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Abstract

Background

Dengue outbreaks are common in tropical or temperate countries, and climate change can

exacerbate the problem by creating conditions conducive to the spread of mosquitoes and

prolonging the transmission season. Warmer temperatures can allow mosquitoes to mature

faster and increase their ability to spread disease. Additionally, changes in rainfall patterns

can create more standing water, providing a breeding ground for mosquitoes.

Objective

The objective of this study is to investigate the correlation between environmental and

demographic factors and the dissemination of dengue fever. The study will use yearly data

from 2000 to 2021 from 11 countries highly affected by dengue, considering multiple factors

such as dengue cases, temperatures, precipitation, and population to better understand the

impact of these variables on dengue transmission.

Methods

In this research, Poisson regression (PR) and negative binomial regression (NBR) models

are used to model count data and estimate the effect of different predictor variables on the

outcome. Also, histogram plots and pairwise correlation plots are used to provide an initial

overview of the distribution and relationship between the variables. Moreover, Goodness-of-

fit tests, t-test analysis, diagnostic plots, influence plots, and residual vs. leverage plots are

used to check the assumptions and validity of the models and identify any outliers or influen-

tial observations that may be affecting the results.

Results

The findings indicate that mean temperature and log(Urban) had a positive impact on den-

gue infection rates, while maximum temperature, log(Precipitation), and population density

had a negative impact. However, minimum temperature, log(Rural), and log(Total popula-

tion) did not demonstrate any significant effects on the incidence of dengue.
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Conclusion

The impact of demographic-environmental factors on dengue outbreaks in 11 Asian coun-

tries is illuminated by this study. The results highlight the significance of mean temperature

(Tmean), maximum temperature (Tmax), log(Urban), log(Precipitation), and population den-

sity in influencing dengue incidence rates. However, further research is needed to gain a

better understanding of the role of additional variables, such as immunity levels, awareness,

and vector control measures, in the spread of dengue.

Introduction

Dengue virus is responsible for causing dengue fever, a viral illness transmitted to humans

when an Aedes mosquito carrying the virus bites them. Symptoms of dengue fever usually

include fever, headache, muscle pain, joint pain, and a distinct skin rash. In severe cases, den-

gue fever can progress to a life-threatening form called dengue hemorrhagic fever. With an

estimated 390 million cases occurring annually, dengue fever is a significant global health con-

cern that predominantly affects tropical and subtropical regions worldwide, with urban and

semi-urban areas being at higher risk. The World Health Organization (WHO) has identified

dengue fever as a primary cause of illness and mortality in some Asian and Latin American

countries. Climate change, population growth, and increased travel and trade have all contrib-

uted to the spread of the disease in recent years. Moreover, Dengue and climate change are

closely linked, as the mosquitoes that transmit the dengue virus thrive in warm and humid

environments. As the global temperature increases, the range of these mosquitoes is expected

to expand, leading to a higher risk of dengue transmission in new areas. Climate change also

affects precipitation patterns and can lead to increased flooding and standing water, which

provide ideal breeding grounds for mosquitoes. In addition, extreme weather events such as

cyclones and hurricanes can disrupt public health infrastructure and vector control measures,

making it harder to prevent and control outbreaks of dengue. Furthermore, Climate change

can also impact human populations in ways that increase their risk of infection, such as popu-

lation displacement, economic stress, and reduced access to health care. WHO has acknowl-

edged the potential influence of climate change on the spread of vector-borne illnesses,

including dengue, and has urged heightened endeavors to adjust to and alleviate these

consequences.

Banu et al. [1] used data from the years 2000–2010 to project future dengue outbreaks in

Dhaka, Bangladesh. They found a strong association between temperature and humidity with

dengue outbreaks. They also projected that an increase in temperature of 3.3 ˚C by 2100 would

result in a significant increase in dengue cases. Dhewantara et al. [2] used data from the Minis-

try of Health, Indonesia from 2012–2017 to study the ecological factors affecting dengue inci-

dence in Bali. They found that rainfall, elevation, and population density were associated with

dengue transmission in Bali. Jácome et al. [3] investigated the association of meteorological

variables with dengue fever in Guayaquil, Ecuador in 2012. They found that precipitation,

maximum and minimum temperatures, solar radiation, wind velocity, and wind vapor pres-

sure were all associated with dengue outbreaks. Jayaraj et al. [4] developed a model using

weather and dengue incidence data to predict future dengue incidence in Tawau district,

Malaysia, using data collected from 2006 to 2016. They observed that an outbreak of dengue

transmission is associated with mean temperature, minimum temperature, and humidity.
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They also found that rainfall is not a significant factor for dengue outbreaks which is unusual

as rainfall is known to be helpful for mosquito breeding sites. Xu et al. [5] examined the

imported dengue cases from two Indonesian cities, Bali and Jakarta, to Australia. They used

data collected from Bali (2007–2013) and Jakarta (2001–2017) and found that an increase in

dengue cases is associated with an increase in mean temperature and rainfall.

