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Abstract—Blockchain technology, known for its decentralized
and immutable nature, serves as the foundation for various applica-
tions. As a prominent application of blockchain, decentralized stor-
age is powered by blockchain technology and is expected to provide
a reliable and cost-effective alternative to traditional centralized
storage. A major challenge in blockchain-powered decentralized
storage is how to guarantee the quality of storage services in
decentralized storage nodes (DSNs). Storage auditing can ensure
the integrity and security of the stored data. Unfortunately, it incurs
additional computational costs for data owners and extra storage
overheads for DSNs, which thereby cannot be directly applied to
decentralized storage networks consisting of nodes with various
computation and storage capacity. In this article, we overcome
these problems and minimize additional burdens in storage audit-
ing. We propose EDCOMA, a computation and storage efficient
auditing scheme for blockchain-based decentralized storage, in
which a double compression method is designed to compress data
authenticators using both data and polynomial commitment. To
prevent replay attacks on double compression launched by DSNs,
we introduce zero knowledge proof and design a compression
arithmetic circuit to guarantee the execution of compression op-
erations in DSNs. We analyze the security of EDCOMA under the
random oracle model and conduct extensive experiments to eval-
uate the performance of EDCOMA. Experimental results affirm
that EDCOMA outperforms state-of-the-art approaches in both
computational and storage efficiency.

Index Terms—Decentralized storage, auditing, double compre-
ssion, blockchain.

I. INTRODUCTION

B LOCKCHAIN is a revolutionary approach for decentral-
ized networks and was initially introduced in 2008 [1], [2].
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It facilitates the establishment of consensus-based peer-to-peer
networks, constructing chains of accepted blocks without the
need for a central authority or centralized controller. Blockchain
has disrupted traditional models of trust and transaction valida-
tion, enabling a secure and transparent exchange of information
and value across the globe. By providing a trustless and im-
mutable framework, blockchain paves the way for enhanced se-
curity and trust in various applications and industries, including
finance, supply chain management, healthcare, etc.

One prominent application of blockchain is seen in decen-
tralized storage (DS) [3], where individuals or micro companies
can rent their unused hardware storage capacity to others. As a
new paradigm of storage, DS leverages blockchain technology
to create a storage platform and encourages more micro storage
providers to participate in the storage market and share their
spare storage resources. According to [3], the total unused
storage space of individual computer users exceeds Google’s
centralized storage capacity, despite the company’s significant
storage capabilities.

Several DS projects such as Filecoin, Sia, Storj, etc., have
been developed in recent years [4], [5], [6]. Compared with
centralized cloud storage, DS offers an algorithmic storage
market where data owners and storage nodes can participate,
allowing data owners to securely store their data by paying the
network. On the other hand, the storage nodes contribute their
storage resources to the network in exchange for compensa-
tion. In this setting, data owners can be all kinds of devices
having data outsourcing requirements (e.g., IoT devices, mobile
devices, personal computers, etc.), and storage nodes can be
either individuals (e.g., PCs, laptops, workstations, etc.) or micro
enterprises possessing extra storage resources.

A major challenge in the DS network is to ensure that the
data storage service is correctly maintained by the storage
node [3], [7]. Since all kinds of storage nodes are allowed
to join the DS network, data integrity checking should be
mandatory to storage nodes in order to guarantee the qual-
ity of storage services. Storage nodes ought to prove that
they have maintained unaltered files for a specified period
of time, ensuring the integrity and security of the stored
data. To achieve this objective, it is crucial for a DS plat-
form to incorporate an auditing mechanism that effectively
tracks storage condition of the storage nodes to guarantee data
integrity.
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Many storage auditing schemes [8], [9], [10], [11], [12],
[13], [14], [15] have been proposed to deal with the integrity
problem in remote cloud servers. To apply storage auditing to
decentralized settings, decentralized storage auditing [16], [17],
[18] is also studied recently, which checks decentralized storage
nodes (DSNs) periodically to ensure the accurate storage of the
data. Since the verification algorithm is normally deployed in the
smart contract of blockchain in the DS network, decentralized
storage auditing is designed to improve on-chain efficiency to
reduce the costs of executing smart contracts. Existing schemes
can support block-level auditing, which randomly challenges
selected data blocks with high auditing probability. Homomor-
phic authenticators are also proposed to support aggregatable
verification, allowing all authenticators to be verified batchly.
Existing schemes can also protect the privacy of challenged data
blocks from being exposed to the third-party verifier. However,
there are still problems for both storage nodes and data owners in
decentralized storage auditing. 1) Compared with notable giant
companies in cloud storage, many storage nodes in DS networks
are micro companies or even individuals, which can only provide
finite storage resources as service. Thus, they are more sensitive
to additional storage overhead than cloud storage providers. 2)
Since all kinds of data owners are encouraged to join the network
and outsource data, many of them could be mobile devices
with limited computation resources. As a result, heavy com-
putation overheads from the auditing are unaffordable to them
and thereby not suitable to be applied to the DS network. These
two problems can greatly hinder more participants from joining
and contributing to the DS network, which finally weakens the
robustness of the DS platform due to the limited number of nodes
in the network. Thus, building a storage and computation both ef-
ficient auditing scheme for DS to fit all kinds of storage nodes and
data owners of various resources becomes a key problem to be
studied.

In DS auditing, additional costs are mainly derived from
the storage and calculation of data authenticators [16], [18].
Intuitively, compressing data authenticators is a natural way
to reduce the extra storage cost in DS auditing. However, this
natural idea incurs challenges in the following ways. First,
the compression method may bring computational burdens
to data owners. If the compression method is computation-
expensive, the data owner will not be willing to compress
authenticators for saving the storage of storage nodes. Sec-
ond, the introduction of the compression method may be-
come the loophole or vulnerability of the auditing. The storage
node may cheat by simply providing an incorrect compression
result without storing any data. It can also pass the audit-
ing by storing pre-compressed data instead of original data.
Therefore, the verifiability of both the compression result and
the compression process should be taken into account in the
auditing.

To address the aforementioned challenges, we propose ED-
COMA, an Efficient Double COMpressed Auditing scheme
for blockchain-based decentralized storage. In our proposed
EDCOMA, we provide not only the compression method, but
also the compression verification method. We design a dou-
ble compression method using both the data and polynomial

commitment protocols. Furthermore, inspired by zero knowl-
edge proof (ZKP) protocols used in blockchain, we present
the verification method for double compression, designing a
compression arithmetic circuit using the ZKP protocol. The
double compression verification method can verify the execution
of the compression process in DS nodes. In our scheme, the basic
off-chain construction of EDCOMA is executed off-chain. To
extend EDCOMA to support on-chain auditing, the verification
in the on-chain construction is executed on-chain by the smart
contract. The major contributions can be summarized as follows:
� We propose an efficient double compressed auditing

scheme EDCOMA for blockchain-based decentralized
storage, including both off-chain and on-chain construc-
tions. The proposed scheme can check data integrity in
decentralized storage nodes with both storage and compu-
tational efficiency.

