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ABSTRACT Prolonged diabetic retinopathy (DR), glaucoma, and age-related macular degeneration (AMD)
may lead to vision loss. Hence, early detection and treatment are crucial to prevent irreversible vision loss.
Fundus retinal images have been widely used to help detect these diseases. Manual screening is susceptible
to human errors, tedious, and expensive. Hence, artificial intelligence (AI) techniques have been widely
employed to overcome these constraints. This paper reviewed the work published on automated retinal health
detection models using various machine learning (ML) and deep learning (DL) techniques. We reviewed
142 papers and 262 studies (124 on glaucoma, 60 on AMD, and 78 on DR) from January 2012 to June
2024 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We
found that Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) models were widely
used in DL and ML techniques, respectively. To the best of our knowledge, this is the first review developed
for detecting AMD, DR, and glaucoma using AI techniques over the last decade. We have discussed the
limitations of the present methods and also suggested future directions for accurately detecting eye diseases.

INDEX TERMS retinal health, automated detection, deep learning, machine learning, glaucoma, fundus

I. INTRODUCTION
2.2 billion people worldwide have near- or far-sightedness,
and 1 billion cases may have been avoidable [1]. It is estimated
that only 36% of people worldwide with distance vision
impairment due to refractive errors and 17% of persons with
cataract-related vision impairment have access to the right
intervention. A large financial burden is associated with the
projected $411 billion yearly global cost of productivity loss
due to eyesight impairment. The US$25 billion cost gap to
address the unmet requirement of vision impairment is far
higher than the productivity cost [1]. A decline in eyesight
quality harms one’s efficiency and standard of living. Millions
of people globally are impacted by these illnesses, which have
the potential to cause blindness if they are not detected and
treated on time. While vision loss can affect persons of any
age, most of those who are blind or have impaired vision are
over 50. The population in this age group will increase from
900 million to 2 billion between 2015 and 2050 [2].

The elderly have a higher risk of illness and experience
a quicker decline in health [3]. The hardship of a visual
impairment extends beyond the affected person to include
family members and carers [4]. The elderly must take
preventative measures, such as going to an annual eye test, to
identify various eye illnesses early on. It is possible to better
limit or control how eye illnesses (glaucoma, DR, cataract, and
AMD) proceed. Ophthalmic diseases such as Glaucoma, DR,
and AMD are the leading sources of vision loss worldwide [5].
These disorders can proceed more slowly or have a better
chance of responding well to therapy if they are identified in
their early stages.

Between 2004 and 2006, the Singapore Malay Eye Study
looked at 3,280 randomly chosen Malay people. The results
showed that 5.6% of participants had AMD, 12.9% had DR,
and 4.6% had glaucoma [6]. Globally, AMD, DR, Cataracts,
and Glaucoma are the leading causes of blindness and visual
impairment, contributing to one-third of all eye diseases. The
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WHO lists these four eye conditions as priority conditions
that, if caught early enough, can be treated to avoid vision
loss [7]. The elderly are more likely to get AMD, cataracts,
DR, and glaucoma [8]. Artificial intelligence models can solve
or slow down many health-related problems. AI algorithms
can identify eye diseases from fundus images. By analysing
these images, they can extract characteristics and classify
patients’ diseases. Using digital fundus images, image mining
can be used to train algorithms to identify eye conditions like
glaucoma [9]. They can also identify early signs of disorders
like glaucoma by looking for abnormal enlargements in the
eyes’ optic cups [10].

Recently, deep learning (DL), a branch of machine learning
(ML), has demonstrated potential in the identification of
retinal disorders [11]. For retinal image analysis, fundus
cameras and Optical Coherence Tomography (OCT) can be
used to take images of the eye. The most widely used methods
for capturing changes in retinal morphology, including the
optic disc, blood vessels, and macula, are fundoscopy and
OCT imaging [12]. These images can be analysed for diseases
like glaucoma, DR, and AMD. Numerous studies have been
published that identify these specific eye diseases [13],
[14]. Many DL algorithms have been successfully used to
create AI systems for automated detection, utilising sizable
databases [14]–[18].

Research Motivation
The best-performing ML and DL algorithms for eye disorders
such as glaucoma, DR, and AMD over the last decade
are examined for the first time in this review. This study
highlights potential research directions to show the role of ML
and DL approaches for automatically detecting ophthalmic
diseases using fundus images. These illnesses can be slowed
down or have a better chance of recovery if identified in
their early stages [19]. Many countries can benefit from
utilising AI in clinical settings to diagnose eye diseases due
to not having enough access to ophthalmologists [20]. To
reduce the burden on the low numbers of ophthalmologists,
particularly in developing nations such as Bangladesh, where
only one ophthalmologist exists for every 162,494 people,
automated and accurate detection of retinal diseases may
prove useful [20].

Research Questions
Our systematic review aims to cover the following research
questions:
1. How have AI methods in retinal health detection changed
over the last decade?
2. How accurate are current ML and DL systems in detect-
ing retinal diseases for the following diseases: Glaucoma,
Diabetic Retinopathy (DR), and Age-related macular degen-
eration (AMD)?
3. How can the performance of AI models in detecting
Glaucoma, DR, and AMD be further improved and translated
in real-world clinical settings?

Structure of the paper
The paper is structured as follows: Section II gives a summary
of different ophthalmic diseases such as DR, AMD, and
Glaucoma. Section III explores how different AI techniques
detect these diseases and Section IV discusses the current
publicly available datasets of fundus images. Section V
addresses the progress of AI techniques in retinal diseases and
their evolution over the last decade. Section VI addresses the
methodology of our review including following the PRISMA
guideline in the design phase. Section VII addresses the results
and analysis of the studies of the last decade of DR, AMD,
and Glaucoma detection using ML and DL. The different
stages (Segmentation, Classification, Segmentation followed
by classification) in the analysis process of automated retinal
health detection are discussed in Sections VIII, IX, and X
respectively. Section XII addresses the current limitations.
Future directions are discussed in Section XIII and Section
XIV is the conclusion.

Novel Contribution of this Review
This review makes several novel contributions to the field
of AI-based retinal health screening. This is the first review
to comprehensively cover the use of both ML and DL
techniques for the screening of glaucoma, DR, and AMD.
By addressing all three major retinal diseases, this review
provides a holistic view of AI applications in retinal health.
Unlike previous reviews that focus exclusively on either ML
or DL, this review examines both techniques. This approach
highlights how combining ML and DL can enhance diagnostic
accuracy and efficiency. In this review, we will address
the studies done till now on DR, AMD, and Glaucoma
in the last decade. We will also give clear and detailed
discussions on future research directions, emphasising the
potential for multi-modality approaches. We will provide
insights into the challenges and successes of deploying AI
systems in clinical settings, offering valuable guidance for
future implementations.

II. BACKGROUND
Retinal Imaging of the Eye
Retinal imaging has evolved through decades of ongoing
research to become the cornerstone of clinical management
and treatment for patients with eye diseases [21]. Today’s
most common retinal imaging modalities are fundoscopy and
OCT [22], each offering unique advantages. Advancements
in fundus imaging have greatly increased its accessibility;
one of these advancements is the switch from film-based
to digital imaging. Fundus imaging has become more user-
friendly with the introduction of more standardised imaging
procedures [21]. Color Fundus Photography (CFP) captures
images of the retina using a specialised fundus camera,
resulting in two-dimensional images that detail the retinal
surface, including blood vessels, optic disc, and macula [23].
CFP is non-invasive in nature and provides fast, clear retinal
surface images. It offers a wide field of view, enabling the
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detection of peripheral retinal abnormalities, and its standard-
ised imaging facilitates comparative studies and longitudinal
monitoring [23]. However, CFP is limited in that it provides
only surface views without depth information, making it
challenging to assess the layers of the retina. Additionally,
optimal image quality often requires pupil dilation, which
can be uncomfortable for patients and time-consuming.
Optical Coherence Tomography (OCT) is the most common
imaging modality in ophthalmology and is widely used
for diagnosing and monitoring various eye conditions [24].
It employs low-coherence interferometry to produce high-
resolution, three-dimensional cross-sectional images of the
retina. Accurate segmentation of retinal layers in OCT data
provides essential information for clinical diagnosis [25].
This modality excels in providing detailed visualisation
of the retinal layers, offering micrometre-scale resolution
that enables precise imaging of these layers [26]. OCT
is particularly valuable for its depth information, which is
essential for assessing retinal thickness and structural changes.
It also allows for quantitative analysis, making it useful
for monitoring disease progression [26]. Nevertheless, OCT
typically covers a smaller retinal area compared to CFP,
which can result in missing peripheral abnormalities. The
high cost and limited availability of OCT machines also
pose challenges, potentially restricting access in some clinical
settings.
Comparing CFP with other imaging modalities, such as
fluorescein angiography (FA) and scanning laser ophthal-
moscopy (SLO), highlights further differences [27]. CFP is
safer than FA as it does not require dye injection, which can
cause allergic reactions, and is simpler and quicker, making
it suitable for routine screening [28]. Compared to SLO,
CFP is generally more cost-effective and widely available,
providing straightforward images that are easier to interpret
for general screening [29]. When evaluating OCT against
other modalities like ultrasound biomicroscopy (UBM) and
magnetic resonance imaging (MRI), the distinctions become
clear. OCT offers much higher resolution than UBM, provid-
ing finer details of retinal structures and being a non-contact
method that reduces the risk of discomfort and infection [30].
Compared to magnetic resonance imaging (MRI), OCT is
more practical for routine use due to its quick acquisition time
and lower cost [31]. While MRI can provide a comprehensive
view of the entire orbit and surrounding structures, OCT
excels in resolution for retinal imaging.
While CFP is invaluable for wide-field imaging and detecting
surface-level abnormalities, making it ideal for initial screen-
ings and monitoring conditions like diabetic retinopathy and
age-related macular degeneration, it lacks depth information
and may require pupil dilation. OCT, on the other hand,
provides high-resolution cross-sectional images essential for
diagnosing and managing conditions that affect the integrity
of retinal layers, such as glaucoma, diabetic macular edema,
and age-related macular degeneration [26]. Its limitations
include a limited field of view and higher costs. The choice

of modality depends on clinical requirements, with CFP
preferred for its simplicity and wide coverage, and OCT for
its detailed structural insights.
Our research focuses on papers that only used fundus images
in their studies. The primary use of fundoscopy is to detect
DR, glaucoma, and AMD [22]. The photograph of a healthy
eye captured by a fundus camera is shown in Figure 1a.

Diabetic retinopathy
Diabetic retinopathy (DR) refers to problems with the retina
caused by damage to the retinal vessel walls [32]. One of
the primary causes of adult vision loss is DR (Figure 1b).
A patient is diagnosed with diabetic mellitus if their plasma
glucose level is above 7mmol/L [33], [34]. Hyperglycemia
(high blood sugar) has been linked to kidney, heart, brain,
and eye damage because it can harm blood vessels and
nerve cells [35]. Diabetic macular edema can result from
hyperglycemia-induced harm to the retinal vessel walls [36].
New blood vessels that emerge during ischemia may later
rupture due to their fragility and cause serious haemorrhages
that can impair vision or even result in permanent blind-
ness [32]. Microaneurysms appear during the early stages of
DR [32]. Neovascularisation, another name for this condition,
causes proliferative diabetic retinopathy [37]. Proliferative
DR, and diabetic macular edema, are two examples of severe
stages of DR [38], [39]. The current treatment options for
DR include surgery, intravitreal injections of steroid and
anti-VEGF medications, and laser photocoagulation. DR is
a significant public health issue and the leading cause of
vision loss among the working-age population [40]. One-
third of diabetes patients have DR [33]. Early diagnosis of
DR is critical to preventing severe damage to the retina and
avoiding loss of vision [41].

Glaucoma
Glaucoma arises from injury to the optic nerve, and visual
field loss follows [10]. Glaucoma damages the retina’s axons
and ganglion cells (Figure 1c). This occurs when the aqueous
humour, or eye fluid, does not properly circulate in the front
of the eye [42]. There are numerous glaucoma types, each
with its own set of pathogenic factors. However, they are all
distinguished by virtually universal modifications to the optic
nerve’s structure and function [43]. The cupping of the optic
disc characterizes glaucoma [44]. Tamim et al. [45] predicted
that 111.8 million people globally will have glaucoma by
2040.

Age-Related Macular Degeneration
AMD is caused by aging-related degeneration to the macula,
the part of the eye that regulates accurate, straight-ahead
vision [46], [47]. AMD, a prevalent condition in individuals
above 50, generally manifests before Drusen, (Figure 1d)
which are microscopic yellow fragments of fatty protein
beneath the retina [48]. The two primary forms of AMD are
wet and dry AMD. With dry AMD, vision loss or impairment
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FIGURE 1. Fundus images of an eye with no diseases (a), DR (b), Glaucoma (c),
AMD (d). Images provided by Bangladesh Eye Hospital and Institute Ltd

typically occurs gradually [49]. Since it usually exhibits no
symptoms in the intermediate stage, AMD is difficult to
detect. OCT is currently the gold standard for assessing

individuals for initial AMD diagnosis. Grading of AMD
is crucial for detecting the early stages of the disease and
preventing patients from progressing to advanced AMD [50].
Early detection allows for timely intervention, which can slow
the progression and reduce the risk of severe vision loss [50].
Performing the traditional detection of this disease can take
time and requires specialists with the necessary skills [51].
AMD affects 6.2 million people worldwide [52].

III. ARTIFICIAL INTELLIGENCE-BASED RETINAL
SCREENING
Initially, traditional image processing techniques for analysing
fundus images were used, yielding encouraging results,
albeit on limited datasets and providing only partial clinical
information [53]. ML methods subsequently enhanced the
performance of automated analysis but still lacked robustness
[54]. Recently, DL methods have demonstrated excellent
performance on large datasets, showing significant potential
for clinical applications [55]. In general, these models based
on AI work by getting an input (e.g., fundus eye images) and
if it is an ML model, it extracts features first, then performs
classification and then gives an output of OD detected or not
detected.

FIGURE 2. Diagram of the different approaches of (a) ML and (b) DL models to
detect eye diseases from fundus images.

However, DL models do not need to extract features, which
makes them better for automatic detection, as the user does
not need to define each feature to detect the diseases. Many
DL models can be developed to screen, classify and detect
retinal diseases. Figure 2 shows a diagram of the different
approaches of ML (Figure 2a) and DL (Figure 2b) to detect
eye diseases from fundus images.

Expert ophthalmologists use fundus images from fundus
cameras or OCT to identify whether an ophthalmic illness
is present. Fundus eye imaging, a non-invasive technique
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capturing retina images, has emerged as a valuable diagnostic
tool for detecting various retinal pathologies.

In recent years, the application of transformer-based meth-
ods, such as Vision Transformers (ViTs), has shown signif-
icant promise in the diagnosis of retinal diseases like DR,
AMD, and glaucoma [56]. These advanced methodologies
leverage DL techniques to enhance the accuracy and efficiency
of retinal imaging analysis [57].

ViTs represent a breakthrough in image analysis, trans-
ferring the success of transformer models in natural lan-
guage processing to the field of computer vision [58]. ViTs
process images as sequences of patches, enabling them to
capture global contextual information more effectively than
traditional convolutional neural networks (CNNs) [59]. The
primary advantages of ViTs include their ability to understand
global context, which is particularly useful in identifying
complex retinal patterns and abnormalities [60]. ViTs are
highly scalable, improving performance with larger datasets
and more extensive training. They also benefit from transfer
learning, where pre-trained transformers can be fine-tuned on
specific retinal disease datasets, enhancing their diagnostic
capabilities [60].

In applications, ViTs can detect subtle changes in the
retinal vasculature, such as microaneurysms and hemorrhages
in diabetic retinopathy [58], identify early signs of AMD,
including drusen and pigmentary changes [61], and measure
retinal nerve fibre layer (RNFL) thickness and optic nerve
head morphology for early glaucoma detection [56]. However,
ViTs require substantial computational power and resources
for training and deployment, which may be a barrier in some
clinical settings. ViTs also need large annotated datasets for
effective training, which can be challenging to obtain in the
medical field.

According to Qummar et al., the manual method is
subjective, time-consuming, and arduous, making it difficult
for such diagnoses to be repeated [13]. The growing interest
in leveraging ML and DL to analyse fundus images has
the potential to revolutionize retinal health diagnostics. This
automatic retinal health screening system may help clinicians
detect these diseases in their early stages and have a higher
chance of saving patients’ vision. There would also be no
subjective bias on the part of the clinicians. If applied
properly, these systems would produce results faster and more
consistently than manual or human processes.

IV. PUBLIC DATASETS OF FUNDUS EYE IMAGES
The main retinal image databases that are publicly available
and have recently been used to gauge algorithm performance
in literature are listed in this section. These databases are
appropriate for assessing algorithm performance because they
have a clearly defined standard. The demand for validating or
training models has increased, thus research teams have cre-
ated and made their own datasets public [75]. The databases
contain retinal images that show, among other things, DR,
AMD, and glaucoma.

The accessibility of these datasets is critical for the
development and evaluation of ML and DL models. A fully
annotated database, MESSIDOR, displays the DR grade for
all its 1200 fundus photos [62]. MESSIDOR-2 has 1748
photos, one for each eye and two for each subject. There
are 40 photos in DRIVE, 33 of which are DR-free, and 7 of
which show only minor DR symptoms [63].

RIM-ONE contains 159 images, each with an optic cup and
disc label. Of the images, 74 exhibit glaucoma symptoms,
and 85 are normal. STARE has 400 images, with 40 that
are manually segmented and annotated. Specialists label all
images [64]. DIARET DB1 contains 89 fundus images, 84
with at least mild DR. The images were acquired from Kuopio
University Hospital in Finland [70]. KAGGLE by EyePACS
has 88,702 images, 35,126 from the training set and 53,576 for
the test set. LAG-DB has 11,760 images, 4878 with glaucoma
and the rest as normal [71]. IDRiD has 597 images showing
DR and its severity and images with normal retinal structures
[74].