Liu et al. [6] investigated the relationship between climate factors and dengue outbreaks in

China using data from 1980–2016. They found that population density, mean temperature,

precipitation, and humidity had a positive association with dengue outbreaks. Prabodanie

et al. [7] examined the relationship between climate factors and dengue incidence dynamics in

the dry and wet zones of Colombo & Batticaloa, Sri Lanka using data collected from 2009–

2017. They found that temperature had no relation with dengue incidence in both the dry and

wet zones. However, population density, rainfall, and humidity showed an association with

dengue spread. Akter et al. [8] employed Bayesian spatial analysis to investigate the correlation

between weather, socio-ecological factors, and dengue occurrence in Queensland, Australia.

The data was gathered from 2010–2015. They found that average rainfall and an increase in

terrace houses were significantly associated with an increase in dengue incidence. Cheng et al.

[9] used a Bayesian spatial model to investigate the association between climate variables and

dengue incidence in Guangdong, China. They found that extremely high temperatures and

rainfall have a strong positive association with dengue incidence. However, they also found

that the spatial variability of extremely high temperatures did not show any association with

dengue outbreaks, while the opposite behavior was observed for extremely high rainfall. Davis

et al. [10] proposed a Suitable Conditions Index (SCI) to predict future dengue forecasts in six

Asia-Pacific countries. They used data collected from 2005 to 2018. They presented projected

scenarios for 2030, 2050, and 2070 and suggested that the South East Asia (SEA) region will be

most suitable for future dengue outbreaks, while Australia and China will be less suitable for

mosquitoes breeding due to the less favorable conditions. This is an alarming finding for the

SEA region as the socioeconomic and environmental factors and global warming effects are

likely to have a severe impact on dengue outbreaks.

Haider et al. [11] discussed the importance of mosquito control in reducing dengue out-

breaks in Bangladesh. They used data collected from 2008 to 2019 and found that temperature

and rainfall are strongly associated with the growth rate of dengue cases. The authors suggest

that controlling mosquitoes, which are vectors of dengue, can be an effective way to reduce the

incidence of dengue outbreaks. Muñoz et al. [12] investigated the relationship between local

climates, ENSO (El Niño Southern Oscillation), and dengue outbreaks in Columbia. The data

collection period was from 2007 to 2017. They found that there is a strong correlation between

dengue transmission, maximum temperature, and wind velocity. They also found a weak cor-

relation between dengue outbreaks, humidity, and precipitation. This suggests that while tem-

perature and wind velocity are key factors affecting dengue transmission, humidity and

precipitation may have less of an impact. Seah et al. [13] investigated the relationship between

heat waves and maximum temperature on dengue incidence in Singapore. The data collection

period was from 2009 to 2018. They found that dengue infection reduced as heat and tempera-

ture increased, and temperature equal to 31 ˚C or higher made a significant impact on reduc-

ing dengue spread. This suggests that high temperatures may be an effective way to reduce

dengue transmission in Singapore.

Wang et al. [14] examined the effect of extreme temperature and rainfall on dengue infec-

tion in four Asian countries. They used data collected from 2012 to 2020. They found that

extreme rainfall helps to reduce the spread of dengue whereas extreme temperature is associ-

ated with an increase in dengue infection. This suggests that while extreme rainfall may be

beneficial in reducing dengue transmission, extreme temperatures may exacerbate dengue
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infection in these countries. Susilawaty et al. [15] investigated the relationship between weather

variables and dengue incidence in Makassar, Indonesia. They used data collected from 2011 to

2017. They found that humidity had a strong relationship with dengue incidence, while tem-

perature, wind velocity, and rainfall had a negative correlation with dengue incidence. This

suggests that while humidity may be a key factor in dengue transmission in Makassar, temper-

ature, wind velocity, and rainfall may be less important. Costa et al. [16] investigated the rela-

tionship between hydroclimatic variables and dengue outbreaks in dryland regions of Ceara,

Brazil. The data collection period was from 2008 to 2018. They found that precipitation was

not associated with dengue incidence, however, population density and extreme drought were

strongly associated with dengue incidence. This suggests that while precipitation may not be a

major factor in dengue transmission in dryland regions of Ceara, population density and

extreme drought may play a significant role in dengue outbreaks.

While numerous studies have investigated the association between climate variables and

dengue transmission, there is a noticeable gap in research that integrates demographic and

environmental factors into the analysis, particularly in highly affected countries. Despite many

literature on climate-dengue relationships, there remains a need for comprehensive studies

that consider the relation between socioeconomic variables, environmental conditions, and

dengue spread. Considering the research gap, this research aims to understand the relationship

between demographic-environmental factors and the spread of dengue transmission, with a

focus on countries that are highly affected by dengue. The use of statistical models and graphi-

cal techniques allows for a comprehensive analysis of the data to identify the most influential

factors and determine the strength of their relationship with dengue transmission. This study

holds significant importance, firstly, by examining the relationship between demographic-

environmental factors and dengue transmission in highly affected countries, it addresses a crit-

ical gap in the existing literature, providing insights of dengue outbreaks. Secondly, the utiliza-

tion of statistical models and graphical techniques enables a comprehensive analysis of the

data, facilitating the identification of key factors and their importance in driving dengue

transmission.