� We present a double compression method using both data
and polynomial commitment, and design a novel data au-
thenticator based on this method. Double compression not
only minimizes the additional storage overhead incurred
by authenticators, but achieves lightweight auditing prepa-
ration.

� Based on the ZKP protocol, we provide the compression
verification method by designing a compression arithmetic
circuit in ZKP, which prevents potential replay attacks
from decentralized storage nodes. In this way, the proposed
method can guarantee the execution of compression and
data aggregation in decentralized storage nodes.

� We conduct security analysis of the proposed EDCOMA
under the random oracle model [19], [20], which proves
both the correctness and soundness of our scheme. We
also analyze the auditing probability in EDCOMA. We
implement a prototype to evaluate the performance of ED-
COMA and conduct extensive experiments. Experimental
results demonstrate that EDCOMA incurs lower storage
and computational costs of pre-auditing and verification
than the state-of-the-art approaches.

The remaining of this article is organized as follows. We give
a literature review in Section II. We introduce the preliminaries
of this work in Section III. Section IV presents the novel design
and concrete construction of our work. The security analysis of
EDCOMA is provided in Section V. Section VI deals with the
performance evaluation. In the end, Section VII concludes this
article.

II. RELATED WORK

A. Decentralized Storage

Decentralized storage (DS) platforms are storage systems
based on technologies including blockchain, distributed file
system, smart contract, data encryption, etc., where data is stored
across multiple nodes in the network instead of being centralized
on a single server. IPFS (Inter Planetary File System) [21] is a
peer-to-peer distributed file system designed to create a persis-
tent and distributable file system. IPFS stores files in a dispersed
manner across multiple nodes in the network to improve data
redundancy and availability.
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Another decentralized cloud storage platform is Sia [5],
which uses blockchain to realize distributed storage of files.
Sia encrypts uploaded files end-to-end to ensure security during
transmission and storage. In addition, Sia uses smart contracts
to manage storage contracts and payments, ensuring that storage
providers provide services according to the contracts and receive
appropriate rewards. Sia uses Merkle hash tree (MHT) [22] to
authenticate user data and store the tree root on the blockchain.

Storj [6] was originally launched in 2014 as a decentralized
Ethereum-based DS system, mainly targeting smart contract
platforms for financial applications. Storj has introduced a role
called satellite, which is responsible for managing various ser-
vices in the storage network, including data auditing, node
management, data distribution, etc. Participants can also provide
idle storage space for network platforms to use, while obtaining
a certain value return.

B. Storage Auditing

In the past decade, researchers have proposed many research
work on cloud storage auditing. To ensure the integrity of data
stored in the cloud, Ateniese et al. [23] first proposed the
concept of provable data possession (PDP), which allows to
check whether remote servers possess the original data without
retrieving it. Juels and Kaliski [24] presented another scheme
named proof of retrievability (POR), which includes special
blocks called sentinels that are randomly embedded in the data
for detection purposes. Based on these schemes, a series of
subsequent research efforts have been proposed and storage
auditing was extended to support various advanced features such
as multi-replicas [25], [26], dynamic updates [27], [28], public
authentication [29], etc.

As an emerging distributed technology featured with tamper
proofing, blockchain is considered as a solution to be used
in storage auditing. Wang et al. [30] proposed the concept of
non-interactive public provable data possession and designed a
blockchain-based data integrity auditing scheme. However, this
solution did not support data dynamics and batch auditing. Li et
al. [31] designed a scheme to store hash tags of encrypted file
blocks on the blockchain and use Merkle hash trees (MHTs) to
verify data integrity. Wang et al. [32] integrated the blockchain
and built a decentralised auditing framework using blockchain
nodes responsible for auditing, thus solving the trust issue of
third-party auditors. However, this solution did not consider
using blockchain to store data. Miao et al. [33] proposed a
blockchain based cloud storage auditing scheme that supports
fault location under multi-cloud storage.

In order to check the integrity of blockchain-based decentral-
ized storage, researchers considered investigating DS auditing
schemes. Yue et al. [34] proposed a decentralized auditing
scheme to store the roots of MHTs in a blockchain, which
unfortunately was inefficient in Big Data scenarios. Ateniese et
al. [35] proposed an efficient continuous data integrity auditing
scheme for DS to save communication costs. However, as each
file must be preprocessed and individually verified, their scheme
is not suitable for Big Data scenarios. Subsequently, Yu et al. [36]
designed a data sampling strategy to tackle this problem, making

TABLE I
COMPARISON OF DIFFERENT SCHEMES

Fig. 1. The system model of EDCOMA, including three parties interacting
with each other to perform the auditing task.

the scheme applicable to Big Data scenarios. However, both
schemes could only support a limited number of auditing. Chen
et al. [16] has designed an auditing protocol for DS based on
smart contracts, but the cost of this scheme is still high because
homomorphic authenticators must be calculated for each data
block. Du et al. [18], [37] proposed a DS auditing scheme that
introduces polynomial coefficients to construct homomorphic
authenticators, thereby reducing the cost of authenticator gener-
ation. In addition, they use smart contracts as third-party auditors
in the scheme, enabling automated execution and avoiding addi-
tional trust costs. However, these schemes still incur inefficiency
in pre-auditing and authenticator storage, which impedes the
application of storage auditing in DS.

A comparison of EDCOMA and existing works is presented
in Table I. Existing schemes can support public auditing and
probabilistic auditing. However, compared with our proposed
EDCOMA, existing works cannot support double compression
to reduce the additional storage costs of authenticators, and
cannot verify the compression process based on zk-SNARK.

III. MODELS AND PRELIMINARIES

A. System Model

As shown in Fig. 1, we consider three parties in the system
model of EDCOMA as explained below.

1) Data owner: Data owners outsource local data to multiple
decentralized storage nodes in the network and want to
ensure the storage correctness of their data. Data owners
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are devices with various computational resources, e.g.,
mobile phones, laptops, PCs, etc. As a consequence, the
auditing scheme should not incur heavy loads to data
owners. Otherwise, it will discourage massive resource-
constrained data owners from joining the DS network,
which deviates from the original intention of DS.

2) Decentralized storage nodes (DSNs): DSNs provide their
spare storage resources as services to data owners. Al-
though they are storage providers in a decentralized stor-
age network, they do not have infinite storage volumes
compared with giant cloud storage providers. Thus, they
are more sensitive to additional storage costs brought by
auditing.

3) Blockchain: The blockchain is maintained by data owners
and DSNs in the network. It stores transactions between
data owners and DSNs in the blocks. The storage contracts
(SCs) stored in the blockchain are used for auditing the
data in DSNs on behalf of data owners.