CHASEDB1 (Child Heart and Health Study in England
Database 1) is a public database created as part of the
Child Heart and Health Study in England [75]. It contains
retinal images used for research into the correlation between
retinal vessel characteristics and cardiovascular disease risk
factors in children. The CHASEDB1 database comprises
28 manually segmented monochrome ground-truth images
with a resolution of 1280 × 960 pixels. Retinal imaging was
conducted on over 1000 children. Expert ophthalmologists
performed the image segmentation.

The ACRIMA dataset emerged from a project funded by
Spain’s Ministerio de Economía y Competitividad, which
focused on the development of algorithms for detecting
ocular diseases [76]. This database comprises 705 images,
including 396 glaucomatous and 309 normal ones. Images
were obtained using the Topcon TRC retinal camera from
previously dilated left and right eyes. Two glaucoma experts
performed the image annotation.

The Online Retinal Fundus Image Dataset for Glaucoma
Analysis and Research (ORIGA) was developed by the
Singapore Malay Eye Research Institute (SERI) for seg-
menting the optic cup and optic disc [77]. This publicly
accessible database contains 650 retinal images intended for
benchmarking segmentation and classification algorithms. It
includes 168 glaucomatous images and 482 healthy images,
each with a resolution of 3072 × 2048 pixels. The images
were collected between 2004 and 2007 and were annotated
by highly trained professionals. The study’s subjects ranged
in age from 40 to 80 years.

The Ocular Disease Intelligence Recognition (ODIR)
dataset is a structured collection of data from 5,000 patients,
curated by the Peking University National Institute of Health
Sciences [79]. It includes multiple label annotations for retinal
diseases including DR, AMD, Glaucoma, and others. The
images are stored in various sizes in JPEG format. The
distribution of image class labels is as follows: Normal: 3098,
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TABLE 1. List of public databases with fundus images. Note: MESSIDOR = Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology
RIM-ONE = Retinal Image Database for Optic Nerve Evaluation; DRIVE = Digital Retinal Image for Vessel Extraction; STARE = Structured Analysis of the Retina; DIARET
DB1 = Standard Diabetic Retinopathy Database Calibration level 1; LAG DB = Large-Scale Attention Glaucoma Database; IDRiD = Indian Diabetic Retinopathy Image Dataset

Database Name Images Specific Eye Disease. Ref Web Link
MESSIDOR 1200 DR [62] www.adcis.net/en/third-party/messidor
MESSIDOR-2 1748 DR [63] www.adcis.net/en/third-party/messidor2
RIM-ONE 159 Glaucoma [64] https://github.com/miag-ull/rim-one-dl
HRF 45 AMD, Glaucoma, DR [65] https://www5.cs.fau.de/research/data/fundus-images
DRIVE 40 DR [66] www.kaggle.com/datasets/andrewmvd/drive-digital-retinal-images-for-vessel-extraction
STARE 400 AMD, DR [67] https://cecas.clemson.edu/$\sim$ahoover/stare
APTOS 5590 DR [68] https://www.kaggle.com/c/aptos2019-blindness-detection/data
E-ophtha 463 Glaucoma, AMD, DR [69] http://www.adcis.net/en/third-party/e-ophtha
DIARETDB1 89 DR [70] www.it.lut.fi/project/imageret/diaretdb1_v2_1
KAGGLE by EyePACS 88702 DR [71] www.kaggle.com/c/diabetic-retinopathy-detection/data
LAG DB 11760 Glaucoma [72] https://github.com/smilell/AG-CNN
HEIMED 169 DR [73] https://github.com/lgiancaUTH/HEI-MED
IDRiD 597 DR [74] https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
CHASEDB1 28 DR [75] https://blogs.kingston.ac.uk/retinal/chasedb1
ACRIMA 705 Glaucoma [76] https://figshare.com/s/c2d31f850af14c5b5232
ORIGA 650 Glaucoma [77] https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=ORIGA
DIARETDB0 130 DR [78] www.it.lut.fi/project/imageret/
ODIR 6426 AMD, DR, Glaucoma [79] https://odir2019.grand-challenge.org/dataset/
ARIA 450 AMD, DR [80] https://paperswithcode.com/dataset/aria/
AREDS 120656 AMD [81] https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
IOSTAR 30 DR [82] https://www.retinacheck.org/download-iostar-retinal-vessel-segmentation-dataset

DR: 1406, Glaucoma: 224, AMD: 293, and others. Expert
ophthalmologists participated in the annotation process.

The ARIA database consists of 450 images in JPEG format
[80]. These images are divided into three categories: a healthy
control group, a group with AMD, and a group with DR. Two
expert ophthalmologists were responsible for annotating the
images.

The Age-Related Eye Disease Study (AREDS) was a
longitudinal study spanning up to 12 years, during which the
AMD conditions of numerous patients were monitored [81].
The study included cases of geographic atrophy, neovascular
AMD, and control patients. Retinal images of both the left
and right eyes of each patient were taken throughout the study.
These images were graded for AMD severity by various eye
specialists. Over the course of the study, some patients who
initially showed mild AMD symptoms progressed to more
severe stages. The database is divided into training, validation,
and test sets, consisting of 86,770, 21,867, and 12,019 images,
respectively.

The IOSTAR database contains 30 retinal photos captured
using a laser fundus camera. These images were edited and
annotated by two specialists [82]. The IOSTAR database
includes annotations for the optic disc and the images have a
resolution of 1024 × 1024 pixels. DIARETDB0 consists of
130 images, with 20 normal images and 110 images showing
signs of diabetic retinopathy (DR), saved in PNG format.

Among other things, the quantity of photos, the pre-
processing tasks, and the quality of the images affect ML
and DL performance. Publicly available datasets such as
these have had an important role in advancing retinal disease
detection systems. Links to these databases are given in Table
1, which shows the details of the datasets and relevant links
to these public data.

V. RELATED RESEARCH
Despite the considerable progress in AI-based retinal health
screening, many existing reviews in this field have several
limitations. Many reviews focus only on one specific disease
such as DR or AMD, or a particular AI model between ML
or DL, rather than providing a holistic view of the entire
field. This limits the understanding of the broader impact and
potential of AI in retinal health screening.

Few reviews offer a comprehensive longitudinal analysis
that tracks the evolution of AI technologies over an extended
period. This makes it challenging to appreciate the incremen-
tal improvements and significant breakthroughs achieved over
the years. The existing reviews often emphasize theoretical
developments and laboratory results, neglecting the practical
challenges and successes of implementing AI systems in real-
world clinical settings. Rapid advancements in AI mean that
emerging trends and technologies may be underrepresented in
reviews. This includes the latest innovations in deep learning
architectures, transfer learning, and federated learning, which
are crucial for the future of retinal health screening.

In Table 2, we compared several reviews related to our
research work to the automated detection of ophthalmic dis-
eases such as DR, AMD, and Glaucoma. Initially, many earlier
studies used computer-aided diagnosis (CAD) systems [95]
[93]. These systems used image processing techniques and
handcrafted features to assist ophthalmologists in diagnosing
eye diseases from fundus images. CAD systems primarily
served as tools to aid ophthalmologists by highlighting areas
of concern in fundus images, rather than providing definitive
diagnoses [96]. Early ML systems often used rule-based
algorithms to classify images [96]. These rules were derived
from clinical expertise and predefined criteria, which limited
their adaptability and accuracy.

In 2013, a review by Mookiah et al. showed how ML
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TABLE 2. A table that shows a comparison with other published systematic review articles on detecting eye diseases such as DR, AMD, and Glaucoma from fundus images.

Year Author(s) Eye disease(s) Technique(s) Features focused on in the review
Trend of different AI techniques used over the last decade for detecting DR, AMD, and

2024 This review DR, AMD, Glaucoma ML, DL Glaucoma. Comparison of different AI methods. ML, DL techniques used for segmentation
of optic disc, optic cup, retinal blood vessels, microaneurysms, etc. Classification,
Segmentation followed by classification methods. Comparison of performance of different
ML and DL models on fundus images, over the last decade.

2024 [83] DR ML, DL Grading of DR, Analyse blood vessels, microaneurysms, lesion appearance variability
2023 [84] Glaucoma DL Optic disc and cup segmentation, classification of glaucoma stages, evaluating performance
2023 [85] AMD DL Diagnostic accuracy of different DL algorithms to identify AMD
2023 [86] Glaucoma DL Fundus image analysis techniques, dataset overview, and image processing methodologies
2020 [87] Glaucoma ML Image segmentation, optic disc, and optic cup segmentation, feature reduction
2020 [88] DR DL Degree of DR severity, grading of fundus images of DR
2020 [89] AMD, DR, Glaucoma DL Retinal blood vessel segmentations, Optic disc and optic nerve segmentations
2020 [71] DR DL Lesion detection methods, hierarchical layer processing, and unsupervised feature learning
2019 [90] AMD ML, DL Severity of AMD, Detection of AMD using ML and DL classifiers
2018 [91] Glaucoma ML Progression and detection measures of glaucoma, pattern classification, ML methods
2017 [92] DR ML Analysing retinal blood vessels to assess DR, image processing, pattern recognition
2016 [93] Glaucoma ML Localisation and segmentation of the optic nerve head, pixel level glaucomatous changes
2014 [94] AMD ML Automated AMD grading techniques, drusen detection, Texture based segmentation
2013 [95] DR ML Detection of microaneurysms, exudates, optic disk and cup, retinal blood vessels

was used to detect DR by extracting different features such
as microaneurysms, exudates and blood vessels [95]. ML
systems relied heavily on the manual extraction of features
such as blood vessel patterns, microaneurysms, exudates, and
other retinal abnormalities. These features were then used to
identify potential signs of diseases like DR and AMD [95].

Bhuiyan et al. [94] reviewed AMD detection techniques
using ML in 2014. Different techniques, such as drusen
detection techniques, and texture-based segmentation, were
discussed [94]. As the field progressed, ML techniques began
to be employed more frequently for retinal health screening
[97]. ML algorithms improved upon CAD systems by learning
from data, reducing the need for handcrafted features [98].
ML models, particularly supervised learning algorithms like
support vector machines (SVMs) and random forests, were
trained on labelled datasets of fundus images. These models
learned to distinguish between healthy and diseased retinas
based on patterns in the data [99].

In 2016, Mary et al. [93] reviewed detecting glaucoma
using ML models such as SVM. While ML reduced reliance
on manual feature extraction, feature selection remained an
important step. Techniques like principal component analysis
(PCA) were used to identify the most relevant features for
classification [100]. ML algorithms achieved higher accuracy
compared to traditional CAD systems by leveraging larger
datasets and more sophisticated learning techniques [101].
However, they still required significant human intervention
for feature engineering and data pre-processing.

In recent years, deep learning (DL) has emerged as the
dominant approach for retinal health screening [102]. DL
models, particularly convolutional neural networks (CNNs),
have transformed the field by automating feature extraction
and improving diagnostic performance [103]. Unlike ML, DL
models automatically learn relevant features from raw image
data [104]. CNNs, with their multiple layers of convolutional
and pooling operations, can identify complex patterns in
fundus images without manual intervention [105].

In 2019, Pead et al. [90] reviewed DL methods, partic-
ularly CNNs, in detecting AMD. In the review, CNNs are
highlighted for their high performance in detection from
fundus images. Transfer learning from pre-trained networks
and ensemble learning are also discussed [90]. Examples
include a 14-layer CNN achieving a high accuracy of 95.45%,
sensitivity of 96.43%, and specificity of 93.75%.

In 2020, Islam et al. [88] reviewed DL methods for
detecting DR. Their findings demonstrated that DL algorithms
exhibited high sensitivity and specificity in detecting DR from
fundus images. They concluded that implementing a DL-
based automated tool to assess DR from colour fundus images
can offer an alternative solution to reduce misdiagnosis and
enhance workflow. It can also have significant advantages,
including lowering screening costs, increasing healthcare
accessibility, and facilitating earlier treatments [88].

In 2023, Soofi et al. [84] reviewed DL methods for de-
tecting glaucoma. Using CNNs, Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM) networks
for glaucoma detection are highlighted in their review. Their
review also focused on the different techniques including U-
Net for segmentation of the optic disc, MobileNet V2 for
classification, and attention-based mechanisms to improve
focus on relevant image regions [84].

Bhulakshmi et al. [83] reviewed ML and DL methods to
detect DR in 2024. They reviewed different methods such
as CNNs, RNNS, GANs. THe review concluded that CNNs
were effective in classifying DR severity, RNNs were useful
for sequential data, tracking disease progression over time,
and GANs were used in many studies to generate synthetic
retinal images for training DL models [83].

DL enables end-to-end learning, where the entire process
from image input to disease classification is handled by the
model [106]. This reduces the need for intermediate steps like
feature selection and allows for more streamlined workflows.
DL models have achieved state-of-the-art performance in
detecting retinal diseases. Studies have shown that CNNs can
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match the accuracy of expert ophthalmologists in detecting
conditions like DR, AMD, and glaucoma [107].

DL models are highly scalable and can be trained on
large datasets, enabling them to generalise well to diverse
populations and varying image quality [107]. This makes
them suitable for widespread clinical use. In general, earlier
studies focused on documenting the performance of different
ML techniques for automatic ophthalmic disease detection.
In contrast, more recent studies have reviewed DL techniques
for automatic ophthalmic disease detection.

FIGURE 3. Flow diagram of PRISMA approach used for this systematic review.

VI. MATERIALS AND METHOD
During the design phase of this systematic review, we applied
the PRISMA guideline to evaluate relevant research on AI
in retinal screening using fundus images. We focused on the
following conditions: Glaucoma, AMD, and DR. We targeted
articles that incorporated ML or DL techniques.

We followed the PRISMA guidelines to perform a systemic
search of studies related to AI approaches in retinal health
screening published from January 2012 to June 2024. We
identified, screened, and selected 142 papers that satisfied
the criteria of this review. These particular databases were
picked because they had many excellent research papers. The
database queries were created using the topic-related specific
Boolean strings, as shown in Table 3.

Using the Boolean search queries outlined in Table 3,
a systematic search was performed across four databases:
Institute of Electrical and Electronics Engineers (IEEE)
Xplore Digital Library, PubMed, Science Direct, and Google
Scholar, covering all publications. The initial identification
phase of the PRISMA method, shown in Figure 3, spanned
from January 2012 to June 2024 and resulted in 1601

publications.
The distribution of studies across databases was as follows:

531 studies from Google Scholar, 176 studies from Science
Direct, 429 studies from PubMed, and 465 studies from IEEE
Xplore Digital Library.

In the screening phase, we removed 622 duplicates and
181 ineligible studies from the initial search results. After
removing the 803 articles, 798 publications remained. We
further examined the titles and abstracts of the remaining
publications. This process led to the systematic elimination
of 507 articles, including 437 non-relevant publications, 21
books, and 49 non-English language publications, which
resulted in 291 articles remaining.

In the inclusion stage, we thoroughly read and assessed
the eligibility of the remaining 291 articles. We checked
for completeness of information and whether they contained
the necessary details pertinent to AI approaches in retinal
health screening. After meticulous review, an additional 149
articles were excluded for not being in our inclusion criteria,
missing or irrelevant information, or no evaluation. Finally,
142 journal articles met the eligibility criteria for inclusion
in this review. Our detailed inclusion and exclusion criteria
are presented in Table 4. In Figure 3, the PRISMA workflow
diagram of this process is shown.

FIGURE 4. Bar graph illustrating the number of annual studies that used ML and
DL methods to identify AMD, DR, and glaucoma from 2012 to 2024 (till June 2024).

Figure 4 illustrates the number of ML and DL studies per
year from January 2012 to June 2024 that focused on detecting
AMD, DR, and glaucoma. The graph shows an exponential
increase in research output over this period. Early on from
2012-2017 there were just a handful of studies but from 2018-
2021 the number of studies rose steadily for each disease
area. There was a sharp increase in the year 2022, which was
just after the COVID-19 pandemic period. Numerous studies
followed it in the year 2023 and up until June 2024. This
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TABLE 3. Boolean search terms and the quantity of chosen papers from the corresponding databases.

Boolean AND Disease Title Databases Total No. of studies
fundus image + deep learning PubMed IEEE Science Direct Google Scholar
OR
fundus image + automated detection Glaucoma 26 93 41 89 249

Diabetic Retinopathy 73 201 39 227 540
Age-related macular degeneration 18 26 23 40 107

OR
fundus image + machine learning Glaucoma 81 38 36 61 216

Diabetic Retinopathy 164 95 24 103 386
Age-related macular degeneration 67 12 13 11 103

TABLE 4. Inclusion and exclusion criteria of our search.

Inclusion Criteria Exclusion Criteria
- Studies that used only digital fundus eye images. - Studies conducted with eye images other than colour
- Detection of the following eye diseases: DR, AMD, fundus photography.
and Glaucoma. - Studies that did not use Accuracy, Sensitivity, Specificity, Recall,
- Studies that used Accuracy, Sensitivity, Specificity, and AUC as performance metrics.
Recall, and AUC as metrics. - Studies focused on using ML or DL to classify other eye diseases
- Studies that used ML, DL, or hybrid techniques in classifying than the ones we are focusing on (DR, AMD, and Glaucoma).
the diseases. - Studies where the dataset is unknown, or the number of
- Studies that used a specific number of fundus eye images. images are not provided.
- Papers taken only from January 2012 till June 2024 - Articles that do not employ ML or DL techniques in the
- Only papers published in English classification or prediction phase.
- Only from IEEE, Google Scholar, Science Direct, PubMed

reflects the steady increase of interest in applying ML and DL
for the detection of AMD, DR, and glaucoma.

VII. RESULTS, ANALYSIS, SYNTHESIS AND
INTERPRETATION
In this paper, we reviewed 142 papers, which had 262 studies
using different ML and DL models to identify ophthalmic
diseases. Out of 262 studies, 47.33% (124) were on Glaucoma,
22.90% (60) were on AMD and 29.77% (78) were on DR.
Different studies used different performance metrics such as
F1-Score and precision, but our review focused only on studies
that used accuracy, specificity, and sensitivity/recall or AUC
as metrics. As demonstrated by the bar charts in Figures 5 to
7, and 11 to 14, the models utilised in all of these studies had a
generally strong performance in terms of accuracy, specificity,
and sensitivity.