Data descriptions

This study is collecting a variety of data from 11 different countries that are considered to have

high rates of dengue transmission. The data includes yearly dengue incidence, temperature

(mean, minimum, and maximum), precipitation, total population, urban and rural popula-

tion, and population density. This study is collecting data from Bangladesh, Nepal, Sri Lanka,

India, Brazil, Indonesia, Malaysia, Philippines, Thailand, Myanmar, and Vietnam. The selec-

tion of these countries for data collection in this study is justified by their significant burden of

dengue fever, diverse geographical landscapes, and varying socioeconomic conditions. More-

over, the inclusion of these countries allows for the exploration of diverse climatic zones and

population densities, thereby enabling a clear understanding of the contextual factors influenc-

ing dengue spread. The data collection period is from 2000 to 2021, which spans over two

decades. The study is using two sources for data collection, Climate Change Knowledge Portal

(https://climateknowledgeportal.worldbank.org/) for climate-related data, and the World

Bank website (https://www.worldbank.org/en/home) for population-related data. In addition

to collecting data from the two sources previously mentioned, the study is also collecting the

total number of yearly dengue cases for each country from the Ministry of Health of the corre-

sponding countries, as well as from an article by Gan et al. [17]. Statistical analysis is being per-

formed using R on the data from all 11 countries. The data is openly available in the study’s

repository for anyone to access. Link: https://doi.org/10.6084/m9.figshare.25745295.v1
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Methodology

The response variable considered in our study is the number of dengue cases which is a count

(discrete) variable in nature. We aim to explore how this response variable is affected by demo-

graphic and environmental factors, and this type of relationship can be statistically examined

through several count regression models, most importantly Poisson, Negative binomial, zero

inflated Poisson and zero inflated Negative binomial models under generalized linear model

framework [18]. For a particular data set, suitable count regression models are selected based

on the relationship of response variable mean and variance. For example, (i) Poisson regres-

sion can be used when mean and variance of the count response are equal, (ii) Negative bino-

mial regression can be used in over dispersed count data (variance of the count response is

larger than its mean), (iii) Zero inflated Poisson can be used when response consists of exces-

sive zero count compare to the other counts but its mean and variance are the same and (iv)

Zero inflated negative binomial can be used in case of excessive zero counts with over-disper-

sion. The response variable in our data set is over dispersed as its variance is 485002 times

compared to its mean and no excessive zero (even other numbers) count is observed in the

data. Therefore, Negative binomial regression model is chosen as a suitable count regression

model to analyze the data considered in this paper. We also consider here Poisson regression

model as a basic count regression model. PR model presumes that the response variable con-

forms to a Poisson distribution and establishes the average of the response variable as a func-

tion of explanatory variables. NBR model on the other hand, is used when the response

variable is over-dispersed relative to a Poisson distribution and models the mean of the

response variable as a function of predictor variables. Both models can be useful in under-

standing the relationship between predictor variables and the count of occurrences of an

event.

Assumptions made in the PR model include that the responses Yi, i = 1, 2, 3,� � �, n, are gen-

erated from the Poisson distribution with mean μi that is

YijmiePoisson mið Þ ¼
e� mi mi

yi

yi!
ð1Þ

and the μi are the functions of covariates. For the Poisson regression, the bridge between μi
and the set of covariates can be defined as

log mið Þ ¼ g mið Þ ¼ Zi ¼ b0 þ b1ix1i þ � � � � � � þ bpixpi ¼ b0 þ
Xp

k¼1

bkixki ð2Þ

where g and ηi are the log-link functions and ith linear predictor, respectively while β0, β1, � � �,

βp are the regression coefficients.

One of the common phenomena for modeling count response data is overdispersion which

arises due to the excess variation between response counts. The response variable, dengue-

infected cases, considered in this study have excess variation. It also arises when the indepen-

dence assumption of observations is violated and this can happen in clustered data. Standard

errors of the estimates are underestimated due to the consequence of overdispersion which

makes a variable to be a significant predictor when it is not actually significant. Therefore,

overdispersion needs to be taken care of properly in analyzing count response.

Hilbe [19] suggested Pearson χ2 statistic to detect overdispersion in a real data set which is

defined as

w2 ¼
Xn

i¼1

yi � m̂ið Þ
2

Varðm̂iÞ
ð3Þ
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where Varðm̂iÞ is the variance of expected count m̂i . A model is considered to be overdispersed

if the dispersion value, χ2 statistic divided by the corresponding degrees of freedom, is greater

than 1 while equidispersed and under-dispersed are considered for the dispersion value 1 and

less than 1, respectively. A model that can be used to analyze overdispersed count responses is

NBR model. Assumptions made in NBR model include that the responses Yi are generated

from the negative-binomial distribution with the following form

YijmieNB mi; sð Þ ¼
sþ yi � 1

yi

� �
s

sþ mi

� �s
mi

sþ mi

� �yi

ð4Þ

where μi and s are known as the mean and dispersion parameters respectively. The variance of

NBR response variable is a quadratic function of its mean which is

mi þ
m2
i

s
: ð5Þ

NBR model is utilized to model count data that exhibit overdispersion, owing to this attri-

bute. The negative binomial distribution approximates the Poisson distribution as a limiting

case when s is large enough. Under NBR framework, the mean μi is also connected with covari-

ates via a log-link function like PR i.e.

