summary points

• Magnetic nanoparticles offer significant advantages in biomedical applications due to their customizable
properties and biocompatibility, enhancing both therapeutics and diagnostics across various diseases.

• Superparamagnetic nanoparticles serve as effective contrast agents in MRI, enabling diagnosis of conditions such
as tumors, strokes and neurodegenerative diseases by improving MRI’s spatial resolution.

• Cubic-shaped magnetic nanoparticles exhibit high magnetization levels due to their high magnetic moments, low
surface anisotropy and superior crystallinity, surpassing existing magnetic nanoformulations.

• Dimercaptosuccinic acid iron core iron oxide shell nanocubes (DMSA-NCs) were synthesized and proven to induce
strong contrast in T2-weighted MRI.

• DMSA-NCs showed no cytotoxicity in vitro and did not trigger an increase in reactive oxygen species or
superoxide when tested on U-251 cells, even at concentrations up to 500 μM.

• U-251 glioblastoma cells efficiently internalized DMSA-NC, with the nanocubes predominantly localizing within
lysosomes and endosomes over a 24-h period.

• Proteomic analysis identified modest changes in protein expression after DMSA-NC treatment, with 56 proteins
upregulated and 43 proteins downregulated in U-251 cells.

• These findings provide valuable insights into the interaction of nanoparticles with cells, particularly in terms of
contrast enhancement. This contributes to the growing body of literature in nanotechnology and supports the
potential for improved medical decision making.
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