Machine Learning
Of the 104 ML studies that attempted to identify ODs, around
36.5% (38) utilised a support vector machine (SVM) as
the classifier. The discussed 3 ODs (Table 14-19) achieved
greater performance with SVM despite the results varying
from 73.3% to 100% accuracy, 53.16% to 100% specificity,
and 82.6% to 100% sensitivity.

With the SVM classifier, the highest accuracy, specificity,
and sensitivity of 100% were achieved in Glaucoma [109]. For
AMD, the highest accuracy of 93.7%, specificity of 96.3%,
and sensitivity of 91.11% were achieved using SVM [124].
For DR, the highest accuracy of 100% [125], specificity of
96.88% [126], and sensitivity of 100% [101] were achieved
using ML classifiers.

SVM was still the most commonly used ML classifier. For
Glaucoma, 37.8% (17 of the 45 classifiers) were SVM (Figure

10). Two studies used the least-square support vector machine
(LS-SVM), one of the SVM variants [127], [128]. Large data
processing and computational time reduction are common
uses for the LS-SVM model [129].

Many models for OD detection have recently been devel-
oped using ML methods. To find patterns and forecast the
presence of ODs, ML algorithms can analyse large amounts of
data. From the literature, we can see that several studies have
employed traditional ML techniques, such as SVM, decision
trees, and random forests, to detect retinal diseases from
fundus images. [21] proposed an automated system based on
SVM for detecting DR. The system showed high sensitivity
and specificity in identifying DR-related lesions.

Similar studies have used other ML techniques, such as
KNN and decision trees, to detect and classify ODs such as
glaucoma [114]. Retinal nerve fibre layer thickness was the
basis for Bock et al.’s [130] application of SVM to distinguish
between retinas in good condition and those with glaucoma.
Their approach demonstrated promising results in detecting
glaucomatous damage.

Floriano et al. [131] developed an automated system using
ML techniques, including SVM, to detect AMD. Their ap-
proach achieved high classification accuracy in distinguishing
between different AMD stages. These methods for medical
diagnosis, such as decision trees [132] and the Gaussian
mixture model [133] were able to match the accuracy levels
of human experts, as noted by Jain et al. [134]. Still, their
disadvantage was that they heavily relied on knowledge of the
disease-specific features and required a lot of work to be able
to extract and analyse the features.

Traditional ML algorithms like SVMs do not have the same
feature learning capabilities as deep nets. In traditional ML,
having more fundus images does not meaningfully improve

VOLUME 4, 2022 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3477420

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Saad et al.: DRAFT Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Summary of some high-performing ML methods to detect Glaucoma, DR, and AMD on fundus images over the last decade:

Authors (Year) Disease detected No. of images Features Extracted Performance
NB:

[108] (2022) Glaucoma DRISTHI-GS (101), ACRIMA (705) Homogeneity, Contrast, Entropy Acc = 88.86%
Correlation and Energy Sens = 90.25%

DRISHTI-GS (101), Adaboost:
[109] (2021) Glaucoma RIM-One (169), NIO (118) CDR, NRR ISNT ratio, Blood Acc = 100%

DRIONS-DB (110), JSIEC (124), Vessels ISNT ratio Sens = 100%
DRIVE (44). Total: 666 Spec = 100%

KNN:
DRISHTI-GS (101), DDLS, CDR, GLRM, GLCM, Acc = 91.6%

[110] (2020) Glaucoma RIM-One (159) FoS, HOS, HOC and Wavelets Spec = 90%
Sens = 91%
SVM:

[111] (2019) DR, ONHSD (99), DRIONS-DB (110), Intensity-based statistical features Acc = 99.3%
Glaucoma MESSIDOR (1200) and texton map histogram Spec = 99.4%

Sens = 96.9%
RF:

[112] (2018) DR, AMD, KMC: Normal: 404 Scalogram of 2-D CWT, PSO, Acc = 92.48%
Glaucoma Abnormal: 1082 (381 AMD, entropy, energy, ADASYN Spec = 95.58%

170 DR, 115 Glaucoma) Sens = 89.37%
[113] (2018) DR, AMD, KMC: Normal: 790, Abnormal: 1430 Pyramid histogram of visual RF:

Glaucoma (531 AMD, 346 DR, 533 Glaucoma) words (PHOW), Fisher vectors Acc = 96.79%
KNN :

Private (702) Local configuration pattern Acc = 95.7%
[114] (2017) Glaucoma (143 Normal, 559 Glaucoma) Spec = 93.7%

Sens = 96.2%
SVM:

[115] (2016) DR, AMD, KMC: Normal: 400, Bi-dimensional empirical mode Acc = 88.63%
Glaucoma Abnormal: 400 (115 AMD, decomposition Spec = 91%

170 DR, 115 Glaucoma) Sen = 86.25%
KNN :

[116] (2016) Glaucoma Venu Eye Research Centre, Wavelet feature extraction Acc = 94.8%
India (63 images) Spec = 100%

Sens = 90.9%
GMM:

[101] (2014) DR MESSIDOR (1200) Various Spec = 53.16%
Sens = 100%
AUC = 0.904

Weighted Frequent Subgraph (WFSG) SVM :
[117] (2012) AMD ARIA + STARE: 258 Mining: This technique extracts frequent Acc = 99.6%

(160 AMD and 98 normal) subgraphs (image features) from the Spec = 100%
graph representation of the images. Sens = 99.4%

TABLE 6. Summary of some high-performing DL methods to detect Glaucoma, DR, and AMD on fundus images over the last decade:

Authors (Year) Disease detected No. of images Features Extracted Performance
CDAM-Net:

Private (1426) Acc = 99.30%
[118] (2024) Glaucoma (837 glaucoma Class-specific features Spec = 100%

and 589 normal) Sens = 98.80%
AUC = 0.99
GAN :

Drusen: Small yellow or white Acc = 88.5%
[119] (2023) AMD Private (7049) deposits under the retina, Spec = 94%

Retinal blood vessels. Sens = 88.5%
AUC = 0.967
VSUL-Net :

[120] (2022) DR STARE (60) Various deep features Acc = 97.27%, Spec = 98.13
Sens =86.64%, AUC = 0.99

UK Biobank Eye and Vision IOP, corneal hysteresis, corneal Densenet:
[121] (2021) Glaucoma Consortium, UK (1193+1283) resistance factor Sens = 81%

RNFL thickness and deviation CNN:
[122] (2018) Glaucoma Private (304) map, GCC thickness Sens = 96%

and deviation map
ORIGA (168 glaucoma, 482 normal), CNN :

[123] (2015) Glaucoma SCES (46 glaucoma, 1630 normal) Various deep features AUC = 0.831

the model as there are diminishing returns - at some point, the
performance may plateau or even degrade with too much data.

They cannot take full advantage of very large image datasets
in the same way as DL. In DL, the performance typically
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continues to improve as more images are added to the dataset
without hitting the same diminishing returns as ML. This is
because DL models have a higher capacity to take advantage
of large datasets.

ML models often need help in capturing complex patterns
in large datasets. If a dataset is too large and diverse, it
can lead to overfitting, where the model memorizes the data
rather than generalising from it, potentially resulting in lower
performance.

Deep Learning
Most of the models in our review that used DL have used
CNN. CNN is a subclass of multilayer neural networks. It
is a model based on the biological neural networks found
in the human brain [104]. There have already been some
publications of CNN applications for analysing retinal images.
As an illustration, van Grinsven et al. [135] used CNN to find
haemorrhages in fundus photographs.

In their work, they used a CNN model with nine layers.
A deep CNN was also used to simultaneously locate and
segment the vasculature, optic disc, and fovea [136]. The pro-
posed CNN model’s high accuracy performance demonstrates
its potential for use in CAD systems. In visual recognition
tasks, CNN models have demonstrated exceptional recogni-
tion capacity [137], [138].

A Convolutional Neural Network (CNN) or one of its
variants was used as the classifier in about 58.9% (93 out
of 158 DL studies) that attempted to identify ODs (Appendix
A).

The discussed 3 ODs (see Table 14 to Table 19) achieved
superior performance with CNN despite the results varying
from 63.3% to 100% accuracy, 66.6% to 100% specificity,
and 51.5% to 100% sensitivity.

AMD achieved 100% accuracy, specificity, and sensitivity
of 100% with the CNN classifier or one of its variants [139].

CNN achieved the highest accuracy of 99% [140], speci-
ficity of 96.7% [141], and sensitivity of 95.6% [22] for
glaucoma.

For DR, the highest accuracy of 99.62% [142], specificity of
96.37% [143], and sensitivity of 96.87% [144] were achieved
using CNN or one of its variants.

DL models like CNN are specifically designed to extract
features from image data. The more images they are trained
on, the better they recognise patterns and features, leading
to continued gains in performance. DL models with many
layers can be overfitted on small datasets. More training
images help prevent overfitting and improve generalisation,
so, performance improves with more data.

DL can leverage large image datasets more effectively to
steadily improve performance, while traditional ML sees
diminishing returns after a certain threshold of data size. Due
to the advantages of DL over ML, future work should focus
on DL for image classification tasks. Using deep learning
(DL) over traditional machine learning (ML) for detecting
eye diseases offers several advantages:

• Automatic Feature Extraction: DL models, partic-
ularly Convolutional Neural Networks (CNNs), are
adept at automatically identifying and learning relevant
features from raw data, such as images [145]. This
contrasts with ML, where feature extraction requires
manual intervention and expert knowledge, making
DL more efficient and scalable for complex tasks like
detecting a wide range of retinal diseases [87].

• Handling Complex Patterns: DL models can capture
and model complex patterns in data that are often missed
by traditional ML algorithms [146]. This capability is
crucial for detecting eye diseases, where subtle variations
in retinal images can indicate different conditions [117].
DL can more accurately identify these nuances, leading
to better diagnosis and treatment strategies.

• Versatility and Adaptability: DL models can be
designed to handle multiple tasks simultaneously, such
as screening, categorisation, and detection of various eye
conditions, including AMD, DR, and glaucoma [147].
This multipurpose nature makes DL more versatile than
ML, which might require different models or feature sets
for each task.

• Improved Accuracy and Efficiency: Due to their
ability to learn from large datasets and improve over
time, DL models can achieve higher accuracy in disease
detection than ML models [104]. This is particularly
beneficial in medical imaging, where precision is critical.
DL models can also process and analyse data faster once
trained, offering real-time diagnostic capabilities that are
essential in clinical settings.

• Potential for Novel Discoveries: The DL approach
can uncover new patterns or biomarkers for diseases
that were previously unknown [39]. By learning from
comprehensive datasets, DL models might identify new
indicators of eye diseases, leading to breakthroughs in
how these conditions are understood and treated.

In summary, DL offers significant advantages over tradi-
tional ML in the context of detecting eye diseases, including
the ability to automatically learn from data, handle complex
patterns, adapt to various tasks, improve diagnostic accuracy
and efficiency, and potentially lead to new medical insights.

VIII. SEGMENTATION
In the field of retinal health screening, segmentation involves
partitioning a fundus image into multiple segments (sets
of pixels) to simplify or change the representation of an
image into something more meaningful and easier to analyse
[166]. Segmentation is a fundamental process, particularly
for delineating key structures such as retinal lesions, the optic
cup, and the optic disc [166]. Segmentation aims to isolate
and highlight specific structures or regions of interest, such as
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TABLE 7. A comparison of ML methods for optic disc and optic segmentation in fundus eye images:

Year Author ML Method for optic disc and optic cup segmentation Database
2021 [148] Clustering Drishti-GS
2019 [149] Clustering and level set combination RIM-ONE, Drishti-GS
2018 [150] Active contour model RIM-ONE, Drishti-GS
2017 [151] Conditional random field formulation Drishti-GS
2015 [152] Adaptive histogram equalisation and Gabor filter Private
2013 [153] K-means clustering and Gabor wavelet transform Private
2013 [154] Superpixel classification ORIGA, SCES
2013 [155] Gradient method Private
2012 [156] K-means and openCV code AEH

TABLE 8. A comparison of DL methods for optic disc and optic segmentation in fundus eye images:

Year Author DL Method for optic disc and optic cup segmentation Database
2024 [157] MRSNet RIM-ONE, Drishti-GS, REFUGE
2023 [158] Transformer and U-Net Drishti-GS, REFUGE
2022 [159] U-Net with (Inception-v3) RIM-ONE, ACRIMA
2022 [159] U-Net (with VGG19) RIM-ONE, ACRIMA
2022 [159] U-Net (with ResNet50) RIM-ONE, ACRIMA
2021 [160] GAN Drishti-GS, REFUGE
2021 [161] U-Net (with GAN) RIM-ONE, REFUGE
2019 [162] Patch GAN RIM-ONE, Drishti-GS
2018 [163] FCN Drishti-GS
2017 [164] Modified U-Net RIM-ONE, Drishti-GS, DRIONS-DB
2016 [165] Ensemble-based CNN Drishti-GS

blood vessels, the optic disc, or exudates. Although traditional
segmentation techniques involved image processing tech-
niques, it was improved upon my ML techniques. Recently,
DL techniques like U-Net, Fully Convolutional Networks
(FCNs), and Region-Based Convolutional Neural Networks
(R-CNN) have been commonly used for the segmentation of
fundus images [167].

Optic Disc and Optic Cup Segmentation
The segmentation of the optic disc and optic cup is essential in
detecting glaucoma [168]. The optic cup-to-disc ratio (CDR)
is a key metric analysed in this process. An increased CDR
is indicative of glaucomatous changes, reflecting the loss
of retinal nerve fibres and the associated excavation of the
optic nerve head [169]. Accurate segmentation of the optic
disc and optic cup allows for precise measurement of the
CDR, facilitating early detection and monitoring of glaucoma
[170]. Additionally, the segmentation of the optic cup helps in
assessing the neuroretinal rim, which is crucial for evaluating
glaucomatous damage [123].

Optic disc segmentation was first accomplished using
techniques such as mathematical morphology, thresholding,
and template matching [171]–[173]. Later, many studies
incorporated the Hough transform into mathematical mor-
phology [174]. Another approach involved tracing blood
vessels first and then locating the optic disc by identifying
the point where the vessels converged [175].

Active contours, ellipse fitting, and thresholding were
commonly used techniques in early works for optic disc and
optic cup and segmentation [176]. These algorithms utilised
colour/intensity variations or vessel bends (or a combination
of both) within the optic disc.

ML techniques have significantly enhanced the segmenta-

tion of the optic disc and optic cup, aiding in the estimation
of clinically relevant parameters [176]. Image pre-processing,
feature selection, and classification techniques are commonly
emphasized in many ML studies. The results from these
automated methods have shown their effectiveness in detect-
ing glaucoma, often producing results comparable to those
obtained through manual analysis by expert clinicians.

However, these techniques tend to be computationally
intensive, have been validated on limited datasets, and may
favour specific types of images while struggling with others,
such as those with very large optic discs and optic cups.

DL has also been applied in optic disc and optic cup
segmentation and can be particularly useful in identifying
specific structures in the eye, such as the optic nerve head in
glaucoma [95].

Al-Bander et al. [77] utilised DenseNet for optic disc
and optic cup segmentation, providing precise cup-to-disc
ratio (CDR) measurements crucial for glaucoma detection.
Similarly, Tan et al. developed a CNN model to segment the
optic disc from fundus images, resulting in high classification
accuracy [136].

Advanced segmentation techniques have been developed
using U-Nets. For instance, Sevastopolsky proposed a method
using U-Net for segmenting the optic disc and optic cup,
achieving high intersection-over-union (IOU) scores across
several databases [164].

Shyamalee et al. [159] proposed a design of attention U-
Net architectures with different CNN backbones to detect
glaucoma. Two datasets, RIM-ONE and ACRIMA, were used.
The attention U-Net model incorporates attention gates at
each skip connection to enhance feature retention and spatial
data.

The encoder part of the U-Net was replaced with pre-trained
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networks (Inception-v3, VGG19, and ResNet50) to identify
the best segmentation performance. The three U-Net models
with different CNN architectures were trained and evaluated
using multiple metrics [159].

The attention U-Net with ResNet50 backbone achieved the
highest accuracy of 99.53% in segmenting the optic disc
on the RIM-ONE dataset [159]. The study demonstrates the
superior performance of the ResNet50-based attention U-Net
in accurately segmenting the optic disc and optic cup, which
is crucial for glaucoma identification.

The study successfully demonstrates the effectiveness of
the attention U-Net model with ResNet50 backbone for optic
disc and optic cup segmentation in fundus images, achieving
high accuracy and sensitivity. This approach can significantly
aid in the early diagnosis of glaucoma, potentially preventing
vision loss.

Retinal Blood Vessel Segmentation
Changes and abnormalities in retinal blood vessels, such as
neovascularisation, are crucial for DR detection. Segmen-
tation of retinal blood vessels allows for the identification
of these changes. Neovascularisation, or the formation of
new, fragile blood vessels, is a severe complication of DR
that can lead to vision loss if not promptly treated [221].
Vessel segmentation also facilitates the assessment of vessel
density and tortuosity, which are important biomarkers for
DR progression [95].

The literature in this retinal blood vessel segmentation
has seen many works published in the last decade [222].
Supervised methods for blood vessel segmentation use a
classifier that requires a training stage with pre-labelled
pixel information to adjust parameters, whereas unsupervised
methods tackle the segmentation problem directly using
various image processing techniques such as vessel tracking,
matched filtering, morphological transformations, or model-
based algorithms, among others [223] [224].

Two main categories of supervised methods can be distin-
guished: those based on conventional ML models and those
based on DL using CNNs. Supervised methods require a set
of mathematical descriptors to characterise and differentiate
pixels as either part of the vascular structure or not. ML Clas-
sifiers such as SVM then use this mathematical representation
to determine the class of each pixel. Some recent ML methods
for blood vessel segmentation are given in Table 9.