E Yijxið Þ ¼ mi ¼ exp b0 þ
Xp

k¼1

bkixki

 !

ð6Þ

In the context of our research, the mean number of dengue cases μi are connected with

covariates under both the PR and NBR frameworks as

logðmiÞ ¼ Zi ¼ b0 þ b1iðMean TemÞi þ b2iðMin TemÞi þ b3iðMax TemÞi

þ b4iðlogðPrecipitationÞÞi þ b5iðlogðTotal populationÞÞi

þ b6iðlogðUrbanÞÞi þ b7iðlogðRuralÞÞi þ b8iðPopulation densityÞi
ð7Þ

Some of the covariates considered in our study like precipitation, total population, unban

population and rural population have very higher values compared to the other covariates val-

ues such as mean temperature, min temperature, max temperature and population density.

More specifically, the numerical values of mean temperature, min temperature and max tem-

perature are limited to two digits before decimal while population density has three digits

value. On the other hand, total population, urban population and rural population have values

in 9 digits form while precipitation has 4 digits value. Therefore, scaling of the independent

variable values differs drastically which causes numerical instability in the estimation process

of the count regression model. We considered log transformation of precipitation, total popu-

lation, unban population and rural population to make their values similar to other indepen-

dent variables values which provides numerical stability in the estimation process.

The functions glm and glm.nb in R under MASS package are used to fit Poisson and neg-

ative binomial regression models, respectively. We use AIC, dispersion, deviance and Pseudo-

R2 values to assess the performance of the fitted model. Akaike [20] developed a criteria,

known as Akaike information criterion (AIC), to assess the quality of fit of a model which can

be defined as

AIC ¼ � 2l ŷ; y
� �

þ 2p ð8Þ
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where l ŷ; y
� �

is the log-likelihood function at y ¼ ŷ; y is the data vector and p is the number

of regression coefficients. A model is considered to be the best model provided that its AIC

value is the smallest. Models from different GLM families can also be compared using deviance

test, and it can be defined as

D ¼ 2
Xn

i¼1

l y; yð Þ � l ŷ; y
� �n o

ew
2

n� pð Þ
ð9Þ

where l(y, y) and l ŷ; y
� �

are the log-likelihood functions with θ is replaced by y and ŷ, respec-

tively. Like the AIC criteria, a model with smaller deviance is considered to be a better model

over a model with greater deviance. The comparative deviance statistic D follows a χ2 distribu-

tion with (n − p) degrees of freedom. Finally, the coefficient of determination, R2 is a well-

known model evaluating criteria used in linear regression model. However, for a non-linear

model like PR, NBR, and logistic regression models R2 is not appropriate, and the counterpart

of R2 in such case is pseudo-R2 which is defined as

R2

p ¼ 1 �
lF
lI
; ð10Þ

where lF and lI represent the log-likelihood for the full and intercept-only models, respectively.

Like R2, the interpretation of R2
p is not straightforward. A lack of fit of a model is indicated by

low values of R2
p, whereas high values do not. However, there is no specific boundary to differ-

entiate low and high values [19]. For the count model, incidence rate ratio (IRR) can be pre-

ferred over estimated regression coefficients to examine the effects of explanatory variables as

far as interpretation and understanding are concerned. The IRR for the kth covariate is defined

as IRRk ¼ ebk , k = 1, 2,� � �, p.

Results

By including climate variables, such as mean, maximum, and minimum temperatures and pre-

cipitation, as well as other variables like population demographics and population density, you

can account for potential sources of variation in dengue incidence (DI). The presentation of

descriptive statistics of these variables, such as mean, median, standard deviation, etc., provides

an overview of the distribution of the data and helps to identify any patterns or trends in the

data. The table is likely to provide a useful starting point for the analysis and modeling of the

data.

In this study, climate variables, such as mean, maximum, and minimum temperatures and

precipitation, as well as other variables like population demographics and population density

are being considered. The presentation of descriptive statistics of these variables, such as

mean, median, standard deviation, etc., provide an overview of the distribution of the data and

helps to identify any patterns or trends in the data as shown in Table 1. The average dengue

incidence of 129038 cases is likely a sum of cases across all 11 countries, while the mean tem-

perature (Tmean) of 24.75˚C, minimum temperature (Tmin) of 19.96˚C, and maximum temper-

ature (Tmax) of 29.58˚C give an indication of the average climate conditions in the study

region. The population density of 263.73 people per square kilometer provides a measure of

the degree of crowding in the study area and can help to identify areas with a high potential for

the spread of infectious diseases like dengue.