Fig. 1 also illustrates the interaction among three parties and
the main processes in the auditing layer and the storage layer of
each entity. The data owner first pre-processes files by double
compressing them in the storage layer, and then generates the
authenticators as well as corresponding auditing state in the
auditing layer. It then uploads file chunks, authenticators and
auditing state to the DSNs. It also passes the auditing state to the
storage contract in the blockchain. Each DSN receives files and
stores them on its storage servers. The SC on the blockchain
challenges the DSN with challenge parameters and the DSN
generates the aggregated data by calculating the compression
arithmetic circuit based on the ZKP protocol. It also constructs
the proof polynomial with aggregated data and aggregates the
data authenticators. The DSN forwards all proofs of challenged
file chunks to SC. Finally, SC verifies the proofs of circuit as
well as authenticators to check whether data are intactly stored
and double compressed by the DSN.

B. Definition of EDCOMA

Definition 1: EDCOMA features the following five algo-
rithms namely Setup, Store, Chal, Prove and Verify :

Setup(1λ)→ (ς, δ, pm, ke, kv,Ψ): The Setup algorithm is
responsible for initiating the whole system and is executed by
the data owner. On input security parameter λ, this algorithm
creates the secret value ς , the secret key δ, public parameters
pm, key pairs (ke, kv), and compression arithmetic circuit Ψ
in ZKP.

Store(ς, δ, rD, rP , F )→ ({�i}, st): The Store algorithm is
used for compressing the file chunks to generate the correspond-
ing data authenticators and the auditing state. It is run by the data
owner. This algorithm takes as input the secret value ς , the secret
key δ, data block compression ratio (D-compression ratio) rD
and polynomial compression ratio (P-compression ratio) rP , and
the file F . It outputs a set of data authenticators {�i} and the
auditing state st.

Chal(Finfo)→ {I1, I2, l}: The Chal algorithm represents
the challenge algorithm and is responsible for generating the
challenge parameters. It is executed by the data owner/third party

verifier in off-chain auditing scenario, and run by the storage
contract in on-chain auditing scenario. Given information of the
fileFinfo as input, this algorithm generates the keys (I1, I2) and
challenge number l.

Prove(I1, I2, l, rD, rP , ke,Ψ, F, {�i})→ Prf :The Prove al-
gorithm is run by the decentralized storage node, which gener-
ates the proof of storage corresponding to the challenge. Taking
as input the secret keys (I1, I2), challenge number l, compres-
sion ratios (rD, rP ), proof key ke, circuit Ψ, the file F and the
data authenticators {�i}, the Prove algorithm outputs the proof
Prf .

Verify(I1, I2, l, kv,Prf, pm)→ {SUC/FAIL}: The Verify
algorithm is responsible for verifying the proof generated by the
decentralized storage node. It is run by the data owner/third party
verifier in off-chain auditing and is run by the storage contract
in on-chain auditing. The Verify algorithm takes as input the
secret keys (I1, I2), challenge number l, verification key kv , the
proof Prf and the public parameters pm. This algorithm outputs
success SUC if the DSN can pass the verification and outputs
failure FAIL otherwise.

C. Security Model

We define the security model of the proposed EDCOMA by
following the definition in [38]. We say that EDCOMA is secure
if it satisfies correctness, hiding and soundness.

Definition 2: EDCOMA offers correctness if given all entities
performing honestly in the scheme, the decentralized storage
node always passes the verification.

Definition 3: EDCOMA offers hiding if no adversary has any
information of data from the proofs.

Definition 4: EDCOMA offers soundness if no probabilistic
polynomial time (PPT) adversary A has a non-negligible ad-
vantage in the following security game between the adversary
A and a challenger C.

Setup: The challenger C executes the Setup algorithm and
outputs the secret value ς , the secret key δ, and public parameters
pm, key pairs (ke, kv), and compression arithmetic circuit Ψ. It
forwards (pm, ke, kv,Ψ) to A, and keeps (ς, δ) private.

Queries: The adversary A makes a number of queries to the
challenger C in PPT.

1) Hash query: The adversary A adaptively queries hash
functions to the challenger C. The challenger C computes
hash values and forwards them to the adversary A.

2) Store query: The adversary A adaptively sends queries
about the data file F to the challenger C. The challenger C
executes the Store algorithm to compute the data authen-
ticator as well as the auditing state and returns them to the
adversary A.

Challenge: For any file F on which it previously made a
Store query, the adversary A can execute the protocol with the
challengerC. In these protocol executions, the challengerC plays
the role of verifierV and the adversaryA plays the role of prover,
who replaces the prover algorithm P with any PPT algorithm.
When an execution of the protocol completes, the adversary A
is provided with the output of V .
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Output: A outputs description of a cheating prover P′ for a
new file not previously appeared in Store Queries.

The adversary A wins this soundness security game, if the
challenger C accepts the proof with non-negligible probability.

D. Cryptographic Primitives

1) Data Commitment: Commitment serves as an “envelope”
that prevents a party from altering the data it has committed to,
while also keeping the committed data confidential to others until
decommitment. In this paper, a commitment scheme is utilized
to compress the data and save the additional storage cost of the
storage auditing scheme. A non-interactive commitment scheme
is defined as a tuple of three polynomial-time algorithms :
Setup(1k): On input the security parameter k, this algorithm

outputs public parameters including the message space M and
the commitment space S.

C(m): The commitment algorithm allows a committer (the
one who computes a message to a commitment string) to commit
to a message and produce a commitment, which is a fixed-length
string, hiding the actual value while binding the committer to that
specific message. This algorithm is run by the committer and
takes as input a message to be committed m ∈M and outputs
a commitment string c ∈ S, which is to be publicly published.

D(c,m): The decommitment algorithm allows the receiver to
verify the committed value at a later time. This algorithm is run
by the receiver and takes as input a commitment string c ∈ S
and a claimed committed message m ∈M . If c = C(m) then
output 1; otherwise output 0.

2) Polynomial Commitment: Let β0, β1, . . . , βd ∈ Zp be a
polynomial coefficients and α ∈ Zp be a random value, the
polynomial commitment on point α with degree d is denoted
as P (α) = β0 + β1 · α+ β2 · α2 + · · ·+ βd · αd mod p.

3) Zero Knowledge Proof: Technically, the implementation
of zero knowledge proof (ZKP) relies on zk-SNARK [39],
[40]. Its key point lies in encoding user-defined computa-
tions as quadratic programs. The fundamental process in-
volves initially compiling the program from a high-level lan-
guage into an arithmetic circuit. Subsequently, this circuit is
utilized to construct a quadratic arithmetic program (QAP)
consisting of three sets of polynomials u = {ui(x)}mi=0, v =
{vi(x)}mi=0, w = {wi(x)}mi=0 and a target polynomial q(x),
where m is the number of wires in the circuit. Defining poly-
nomial p(x) = u(x)v(x)− w(x), and q(x) divides p(x) iff all
wire values are valid assignments for the circuit. The prover
constructs p(x) for the proof Φ, and the verifier can verify
the correctness by checking if q(x) can divide p(x). The zero-
knowledge property can be efficiently incorporated with mini-
mal overhead by introducing three additional random samples
and including them as exponents in u(x), v(x), and w(x),
respectively.