Mehidi et al. [177] proposed a vessel segmentation method
that used CLAHE and bottom-hat filtering to increase the
contrast between the vascular and fundus, followed by a
Jerman filter. The proposed segmentation model has been
evaluated on the STARE and DRIVE databases, reaching an
accuracy of 96.18% and 95.86%, and a specificity of 98.10%
and 98.74%, respectively.

In recent years, research on blood vessel segmentation in
retinal images has increasingly focused on DL methods, as
shown in Table 10. Traditional image processing techniques
often fail to detect all vessels accurately. Unlike conventional

methods, DL approaches internally generate the most appro-
priate mathematical representation of the vascular structure.

A study [213] proposed a novel deep learning method
based on a convolutional neural network (CNN) with a dice
loss function for retinal vessel segmentation. The proposed
method was tested on the DRIVE and STARE databases and
showed superior performance compared to existing methods.
Specifically, it achieved a sensitivity of 73.9% and an accuracy
of 94.8% on the DRIVE database, and a sensitivity of 74.8%
and an accuracy of 94.7% on the STARE database [213].

In Li et al. [219], blood vessel segmentation is treated
as a cross-modality data transformation problem, utilising
a broad and deep NN to model the relationship between the
input image and the output vessel map. The characteristics
are extracted in the intermediate layers of the network. DL
methods typically employ a CNN architecture that uses a
multi-layered cascade (including convolutional, pooling, and
activation layers) to extract hierarchical descriptors for the
classification stage. Although this final stage can be performed
by any trainable classifier (e.g., a Random Forest ensemble
as used by a study by Wang et al. [220]), a typical CNN
architecture ends with a fully connected neural network
structure to make the final classification decision.

In a study by Soomro et al. [225], different DL-based
retinal blood vessel segmentation was reviewed. The study
showed that methods like the self-organising map (SOM)
and ensemble learning have shown good results but often
struggle with tiny vessel detection [225]. Sangeethaa et al.
[105] proposed a CNN that learns from pre-processed retinal
images instead of raw image data.

Another study proposed an ICA-based image enhancement
technique that significantly improves retinal vessel segmen-
tation, achieving better performance than existing methods
[226]. The study’s findings suggest that this approach can
be extended to other medical imaging applications requiring
low-contrast feature detection [226].

Jiang et al. [215] used a fully convolutional neural network
(FCN) pre-trained on a natural image dataset, using transfer
learning for vascular tree segmentation. Feng et al. [197]
suggested a cross-connected CNN, where all convolutional
layers of the primary and secondary paths are connected to
facilitate multi-level feature fusion.

The primary benefit of unsupervised vessel segmentation
methods is that they do not require manual annotation.
These methods utilise or identify image properties to classify
pixels as either vessel or non-vessels. The GMM-expectation
maximisation (EM) algorithm has also been employed for
vessel segmentation. The EM algorithm provides a maximum-
likelihood classification of a vessel and non-vessel pixels, with
vessel enhancement achieved through high-pass filtering and
the top-hat transform [227].

Recently, many works have adopted the U-Net DL model
such as the one proposed by Ronneberger [228]. It has
proven effective in medical image segmentation, especially
for problems involving class imbalance and limited sample

VOLUME 4, 2022 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3477420

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Saad et al.: DRAFT Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 9. A comparison of ML methods for blood vessel segmentation in fundus eye images:

Year Author(s) ML Method used for blood vessel segmentation Database
2024 [177] CLAHE, Bottom-hat and Jerman filter STARE, DRIVE
2023 [178] Grasshopper Optimisation with Fuzzy Edge Detection Private
2022 [179] PCA, RF Private
2020 [180] Hessian-based multiscale filter AEH
2020 [181] PCA, CLAHE and Fréchet matched filter STARE, DRIVE
2020 [182] HMM STARE, DRIVE
2019 [183] Cascade classification model DRIVE, STARE, CHASEDB1
2019 [184] Probabilistic Patch-Based (PPB) denoiser STARE, DRIVE
2018 [185] Patches clustering through K-means algorithm STARE, DRIVE
2017 [186] Discriminative dictionary learning and sparse representation STARE, DRIVE
2016 [187] Fully connected conditional random field model DRIVE, STARE, CHASEDB1, HRF
2015 [188] Iterative process based on adaptive thresholding DRIVE, STARE, CHASEDB1
2015 [189] MCA DRIVE, STARE
2013 [190] Multiwavelet kernels and multiscale hierarchical decomposition DRIVE, STARE
2013 [191] Multilayered thresholding technique and 2-D Gabor wavelet DRIVE, STARE
2012 [192] Ensemble system of bagged and boosted DT DRIVE, STARE, CHASEDB1

TABLE 10. A comparison of DL methods for blood vessel segmentation in fundus eye images:

Year Author(s) DL Method used for blood vessel segmentation Database
2024 [193] U-Net, DenseU-Net, LadderNet, R2U-Net, ATTU-Net STARE
2023 [194] U-Net DRIVE
2022 [195] CNN DRIVE

HRF, CHASEDB1, DIARETDB0,
2021 [196] U-Net with pre-processing DIARETDB1, STARE, MESSIDOR,

DRIVE, IDRiD
2020 [197] CNN DRIVE, STARE
2020 [198] CNN DRIVE, STARE
2020 [199] Lightweight CNN DRIVE, STARE, CHASEDB1
2020 [200] U-Net network and semi-supervised learning DRIVE
2020 [201] HAnet DRIVE, STARE, CHASEDB1, HRF
2020 [202] Multi-Scale Feature Fusion U-Net DRIVE, STARE
2020 [203] U-Net ORIGA, REFUGE, DRIVE, CHASEDB1
2020 [204] U-Net following with a U-Net with residual blocks DRIVE, CHASEDB1
2020 [205] Custom U-Net DRIVE, STARE, CHASEDB1, HRF, ARIA
2020 [206] GANs and Dense U-Net DRIVE
2020 [207] U-Net DRIVE, STARE, CHASEDB1
2019 [208] Multi-scale CNN DRIVE, STARE, CHASEDB1, HRF
2019 [209] Recurrent U-Net DRIVE, STARE, CHASEDB1
2019 [210] U-Net and residual multi-kernel pooling block DRIVE, MESSIDOR
2019 [211] Cascade CNN DRIVE, STARE
2019 [212] DenseNet extended to fully convolutional network DRIVE, STARE
2018 [213] CNN with dice loss function DRIVE, STARE
2018 [214] Multi-scale FCN DRIVE, STARE, CHASEDB1
2018 [105] CNN (3 convolutional layers, 1 fully connected layer) DRIVE, DIARETDB0, DIARETDB1, AEH
2018 [215] FCN DRIVE, STARE, CHASEDB1, HRF
2018 [216] MCNN DRIVE, STARE
2016 [217] CNN (Multiple convolutional layers followed by DRIVE, STARE, CHASEDB1

3 fully connected layers
2016 [218] Multi-scale and multi-level CNN DRIVE, STARE, CHASEDB1
2016 [219] 5-layer NN DRIVE, STARE, CHASEDB1
2015 [220] CNN (feature extraction), RF (classification) DRIVE, STARE

sizes, as with blood vessel segmentation in retinal images.
The conventional U-Net structure has been used as a network
model in studies by Darmo et al. [194], Chen et al. [200], and
Yin et al. [203] for blood vessel segmentation.

Moreover, Bayesian U-Net and weakly supervised learning
approaches have been employed to enhance segmentation effi-
ciency and reduce manual annotation efforts, as demonstrated
by Xiong et al. [229]. These methods address inter-subject
variability and improve model performance by optimising the
segmentation process through innovative techniques.

Microaneurysm and Exudates Segmentation

Microaneurysms, appearing as small red dots on the retina,
are one of the earliest signs of DR. AI algorithms segment
these microaneurysms to detect the onset of DR. The presence
and number of microaneurysms are critical indicators of
the severity of DR, with more advanced stages showing an
increased number of these lesions [33].

Early detection through the segmentation of microa-
neurysms enables timely intervention and can prevent pro-
gression to more severe stages [250]. Exudates are lipid
residues that appear as yellow spots on the retina and are
another hallmark of DR [251]. Their segmentation is vital for
diagnosing DR, as the presence of exudates signifies leakage
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TABLE 11. A comparison of ML methods for microaneurysm segmentation in fundus eye images:

Year Author ML Method for microaneurysm segmentation segmentation Database
2020 [230] RUSBoost, RF, AdaBoost, SVM, KNN, etc. e-Ophtha, DIARETDB1, ROC
2020 [231] ANN ROC, AGAR300
2020 [232] SVM, MLP e-Ophtha
2019 [233] SVM ROC
2019 [234] KNN, Ensemble MESSIDOR, DIARETDB0
2017 [235] RF, SVM, NN DIARETDB1
2017 [236] KNN, SVM DIARETDB0, DIARETDB1
2016 [237] KNN MESSIDOR
2016 [238] SVM DIARETDB1
2013 [239] NB Private
2013 [240] NB, KNN, SVM ROC

TABLE 12. A comparison of DL methods for microaneurysm segmentation in fundus eye images:

Year Author DL Method for microaneurysm segmentation segmentation Database
2021 [241] Sparse auto-encoder based feature transfer network ROC, DIARETDB1, e-Ophtha, RetinaCheck
2019 [242] Mask R-CNN with ResNet101 e-Ophtha, IDRiD
2019 [243] U-Net IDRiD
2019 [244] L-Seg DDR, IDRiD
2019 [245] YOLO Kaggle EyePACS
2019 [246] CNN ROC, e-Ophtha
2018 [247] Deep U-Net e-Ophtha, DIARETDB1, ROC
2017 [248] CNN Private (CLEOPATRA)
2016 [249] Stacked sparse auto-encoder DIARETDB

from damaged blood vessels in the retina [251]. Detecting
and quantifying exudates help in assessing the extent of retinal
damage and the progression of DR [55]. Advanced segmenta-
tion techniques enable precise localisation and classification
of exudates, contributing to more accurate diagnosis [252].

Microaneurysm and exudates segmentation from fundus
images have seen significant advancements over the past
decade. The methods for segmentation can be categorized
into traditional image-processing techniques and modern DL
approaches. For microaneurysms segmentation, traditional
methods include morphological processing, wavelet transfor-
mation, and hybrid classifier approaches.

One of the earliest studies by Spencer et al. [253] used mor-
phological operations to eliminate vasculature in fluorescein
angiograms, isolating small structures like microaneurysms.
This approach relied heavily on manual feature engineering
and traditional image processing techniques.

Quellec et al [252] introduced an adaptive wavelet method
using local template matching in the wavelet domain to detect
microaneurysms. Akram et al. [254] developed a hybrid
classifier combining a Gaussian mixture model, and support
vector machine (SVM) to identify microaneurysms.

A study by Sreng et al. [255] presented an effective method
for the segmentation of microaneurysms from fundus images.
Initially, they pre-processed the fundus images to reduce noise
and enhance contrast. They then segmented the images using
Canny edge detection and maximum entropy thresholding.
Microaneurysms were distinguished from other lesions and
anatomical structures in the fundus image using area and
eccentricity methods [255]. Finally, morphological operations
were applied to highlight these symptoms. Ophthalmologists
analysed the results to assess the system’s accuracy and
precision. Their comparative analysis showed a 90% accuracy

rate [255].
In contrast to traditional methods, DL utilise deep networks

to perform segmentation tasks, automatically extracting use-
ful image features. With the advancement of DL, neural
networks have become prevalent in microaneurysms and
exudates segmentation.

Haloi et al. [256] employed a deep neural network with
three convolutional layers and two fully connected layers for
automatic microaneurysms segmentation. Kou et al. [257]
proposed a deep residual U-Net, combining a deep residual
model and recurrent convolutional operations into a U-Net
for microaneurysms segmentation.

Exudates segmentation has seen the development of tra-
ditional methods such as thresholding, and morphological
processing.

A study by Phillips et al. [258] used global threshold
techniques for fundus images for exudates. Walter et al. [53]
applied morphological reconstruction to locate exudates. For
exudates segmentation, Perdomo et al. [259] applied LeNet,
a CNN.

In AMD, particularly the wet form, exudates indicate
fluid leakage and neovascularisation [260]. Segmentation of
exudates in AMD patients helps in identifying the presence
of abnormal blood vessels and fluid accumulation, which are
critical factors in diagnosing and managing wet AMD [18].
Automated exudate segmentation supports early detection and
monitoring, improving patient outcomes [261].

Microaneurysm and exudates segmentation has evolved
from traditional image-processing techniques to sophisti-
cated DL models. Early methods relied on morphological
operations, wavelet transformations, and hybrid classifiers.
The transition to DL introduced CNNs, FCNNs, and U-
Net variants, significantly enhancing segmentation accuracy.
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Recent advancements include enhanced residual U-Nets,
attention mechanisms, and transformer-based models.

A study by Kou et al. [262] introduced an enhanced residual
U-Net (ERU-Net), which featured one downsampling path
and three upsampling paths. Unlike the original U-Net, the
three upsampling paths in ERU-Net enhanced the fusion
feature maps and captured more details of fundus images.
Additionally, a residual block in ERU-Net was designed
to extract more representative features. The study showed
that ERU-Net performs well in segmenting microaneurysms
and exudates. Compared to other U-Net variants, ERU-Net
achieved the best performance across three publicly available
fundus image segmentation datasets.

Haemorrhage Segmentation
Retinal haemorrhages, which are bleeding spots, play a
significant role in DR detection [263]. Segmentation of these
haemorrhages enables the identification of AMD and more
advanced stages of DR. The presence of retinal haemorrhages
indicates significant vascular damage and warrants immediate
medical attention [263].

Automated segmentation of haemorrhages aids in compre-
hensive retinal screening and monitoring [251]. The initial
attempts at haemorrhage segmentation relied heavily on
traditional ML approaches, which focused on the extraction
of handcrafted features from fundus images.

Kande et al. [264] employed pixel classification and math-
ematical morphology to detect haemorrhages. They utilised
the red and green channels of the images to determine the
presence of red lesions. Subsequently, the SVM algorithm was
applied to classify candidate areas for red lesion containment.
This approach achieved a specificity of 91% and a sensitivity
of 100%.

A study by Tan et al. [265] used a 10-layer multiclass
neural network for segmenting haemorrhages in retinal fundus
images. Their method achieved a haemorrhage segmentation
sensitivity of 62.57% and a specificity of 98.93%.

Orlando et al. [73] developed a method that combines a
CNN with an RF for segmenting hemorrhages and microa-
neurysms. The RF algorithm generates probability maps of
hemorrhages and microaneurysms at the image level, utilising
features from the green layer of patches extracted by the CNN
architecture. This approach achieved a sensitivity of 48.83%
for detecting hemorrhages and microaneurysms.

Badar et al. [266] introduced an encoder-decoder model for
the simultaneous segmentation of hemorrhages and exudates,
based on a CNN classifier. When trained and tested on
the Messidor dataset, this model achieved a hemorrhage
segmentation accuracy of 97.86%.
Drusen Segmentation
Drusen, yellow deposits under the retina, are the main symp-
toms of AMD [102]. Segmentation of drusen is important in
detecting AMD, as their presence and size correlate with the
severity of the disease [267]. Early detection of drusen can
help in monitoring AMD progression and initiating timely

interventions. AI-based segmentation of drusen enables accu-
rate quantification and characterisation, aiding in personalised
treatment plans ( [267].

The literature shows, that drusen segmentation methods
follow two main approaches. The first approach relies on
traditional image processing techniques, where various local
features are extracted and then classified using an ML, such as
SVM [268]. The primary objective is either to directly detect
the drusen region or to delineate its boundaries. Traditional
methods relied on handcrafted features and were typically
limited by their inability to generalise across varying image
conditions.

For instance, Kim et al. [269] applied multiple filters to can-
didate regions to detect drusen. They used traditional image
processing techniques for drusen segmentation. However, by
using only local features and handcrafted filters, it will not
work as well in early AMD, where the drusens are not as
prominent in fundus images.

In 2011, Mora et al. [270] used a gradient-based segmen-
tation algorithm to isolate drusen and provide basic drusen
characterisation. The approach had a maximum sensitivity
of 74% and a specificity of 97%. Mohaimin et al. [271]
introduced a colour normalisation method to address the issue
of colour variations in fundus images for detecting drusens.

Ren et al. [268] used SVM to classify drusen from fundus
images from the STARE and DRIVE datasets. The method
achieved sensitivity, specificity, and accuracy of 90.03%,
97.06% and 96.92% on the STARE dataset and a sensitivity,
specificity, and accuracy of 87.41%, 94.93%, and 94.81% on
the DRIVE dataset [268].

Sbeh et al. [272] proposed a method for drusen segmenta-
tion from fundus images using an adaptive algorithm based
on mathematical morphology transforms.

Rapantzikos et al. [273] developed the histogram-teased
adaptive local thresholding technique for drusen detection
in fundus images, efficiently extracting useful information
while ignoring other pathological structures. Various fuzzy
logic-based techniques and texture-based methods have been
proposed for drusen detection and segmentation from fundus
images [274] [275] [276].

Brandon et al. [277] employed a multi-level approach,
beginning with pixel-level classification and progressing
to region-level, area-level, and finally image-level analysis,
which enabled the detection of drusen with an accuracy of
87%.

Recently, DL models such as U-Nets have been utilised in
drusen segmentation. Yan et al. [278] utilised two U-Nets to
capture both global and local information. In this approach,
feature maps are treated as global information and are merged
in the final layer. However, this configuration necessitates
limiting the number of channels in the feature maps to prevent
excessive computational demands [278].

Pham et al. [279] proposed a multi-scale DL model to
make a fine drusen segmentation prediction. Their method is
suitable for high-resolution fundus images. Whereas previous
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studies on drusen segmentation analysed a cropped image to
solve the high-resolution problem, the method by Pham et al.
combined both global and local information, by which the
model is able to predict more accurate drusen segmentation.
Additionally, by utilising the pre-trained model and the
combination of different loss functions, the performance of
detecting drusen in the early stages of AMD is improved [279].