Table 2 of the study presents the average number of dengue incidences per year over the

periods 2000 to 2006, 2007 to 2014, and 2015 to 2021 as well as the percentage of increase or
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decrease of dengue cases over the period 2015 to 2021 compared to the period 2000 to 2006.

The study states that in the time period of 2000 to 2006, 2007 to 2014, and 2015 to 2021, the

highest and lowest number of yearly average dengue cases are observed in Brazil and Nepal

respectively. The study notes that Nepal showed a particularly high increase in dengue inci-

dence compared to any other country, as high as 100%. Furthermore, India, Sri Lanka, and

Bangladesh have also shown significant increases in dengue cases, with 95%, 88%, and 86%

increases respectively. This is considered to be alarming for the South Asia region and the

study suggests that global climate change is highly considered for such dengue outbreaks in

South Asia. Additionally, the study finds that the percentage of dengue incidence rate is

decreasing in Myanmar and Vietnam over time, however, the yearly average incidence is still

extremely high in these countries. This is a concern for people living in those areas.

Exploratory data analysis (EDA) is an important step in the analysis of data and can help to

identify patterns, trends, and relationships in the data. The creation of a correlation plot that

includes various elements such as histograms, density functions, smoothed regression lines,

correlation coefficients, and their corresponding significance levels can provide useful infor-

mation regarding the connections between the response variable and predictor variables. The

EDA can also help to identify any outliers or anomalies in the data that may need to be further

investigated or removed from the analysis. Fig 1 provides specific information on the infected

cases, mean temperature, minimum temperature, maximum temperature, log(Precipitation),

log(Total population), log(Urban), log(Rural), and population density variables, along with

their corresponding significance levels. From the EDA, it is observed that the distribution

Table 1. Summary statistics of dengue infected cases and explanatory variables over the years 2000–2021.

Variable Minimum Maximum Mean Q1 Q2 Q3

Dengue Infected Cases 0 1649008 129038 11745 47596 147701

Mean temperature (˚C) 13.97 27.72 24.75 24.80 25.83 26.39

Min temperature (˚C) 7.84 24.11 19.96 19.14 21.25 22.05

Max temperature (˚C) 20.08 32.93 29.58 29.43 30.57 30.96

log (Precipitation) 6.594 8.183 7.557 7.377 7.538 7.829

log (Total population) 16.75 21.06 18.33 17.24 18.25 19.04

log (Urban) 14.98 20.02 17.32 16.55 17.29 18.45

log (Rural) 15.80 20.62 17.71 16.93 17.44 18.44

Population density 21.00 1163.96 263.73 95.83 179.18 324.25

https://doi.org/10.1371/journal.pone.0305854.t001

Table 2. The average number of dengue cases/year and % of the increase in the period 2015 to 2021 compared to the period 2000 to 2006.

Country 2000 to 2006 2007 to 2014 2015 to 2021 % of Increase (approx.)

Bangladesh 2673 832 19,082 86

Nepal 04 286 2956 100

Sri Lanka 7298 29,413 60,520 88

India 5979 63,822 126,306 95

Brazil 246,044 743,077 956,892 74

Indonesia 97,402 144,413 102,949 5

Malaysia 24,363 35,000 55,881 56

Philippines 175,266 170,993 201,294 13

Thailand 52,617 53,730 61,481 14

Myanmar 20,660 20,474 19,587 -5

Vietnam 105,586 195,124 93,895 -12

https://doi.org/10.1371/journal.pone.0305854.t002
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(shape) of infected cases is negatively skewed while shape of the densities of the other explana-

tory variables are approximately bimodal (diagonal elements of Fig 1). Furthermore, negative

effects of log(Precipitation), log(Rural), and population density on infected cases can be seen

in simple smooth regression lines of infected cases on log(Precipitation), infected cases on log

(Rural), and infected cases on population density respectively while other explanatory variables

considered in this study have positive effects on infected cases. The relationship between

infected cases and each explanatory variable observed in simple smoothed regression lines pro-

vides a rough justification about the potential explanatory variables in GLM but does not

Fig 1. Pairwise correlation plot. (Note: p< 0.1*, p< 0.05**, p< 0.01**).

https://doi.org/10.1371/journal.pone.0305854.g001
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provide any conclusive decision about the statistical significance of explanatory variables. Fur-

thermore, a very strong positive Pearson correlation coefficient can be seen between Tmean and

Tmin, Tmean and Tmax while Tmean has a moderate positive Pearson correlation with log(Pre-
cipitation), log(Total population), log(Urban). It was also noticeable that high positive correla-

tion exists between the pairs (Min temperature, Max temperature), (log(Total population), log

(Urban)), (log(Total population), log(Rural)). The existence of a strong correlation among pre-

dictors does not pose any hindrance to the application of GLM.

From the summary statistics presented in Table 1, it is observed that variance of the

response variable (dengue infected cases) is 485002 times compared to its mean which indi-

cates that the response variable is overdispersed. Therefore, overdispersion needs to be taken

into account in the statistical modeling of dengue-infected cases. In this study, Poisson and

negative binomial regression models were considered to analyze overdispersed dengue-

infected cases, and different performance criteria of both the fitted models are presented in

Table 3.