IV. THE PROPOSED SCHEME

In this section, we present the constructions of EDCOMA in
detail. First, we present an overview of the proposed scheme.
Second, we introduce the major innovations in EDCOMA.
Third, we elaborate the detailed construction of EDCOMA for

TABLE II
NOTATION DESCRIPTION

off-chain auditing scenario. Finally, we extend the off-chain
auditing scheme to support on-chain auditing, and describe the
detailed construction of EDCOMA for on-chain auditing.

A. Overview

In EDCOMA, we investigate the storage-and-computation ef-
ficient storage auditing scheme named EDCOMA. We design the
double compression method to greatly save the extra storage and
computational costs incurred by data authenticators in storage
auditing. Due to the introduction of the commitment protocol in
double compression, we further design a compression arithmetic
circuit to verify the commitment performed in DSNs by using
ZKP. The double compression is performed by the data owner
and the circuit is executed by the DSN. A table for notations in
our scheme is illustrated in Table II.

B. Innovations

1) Double Compression: In EDCOMA, we design a novel
double compression method to construct the data authentica-
tors with compressed files, which saves both the storage and
computation cost. The first compression step is data block
compression (D-compression), which compresses groups of data
blocks in a file chunk to generate coefficients according to the
D-compression ratio rD. D-compression ratio rD determines
the size of each group of data blocks to be input in one data
block commitment [41], [42]. The compressed output is the co-
efficients for the next step. The second step is to use these coeffi-
cients to construct a compression polynomial by P-compression
ratio rP [37], [43]. The degree of the compression polynomial is
determined by P-compression ratio rP . Finally, the compression
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Fig. 2. The detailed design of double compression method, consisting of
data block compression (D-compression) and polynomial compression (P-
compression).

Fig. 3. The detailed design of the compression arithmetic circuit in ZKP. The
compression arithmetic circuit includes two logical layers: commitment and
linear aggregation layers.

polynomial will be used to perform polynomial commitment
on a random point. Both D-compression and P-compression are
performed by the data owner to further generate the data authen-
ticator. The data authenticator is calculated based on the double
compressed value output by the polynomial commitment. The
double compression method is illustrated in Fig. 2.

2) Compression Arithmetic Circuit in ZKP: The aforemen-
tioned double compression method is intended to save the stor-
age and computation cost of data authenticators. However, if
the compression method itself cannot be verified (especially
the first step D-compression), the DSN can cheat the data
owner or SC by only storing compressed values instead of
data owner’s original files. Thus, we adopt ZKP protocols and
design a compression arithmetic circuit, which can prove the
execution of data block compression in the DSNs. Fig. 3 shows
the concrete design of the compression arithmetic circuit, which
generally has two logical layers in this circuit. The first layer
is the commitment modules for each group of data blocks in
the challenge set. These modules take data blocks as input and
output the corresponding commitments. The second layer is the
linear aggregation of commitments. The linear aggregation is to
aggregate the commitments by multiplying the corresponding
challenge coeffiecients {η} generated by in the challenge set.
By moving the linear aggregation process into the circuit, not
only the output size will be reduced, but the whole compression
arithmetic circuit will be resistant to the replay attack. This

is because by introducing the randomness of the challenge
coefficients {η} from the linear aggregation, the corresponding
proofs of the compression arithmetic circuit will not be constant
and will be dynamically changed with the change of randomly
generated challenge coefficients. In this way, the DSN who per-
forms the circuit cannot launch replay attacks to the compression
verification.

C. Detailed Construction of EDCOMA for Off-Chain Auditing

In this section, we introduce the construction of our proposed
EDCOMA for off-chain auditing, which checks the storage via
the data owner. The framework consists of two types of entities:
decentralized storage nodes (DSNs) and the data owner. In the
off-chain auditing, the scheme is performed off-chain and the
algorithms of the scheme are executed by the DSNs and the data
owner. The DSN runs the Prove algorithm to generate proofs.
The data owner sets up the whole systems and then runs the
Store, Chal and Verify algorithms to store and verify its data.

Setup : Let P (x) be a polynomial with the degree of rP −
1. g and h denotes two generators of the multiplicative cyclic
group G1 with the prime order p. The data owner generates
the secret value ς and the secret key δ. It computes the public
parameters {ρi}i∈[0,rP−1], where ρi = gς

i
. It also generates the

public values {σi}i∈[0,|F |], whereσi = hδi and |F | is the number
of file chunks in file F . It generates the key pairs (ke, kv) and
the compression arithmetic circuit Ψ for ZKP, and compiles the
circuit locally.

Store: The data owner splits each file chunk Fi ∈ F
into rP × rD data blocks Fi = {Fi,0, Fi,1, . . . , Fi,rP×rD−1}. It
first performs D-compression and compresses each group of
data block {Fi,j} by committing each data block as Ci,s =
C(Fi,j , Fi,j+1, . . .), where j ∈ [srD, (s+ 1)rD − 1] and s ∈
[0, rP − 1]. After D-compression, the data owner performs
P-compression and compresses the data by using polynomial
commitment. The polynomial of each file chunk is represented
as Pi(x) = Ci,0 + Ci,1x+ Ci,2x

2 + · · ·+ Ci,rP−1x
rP−1. It

computes the polynomial commitment as Pi(ς).
The data owner generates the data authenticator �i ← gPi(ς)

and computes the auditing state as st← h
∏

i∈F (CG(�i)+δ), where
CG : G1 → Z∗p is a commitment that commits an element in G1

to a value in Z∗p.
The data owner transmits all file chunks {Fi}, authenticators
{�i} and the auditing state st to the DSN.

Chal. The data owner sends the challenge parameters
(I1, I2, l) to the DSN, where I1 and I2 are random keys and
l is the challenge number (number of challenged file chunks).

Prove: Given the challenge parameters, the DSN computes
the challenge set Ω = {(i, ηi)}, where i← πI1(k) is the in-
dex of the challenged chunk for k ∈ [1, l], and ηi ← fI2(k) is
the coefficient for proof generation. π(·) and f(·) denote the
pseudo-random permutation and the pseudo-random function,
respectively.

According to the challenge set Ω, the DSN constructs the
proof polynomial P (x). The DSN takes as input the data blocks
of the challenged file chunks {Fi,j}, and calculates the compres-
sion arithmetic circuit Ψ in ZKP as described in Section IV-B2.
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Algorithm 1: Prove: The Storage Proof Generation Algo-
rithm.

Algorithm 2: Verify: The Proof Verification Algorithm.

The output of the circuit is Ca, where Ca = {Ca,j}j∈[0,rP−1]
are the linearly aggregated outputs (commitments). π is the
corresponding proof of arithmetic circuit calculation of ZKP.

It generates the auxiliary proof ω� as

ω� = h
∏

i∈F \Ω(h�i
+δ) =

|F |−|Ω|∏
i=0

σθi
i , (1)

for all data authenticators of the challenged file chunks � =
{�i}i∈Ω, where h�i

= C(�i). {θ0, θ1, . . .} are the coefficients

of the polynomial
∏

i∈F \Ω(h�i
+ δ) =

∑|F |−|Ω|
i=0 θi · δi. In the

end, it sends all the proofs Prf= (�, ω�, Ca, π) to the data owner.
The concrete proof procedures are summarized and illustrated
in Algorithm 1.