IX. CLASSIFICATION
Classification involves assigning a label to an image based
on its content, such as identifying the presence or absence of
specific eye diseases from retinal images [142]. This process
helps in diagnosing and categorising retinal conditions.

Classification approaches in retinal health screening have
evolved significantly with the advent of ML and DL. ML
techniques such as SVM, KNN, NB, DT, RF and others have
been extensively used to classify eye diseases like AMD, DR,
and Glaucoma. by analysing various features from fundus
images to detect and classify these conditions with high
accuracy. Recently, DL models, particularly CNNs and their
variations have been used in the detection of fundus images.
DL models have automated feature extraction from raw
image data and enhanced classification accuracy [105]. These
models enable end-to-end learning, streamlining workflows
by handling the entire process from image input to disease
classification.

In the literature, one of the more popular ML models,
Support Vector Machines (SVM) has been extensively used
for classifying DR, AMD, and glaucoma. SVM is used
due to their ability to handle high-dimensional data and
create decision boundaries that maximize the margin between
classes [280]. It involves extracting relevant features from
fundus images and then selecting important features to reduce
dimensionality and improve classification accuracy. However,
SVM’s performance depends on the choice of kernel and
parameters, and it can be computationally intensive with large
datasets [280]. It requires careful tuning of parameters and
kernel selection to achieve optimal performance. Additionally,
handling imbalanced datasets can be challenging and may
require techniques such as oversampling or the use of different
class weights [281].

A study by Antal et al. [281] used SVM for DR classification
by analysing features such as microaneurysms, hemorrhages,
and exudates in retinal images. By mapping input data into
high-dimensional space, SVMs create a hyperplane that best
separates different classes, such as different stages of DR. This
technique is highly effective for binary classification tasks,
such as distinguishing between healthy and DR-affected eyes.

Sarni et al. [282] suggested a decision-support system for
microaneurysms for DR screening. In order to classify the
microaneurysms, Antel et al. used ensemble learning [283].

Using local binary patterns, Morales et al. performed
classification to differentiate between Normal, DR, and AMD
[284]. The diameter of blood vessels is another aspect of
DR that changes. As a result, it is another feature used to

categorize DR. Using a Gaussian filter, Nikita et al. segmented
blood vessels, extracted texture and structural features, and
then performed classification using SVM and ANN [98].

Bowd et al. [285] used SVMs for glaucoma classification
by analysing features extracted from optic nerve head images,
such as the cup-to-disc ratio and neuroretinal rim width.
SVMs excel at distinguishing between glaucomatous and
non-glaucomatous eyes, especially when dealing with high-
dimensional feature spaces [285]. Floriano et al. [131] used
SVM to classify AMD by identifying patterns in retinal
images. SVMs are capable of handling high-dimensional data
and are used to differentiate between healthy and AMD-
affected eyes based on features such as drusen size, shape,
and distribution [131]. SVMs maximize the margin between
different classes, leading to robust classification results [286].

A study that showed potential in quickly and accurately
detecting glaucoma has been put forward by some authors
[115]. They acquired their fundus images privately. The
study showed that Bi-empirical mode decomposition (Bi-
EMD) and the scalogram of continuous wavelet transform
are used. Entropy features are a common feature extraction
in fundus images because they are capable of accurately
measuring pixel variation. To identify normal fundus images
from abnormal ones, such as glaucoma, a retinal risk index
has been established [115]. Both Bi-EMD and CWT have
produced encouraging results with an accuracy of 88.6%
using the SVM classifier and 92.48% using the RFF classifier.
An accuracy of 96.2%, sensitivity of 95%, and specificity of
97.4% was achieved with a ten-fold cross-validation strategy
using the KNN classifier. This novel algorithm has great
potential in detecting glaucoma quickly and reliably.

DR is classified in a variety of ways using various databases
[287]–[289]. Exudates were extracted by Du et al. [290], who
then classified the samples into normal, NPDR, and PDR
using SVM. Exudates were also extracted by Tjandrasa et al
[291], who also classified DR as mild, moderate, or severe
using SVM as a classifier.

Gupta et al. [292] achieved an accuracy of 92% in detecting
DR on the APTOS2019 and EyePacs datasets. They used
the Life Choice-Based Optimizer (LCBO) algorithm, which
selects the optimal features from the extracted set. These
features are then fed into an optimised hybrid machine
learning classifier, combining a Neural Network (NN) and
a Deep Convolutional Neural Network (DCNN), where the
Social Ski-Driver (SSD) algorithm is used to determine the
best weight values for the hybrid classifier. This classifier
categorises the severity of DR into mild, moderate, severe,
proliferative DR, and normal.

K-Nearest Neighbors (KNN) is a simple yet effective ML
technique that has been widely used for classifying DR,
AMD, and glaucoma [267]. KNN is a non-parametric method
that classifies a data point based on the majority class
of its k-nearest neighbours. [293]. KNN has been used to
classify AMD by analysing features such as the presence and
distribution of drusen, changes in retinal pigmentation, and
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other abnormalities [267]. Once these features are extracted,
KNN can classify new retinal images by comparing them with
previously labelled examples. The simplicity of KNN makes
it a useful baseline model for AMD classification, providing
a straightforward approach to identifying patterns in retinal
images [267]

In a study by Kermany et al. [17], a multi-class comparison
of different ophthalmic diseases using DL achieved an accu-
racy of 96.6%, with a sensitivity of 97.8% and a specificity of
97.4%. This study suggests that DL can be used to accurately
classify eye diseases, which can have important implications
for disease detection and monitoring.

Decision Trees (DT) classify glaucoma by sequentially
splitting data based on features like cup-to-disc ratio, visual
field test results, and intraocular pressure readings [294].
Pathan et al. [294] used decision trees (DT) to classify
optic disc contours in fundus images, which is useful in
detecting glaucoma. While DTs are easy to interpret, they
are prone to overfitting, and their performance improves
significantly when used within an ensemble method like
random forest (RF) [295]. DTs are used in classifying DR
by evaluating features such as blood vessel abnormalities,
microaneurysms, and exudates. [296]. They are also used to
classify AMD by recursively splitting the data based on the
most significant features. DTs are straightforward to interpret
and can effectively use features like drusen presence and
retinal pigment epithelium abnormalities [297].

Random Forests (RF) are an ensemble learning method,
that combines multiple decision trees to improve classification
accuracy [298]. It can be seen from the literature that RFs are
used to classify AMD by analysing various retinal features
including texture, intensity, and colour information [17]. The
ensemble approach of RFs reduces overfitting and improves
generalisation, making it a reliable choice for AMD classifi-
cation [17]. RFs have also been used to classify glaucoma by
examining multiple features such as optic disc size, retinal
nerve fibre layer thickness, and intraocular pressure. The
robustness of RFs in handling feature variability and their
resistance to overfitting make them suitable for glaucoma
classification [299]. RFs are also extensively used for DR
classification due to their ability to handle large datasets with
many features. RFs analyse various retinal characteristics,
including the number and severity of lesions, to classify the
disease [55].

Naive Bayes (NB) is a simple yet powerful probabilistic
classifier, that is advantageous in DR classification due
to its simplicity and ability to handle both binary and
multi-class problems [300]. It is particularly useful when
dealing with missing data, as it can handle incomplete data
without requiring imputation. However, the assumption of
feature independence can be a limitation, especially when
dealing with complex fundus images where features are often
interrelated [281].

In glaucoma classification, NB can be applied to features
extracted from optic nerve head images, such as the cup-to-

disc ratio, neuroretinal rim width, and retinal nerve fibre layer
thickness. The classifier calculates the probability of glau-
coma given these features and assigns the diagnosis based on
the highest probability [301]. However, the model’s accuracy
might be compromised due to the unrealistic assumption of
feature independence, which can affect its performance in
more complex cases [302].

El-Khalek et al. [303] achieved an accuracy of 96.85% in
detecting AMD on a private dataset in 2024. Their proposed
system extracted both local and global appearance markers
from fundus images. These markers were obtained from
the entire retina and iso-regions aligned with the optical
disc. Their study used advanced classification schemes to
locate and analyse the data. These algorithms include various
methods, such as AdaBoost, RF, DT, logistic regression,
SVM, KNN, and others. Their system not only achieved a
high level of accuracy but also provided a detailed assessment
of the severity of each retinal region.

ML techniques have shown great promise in classifying
AMD, DR, and glaucoma. Each method has its strengths
and limitations, but when applied appropriately, they provide
valuable tools for the early detection of these eye diseases.
The continued development and refinement of these tech-
niques will enhance their accuracy and reliability, ultimately
improving patient outcomes.

Recently, DL has been increasingly used by researchers to
classify diseases from fundus images. DL models such as
CNNs receive inputs in the form of pixels, sub-images, and
entire images to perform classification [103]. Studies have
shown that CNN models can match or even surpass expert
ophthalmologists in detecting retinal diseases such as DR,
AMD, and glaucoma [106]. There has been a lot of research on
an automatic CNN-based system [218] for categorising retinal
images into different severity levels. CNNs can combine
the input images using an appropriate weight matrix and
extract unique features of the input images while preserving
the spatial arrangement information [218]. The scalability
and generalisability of DL models make them suitable for
widespread clinical use, as they perform well across diverse
populations and varying image qualities by training on large
datasets.

VGGNet is a CNN model known for its simplicity and
use of small convolution filters, that has achieved high
performance in image classification tasks [100]. ResNet is
another DL model that introduces residual learning to address
the vanishing gradient problem in deep networks, allowing for
the training of very deep networks [304].

A study by Shyamalee et al. [305] compared the perfor-
mance of three CNN architectures (Inception-v3, VGG19,
ResNet50) using two datasets: RIM-ONE and ACRIMA. Pre-
processing techniques such as dilation and Contrast Limited
Adaptive Histogram Equalisation (CLAHE), enhanced image
quality. The models were evaluated using 5-fold cross-
validation on the RIM-ONE and ACRIMA datasets. The
Inception-v3 model achieved the highest accuracy of 96.56%

18 VOLUME 4, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3477420

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Saad et al.: DRAFT Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

on the RIM-ONE dataset and 98.52% on the ACRIMA dataset
[305].

Stulic et al. [306] used a DL algorithm to predict the
presence of glaucoma from fundus images, with an accuracy
of 97.3%. According to this study, DL may be able to identify
glaucoma even in its early stages, which could significantly
affect how the condition is managed and treated.

In a study by Ogundokun et al. [307], a DL method was
contrasted with deep CNNs trained for automated evaluation
of AMD. Automated identification was applied to a 2-class
classification problem to distinguish between the AMD stage
and the Normal stage and achieved an accuracy of 96.41%,
a specificity of 94.82%, and an AUC of 0.9633. This study
shows that DL models could perform a task in the current
AMD management independent of skilled ophthalmologists.

Gulshan et al. [55] proposed a DL-based system for DR
detection, which achieved high sensitivity and specificity
comparable to human experts. Other studies obtained similar
results by utilising various CNN architectures. In [251],
an automatic DL-based model for detecting DR severity is
presented. The five modules that comprise the CNN-based
automatic diabetic detection model for retinal images are
pre-processing, exudates segmentation, blood vessel segmen-
tation, texture feature extraction, and DR detection [308].
Adaptive histogram equalisation is used in the pre-processing
stage to improve the quality of the input retinal images. In
the second step, exudate and blood vessel segmentation are
carried out by fuzzy c-means clustering and CNN. After
extracting texture features from the exudates and blood
vessels, an SVM implementation is used to identify DR.

Qomariah et al. [145] proposed a CNN and SVM-based
automated system for the classification of DR and normal
retinal images. Exudates, haemorrhage, and microaneurysms
were characteristics. The proposed system was divided into
two sections by the author: the first section included feature
extraction based on neural networks, and the second section
carried out classification using SVM. Researchers have
proposed several methods for categorising DR, including
pre-processing of the raw images, image enhancement, and
post-processing, which are all fundamental aspects of image
processing. After training, features are extracted, and classes
are determined. Various features are extracted and used as
training algorithm inputs. ANN was used to classify the
disease stages by using features such as area, perimeter, and
exudates count [309].

X. SEGMENTATION FOLLOWED BY CLASSIFICATION
Segmentation followed by classification methods, especially
those based on fundus images, has seen significant advance-
ments. In detecting ODs from fundus imaging, segmentation
followed by classification involves two main steps: segment-
ing (identifying and isolating) specific regions or structures
within a fundus image, and then classifying these segmented
regions to detect a condition or categorise them into pre-
defined classes. Segmentation ensures that the classification

focuses on relevant regions, improving accuracy.
A study by Shyamalee et al. [310] performed segmentation

using an attention U-Net with ResNet50 and classification
using a modified InceptionV3. The attention U-Net with
ResNet50 backbone achieved the highest segmentation ac-
curacy for optic disc and optic cup on the RIM-ONE dataset.
For classification, the modified Inception V3 model showed
the highest performance. The final model predictions are
based on the segmented images, and the cup-to-disc ratio is
computed to support the classification results [310]. To make
the DL model’s decisions transparent, Grad-CAM and Grad-
CAM++ generate heatmaps that highlight the regions of the
fundus images influencing the predictions. These heatmaps
help ophthalmologists understand the model’s reasoning,
increasing trust in the system.

Sangeetha et al. [319] proposed a method for retinal image
segmentation and blood vessel extraction using morpholog-
ical processing, thresholding, edge detection, and adaptive
histogram equalization. For the automatic diagnosis of DR
from fundus images, they developed a CNN to accurately
classify the severity of the disease. This network was trained
on a high-end graphical processor unit (GPU) using publicly
available datasets such as DRIVE, DIARETDB0, and DI-
ARETDB1, as well as images collected from the Aravind Eye
Hospital in Coimbatore, India. The proposed CNN achieved
a sensitivity of 98%, a specificity of 93%, and an accuracy of
96.9% on a database of 854 images [319].

Yin et al. [311] developed a Deep Fusion Network, incorpo-
rating multiscale fusion, feature fusion, and classifier fusion
for multi-source vessel image segmentation for DR detection.
The multiscale fusion module enabled the network to detect
blood vessels of various scales. The feature fusion module
combines deep features with vessel responses extracted from
a Frangi filter to create a compact and domain-invariant
feature representation. The classifier fusion module enhances
network supervision. DF-Net also predicts the Frangi filter’s
parameters, eliminating the need for manual parameter se-
lection. The learned Frangi filter improves the feature map
of the multiscale network and restores edge information lost
during down-sampling operations. This proposed end-to-end
network is easy to train, and the inference time for one image
is 41ms on a GPU. The model outperforms state-of-the-
art methods, achieving accuracies of 96.14%, 97.04%, and
98.02% on three publicly available fundus image datasets:
DRIVE, STARE, and CHASEDB1, respectively [311].

In a study by Hervella et al. [314], a novel multi-task
approach is proposed for the simultaneous classification of
glaucoma and segmentation of the optic disc and cup. This
approach aims to improve overall performance by leveraging
both pixel-level and image-level labels during network train-
ing. Furthermore, the predicted segmentation maps, alongside
the diagnosis, allow for the extraction of relevant biomarkers
such as the cup-to-disc ratio. The proposed methodology
introduces two significant technical innovations. First, a net-
work architecture that enables simultaneous segmentation and
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TABLE 13. Summary of works done using classification and segmentation for automated detection of various eye classes:

Year Author Segmentation Method Classification Method Segmentation of: Classification of:
2024 [310] Attention U-Net with ResNet50 Modified Inception V3 Optic Disc, Optic Cup Glaucoma
2022 [311] Frangi filter U-Net Retinal Blood Vessel DR
2022 [312] Attention U-Net with Inceptionv3/VGG19/ResNet50 Inceptionv3/VGG19/ResNet50 Optic Disc, Optic Cup Glaucoma
2022 [313] U-Net MFO-KELM Optic Disc, Optic Cup Glaucoma
2022 [314] DNN DNN Optic Disc, Optic Cup Glaucoma
2022 [315] MSGANet-RAV MSGANet-RAV Optic Disc, Optic Cup Glaucoma
2021 [316] U-Net U-Net Retinal Blood Vessel DR
2020 [279] Multi-scale DL U-Net Drusen AMD
2020 [317] U-Net CNN Optic Disc, Optic Cup Glaucoma
2019 [318] Dual-Tree Complex Wavelet Transform CNN, RNN Retinal Blood Vessel DR
2018 [268] Generalized low rank approximation of matrices SVM Drusen AMD
2018 [319] Morphological operations, Binarisation thresholding CNN Retinal Blood Vessel DR
2015 [320] CNN RF Retinal Blood Vessel DR

classification by increasing the number of shared parameters
between both tasks. Second, a multi-adaptive optimization
strategy ensures that both tasks contribute equally to the
parameter updates during training, thus avoiding the need
for loss-weighting hyperparameters. To validate this proposal,
extensive experiments were conducted on the public REFUGE
and DRISHTI-GS datasets. The results demonstrate that this
approach outperforms comparable multi-task baselines and
is highly competitive with existing state-of-the-art methods.
Additionally, the provided ablation study indicates that both
the network architecture and the optimization strategy inde-
pendently contribute to the advantages of multi-task learning
[314].

Another study by Shyamalee et all [312] proposed a DL
model to segment and classify retinal fundus images for
glaucoma detection. Various data augmentation techniques
were applied to prevent overfitting, along with several data
pre-processing approaches to enhance image quality and
achieve high accuracy. The segmentation models were based
on an attention U-Net architecture, utilising three different
convolutional neural network (CNN) backbones: Inception-
v3, Visual Geometry Group 19 (VGG19), and Residual Neural
Network 50 (ResNet50). The classification models also
employ modified versions of these three CNN architectures.
Using the RIM-ONE dataset, the attention U-Net with the
ResNet50 model as the encoder backbone achieved the highest
accuracy of 99.58% in segmenting the optic disc. Among the
evaluated segmentation and classification architectures, the
Inception-v3 model achieved the highest accuracy of 98.79%
for glaucoma classification.