From Table 3, it is observed that dispersion value for NBR model is 1.22 while it is 75715.79

for PR. Dispersion value close to 1 is desirable for any count regression model, and this hap-

pens when the count regression model captures overdispersion sufficiently in case of overdis-

persed count response modeling. Hence, it can be concluded that NBR model captured

overdispersion very well compared to the PR model. Furthermore, the AIC and deviance val-

ues for PR and NBR model are 69984.23 and 16933275, and 23.75 and 288.65 respectively.

Therefore, NBR model can be considered as a better model to analyze dengue-infected cases

compared to PR model as far as AIC and deviance values are concerned. Interestingly, pseudo-

R2 value (0.71) for PR is higher than pseudo-R2 value (0.556) obtained for NBR model. This

(misleading results) could have happened as overdispersion was not properly addressed in the

PR model.

Finally, NBR model was chosen as a better model to analyze dengue-infected cases over PR

model based on the above performance comparison of PR and NBR models. Therefore, only

regression outputs obtained from NBR model were considered to determine the significant

predictors of dengue-infected cases which are presented in Table 4.

From Table 4, it is observed that predictor variables such as Tmean and Tmax, log(Precipita-
tion), log(Urban), and population density have statistically significant effects on dengue inci-

dence rate while Tmin, log(Rural), and log(Total population) do not have statistically

significant effects on dengue incidence rate. More specifically, the effects of log(Precipitation)

and population density on dengue incidence rate are statistically significant at 0.1% level (p<
.001) while the effects of Tmax and log(Urban) on dengue incidence rate and the effect of Tmean

on dengue incidence rate are statistically significant at 0.6% and 0.3% levels (p< .0055, p<
.0012) and 5% level (p< .0441) respectively. The quantity of IRR presented in column 4 of

Table 4 quantifies the direction of the effect of significant predictors on dengue incidence rate

numerically. For example, for a one-unit increase in Tmean, the rate of dengue-infected cases

increases by 2710%, with the remaining significant predictor variables values held constant.

Table 3. Goodness-of-fit tests based on AIC, Pearson residual χ2 statistic, dispersion, deviance and Pseudo-R2 values for PR and NBR models.

Model AIC DF Pearson χ2 Dispersion Deviance p − value Pseudo-R2

PR 69984.23 233 17641779 75715.79 16933275 0 0.710

NBR 23.75 233 285.937 1.22 288.65 0.0076 0.556

*Dispersion ¼ Pearson w2

DF

https://doi.org/10.1371/journal.pone.0305854.t003
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Like Tmean, log(Urban) has a positive effect on dengue infected cases which is increased by

442% due to one unit increase in log(Urban) provided that other significant predictor variables

values held constant.

On the other hand, the predictor variables Tmax, log(Precipitation) and population density

have negative effects on dengue incidence rate. For example, the expected number of dengue-

infected cases decreases by 90.32% due to one unit increase in Tmax when the other significant

predictors are held fixed. Similarly, the dengue cases are expected to decrease by 80.8% for a

one-unit increase in log(Precipitation) provided that other significant predictor variables are

kept fixed. Finally, for each additional unit of population density, dengue cases are expected to

decrease by 0.3% when other significant predictor variables are kept fixed.

Various perspectives can be used to assess the goodness of fit of a statistical model to a

given dataset. For instance, Tables 3 and 4 illustrate how NBR model compares to PR model in

representing the dengue dataset. Model efficiency criteria such as AIC, dispersion, deviance, p-

value, and Pseudo-R2 values are used for this purpose. However, the aforementioned analysis

lacks exploration regarding whether the chosen model assumptions are satisfied and whether

particular data points have an impact on parameter estimates. To address these issues, diag-

nostic plots for generalized linear models are considered, as presented in Figs 2 and 3.

Fig 2 illustrates the jackknife deviance residuals against the linear predictor in the top left

panel and the normal QQ plots of the standardized deviance residuals in the top right panel. A

well-fitted model is expected to have jackknife deviance residuals distributed evenly around a

horizontal line without any distinct pattern, and standardized deviance residuals lined up well

on the dotted line with an intercept of zero and a slope of one. The top left plot of Fig 2 indi-

cates that jackknife deviance residuals are distributed roughly evenly around the horizontal

line y = 0. However, in the top right plot, although most of the standardized deviance residuals

fall on the dotted line, some deviate from it in both the left and right-tailed areas. Specifically,

the distribution of standardized deviance residuals (sample quintiles) has lighter and heavier

tails in the left and right-tailed areas, respectively, compared to the theoretical standard normal

distribution. This symptom does not necessarily indicate a violation of the normality assump-

tion, but observations for which standardized deviance residuals deviate from the dotted line

may be a potential problem that requires further exploration.

The bottom left and right panels of Fig 2 display Cook statistics against standardized lever-

ages and case number, respectively. The Cook statistic measures how much the parameter

Table 4. Results obtained from best NBR to analyze overdispersed dengue count data collected from 11 countries in Asia.