Verify: After data owner receives the proofs from the DSN,
it first retrieves the challenge set Ω = {(i, ηi)} using the same
method in the Prove algorithm.

It examines the calculation of commitments of the challenged
blocks, by verifying the corresponding proof of arithmetic cir-
cuit using VΨ(kv, Ca, π). It verifies the auxiliary proof of data
authenticators by checking the pairings [44]

e(st, h) = e
(
ω�, h

∏
i∈Ω(h�i

+δ)
)
, (2)

where h�i
= CG(�i).If (2) does not hold, it aborts.

The data owner then generates ΦP = gP (ς) =
∏rP−1

i=0 ρ
Ca,i

i .
It finally performs the following equation for proof verification

ΦP =
∏
i∈Ω

�ηi

i . (3)

The algorithm reports success if the equation holds. Otherwise,
it reports failure and aborts. The concrete verification procedure
is illustrated in Algorithm 2.

D. Detailed Construction of EDCOMA for On-Chain Auditing

In this section, we elaborate the construction of the proposed
EDCOMA for on-chain auditing. The framework contains three
types of entities: DSNs, storage contract (SC), and the data
owner. On-chain auditing of EDCOMA is performed partially
on-chain since the SC replaces the data owner to verify the proofs
of the DSN. In this construction, the DSN runs Prove algorithm
while the verifier is changed from the data owner to SC, which
executes the Chal and Verify algorithms in the smart contract.
The Chal algorithm is similar to the one in off-chain auditing.
The major difference lies in the Verify algorithm since secret
values cannot be publicly stored in a smart contract. Otherwise
the values will also be accessed by all nodes in the blockchain
network.

Since the secret key δ cannot be publicly used, it cannot
be stored in SC. Thus, in on-chain auditing, h

∏
i∈Ω(h�i

+δ) in
(2) cannot be directly calculated. As a result, we use public
values {σi} to generate h

∏
i∈Ω(h�i

+δ) without the knowledge of
δ. Therefore, after verifying the proof of ZKP, the SC calculates
h�i

= CG(�i) for i ∈ Ω. The
∏

i∈Ω(h�i
+ δ) is represented as a

polynomial ε0 + ε1 · δ+ · · ·+ ε|Ω| · δ|Ω| = ε0 + ε1 · δ + · · ·+
εl · δl. It then calculates HΩ =

∏|Ω|
i=0 σ

εi
i =

∏l
i=0 σ

εi
i . Finally,

SC checks the auxiliary proof by e(st, h)
?
= e(ω� , HΩ). The

rest operations are similar to the ones in off-chain auditing.
We now present the design and structure of the storage con-

tract (SC) in detail. We design SC of our scheme in public
blockchain. We select the smart contract of Ethereum platform to
demonstrate the structure of SC, and evaluate the performance
of SC in Section VI-D. As shown in the Smart Contract, SC
first defines variables and then defines the Verify function for
validating the proofs of DSN. When passing parameters into the
Verify function, a boolean result is returned, which returns true
to represent success and false to represent failure. The payable
keyword indicates that the function can receive or send ETH. The
Verify function performs verification of zero knowledge proof,
pairing check for auxiliary proof, etc. Finally, SC pays ETH to
the DSN that calls the contract. Auxiliary functions used in the
Verify function of SC are also defined and implemented.
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Smart Contract: The Structure of SC in On-Chain Audit-
ing.

Contract Storage_Contract {
// Define variables
· · ·
// The Verify function used to
validate proofs of DSN
function Verify
(I_1, I_2, l, P rf, k_v, omega_V arrho, rho, sigma)

public payable returns (bool) {
// Calculate the random index i and
coefficient ηi.
for (uint k = 1; k<l; k++) {

index[k] = PRP (I_1, k);
eta[k] = PRF (I_2, k);

}
// Check the proof of ZKP
require (Verify_Psi(k_v, Ca, P i) == TRUE,
“Verification fails”);
· · ·
// If the pairing results are not
equal, verification fails
Element leftPairing = Pairing(st, h);
Element rightPairing =
Pairing(omega_V arrho,H_Omega);
require (leftPairing == rightPairing,
“Verification fails”);
· · ·
// pay ETH to storage node
recipient.transfer(paymentAmount);
return TRUE;
}
// Auxiliary functions used for the
function Verify
function Pow(· · · ){· · · }
function Verify_Psi(· · · ){· · · }
· · ·

}

V. SECURITY ANALYSIS

In this section, we provide the security analysis of EDCOMA
from two aspects, namely correctness and soundness. We also
analyze the auditing probability of the random challenge strategy
in EDCOMA.

Theorem 1: If the proposed EDCOMA is honestly executed
by all entities in the scheme, the Verifyalgorithm will always
output SUC.

The proof of Theorem 1 is given in Appendix A, available
online.

Definition 5. t-Strong Diffie-Hellman (t-SDH) Assumption:
Let a← Z∗p be a random value and h be the generator
of a cyclic group G1 of prime order p. Given input as a
(t+1)−tuple (h, ha, ha2

, . . . , hat
) ∈ G1. For any probabilistic

polynomial time adversary, the probability Pr[(b, h
1

a+b )←
A(h, ha, ha2

, . . . , hat
)] is negligible for any value of b ∈

Z∗p\ − a.

Theorem 2: Given the t-SDH assumption, the security of the
commitment scheme and the zero-knowledge proof protocol, the
proofs will be accepted if and only if they are honestly generated
by the DSN with an overwhelming probability.

Proof: Suppose that a probabilistic polynomial time (PPT)
adversaryA can successfully pass the verification with its forged
proofs. (�, ω�, Ca, π) denotes the expected response proofs
from an honest prover and (�′, ω′�′ , C

′
a, π

′) denotes the forged
response proof from the adversary A, where (�, ω�, Ca, π) �=
(�′, ω′�′ , C

′
a, π

′). We now use a series of cases to analyze the
forged parts in the proofs.

Case 1: Assume that the adversaryA provides the forged data
authenticators �′ and valid auxiliary proof ω′�′ . We assume that
Λ′ = {h′�0

, h′�1
, . . . , h′�n

} � Λ = {h�i
}i∈Ω, where h′�j

/∈ Λ for
some j ∈ [0, n]. The auxiliary proof of � can also be regarded
as the proof of Λ, i.e., ω′Λ′ = ω′�′ . We show a construction
that can break the t-SDH assumption. Suppose a tuple chal-
lenge (h, hδ, . . . , hδt) is given, where δ ∈ Z∗p, we show that
the adversary A can compute (x, h1/(δ+x)), where x ∈ Zp

with non-negligible probability. The adversary A can output
(h′�0

, h′�1
, . . . , h′�n

)\(−δ ∪ Λ) and ω′Λ′ ∈ G1 such that

ω′Λ′
∏

i∈[0,n] (h
′
�i

+δ)
= h

∏
i∈F (h�i

+δ), (4)

according to (2). From this equation and the tuple challenge,
h
(1/h′�j+δ) can be computed for the h′�j

∈ Λ′, and hence the
t-SDH assumption is broken. The adversary can find the solution
(x, h1/(x+δ)), where x = h′�j

.
As a result, both the have values and auxiliary proofs should

be equal, i.e., Λ′ = {h′�i
}i∈Ω = {h�i

}i∈Ω = Λ and ω� = ω′Λ′ =
ωΛ = ω′�′ . Due to the collision-resistance [45] (it is computation-
ally infeasible to find two inputs that map to the same value) of
the commitment scheme, we can infer that �′ = �, either.