A study by Chowdhury et al. [315] proposed a multi-
scale guided attention network named MSGANet-RAV for
pixel-wise retinal artery-vein classification. The proposed
architecture integrates multiscale feature exploration with
a sequence of GF and context-learnable SVA modules. As
a joint task of pixel identification in ophthalmic images,
the model incorporates a learnable joint-task loss method,
balancing the weights of individual task losses to enhance
artery-vein classification. Multiscale features of these images
are refined through a two-stage GA module. In the first
stage, the structural information of variant vessels is explored,
while in the second stage, more refined feature representa-

tions are obtained by fusing contextual vessel information
with the vessel skeleton (probability map). MSGANet-RAV
achieved state-of-the-art performance on the LEI-CENTRAL
dataset and demonstrated comparable performance on the
AV-DRIVE dataset, according to several benchmark metrics
[315].

A study by Lim et al. [321] introduced the CNN-FE model,
which enhances input features by highlighting disc pallor
and vessel obstructions in fundus images. This model refines
pixel-level probability maps by incorporating known retinal
morphology, thereby improving segmentation validity and
classification performance. Such integration of segmentation
and classification processes leads to more accurate and
reliable diagnostic outcomes by focusing on morphological
features and improving confidence in the results [321].

Researchers have utilised transfer learning to adapt pre-
trained models, such as Inception and ResNet, for retinal dis-
ease detection [322]. These pre-trained models have been fine-
tuned to classify retinal images and demonstrated improved
performance compared to models trained from scratch. The
use of ensemble methods has been suggested in several stud-
ies. To improve performance overall, ensemble approaches
aggregate the predictions of several machine learning models.
These methods can help mitigate overfitting and improve
model generalisation. Systems for detecting retinal diseases
have been made more accurate and resilient through the use
of ensemble approaches. For example, Sahlsten et al. used an
ensemble of DL models to detect DR more effectively than
they could with individual models [323].

Calleja et al. [324] used a two-stage approach to detect DR
that included LBP for feature extraction and ML, particularly
SVM and RF, for classification. The results showed that RF
outperformed SVM with an accuracy of 97.46%.

A study by Koh et al. [325] has conducted research on
diagnosing retinal health in fundus eye images using a pyra-
mid histogram of oriented gradients (PHOG) and speeded-
up robust features of fundus images (SURF). Canonical
correlation analysis was used to fuse the extracted correlated
features. It achieved an accuracy of 96%, a sensitivity of
95%, and a specificity of 97% using the KNN classifier. The
outcomes show that this method is useful for automatically
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classifying eye conditions like glaucoma.
Ren et al. [268] proposed a supervised feature learning

method designed to create discriminative and compact de-
scriptors for drusen segmentation in retinal images. This
method integrates generalised low-rank approximation of
matrices with supervised manifold regularization to derive
new features from image patches sampled from retinal images.
These learned features are specifically related to drusen and
are potentially free from redundant information that could
interfere with distinguishing drusen from the background. The
features are then vectorised and used to train a support vector
machine (SVM) classifier. Finally, the trained SVM classifier
is utilised to classify the pixels in the test images as drusen or
non-drusen. The proposed method’s performance is validated
on the STARE and DRIVE databases, achieving average
sensitivity, specificity, and accuracy of 90.03%, 97.06%, and
96.92%, respectively, on STARE, and 87.41%, 94.93%, and
94.81%, respectively, on DRIVE.

Overall, the literature suggests that by analysing fundus
images and other imaging modalities, both ML and DL may
be able to increase the accuracy of identifying eye conditions
such as glaucoma, DR, and AMD. The performance of DL
increases over ML as more images are added to the dataset.
Further investigation is required to assess the algorithms’
performance in larger and more varied datasets in order
to validate their generalisability and determine the models’
therapeutic potential. In addition, there is also ongoing
research in developing new algorithms that can improve the
performance of these models.

XI. DISCUSSION
From the literature we reviewed, various methods have been
proposed for image-level classification, microaneurysm, exu-
date or blood vessel segmentation (at the pixel or object level),
or segmentation of the optic disc and optic cup, which are
important for estimating clinical parameters and facilitating
the diagnostic process. Methods for image-level classification
have been developed for DR, AMD, and glaucoma. These
classifications are mainly binary, distinguishing between
healthy and pathological conditions. However, more nuanced
classifications have also been proposed, such as differentiating
between no-glaucoma, suspicious glaucoma, and glaucoma,
as well as up to six classes for DR, and AMD.

In our review, it has been shown that current ML and
DL systems have achieved high accuracy in detecting retinal
diseases. DL models, particularly CNNs, have achieved
sensitivity and specificity rates often above 90% for detecting
conditions like DR, AMD, and glaucoma [139]. Studies report
AUC values frequently exceeding 0.90, indicating excellent
diagnostic performance. However, the accuracy can vary
depending on the dataset quality, model architecture, and the
specific disease being detected.

We have found from our review that various features are
extracted to detect retinal diseases. For glaucoma, features
include the cup-to-disc ratio (CDR), optic nerve head mor-

phology, and retinal nerve fibre layer thickness. Diabetic
retinopathy features include microaneurysms, haemorrhages,
exudates, and neovascularisation. AMD features include
drusen size and distribution, retinal pigment epithelium
changes, and geographic atrophy.

Pixel-level segmentation is a challenging but important
task. Optic disc and optic cup segmentation are essential for
a comprehensive and interpretable assessment of glaucoma.
Segmenting retinal lesions such as drusen, exudates, hemor-
rhages, and microaneurysms allows for the estimation of their
areas, locations, and changes over time, which is crucial for
the precise diagnosis and monitoring of DR and AMD. For
these two diseases, automatic segmentation has been used to
provide more detailed image-level classification and disease
grading.

However, the various retinal pathologies have generally
been treated independently, with specific methods developed
for each. This means that the development of algorithms for
recognising one specific pathology often does not incorporate
the knowledge gained from developing methods for detecting
other pathologies.

The initial methods developed for this purpose relied on
conventional image processing techniques such as thresh-
olding, morphological operations, and model matching to
recognize specific shapes like ellipses for the optic disc and
small circles for drusen. These methods showed promising
results on the datasets they were developed and tested on, but
they failed to perform adequately on new, unseen images.

ML methods improved upon those image-processing tech-
niques and achieved better results. Various supervised and
unsupervised learning methods have been developed to assess
different pathologies, enabling both image-level classification
and segmentation of the optic disc, and optic cup. In this
context, image pre-processing and feature selection play
crucial roles. Pre-processing aims to reduce noise using
techniques like moving average filters, median filters, and
Gaussian filters, and to improve contrast, often using CLAHE.
Feature selection involves identifying and extracting various
features from the image and selecting the most significant
ones, a process initially done manually and highly dependent
on the scientist’s expertise. To minimize subjectivity, a wide
range of features was generally identified. Once all possible
features were derived, Principal Component Analysis (PCA)
was commonly used to reduce the feature space by selecting
the most informative features.

Despite the promising results of ML, these methods were
not robust against inter-subject anatomical variability (such
as the appearance and shape of the OD), pathological
changes (like the onset or variation of lesions), differences in
acquisition systems (from different vendors), and limitations
of the acquisition systems (such as noise and illumination
drifts in the images).

In recent years, numerous deep learning (DL) techniques
have been introduced, significantly enhancing retinal image
classification and segmentation. DL methods automatically
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perform feature extraction and selection, allowing them to be
applied directly to images without extensive pre-processing.
Most proposed DL methods utilise standard and pre-trained
CNNs, which, through transfer learning, achieve impressive
performance even on limited datasets. The literature surveys
indicate that ensemble learning can further enhance these
results.

Key factors in developing a robust and high-performing
DL model include the number of images, class imbalance,
demographics, and clinical variables such as race, sex, and
age. Another critical factor is the accuracy of the manual
annotations made by clinicians, which are used to train and
test the models. Reliable disease annotations require input
from multiple clinical experts. Retrospective or prospective
clinical or laboratory exams are also used to confirm these
annotations.

Despite the exceptional performance of DL methods in
detecting retinal diseases, their clinical applicability is limited
by their lack of interpretability and explainability, which
makes them less trustworthy for automatic clinical decision-
making. Recent research efforts are focused on developing
interpretation techniques, such as class activation mapping,
which highlight the parts of the image that most contribute to
the model’s prediction.

There have been some recent developments in increasing
interpretability and explainability. A web application called
GlaucoCare was developed, which provides a user-friendly
interface for testing fundus images [310]. Users can up-
load images, and the system generates segmentation masks,
heatmaps, and CDR values, along with the glaucoma predic-
tion. The application aims to support clinicians by providing
a second opinion and improving diagnostic accuracy [310].

Developing such models that provide interpretable and
explainable results can help ophthalmologists understand the
underlying reasoning behind AI-generated predictions. This
can foster trust in AI systems and facilitate the integration of
AI-generated insights into clinical decision-making.

Figure 5 shows the highest accuracy reported each year
from 2012–2024 for studies detecting AMD, DR, and glau-
coma. Accuracy levels have improved over time, starting
in the 70-90% range in early years but reaching 95-100%
by 2023. This demonstrates that ML/DL techniques have
become more effective, likely due to larger datasets, better
model architectures, and optimisation of imaging and pre-
processing. Accuracy levels vary across diseases. This may
indicate remaining challenges in detecting certain lesions or
features associated with these diseases.

Out of all the studies we reviewed, Sivapriya et al. [326]
achieved the highest accuracy of 98.88% in detecting DR on
the MESSIDOR-2 dataset in 2024. They proposed a novel
DL method, ResEAD2Net, for automatically segmenting the
blood vessels and classifying DR [326]. The primary goal
of this novel approach is to identify pathological changes
in the retinal vascular structure indicative of DR. The
proposed system includes three stages: pre-processing, vessel

FIGURE 5. Bar graph displaying the maximum accuracy for each OD for each year
between 2012 and 2024 (till June 2024).

segmentation, and classification. Initially, the input images are
processed to remove noise, followed by green channel extrac-
tion and enhancement using CLAHE and gamma correction.
Segmenting the retinal vascular structure is crucial for de-
tecting various stages of DR by identifying microaneurysms,
hemorrhages, and exudates. The U-Net architecture is used
to develop the segmentation model. The U-Net’s contracting
path features four consecutive downsampling and upsampling
layers with skip connections [326]. However, this four-time
downsampling may overlook information on small blood
vessels. To address this, the study introduced ResEAD2Net,
which reduces the number of downsampling and upsampling
layers to two and incorporates two contracting and expansion
paths in the network. This design retains detailed semantic
information effectively.

Liu et al. [327] achieved the highest accuracy of 99.1% in
classifying AMD on the Ichallenge dataset in 2024. A general
self-supervised machine learning framework is proposed
to handle diverse fundus diseases from unlabeled fundus
images. This method achieved an AUC that surpasses existing
supervised approaches by 15.7%. Additionally, the model
adapts well to various datasets from different regions, races,
and heterogeneous image sources or qualities from multiple
cameras or devices.

Das et al. [118] achieved the highest accuracy of 99.3%
in detecting glaucoma in 2024. They proposed a lightweight
multi-scale CNN architecture, CDAM-Net, which was eval-
uated on a private dataset of 1426 fundus images, of which
837 were glaucoma and 589 were normal. Additionally, an
attention module, channel shuffle dual attention (CSDA),
was introduced, consisting of a channel attention block, a
spatial attention block, and a channel shuffle unit. This module
focuses on significant regions in the fundus images, thereby
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extracting class-specific features. The CDAM-Net primarily
comprises multi-scale feature representation blocks, which
enable the extraction of multi-scale features from fundus
images. Each MFR block is followed by a CSDA module,
further enriching the feature representation. The results
indicate that CDAM-Net achieves promising classification
performance compared to existing techniques [118].

In 2023, the highest accuracy of 99% in detecting DR
was achieved by Abramovich et al. [328]. They proposed
a DL model, FundusQ-Net, which obtained an accuracy of
99% on the DRIMDB database. FundusQ-Net utilises in-
domain pre-training and semi-supervised learning to perform
the regression task of fundus image quality estimation. The
model’s high performance has been demonstrated on both
local and external test sets.

Gu et al. [329] proposed the development of an intelligent
model for classifying the severity of DR using fundus images.
This model aimed to detect all five stages of DR, from no DR
to proliferative DR, by integrating a Vision Transformer and
residual attention mechanisms [329]. The proposed model
consisted of two main components: the Feature Extraction
Block (FEB) and the Grading Prediction Block (GPB). The
FEB utilised a Vision Transformer to capture fine-grained
attention on retinal haemorrhage and exudate areas, while
the GPB employed residual attention to effectively identify
spatial regions occupied by different classes of DR lesions.
This combination allowed the model to classify the severity
of DR with high accuracy [329].

The study conducted comprehensive experiments on the
DDR dataset, demonstrating that the proposed model achieved
superior performance compared to benchmark methods. The
model was trained and tested on two public datasets: the DDR
dataset, which included 13,673 fundus images from various
hospitals in China, and the IDRiD dataset, which contained
typical DR images representing the Indian population. It
developed a Vision Transformer-based model for extracting
fundus image features and integrated a residual attention
module to enhance classification accuracy by focusing on
spatial regions specific to each class [329]. It achieved state-
of-the-art performance in DR classification tasks, particularly
in distinguishing between different severity levels of DR.
Despite its success, the study acknowledged limitations due
to the imbalance and a limited number of labelled samples in
the datasets [329].

Another study that used a transformer-based model to
achieve high accuracy was a study by Xu et al. [330], which
achieved an accuracy of 97.2% in detecting AMD in 2023.
This study introduced DeepDrAMD, a hierarchical vision
transformer-based deep learning model that incorporates data
augmentation techniques and the SwinTransformer to detect
AMD and distinguish between its subtypes using fundus
images. DeepDrAMD excelled in distinguishing wet AMD
subtypes, achieving an AUC of 0.9936. Comparative analysis
demonstrated that DeepDrAMD outperformed conventional
deep learning models and expert-level diagnosis.

Adak et al. [331] proposed a study in 2023, that focused
on leveraging the capabilities of transformer networks to
capture crucial features in retinal images to improve the
performance of DR severity detection models. The study
employed and fine-tuned various transformer-based models,
including Vision Transformer, Class-attention in image Trans-
formers (CaiT), Data-efficient image Transformer (DeiT), and
Bidirectional Encoder representations for image Transformer
(BEiT). These models were used individually and in ensem-
bles to predict the severity stages of DR from fundus images.
The researchers utilised the publicly available APTOS-2019
blindness detection dataset for their experiments [331].

The proposed solution architecture involved preprocessing
raw fundus images, applying data augmentation techniques,
and using transformer networks to extract features and classify
the images into five severity stages: negative, mild, moderate,
severe, and proliferative. The ensemble models showed
promising results, achieving high accuracy and outperforming
traditional ML and CNN-based methods [331]. Additionally,
the study explored the impact of hyper-parameters, conducted
ablation studies to assess the importance of individual
transformers. In their study, ViT, DeiT, BEiT, CaiT achieved
accuracies of 82.21%, 85.65%, 86.74%, and 86.91% respec-
tively [331].

Haider et al. [332] achieved the highest accuracy of 99.91%
in detecting glaucoma on the REFUGE dataset in 2023.
Segmentation of optic disc and optic cup is commonly
done for automated glaucoma screening. Their proposed
model, FBSS-Net utilises both internal and external feature
blending to enhance overall segmentation performance [332].
Internal feature blending empowers features at intervals, while
external feature blending improves the network’s learning
capabilities, leading to better performance.

Pham et al. [333] achieved the highest accuracy of 58.2%
for detecting AMD by using MuMO-GAN on a private dataset
in 2022. In the study, generative adversarial networks (GANs)
were utilised with additional drusen masks to preserve patho-
logical information. The dataset comprised 8,196 fundus
images from 1,263 AMD patients. The proposed GAN-based
model, named Multi-Modal GAN (MuMo-GAN), was trained
to generate synthetic predicted future fundus images. The
DL model demonstrates that the inclusion of drusen masks
aids in learning AMD progression. The model effectively
generates future fundus images with accurate pathological
features, accurately depicting drusen development over time.
Both qualitative and quantitative experiments indicate that
the model is more efficient in monitoring AMD progression
compared to other studies [333].

Elangovan et al. [334] achieved the highest accuracy of
99.6% for detecting glaucoma on the LAG-R dataset in 2022.
The study developed a deep ensemble model using the stack-
ing ensemble learning technique to achieve optimal perfor-
mance in classifying glaucomatous and normal images. Thir-
teen pre-trained models, including Alexnet, Googlenet, VGG-
16, VGG-19, Squeezenet, Resnet-18, Resnet-50, Resnet-101,
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Efficientnet-b0, Mobilenet-v2, Densenet-201, Inception-v3,
and Xception, were implemented and compared in 65 different
configurations, combining 13 CNN architectures with five
different classification approaches. A two-stage ensemble
selection technique was proposed to identify the optimal
configurations, which were then pooled using a probability
averaging technique. The final classification was performed
using an SVM classifier.

Jabbar et al. [335] proposed a transfer learning-based model
in 2022, based on a pre-trained VGGNet architecture, modi-
fied to suit the needs of DR detection. The model comprises
16 layers with specific configurations designed for this task.
Training the model involved fine-tuning hyperparameters,
including the learning rate, batch size, and epochs, using
Adam’s optimisation function. The model was evaluated using
the EyePACS dataset, split into training (80%) and testing
(20%) sets.

The results demonstrated that the proposed VGGNet model
achieved an accuracy of 96.6%, surpassing other models
like ResNet, GoogLeNet, and AlexNet [335]. The model’s
robustness and high performance in detecting and classifying
DR at various severity levels were evident. The authors con-
clude that their framework effectively enhances DR detection
using transfer learning and data augmentation. They suggest
that future work could involve integrating hand-engineered
features with CNNs to further improve classification accuracy
[335]. The study presents significant contributions to the field
by developing a VGGNet-based model for DR detection,
employing effective preprocessing and data augmentation
techniques, and achieving high classification accuracy on a
large dataset.