Variable Estimate SE IRR 95% CI for IRR p-value

Intercept 17.301 5.006 3.26e+07 (597.01, 2.32e+12) 0.0005***
Mean temperature 3.336 1.657 2.81e+01 (0.1660, 2.32e+03) 0.0441*
Min temperature -0.926 0.825 3.95e-01 (0.0427, 5.15e+00) 0.2619

Max temperature -2.334 0.842 9.68e-02 (0.0107, 1.27e+00) 0.0055**
log(Precipitation) -1.648 0.398 1.92e-01 (0.0785, 4.64e-01) <0.001***

log (Total population) -0.721 0.939 4.86e-01 (0.0632, 3.52e+00) 0.4429

log(Urban) 1.690 0.523 5.42e+00 (1.7526, 1.72e+01) 0.0012**
log (Rural) -0.252 0.397 7.76e-01 (0.3506, 1.73e+00) 0.5252

Population density -0.002 0.0003 9.97e-01 (0.9970, 9.98e-01) <0.001***

*p<0.05,

**p<0.01,

***p<0.001

https://doi.org/10.1371/journal.pone.0305854.t004
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Fig 2. Diagnostic plots for NBR model.

https://doi.org/10.1371/journal.pone.0305854.g002

Fig 3. Influence plot for NBR model.

https://doi.org/10.1371/journal.pone.0305854.g003
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estimates change when a data point is removed from the calculation of fitting the regression

model. Consequently, it is employed to identify influential observations. In the bottom left

graph, two dotted lines are included at x = 2p/(n − 2p), and y = 8/(n − 2p), where n represents

the count of observations and p denotes the number of estimated parameters. Points above the

horizontal line (shown in the right plot) may have a high influence on the model, while points

to the right of the vertical line are considered high-leverage points.

The influence plot in Fig 3 reveals that observations 20 and 42 have large positive residuals,

while observation 28 has a large negative residual. Additionally, observations 11 and 13 are

identified as large leverage points. The combination of a data point’s leverage and residual

determines its influence on a model, which can be studied using a standardized residual versus

leverage plot.

The residual versus leverage plot in Fig 4 shows that observation 42 is located outside the

Cook’s distance in the upper right corner (marked by a red dotted line), indicating it as an

influential observation. Cook’s distance lines (red dotted lines) are barely visible in the residual

versus leverage plot when there are no influential observations in the data. To quantify the

effect of this influential observation on the model, the negative binomial regression model is

fitted without observation 42. The output of this model shows that there are very slight changes

in the regression coefficients, which can be ignored.

Discussion

The study was carried out in 11 countries, and it has led to the identification of several factors

that are associated with DI. The findings of the study suggest that particular environmental

and demographic factors are essential in determining the occurrence of dengue. It is found

that mean temperature, maximum temperature, urban population, precipitation, and popula-

tion density are all associated with the incidence of dengue. In contrast, the study found that

Fig 4. Residuals vs. Leverage plot for the negative binomial model.

https://doi.org/10.1371/journal.pone.0305854.g004
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minimum temperature, total population, and rural population had no significant association

with dengue incidence. Overall, the study highlights the complex interplay between environ-

mental and demographic factors in determining the incidence of dengue. By identifying these

key factors, policymakers and public health officials can develop targeted interventions to pre-

vent and control the spread of dengue in high-risk areas.

Aedes aegypti mosquitoes thrive in urban areas and are often found in and around human

dwellings, making it easier for them to bite and infect people. When a mosquito bites an

infected person, it can then become a carrier of the virus and spread the disease to other indi-

viduals it bites [21]. Urban areas are particularly vulnerable to dengue transmission due to the

high densities of people and mosquitoes [22, 23]. The close proximity of people in urban areas

means that the disease can spread rapidly from person to person, and the abundance of Aedes

mosquitoes provides ample opportunities for the virus to be transmitted. In addition, urban

areas have a high number of potential breeding sites for Aedes mosquitoes [22, 23]. These

breeding sites can include anything that holds stagnant water, such as discarded tires, buckets,

and other containers. When stagnant water is present, it creates favorable conditions for Aedes

mosquitoes to deposit their eggs, leading to a greater number of mosquitoes and an elevated

probability of dengue transmission [22, 23].

According to a study by Kolimenakis et al. [22], there is a robust association between the

prevalence of dengue fever and urbanization in various countries. The investigation revealed

that urban regions have around 63.3% of possible breeding sites for mosquitoes, thereby ele-

vating the chances of dengue transmission. Additional research has also established a direct

relationship between urbanization and the incidence of dengue fever [24, 25]. These findings

imply that urbanization plays a crucial role as a risk factor in the propagation of the disease. In

our study, we also observed that an increase of one unit in log(Urban) results in a 442%

increase in the number of dengue-infected cases, indicating a positive impact of urbanization.