Case 2: Assume that the adversary A forges the aggregated
commitment C ′a �= Ca. Since both proofs are valid, we know
that both proofs satisfy the (3)

∏
i∈Ω

�vi
i = ΦP (5)

∏
i∈Ω

�′i
vi = Φ′P . (6)

Divide (6) by (5), we have
∏
i∈Ω

(�′i/�i)
vi = Φ′P /ΦP = g(P

′(ς)−P (ς)). (7)

Since we have �′i = �i in Case 1, we can rewrite (7) as

1 = g(P
′(ς)−P (ς)). (8)

Therefore, we can obtain that P ′(ς) = P (ς).
We know that P (ς) = Ca,0 + Ca,1 · ς + Ca,2 · ς2 + · · ·+

Ca,rP−1 · ςrP−1. Meanwhile, P ′(ς) = C ′a,0 + C ′a,1 · ς + C ′a,2 ·
ς2 + · · ·+ C ′a,rP−1 · ςrP−1. ς is secret to the adversary A,
and {C ′a,i} are random values queried from random oracle.
Therefore, due to the computationally binding in polynomial
commitment [43], the probability of finding a P ′(x) such that
P ′(ς)− P (ς) = 0 is negligible. Therefore, we get Ca = C ′a.
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Case 3: Assume that the adversary A forges the proofs of
ZKP, i.e., π′ �= π. Due to the security of ZKP, we can infer that
the verification algorithm will output true iff the adversary A
honestly executes the Ψ while using private input {F ′i,j}i∈Ω or
outputsC ′a different from original ones. If the inputs are different
{F ′i,j}i∈Ω �= {Fi,j}i∈Ω and the outputs are equal C ′a = Ca, this
means the adversary can guess a set of commitment inputs
{F ′i,j}i∈Ω that can be committed and then linearly aggregated
to generate C ′a = Ca. This contradicts to the hiding/one-way
property of the commitment scheme, which thereby is negligible
in probability.

Thus, both the inputs and the outputs are different, which
means C ′a �= Ca should be satisfied if π′ �= π. However, we
know that C ′a = Ca in Case 2. Thus, we can conclude that the
proof π′ = π. �

Theorem 3: Given returned proofs from the DSN, the adver-
sary cannot derive any file content hidden in the proofs:

The proof of Theorem 3 is given in Appendix B, available
online.

Theorem 4: Let rD be the data block compression ratio
(D-compression ratio), rP be the polynomial compression ratio
(P-compression ratio), and l be the challenge number. Given
any single numbers rD, rP and l, the auditing probability of
EDCOMA is greater than 1− (1− ε)lrDrP , where ε denotes
the proportion of corrupted data blocks.

The proof of Theorem 4 is given in Appendix C, available
online.

VI. EVALUATION

In this section, we develop a prototype of EDCOMA and
evaluate its communication and computation performance by
conducting extensive experiments that compare our approach
to state-of-the-art schemes. In addition, we analyze the perfor-
mance of proposed double compression method in EDCOMA.
Finally, we evaluate gas costs of on-chain auditing of SC.

A. Communication Overhead

In this section, we assess the communication cost of ED-
COMA. As shown in Table I, [18] shares most properties with
EDCOMA, which not only audits decentralized storage, but uses
polynomial commitment to compress file chunks. Therefore,
we evaluate the communication performance of EDCOMA by
comparing it with this state-of-the-art approach [18]. We define
|F | and l as the file size and challenged chunks, respectively. |p|
denotes the size of the group order and |G1| to denote the size
of the base field.

In the Store algorithm of EDCOMA, the data owner trans-
fers all data authenticators {�i}, file chunks {Fi}, and an
auditing state st to the DSN, resulting in the communica-
tion cost of ( |F |

rP rD |p| + 1)|G1|+ |F |. In the Chal algorithm,
the verifier transfers challenge parameters (I1, I2, l), incurring
the cost of 2|p|+ log2 ˜l. Upon generating proofs, the DSN
transmits all proofs Prf = (�, ω�, Ca, π) to the verifier. As a
result, the communication overhead of the Prove algorithm is
rP |p|+ (l + 4)|G1|.

TABLE III
COMMUNICATION OVERHEADS OF [18] AND THE PROPOSED SCHEME

Table III presents a theoretical comparison of communication
overheads between the state-of-the-art scheme [18] and ED-
COMA. Furthermore, to better demonstrate the practical com-
munication overheads of EDCOMA, we also conduct additional
experiments in Fig. 4. Fig. 4(a) shows the communication over-
heads in the Store algorithm, and Fig. 4(b) presents the additional
communication costs in the algorithm excluding the file, versus
different number of chunks used in [18]. It can be observed
that [18] has more communication overheads than EDCOMA in
the Store algorithm. In addition, EDCOMA holds a significant
advantage in minimizing additional communication costs. This
is because by adopting double compression, EDCOMA has
fewer file chunks and authenticators. As shown in Fig. 4(c),
the communication overheads of both schemes remain constant,
since the communication overhead of the Chal algorithm is
determined by the transmission of challenge parameters, and
both [18] and EDCOMA transfer only random keys with limited
overhead. However, it can be observed that EDCOMA incurs
lower communication cost than [18]. The reason is that [18]
transfers a random value in Z∗p to the DSN for polynomial com-
mitment, while EDCOMA only transfers a smaller number l (the
number of challenged chunks) to the DSN. Fig. 4(d) illustrates
that [18] has lower communication costs of the Prove algorithm
compared to EDCOMA. However, since EDCOMA adopts a
random challenge strategy, it can guarantee a high auditing
probability with a constant number of challenged file chunks.
As a result, the overhead of EDCOMA can also remain constant
with a high auditing probability. The auditing probability will
be further discussed in Section VI-C.

B. Computation Overhead

We implemented a prototype of EDCOMA in Golang and
conducted experiments using a Desktop PC, with Ubuntu 20.04
LTS, AMD Ryzen 7 5800H CPU@3.20 GHz and 16 GB mem-
ory. We utilized Pairing-Based Cryptography (PBC) library
Nik-U/pbc in Go. The ZKP protocol is implemented based on
gnark library [46]. We use type A pairing parameters in our
scheme, in which the length of group order |p| = 160bits and
the length of the base field |G1| = 512bits.