Another study by Chen et al. [336] used ViTs on fundus
images to detect glaucoma in 2022. The study achieved a
specificity and sensitivity of 91.2% and 92.3% on the ORIGA
dataset and a specificity and sensitivity of 95.7%, and 94.1%
on the RIM-ONEv3 dataset [336].

Shinde et al. [109] achieved the highest accuracy of 100%
in glaucoma detection in 2021. The system was developed
utilising image processing, DL, and ML techniques. LeNet
architecture is employed for input image validation, while
the brightest spot algorithm is used for region of interest
(ROI) detection. Optic disc and optic cup segmentation
are performed using the U-Net architecture, followed by
classification using SVM, Neural Network, and Adaboost
classifiers.

Sun et al. [337] proposed a model in 2021 to address the
challenges of DR grading and lesion discovery using a novel
lesion-aware transformer (LAT) model. The authors proposed
a unified deep model that jointly performed DR grading and
lesion discovery using an encoder-decoder structure, incorpo-
rating a pixel relation-based encoder and a lesion filter-based
decoder [337]. This model was the first to formulate lesion
discovery as a weakly supervised lesion localization problem
via a transformer decoder, learning lesion filters with only
image-level labels. The study introduced two mechanisms for

effective lesion filter learning: lesion region importance and
lesion region diversity [337].

Extensive experiments on three challenging benchmarks,
including Messidor-1, Messidor-2, and EyePACS, demon-
strated that the proposed LAT model outperformed state-of-
the-art methods in DR grading and lesion discovery [337].
The LAT model effectively captured the correlation between
pixels for robust feature learning, evaluated the importance
of different lesion regions, and ensured diversity in lesion-
aware features to cover various lesion types [337]. The
study highlighted the effectiveness of the pixel relation-
based encoder in adapting to pixel appearance variations and
the lesion filter-based decoder in identifying diverse lesion
regions. The proposed mechanisms for learning lesion region
importance and diversity further improved the model’s per-
formance, making it a significant advancement in automated
DR diagnosis. The study concluded that the LAT model,
with its encoder-decoder structure and classification module,
provided an effective solution for joint DR grading and lesion
discovery, setting a new benchmark in the field. [337]

In 2021, Wu et al. [58] proposed the application of
transformers, specifically Vision Transformers, for DR grade
recognition, contrasting it with the traditionally dominant
CNNs. In their study, transformers utilised multi-head atten-
tion mechanisms to capture long-range contextual relations
between image pixels, as opposed to the convolution layers
used in CNNs [58]. The study proposed a method where
fundus images were subdivided into non-overlapping patches,
flattened into sequences, and processed through linear and
positional embedding. These sequences were then input into
multiple multi-head attention layers to generate the final
representation, which was classified using a softmax layer
[58].

The study aimed to demonstrate the suitability of the pure
attention mechanism for DR grade recognition and to establish
that transformers could replace traditional CNNs in this task.
A Vision Transformer-based method was proposed. Fundus
images were divided into patches, converted into sequences
through flattening and embedding, and processed through
multi-head attention layers [58]. The first token sequence was
classified using a softmax layer. The method was tested on a
dataset of fundus images with varying resolutions, achieving
impressive performance: an accuracy of 91.4%, specificity
of 97.7%, sensitivity of 92.6%, and an AUC of 0.986.
Comparative experiments indicated that the proposed Vision
Transformer model was competitive with current methods and
highlighted its promise for DR grade recognition [58].

Balasubramanian et al. [140] achieved the highest accuracy
of 99% in detecting glaucoma using a dataset of 1155 fundus
images. in 2020. A 25-layer convolutional neural network
(CNN) was developed and trained to efficiently extract highly
robust features from retinal fundus images. The proposed DL
approach effectively detects and grades glaucoma from fundus
images, demonstrating high accuracy and robustness.

Prabhu et al. [125] achieved the highest accuracy of 100%
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using RF and ANN to detect DR on a private dataset in
2019. This paper proposed an automatic DR detection system
based on the identification of bright lesions on the retina,
a key symptom of DR. The optic disc is removed from the
fundus image because its brightness is similar to that of the
bright lesions. Exudates, which are indicative of DR, are
extracted from the image and various features are obtained. A
feature-based hierarchical classification is performed to detect
different stages of the disease. This method mirrors the logical
steps followed by ophthalmologists, ensuring more accurate
classification results.

Floriano et al. [131] achieved the highest accuracy of 83.6%
in AMD detection in 2019. This study introduces an approach
that combines mathematical morphology, and an SVM. The
method presented in this study offers a powerful tool for the
non-invasive pre-diagnosis of AMD by detecting drusen in
fundus images.

Rehman et al. [111] achieved the highest accuracy of 99.2%
in glaucoma detection in 2019. The study used SVM on the
DRIONS-DB dataset with 110 fundus images.

Lin et al. [338] achieved the highest accuracy of 86.1% in
DR detection by using CNN on the EyePacs dataset in 2018.
The study used entropy images, which quantify the amount
of information in the fundus photographs, and significantly
improved the detection accuracy, sensitivity, and specificity
of referable DR in a deep learning-based system. Entropy
imaging efficiently enhances the feature maps generated by the
CNN, making it a valuable tool for increasing the performance
of automated DR detection systems.

Singh et al. [116] achieved the highest accuracy of 94.8%
in detecting glaucoma using KNN on the VERC dataset in
2016. This study presents a method for detecting glaucoma
using wavelet feature extraction from segmented optic disc
images, followed by optimized genetic feature selection and
various learning algorithms. The focus on the segmented optic
disc with blood vessels removed enhances the accuracy of
glaucoma identification, achieving a high accuracy rate.

Kumari et al. [339] achieved the highest accuracy of
96.32% in detecting AMD in 2015. The study proposed an
automated method for detecting and segmenting drusen using
retinal fundus images. The method begins with gradient-based
segmentation to accurately identify the true edges of drusen.
Following this, connected component labelling is employed
to remove suspicious pixels from the drusen region. The
final step involves edge linking, which connects all labelled
pixels into a coherent boundary, resulting in a meaningful
segmentation of the drusen. In addition to detecting drusen,
the method quantifies them to grade the severity of AMD.
The detected drusen are categorized into small, intermediate,
and large.

Akram et al. [340] achieved the highest accuracy of 97.89%
in detecting DR on the STARE dataset in 2014. This paper
proposes a system for detecting retinal lesions using a novel
hybrid classifier. The system comprises several stages: pre-
processing, extraction of candidate lesions, feature set formu-

lation, and classification. During pre-processing, the system
removes background pixels and extracts the blood vessels and
optic discs from the digital retinal image. In the candidate
lesion detection phase, filter banks are used to identify all
regions that might contain lesions. A feature set is formulated
for each potential candidate region using various descriptors
such as shape, intensity, and statistical properties. These
features assist in the classification process. This paper extends
the m-Mediods-based modelling approach by combining it
with a Gaussian Mixture Model to form an ensemble, creating
a hybrid classifier that enhances classification accuracy.

Noronha et al. [341] achieved the highest accuracy of
92.65% in detecting glaucoma on the KMC database in 2013.
Their proposed system classifies images into three categories:
normal, mild glaucoma, and moderate/severe glaucoma. The
methodology involves extracting 3rd order HOS cumulant
features from the transformed fundus images. These features
are then subjected to linear discriminant analysis (LDA) to
reduce their number while retaining clinically significant
information. The reduced features are fed into SVM and
NB classifiers to automate the detection process. The sys-
tem was validated using a dataset of 272 fundus images,
which included 100 normal images, 72 images with mild
glaucoma, and 100 images with moderate/severe glaucoma.
The validation employed a ten-fold cross-validation method to
ensure robustness. For the three-class classification task, the
system achieved an average accuracy of 92.65%, a sensitivity
of 100%, and a specificity of 92% using the NB classifier.

Mookiah et al. [342] achieved the highest accuracy of 95%
in the detection of glaucoma on the KMC dataset in 2012.

Hĳazi et al. [343] achieved the highest accuracy of 100%
in detecting AMD on the ARIA dataset in 2012. This
paper proposes and compares two data mining techniques to
support the automated screening for AMD. The first technique
employs spatial histograms, which preserve both the colour
and spatial information of the images for representation. A
case-based reasoning (CBR) classification technique is then
applied to these spatial histograms. The second technique
is based on a hierarchical decomposition of the image set,
generating a tree representation. A weighted frequent sub-
graph mining technique is applied to this representation to
identify sub-trees that frequently occur across the dataset.
These identified sub-trees are encoded as feature vectors, to
which standard classification techniques can be applied. By
comparing these two methods, the paper aims to find effective
automated screening approaches that reduce the need for
manual inspection and improve the efficiency of early AMD
detection.

Figure 6 displays the highest specificity reported each year
for detecting the three diseases. Like accuracy, specificity has
increased to high levels of over 90% for all diseases. AMD
and DR detection tend to have slightly lower specificity than
glaucoma detection. Since specificity relates to the ability to
correctly identify negative cases, this suggests ML/DL models
may have more difficulty excluding these diseases compared
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FIGURE 6. Bar graph displaying the maximum specificity attained annually for
each of the ODs from 2012 to 2024 (till June 2024).

to glaucoma. Data imbalances and subtle imaging features
could contribute to this discrepancy.

Among the studies we reviewed, El-Khalek et al. [303]
achieved the highest specificity of 97.89% in detecting AMD
on a private dataset in 2024. Das et al. [118] achieved the
highest specificity of 100% in detecting glaucoma using MFR-
Net and CDAM-Net on a private dataset of 1426 fundus
images in 2024.

Sivapriya et al. [326] achieved the highest specificity of
99.01% in the detection of DR on the STARE dataset in
2024. The study proposed ResEAD2Net, for automatically
segmenting the blood vessels and classifying DR [326]. The
primary goal of this novel approach is to identify pathological
changes in the retinal vascular structure indicative of DR.

In 2023, Song et al. [119] achieved the highest specificity
of 94%. A generative adversarial network (GAN) model
was trained using pairs of CF and FAF images to generate
synthetic FAF images. The quality of these synthesized FAF
images was assessed using standard generation metrics. The
clinical effectiveness of the generated FAF images for AMD
classification was evaluated by measuring the area under
the curve (AUC) on the LabelMe dataset. When combined
with CF images, the generated FAF images improved AMD
specificity from 93.2% to 94%.

Abramovich et al. [328] achieved the highest specificity of
100% in detecting DR in 2023. They achieved this result using
their proposed a DL model, FundusQ-Net, on the DRIMDB
database.

Mahmoud et al. [126] achieved the highest specificity of
96.88% in detecting DR on the CHASE dataset in 2021.
In this study, a hybrid inductive machine learning algorithm
(HIMLA) is proposed as an automated diagnostic tool for DR
detection. HIMLA processes and classifies coloured fundus

images into healthy (no retinopathy) or unhealthy (presence
of DR) categories by accurately identifying the appropriate
medical cases of DR. The algorithm involves four main
stages: pre-processing, segmentation, feature extraction, and
classification. In the pre-processing stage, coloured fundus
images are normalised to a specific brightness level to
enhance their quality. During segmentation, the processed
images are encoded and decoded to isolate relevant regions,
improving image clarity. Feature extraction and classification
are performed using multiple instance learning (MIL), which
aids in identifying and categorising the images based on
the presence of DR. The proposed method was evaluated
on the CHASE datasets, achieving an accuracy of 96.62%,
sensitivity of 95.31%, and specificity of 96.88%.

Zapata et al. [344] achieved the highest specificity of
92.4% in detecting AMD in 2020. Their study developed
five algorithms and evaluated them in the Optretina dataset.

Jiang et al. [345] achieved the highest specificity of 91.5%
in detecting DR in 2019. This paper presents an automatic
image-level DR detection system that leverages multiple well-
trained DL models. To enhance the system’s performance,
several DL models are integrated using the Adaboost algo-
rithm, which helps to reduce the bias inherent in individual
models. To provide clear explanations for the DR detection
results, the system generates weighted class activation maps
(CAMs). These maps highlight the suspected positions of
lesions, offering valuable insights into the detection process
[345]. In the pre-processing stage, eight different image
transformation techniques are applied to augment the diversity
of fundus images. This augmentation step helps improve the
robustness and performance of the detection models. Experi-
mental results demonstrate that the proposed method exhibits
stronger robustness and superior performance compared to
individual DL models. By combining multiple models and
employing advanced techniques like Adaboost and image
augmentation, this system achieves more accurate and reliable
DR detection.

Lin et al. [338] achieved the highest specificity of 93.81% in
DR detection by using CNN on the EyePacs dataset in 2018.

Maheshwari et al. [128] achieved the highest specificity of
96.7% in detecting glaucoma in 2017. This paper presents a
methodology for the automated detection of glaucoma, em-
ploying the empirical wavelet transform (EWT). The EWT is
utilised to decompose the fundus images, and correntropy fea-
tures are extracted from the decomposed EWT components.
These extracted features are then ranked using the t-value
feature selection algorithm, ensuring that the most significant
features are chosen for classification. The classification of
normal and glaucoma images is performed using the least-
squares support vector machine (LS-SVM) classifier. The LS-
SVM is tested with various kernels, including the radial basis
function, Morlet wavelet, and Mexican-hat wavelet kernels, to
determine the most effective approach. The proposed method
achieves a classification accuracy of 98.33% with threefold
cross-validation and 96.67% with tenfold cross-validation.
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These results highlight the effectiveness of the EWT-based
feature extraction and the LS-SVM classifier in accurately
detecting glaucoma from fundus images, offering a promising,
low-cost alternative to traditional scanning methods [128].

Imani et al. [346] achieved the highest specificity of 99.93%
in detecting DR in 2016. This paper introduces an automatic
method for the detection of retinal exudates, featuring an
approach that utilises the Morphological Component Analysis
(MCA) algorithm to distinguish lesions from normal retinal
structures, thereby facilitating the detection process. In the
initial stage, the MCA algorithm, equipped with appropriate
dictionaries, separates blood vessels from lesions. Following
this, the lesion segments of the retinal images are processed
to detect exudate regions. Dynamic thresholding and math-
ematical morphology techniques are then applied to create
the final exudate map. The performance of the proposed
method was evaluated using three publicly available datasets:
DiaretDB, HEI-MED, and e-ophtha. The method achieved
Area Under the Curve (AUC) scores of 0.961, 0.948, and
0.937 on these datasets, respectively, surpassing most state-
of-the-art methods. These results underscore the effectiveness
of the MCA-based approach in accurately detecting retinal
exudates, contributing to the early diagnosis and treatment of
diabetic retinopathy.

Mittal et al. [166] achieved the highest specificity of 99%
in detecting AMD in 2015. Their proposed method begins
with gradient-based segmentation to identify the true edges
of the drusen. This is followed by connected component
labelling, which removes suspicious pixels from the drusen
region, isolating relevant features. The final step involves
edge linking to connect all labelled pixels into coherent
boundaries, forming a meaningful segmentation of the drusen.
The proposed method significantly outperforms existing
techniques, achieving an accuracy of 96.17%, sensitivity of
89.81%, and specificity of 99% on two publicly available
retinal image databases. Furthermore, to assess the severity
of AMD, the detected drusen are quantified into three cate-
gories: small, intermediate, and large. The method achieves
classification accuracies of 88.46% for small drusen, 98.55%
for intermediate drusen, and 88.37% for large drusen. This
automated approach enhances the accuracy and efficiency of
drusen detection and provides a reliable means of grading the
severity of AMD.

Akram et al. [340] achieved the highest specificity of
97.43% in detecting DR on the STARE dataset in 2014. This
paper proposes a system for detecting retinal lesions using a
novel hybrid classifier.

Noronha et al. [341] achieved the highest specificity of
92% in detecting glaucoma on the KMC database in 2013.
Their proposed system classifies images into three categories:
normal, mild glaucoma, and moderate/severe glaucoma.

Zheng et al. [117] achieved the highest specificity of 100%
in detecting AMD in 2012. This study aimed to describe and
evaluate an automated grading system for AMD using colour
fundus photography. An automated “disease/no disease”

grading system for AMD was developed using image-mining
techniques. The process began with image pre-processing to
normalise the colour and correct the nonuniform illumination
of the fundus images. This step also defined a region of
interest and identified and removed pixels belonging to retinal
vessels. To represent images for the prediction task, a graph-
based image representation using quadtrees was adopted.
Following this, a graph-mining technique was applied to the
generated graphs to extract relevant features, in the form of
frequent subgraphs, from images of both AMD patients and
healthy volunteers. Features from the training data were then
used to train a classifier generator, which was subsequently
employed to classify new, unseen images. The algorithm was
evaluated using two publicly available fundus-image datasets
comprising a total of 258 images (160 AMD and 98 normal).
Ten-fold cross-validation was utilised to assess performance.
The experiments yielded a best specificity of 100%, a best
sensitivity of 99.4%, and an overall accuracy of 99.6%.

FIGURE 7. Bar graph displaying the maximum sensitivity attained annually for
each of the different ODs from 2012 to 2024 (till June 2024).

Figure 7 shows sensitivity reported from 2012-2024,
reflecting the ability to correctly detect positive disease cases.
Sensitivity follows a similar trend to accuracy and specificity,
rising from early years. Although the results were slightly
lower for some studies in 2022. Overall, the results indicate
AI methods have become very proficient at identifying true
cases.

Among the reviewed studies, Sivapriya et al. [326] achieved
the highest sensitivity of 98.91% in detecting DR using a novel
DL method, ResEAD2Net, on the MESSIDOR-2 dataset in
2024.

Xu et al. [330] achieved the highest sensitivity of 96.75% in
detecting AMD in 2023. This study introduced DeepDrAMD,
a hierarchical vision transformer-based deep learning model
that incorporates data augmentation techniques and the
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SwinTransformer to detect AMD and distinguish between its
subtypes using fundus images.