While it can be challenging to restrict the movement of people from rural areas to urban cen-

ters, the limited availability of facilities and resources in rural areas can contribute to the high

density of urban populations. This further exacerbates the risk of dengue transmission, as it

creates more opportunities for infected individuals to come into contact with Aedes mosqui-

toes and facilitate the spread of the disease. Overall, the combination of urbanization, mosqui-

toes, and the presence of potential breeding sites in urban areas creates a significant risk for

the spread of dengue fever in urban populations and across various countries. Effective mea-

sures, such as mosquito control programs and public awareness campaigns, are necessary to

prevent and control the spread of dengue fever in urban areas.

The Aedes mosquito thrives in warm and humid environments [26], with optimal tempera-

tures for their development ranging from 26 to 32˚C [26]. The rise in mosquito populations

during the warm and wet seasons is known to contribute to an increase in dengue fever inci-

dence [26]. Additionally, higher temperatures can speed the virus’s development within mos-

quitoes, resulting in a shorter incubation period and a higher chance of transmission [26]. The

present study further supports this relationship, demonstrating a positive correlation between

mean temperature and dengue fever incidence. Specifically, a one-unit increase in mean tem-

perature is linked to a significant increase of 2710% in the rate of dengue cases, holding all

other significant predictor variables constant. Research conducted in several regions of the

world [27–29] has indicated that there is a direct relationship between the Tmean and DI. This

evidence suggests that as temperatures increase due to climate change, there may be a corre-

sponding increase in dengue incidence in various parts of the world.

Heavy rainfall, particularly precipitation, can play a vital role in decreasing dengue inci-

dence by flushing out mosquito breeding sites and larvae. When heavy rainfall occurs, it

washes away standing water and disrupts breeding sites, ultimately reducing the mosquito
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population and decreasing the likelihood of dengue transmission. Additionally, heavy rainfall

helps to decrease the ambient temperature, further reducing the mosquito population and the

risk of dengue transmission. Various research studies including Roiz et al. [30], Dieng et al.

[31], and Romiti et al. [32] have explained that precipitation has a negative effect on dengue

spreading due to a decrease in the number of mosquito eggs. Our research also supports the

concept that heavy rainfall can have a positive impact on reducing dengue incidence. We

observed a negative correlation between log(precipitation) and the dengue incidence rate, indi-

cating that as precipitation levels increase, the incidence of dengue decreases. Therefore, heavy

rainfall may be a significant factor in reducing the incidence of dengue, as previously

discussed.

Numerous studies suggest a positive correlation between population density and dengue

fever incidence, though this relationship is dependent on various factors. However, Schmidt

et al. [33] found that regions with high population densities did not experience severe dengue

outbreaks and had a lower risk of such outbreaks. Araujoa et al. [34] also observed that higher

population density regions had a lower incidence of dengue compared to low population den-

sity regions. Furthermore, Istiqamah et al. [35] reported that there is no significant association

between population density and dengue incidence, suggesting that the severity of dengue out-

breaks is not necessarily linked to higher human population densities. Our study reveals find-

ings that are consistent with the previously cited studies, demonstrating a negative correlation

between population density and dengue incidence. This suggests that regions with higher pop-

ulation densities may not necessarily experience more severe dengue outbreaks. Furthermore,

the negative correlation observed between population density and dengue incidence in our

study could be attributed to several factors. For instance, higher population densities may lead

to greater awareness and access to healthcare resources, resulting in improved diagnosis and

treatment of dengue cases [36]. Additionally, densely populated areas may be more likely to

have effective vector control measures in place, which can help to limit the spread of dengue.

Conclusion

In this study, we analyzed data from 11 dengue-prone Asian countries between 2000 and 2021

to identify the environmental and demographic factors associated with dengue infection. The

analysis revealed the following:

• The variance of dengue cases was 485002 times greater than its mean, indicating that the

data was overdispersed.

• NBR model fit the data better than the PR model. Therefore, the significant factors affecting

dengue cases were determined using the outputs obtained from the negative binomial

regression model.

• Tmean, Tmax, log(Precipitation), log(Urban), and population density have statistically signifi-

cant effects on dengue incidence rate.

Limitations

Our study’s findings are largely consistent with existing literature, except for the results related

to population density. We attribute this inconsistency to the unavailability of information

regarding factors such as individuals’ immunity levels, degree of awareness, and effectiveness

of vector control measures in the study area, all of which are believed to influence the inci-

dence of dengue. Unfortunately, these variables were not included in our dataset, limiting the

PLOS ONE Dengue outbreaks in 11 countries

PLOS ONE | https://doi.org/10.1371/journal.pone.0305854 September 11, 2024 15 / 18

https://doi.org/10.1371/journal.pone.0305854


scope of our study. To obtain a more comprehensive understanding of the association between

population density and dengue incidence, future research could overcome this limitation by

considering these factors in their analysis.

There are numerous variables that cannot be analyzed because it is likely that this informa-

tion is not available. Our study solely relies on secondary information, which may introduce

biases in data collection. Only population-level information is analyzed, while individual-level

data has not been utilized. Consequently, it is impossible to separate the biological factors that

can influence the disease, as these factors cannot be included in this analysis.
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