We present the computational performance comparison of
existing approaches [16], [18], [28], and our EDCOMA on the
same environment aforementioned. Among these schemes, [28]
is a classic auditing scheme for cloud storage, [16] and [18]
are auditing schemes for decentralized storage without double
compression. [18] also uses polynomial commitment to improve
the efficiency in data owner. We compare with all of them



2282 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 4. Comparison of the communication cost in different algorithms. (a) Communication cost of the Store algorithm. (b) Additional communication cost of the
Store algorithm. (c) Communication cost of the Chal algorithm. (d) Communication cost of the Prove algorithm.

Fig. 5. Comparison of the computational time of [16], [18], [28] and EDCOMA. (a) Computational time of the Store algorithm with rP = 30. (b) Computational
time of the Store algorithm with rP = 50. (c) Computational time of the Prove algorithm with rP = 30. (d) Computational time of the Prove algorithm with
rP = 50. (e) Computational time of the Verify algorithm with rP = 30. (f) Computational time of the Verify algorithm with rP = 50.

to emphasize the advantage of EDCOMA in computational
performance.

In Fig. 5, we present the performance comparison of the
Store algorithm’s of three approaches [16], [18], [28], and our
EDCOMA of two different D-compression ratios (rD = 20
and rD = 40). Specifically, in Fig. 5(a) and (b), we show the
performance of all schemes in terms of different file size and P-
compression ratio rP . We can see that the computational time of
all schemes increases with the file size. However, our EDCOMA
consistently achieves the lowest computational cost in the Store
algorithm, regardless of whether rP = 30 or rP = 50. This is
because we use the double compression method to reduce the
number of data authenticators compared to existing schemes,
which thereby also minimizes the computational overheads of
data authenticators in the data owner. In addition, we can also
find that EDCOMA with rP = 50 has higher efficiency than
EDCOMA with rP = 30, which will be further explored in
Section VI-C.

The computational overheads of the Prove algorithm are
illustrated in Fig. 5(c) and (d). It can be seen that [28] incurs the

most computational costs, while [16] and [18] have similar com-
putational overheads in this algorithm. Whether P-compression
ratio is 30 or 50, EDCOMA spends more computational time
on Prove than [16] and [18], but less than [28]. The main reason
is that by introducing the double compression method to save
storage and computational costs of data authenticators, we need
to utilize ZKP to examine the compression in the DSN during
auditing, which can prevent the potential replay attacks from the
DSN.

We evaluate the performance of the Verify algorithm among
four schemes in Fig. 5(e) and (f). As shown in Fig. 5(e), the
computational time of the Verify algorithm of all schemes
increases as the challenge size (the size of challenged files)
increases. It is easy to see that three schemes including [16], [18]
and EDCOMA all have limited computational overheads, and
EDCOMA incurs the minimum cost among the three schemes.
The reason of the superiority of EDCOMA in the Verify algo-
rithm is that EDCOMA can compress more data blocks into
a data authenticator, thereby reducing the challenge number in
probabilistic verification. Furthermore, the verification process
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Fig. 6. Computational time of verifying compression results in EDCOMA.

is also optimized and simplified. Similar pattern and reason of
the performance in the Verify algorithm are also demonstrated
in Fig. 5(f).

To evaluate the performance and complexity of compression
result verification in the Verify algorithm, we show experiment
results in Fig. 6. We can see that the computational time increases
as the challenge size increases, whether the ratio rp = 30 or
rp = 50. This is majorly because the complexity of compression
result verification contains rp + l exponentiation operations and
rp + l − 2 multiplication operations, where l is the number of
challenged chunks. It also includes one pairing operation for
auxiliary proof verification.

In Prove algorithm, compression arithmetic circuit is em-
ployed to ensure that the DSN executes the compression cor-
rectly, which also results in more computational time for circuit
proof. To mitigate this issue, optimization can be considered
by using the distributed zk-SNARK (DIZK [47]) to reduce
the computational time. The DIZK utilizes Apache Spark to
parallelize certain computations in zk-SNARK. We can dis-
tribute computation tasks evenly across multiple DSNs, enabling
efficient distributed computing. Therefore, by decomposing the
computations with DIZK, we can reduce the overall time re-
quired for proof generation.

C. Performance Analysis of Double Compression

1) Computational Overheads: Fig. 7 shows the computa-
tional overheads of EDCOMA with regard to two double
compression ratios, namely D-compression ratio rD and P-
compression ratio rP . The file size in the experiments is 100 MB.
As shown in Fig. 7(a), as both the P-compression ratio rP
and D-compression ratio rD increase, the computation time of
the Store algorithm will first rapidly and then slowly decrease.
The reason is that the increase of either rD or rP results in
the compression of files and the decrease of number of data
authenticators, which thereby greatly reduces the computational
time in the Store algorithm.

Fig. 7(b) illustrates the computation time of the Prove algo-
rithm. We can see that as the P-compression ratio rP increases,
the computation time of the Prove algorithm remains unchanged.
On the other hand, as the D-compression ratio rD increases,
the computation time greatly decreases. This is because the
computational cost of the Prove algorithm majorly lies in the
calculation of the proof of the compression arithmetic circuit in
ZKP, while the computation cost of generating other auditing
proofs is much lower compared to circuit proof generation. As
P-compression ratio rP increases, since the total challenged

file size (the number of all challenged data blocks) and rD
do not change, the computational time of circuit calculation as
well as the overall computation time remains unchanged. As
D-compression ratio rD increases, the number of commitments
in the compression arithmetic circuit decreases, resulting in a
decrease in computation time of the Prove algorithm.

Fig. 7(c) shows the computational overhead of the Verfiy
algorithm in EDCOMA. As P-compression ratio rP increases,
when D-compression ratio rD is relatively small (e.g., 20 or
30), the computational cost shows a trend of first decreasing and
then increasing. When D-compression ratio rD exceeds 60, the
computational cost will show a continuously upward trend. The
reason of this phenomenon is that when D-compression ratio rD
is relatively small, both the number of data blocks per file chunk
(determined by P-compression ratio rP ) and the number of file
chunks have significant impact on the computation complexity
of the Verify algorithm. In the first stage, when the number of
data blocks is less than the number of file chunks, the verification
time will decrease as the number of file chunks decreases. In
the second stage, when the number of data blocks exceeds
the number of file chunks, the processing time of data blocks
dominates the verification time. Therefore, as the number of data
blocks increases, the verification time starts to increase after a
certain number of blocks. As D-compression ratio rD increases
to more than 60, the decrease in the first stage will become less
apparent. As a result, the verification time directly increases
whatever the number of data blocks is.

To sum up, we can see that as D-compression ratio rD in-
creases, the computational time of all three main algorithms
decreases. However, performance trends become different in
algorithms as P-compression ratio rP increases. This is ma-
jorly because different components of computation operations
(e.g., polynomial calculation, circuit calculation, exponentiation
and multiplications in group) in the Store, Prove and Verify
algorithms. Different components make these algorithms be
impacted by P-compression ratio in various ways, which are
discussed aforementioned in each sub-figure in detail.

2) Storage Overheads: To demonstrate the storage efficiency
of EDCOMA brought by the double compression, we evaluate
the storage overheads by comparing the storage cost of ED-
COMA with [18] and [16], and analyzing the storage costs
versus two compression ratios. Fig. 8(a) shows the compar-
ison of additional storage costs of our proposed EDCOMA
(rD = 10 and rD = 20), [18], and [16] against two compression
ratios. From the figure, it can be seen that compared to other
schemes, EDCOMA incurs the lowest storage overheads. When
P-compression ratio rP is 10, the storage overheads of ED-
COMA with rD = 10 and rD = 20 are approximately 6 M and
3 M, respectively. In contrast, the storage costs of [18] and [16]
exceed 60 M. This is because we use double compression method
to significantly reduce the number of data authenticators. Fur-
thermore, as the P-compression ratio of EDCOMA increases, the
storage costs further decrease, which can be seen more clearly
in Fig. 8(b).

Fig. 8(b) illustrates the storage overheads of EDCOMA versus
both D-compression ratio rD and P-compression ratio rP . It can
be observed that as D-compression ratio rD or P-compression
ratio rP increases, the size of data authenticators in EDCOMA
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Fig. 7. Performance of EDCOMA in terms of different compression ratios. (a) Computational time of the Store algorithm. (b) Computational time of the Prove
algorithm. (c) Computational time of the Verify algorithm.

Fig. 8. (a) Comparison of storage cost of [16], [18] and EDCOMA. (b) Storage cost of EDCOMA versus different compression ratios. (c) Computational time
per data authenticator in the Store algorithm against different number of chunks and compression ratio conditions.

greatly decreases. This is because the increase of the two ratios
of double compression can both results in the compression and
decrease of the overall size of data authenticators, which thereby
saves the storage overheads.

3) Authenticator Generation: As demonstrated in Fig. 8(c),
we test the computation time of each authenticator gener-
ation versus different chunk number and D-compression/P-
compression ratios. We find that the generation time is fluctuant
and mostly falls within the range of 0.0005 s to 0.003 s under
different conditions. Generally, the computational time is limited
within a certain range and won’t last too long in the calculation
of any single file chunk. The usage of double compression can
contribute to the stable generation of the data authenticator since
more data blocks are compressed and summarized into one
authenticator.

4) Auditing Probability: EDCOMA adopts random chal-
lenge strategy that randomly selects file chunks to be au-
dited. Fig. 9(a) demonstrates the auditing probability of ED-
COMA versus different number of challenged file chunks, P-
compression ratio, and D-compression ratio.

In Fig. 9(a), the auditing probability is affected by both
the number of challenged chunks and two compression ratios.
The corruption ratio ε is set as 0.1%. We can see that the
proposed EDCOMA achieves a high auditing probability that
approaches 100% as the P-compression ratio rP and the number
of challenged file chunks increase. The auditing probability will
approach faster to 100% with the increase of D-compression
ratio rD, which indicates that the scheme with a higher D-
compression ratio can achieve over 99.9% probability earlier

Fig. 9. (a) Auditing probability of EDCOMA with corruption ratio ε = 0.1%.
(b) Gas cost of EDCOMA versus different compression ratios.

than the scheme with a lower D-compression ratio. In addition,
the experiment results demonstrate that in order to attain a high
auditing probability, we only need to challenge a limited number
of file chunks. Conversely, it is also feasible to enhance the
auditing probability by adjusting the parameters.

D. On-Chain Gas Cost

We construct a private test network based on Ethereum, and
deploy our smart contract implemented in Solidity language of
version 0.8.7. We test the gas costs of verification in SC and
calculate the ether costs by CostETH = Gas× PriceGas. The
gas price is set at 0.001 ether per million gas. We compute the
corresponding USD cost based on the ether price of $1200.52
in January 2023.
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The gas cost of the storage contract (SC) in EDCOMA on-
chain auditing is presented in Fig. 9(b). As the D-compression
ratio rD increases, the gas cost of SC decreases. This is be-
cause in the case of fixed auditing probability, the higher the
D-compression ratio rD is, the fewer data authenticators and file
blocks need to be checked, which leads to the lower gas cost of
verification in SC. However, with the increase of P-compression
ratio rP , the gas cost of SC shows a trend of first decreasing and
then increasing. This is because as the P-compression ratio rP
increases, the number of challenged file chunks decreases. This
reduces the gas cost of the authenticator verification, which is
the major cost when the P-compression ratio rP stays relatively
low within a certain range (e.g., 10–30). However, when the
P-compression ratio rP exceeds this range (e.g., higher than
30), the gas cost of generating ΦP becomes dominant and
results in the increase of the overall cost. From Fig. 9(b), we
can also see that the highest gas cost consumption verified by
this scheme is about 4.3× 106 (5.1 dollars), and the lowest gas
cost consumption is 7.6× 105 (0.9 dollars) with the auditing
probability over 99.9%, indicating that EDCOMA can audit DS
in high probability with low costs.

Fig. 9(b) illustrates the gas cost for different compression
ratios under a file size of 10 MB. It is worth noting that this file
size refers to challenged set instead of the stored files. Due to the
auditing probability demonstrated in Theorem 4 and Fig. 9(a),
the challenge set for verification can maintain small, while the
stored files can be much larger. Furthermore, the gas cost, which
ranges from 0.9 to 5 dollars, can be adjusted by varying the
compression ratios. Even at the lowest cost of 0.9 dollars, a
99.9% auditing probability can be achieved, thereby meeting
requirements of most practical scenarios.

VII. CONCLUSION

Guaranteeing the data integrity in decentralized storage nodes
(DSNs) is crucial to a DS platform and is a major challenge in
DS. In this work, we propose an efficient double compressed
auditing scheme EDCOMA for blockchain-based decentral-
ized storage, which can achieve both storage efficiency and
lightweight storage preparation. Thanks to the design of a double
compression method, we build a light-weight data authenticator
and minimize the extra storage cost of DSNs. Due to the double
compression method, the performance of pre-processing and
verification can also be greatly improved. Moreover, we design a
compression arithmetic circuit using ZKP to verify the execution
of compression operations in DSNs and prevent the possible
replay attack from the nodes. Security analysis proves that ED-
COMA is secure under the random oracle model. We implement
a prototype of EDCOMA and conduct extensive experiments,
which demonstrates the superiority of EDCOMA to the state-
of-the-art in both computation and storage. Experimental results
show that compared with the state-of-the-art, EDCOMA can
reduce 92.9% computation cost in auditing preparation and
89.9% additional storage cost on average.

In future work, we will focus on improving ZKP protocol
by reducing the computational time of proof generation. The
proof generation algorithm in EDCOMA is currently executed

solely on a single DSN, failing to fully exploit the advantages of
the decentralized environment. Future approaches will consider
parallelizing computation among DSNs to reduce the cost. We
will explore the feasibility of parallelizing the circuit as well
as ZKP protocol across multiple DSNs to further improve their
performance in proof generation.
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