Pham et al. [333] achieved the highest sensitivity of 56% for
detecting AMD by using MuMO-GAN on a private dataset in
2022. In the study, generative adversarial networks (GANs)
were utilised with additional drusen masks to preserve patho-
logical information. The dataset comprised 8,196 fundus
images from 1,263 AMD patients. The proposed GAN-based
model, named Multi-Modal GAN (MuMo-GAN), was trained
to generate synthetic predicted future fundus images. The low
number of sensitivity in this study indicates that there was a
high rate of false positives [333].

Math et al. [143] achieved the highest sensitivity of 96.37%
in detecting DR on the Kaggle and DIARET-DB1 database
in 2021. This paper proposed a segment-based learning
approach for detecting DR that jointly learns classifiers and
features from the data, leading to significant improvements in
recognising DR images and identifying lesions within them.
Specifically, the approach involves adapting a pre-trained
CNN to obtain segment-level diabetic retinopathy estimation
(DRE). The segment-level results are then integrated to clas-
sify diabetic retinopathy images. This end-to-end segment-
based learning approach effectively handles the irregular
lesions characteristic of diabetic retinopathy. The proposed
method was evaluated on the Kaggle dataset and achieved
sensitivity and specificity rates of 96.37%. The segment-
based learning approach proposed in this paper offers a robust
solution for the detection of diabetic retinopathy, leveraging
the strengths of pre-trained CNNs and integrated segment-
level analysis.

Zapata et al. [344] achieved the highest specificity of 97.7%
in detecting AMD on the Optretina dataset in 2020.

Rehman et al. [111] achieved the highest sensitivity of
96.9% in glaucoma detection on the DRIONS-DB dataset
in 2019.

Soltani et al. [347] achieved the highest sensitivity of 97.8%
in detecting glaucoma in 2018. This study introduces a new
Fuzzy Expert System for the early diagnosis of glaucoma.
The process begins with pre-treating original ONH images
using appropriate filters to remove noise. The Canny detector
algorithm is then employed to detect contours within the
images. Key parameters are extracted after identifying the
elliptical forms of both the optic disc and excavation, using
the Randomized Hough Transform. The final stage involves
a classification algorithm based on fuzzy logic approaches
to determine the condition of the patients. This system is
advantageous as it considers both instrumental parameters
and risk factors such as age, race, and family history, which
are crucial for accurately identifying cases suspected of
having glaucoma. The proposed system was tested on a real
dataset comprising ophthalmologic images of both normal
and glaucomatous cases. By combining advanced image pro-
cessing techniques with fuzzy logic and considering essential
risk factors, the system offers a significant improvement in
identifying glaucomatous conditions.

Yang et al. [144] achieved the highest sensitivity of 96.87%
in detecting DR using DCNN on the EyePacs dataset in 2017.

Abramoff et al. [33] achieved the highest sensitivity of
96.8% in detecting DR in 2016 on the Messidor-2 database.
Their proposed DL-enhanced algorithm demonstrated a sen-
sitivity of 96.8% and a specificity of 87%. There were 6 false
negatives out of 874 cases, resulting in a negative predictive
value of 99%. Notably, no cases of severe NPDR, PDR, or
ME were missed.

Mittal et al. [166] achieved the highest sensitivity of 89.81%
in detecting AMD in 2015.

Hĳazi et al. [348] achieved the highest sensitivity of 99.5%
in detecting AMD in 2014. This paper investigates three
alternative approaches to classifying retinal images, distinc-
tively not relying on individual lesion segmentation for feature
generation but instead using encodings focused on the entire
image. The three different mechanisms for encoding retinal
image data considered are time series, tabular, and tree-based
representations. The evaluation utilised two publicly available
retinal fundus image datasets, specifically in the context
of screening for AMD. Statistical significance tests were
conducted to assess the performance of these approaches.
The results were impressive, with sensitivity, specificity, and
accuracy rates all exceeding 99%. Notably, the tree-based
approach demonstrated the best performance, achieving a
sensitivity of 99.5%.

Tavakoliet al. [349] achieved the highest sensitivity of 100%
in detecting DR in 2013. This study presents an algorithm
using the Radon transform (RT) and multi-overlapping win-
dows. This method focuses on detecting retinal landmarks
and lesions to detect DR effectively. The proposed method
begins by detecting and masking the optic nerve head
(ONH). In the pre-processing stage, top-hat transformation
and averaging filters are applied to remove the background.
In the main processing section, the preprocessed image is
divided into sub-images. Each sub-image is then segmented,
and the vascular tree is masked by applying the RT. After
detecting and masking the retinal vessels and ONH, MAs are
identified and counted using RT and appropriate thresholding
techniques. The algorithm was evaluated on three different
retinal image databases: the Mashhad Database with 120 FA
fundus images, the Second Local Database from Tehran with
50 FA retinal images, and a subset of the Retinopathy Online
Challenge (ROC) database with 22 images. The performance
of the automated DR detection method demonstrated a
sensitivity and specificity of 94% and 75%, respectively, for
the Mashhad database. For the Second Local Database, the
method achieved a sensitivity and specificity of 100% and
70%, respectively.

Mookiah et al. [342] achieved the highest sensitivity of
96.6% in the detection of glaucoma on the KMC dataset
in 2012. The system automates the identification of normal
and glaucoma-affected eyes using features extracted from
Higher Order Spectra (HOS) and Discrete Wavelet Transform
(DWT). These features are input into an SVM classifier,
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which is tested with various kernel functions, including linear,
polynomial (orders 1, 2, and 3), and Radial Basis Function
(RBF), to determine the best kernel for automated decision-
making. In this study, the SVM classifier with a polynomial
order 2 kernel function demonstrated the ability to distinguish
between glaucoma and normal images with an accuracy of
95%. The system also achieved sensitivity and specificity
rates of 93.33% and 96.67%, respectively. Additionally, the
paper introduced a novel integrated index called the Glaucoma
Risk Index (GRI), which combines HOS and DWT features
to detect unknown cases using a single metric. This GRI aims
to help clinicians make quicker glaucoma diagnoses during
mass screenings of normal and glaucoma images [342].

The proposed automated system offers a cost-effective and
efficient solution for glaucoma screening. It could potentially
improve early detection and management of the disease
while making the screening process accessible to a broader
population.

FIGURE 8. Pie chart diagram displaying the percentage of ML models used to
automatically identify glaucoma.

The pie chart in Figure 8 represents the distribution
of machine learning (ML) algorithms used for glaucoma
detection from fundus eye images, with support vector
machines (SVM) being most common at 40%, followed by
KNN at 14%. Neural networks (NN), random forests (RF),
Naive Bayes (NB) make up 23% combined, whereas others
contribute 9% and hybrid models are 14% of the total.

The SVM algorithm is used in 40% of the cases, making
it the most frequently employed technique for detecting these
eye conditions. It is particularly effective in high-dimensional
spaces and is well-suited for cases where the number of
dimensions exceeds the number of samples. Medical images,
including fundus eye images, have high-dimensional data that
SVM can handle efficiently [350].

SVM also uses regularisation parameters to control over-
fitting, making it robust for small to medium-sized datasets
[350]. This is crucial in medical imaging, where the number
of labelled images can be limited.

KNN is utilised in 14% of the cases, showing its role as
a common technique. KNN is one of the simplest machine
learning algorithms. It is easy to understand and implement,
which makes it a popular choice for initial exploratory analysis
and in situations where interpretability is crucial. This may be
the case as KNN can be effective with relatively small datasets,
which is common in medical imaging where acquiring large
amounts of labelled data can be challenging. Since KNN
makes predictions based on the closest data points, it can
perform well even with limited training data.

By considering the majority vote of its neighbours, KNN
can be resilient to noise in the data. This can help in making
robust predictions in medical images that may contain some
level of noise or variability. Hybrid methods, which combine
multiple algorithms, account for 14% of the usage, indicating
a significant reliance on integrated approaches. Other ML
approaches collectively make up 9% of the total.

FIGURE 9. Pie chart diagram displaying the percentage contribution (%) of different
ML and DL classifiers to the automated detection of glaucoma, DR, and AMD.

Figure 9 summarizes all models used for the three diseases,
showing convolutional neural networks (CNN) and their
variations are now the most widely used (42%), followed by
other models and SVM. The chart clearly shows that CNN and
its variations are the predominant choice for the automated
detection of glaucoma, DR, and AMD from fundus eye
images, followed by a mix of other methods that collectively
contribute a significant portion.

This distribution reflects the effectiveness and versatility
of CNNs in handling complex image data. CNNs and their
variations, such as Deep Convolutional Neural Networks
(DCNN) and Multi-Channel Convolutional Neural Networks
(MCNN), constitute the largest segment, representing 39%
of the classifiers used. This indicates a strong preference
for CNN-based methods due to their effectiveness in image
processing and feature extraction.
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Support Vector Machines contribute 17% to automated
detection, highlighting their role as a significant yet less dom-
inant technique compared to CNNs. This segment includes
K-Nearest Neighbours (KNN), Artificial Neural Networks
(ANN), Deep Neural Networks (DNN), Neural Networks
(NN), and other miscellaneous methods (MM), together
making up 11% of the classifiers used.

Naive Bayes (NB) and Generative Adversarial Networks
(GAN) together contribute 5% to the automated detection.
NB is a probabilistic classifier that is simple and efficient.
It assumes independence between features, which can be a
limitation, but it performs well in certain diagnostic tasks
where this assumption holds approximately true. GANs are
used for generating synthetic data that can augment training
datasets, thereby improving the robustness and accuracy of
diagnostic models. They can also help in enhancing image
quality and creating realistic variations of fundus images for
training purposes.

Random Forest (RF) classifiers account for 4% of the usage,
indicating their utility in eye disease detection. RF is an
ensemble learning method that constructs multiple decision
trees and combines their outputs. It is robust to overfitting
and can handle a large number of features. RFs are useful
in medical imaging for their ability to provide important
scores for different features, helping in the interpretability
of the diagnostic process. Other ML and DL (21%) classifiers
include a variety of other techniques that are applied to detect
eye diseases from fundus images. These methods include
decision trees, logistic regression, ensemble methods, etc.

FIGURE 10. A sunburst graphic showing the prevalence of ML and DL procedures
for AMD, DR, and glaucoma, along with their most common classifiers.

The sunburst chart in Figure 10 shows the distribution

of various machine learning (ML) and deep learning (DL)
algorithms used in the automated detection of three specific
eye diseases: glaucoma, diabetic retinopathy (DR), and
age-related macular degeneration (AMD). Each segment
represents a different algorithm and its contribution to
detecting these conditions.

Glaucoma:
SVM (19): Support Vector Machines are extensively used for
glaucoma detection, accounting for a significant portion.
CNN, DCNN (14): Convolutional Neural Networks and Deep
Convolutional Neural Networks are also widely used.
U-Net, ResNet-50, GoogleNet (20): Effectively, variations
of CNN architectures, such as ResNet and GoogleNet, are
employed.
RF (8): Random Forest is another method used for glaucoma
detection.
NB (7): Naive Bayes classifiers contribute to the diagnostic
process.
KNN (7): K-Nearest Neighbours are used as well.
NN (3): General Neural Networks are applied in some cases.
Others (21): This category includes various other methods.

Diabetic Retinopathy (DR):
CNN, DCNN (9): CNNs and their deep variations are
predominantly used.
ResNet (6): ResNet, a type of CNN architecture, is also
employed.
DenseNet (4): Another variation of CNNs used for DR
detection.
RF, ANN, NN (4): Random Forest, Artificial Neural Net-
works, and general Neural Networks contribute to the process.
SVM, KNN (9): Support Vector Machines and K-Nearest
Neighbors are used.
Others (24): Various other methods are included in this
category.

Age-related Macular Degeneration (AMD):
CNN, DCNN (14): Convolutional Neural Networks and their
deep variations are significantly employed.
SVM (12): Support Vector Machines are used.
NN, DNN (3): Neural Networks and Deep Neural Networks
are also utilised.
RF, RT (3): Random Forest and Regression Trees are used.
GAN (3): Generative Adversarial Networks are employed in
some cases.
Others (27): A large variety of other methods are used.

The reason why most studies that used ML used SVMs is
that they are effective for classification in high-dimensional
spaces, robust to overfitting, and suitable for small datasets
[291]. Most DL studies used CNN as it is excellent at
extracting spatial hierarchies of features from images, widely
used in image-processing tasks [105]. DCNNs are deeper ver-
sions of CNNs capable of capturing more complex patterns.
MCNN (Multi-Channel Convolutional Neural Networks):
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These process different aspects of input images simultane-
ously, improving feature capture.

The chart highlights the diversity of ML and DL techniques
applied to detect glaucoma, DR, and AMD from fundus im-
ages. CNN-based methods dominate due to their effectiveness
in image processing. At the same time, other techniques like
SVM, RF, and various neural network architectures also play
significant roles in the automated detection process. It further
indicates that CNNs account for the majority of deep learning
approaches. This shift from conventional ML to deep learning
reflects the power of CNNs for medical imaging tasks.

FIGURE 11. Bar graph illustrating the maximum accuracy in automated glaucoma
detection using SVM classifiers that different authors have achieved.

The bar graph in Figure 11 illustrates the maximum
accuracy achieved in automated glaucoma detection using
SVM classifiers by different authors. Each bar represents
a different study, with the height of the bar indicating the
reported accuracy. The graph highlights the effectiveness
of SVM classifiers in automated glaucoma detection, with
reported accuracies ranging from 93.10% to 99.20%.

Out of these studies that used SVM as a classifier to detect
glaucoma, Rehman et al. [111] achieved the highest accuracy
of 99.20% on the DRIONS-DB database. They presented a
multi-parametric optic disk detection and localisation method
for retinal fundus images. The method utilised region-based
statistical and textural features to accurately identify the optic

disc. Highly discriminative features are selected based on
the mutual information criterion. The study then conducts
a comparative analysis of four benchmark classifiers: SVM,
RF, AdaBoost, and RusBoost. SVM achieved an accuracy of
99.20%, a specificity of 99.30%, and a sensitivity of 96.9%
in their study.

Mohamed et al. [351] achieved the second-highest accuracy
of 98.60% among the authors who used SVM to classify
glaucoma. The proposed method was tested on the RIM-
One database. This paper proposed a novel approach to
developing an automatic glaucoma screening system based
on superpixel classification using high-quality input images.
Initially, input images undergo pre-processing to remove
noise and correct illumination using an anisotropic diffusion
filter and illumination correction methods. The processed
images are then divided into superpixels using the Simple
Linear Iterative Clustering (SLIC) approach. Features based
on histogram data and textural information are extracted
from each superpixel using the statistical pixel-level (SPL)
method. These prominent features are then fed into a Support
Vector Machine (SVM) classifier, which classifies each
superpixel into categories such as optic disc, optic cup, blood
vessel, and background regions. The SVM classifier also
determines the boundaries of the optic disc and optic cup.
The segmented optic disc and optic cup are subsequently
used to determine the presence of glaucoma by measuring the
cup-to-disc ratio (CDR). This method effectively combines
preprocessing, feature extraction, and classification to provide
a comprehensive analysis of the fundus images.

Thakur et al. [110] achieved the third highest accuracy of
97.20% using SVM to classify glaucoma on the DRISHTI-GS
and RIM-ONE datasets. This paper introduces a new approach
that derives reduced hybrid features from both structural and
non-structural aspects to classify retinal fundus images. The
structural features include the Disc Damage Likelihood Scale
(DDLS) and the Cup-to-Disc Ratio (CDR), while the non-
structural features encompass the Grey Level Run Length
Matrix (GLRM), Grey Level Co-occurrence Matrix (GLCM),
First Order Statistical (FoS) features, Higher Order Spectra
(HOS), Higher Order Cumulant (HOC), and Wavelets. The
methodology involved extracting these features and using
them to train and evaluate various ML classifiers, including
SVM, KNN, RF, NB, NN. SVM achieved an accuracy of
97.20%, a specificity of 96%, and a sensitivity of 97% in
their study.

Mookiah et al. [342] achieved an accuracy of 95% using
SVM to classify glaucoma on the KMC dataset with 60 images
(30 normal and 30 glaucoma). The system identified normal
and glaucoma classes through Higher Order Spectra (HOS)
and Discrete Wavelet Transform (DWT) features, which are
fed into a Support Vector Machine (SVM) classifier with
various kernel functions (linear, polynomial order 1, 2, 3, and
Radial Basis Function). The SVM classifier with a polynomial
order 2 kernel achieved an accuracy of 95%, with sensitivity
and specificity of 93.33% and 96.67%, respectively
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Issac et al. [352] achieved an accuracy of 94.11% using
SVM to classify glaucoma. The fundus images used in this
study were sourced from the Venu Eye Research Centre in
New Delhi, India. The study involved 67 images from patients
aged 18 to 75, comprising 35 normal images and 32 glaucoma
images, all labelled by doctors. They employed an adaptive
threshold using local features from the fundus image, making
it resilient to image quality and noise, thus enhancing its
applicability. Experimental results demonstrated that these
features are more significant than the statistical or textural
features used in previous studies. The proposed method
achieves an accuracy of 94.11% and a sensitivity of 100%.

Acharya et al. [353] achieved an accuracy of 93.10% using
SVM to classify glaucoma on the KMC dataset. They used
510 fundus images categorised into normal (266), mild (72),
moderate (86), and severe (86) glaucoma classes.

They introduced an automated glaucoma detection method
using various features extracted from the Gabor transform
applied to fundus images. Features such as mean, vari-
ance, skewness, kurtosis, energy, and Shannon, Renyi, and
Kapoor entropies were extracted from the Gabor transform
coefficients. These features were then subjected to principal
component analysis (PCA) to reduce dimensionality. Various
ranking methods, including the Bhattacharyya space algo-
rithm, t-test, Wilcoxon test, Receiver Operating Characteristic
(ROC) curve, and entropy, were used to rank the features.
The t-test ranking method achieved the highest performance,
with an average accuracy of 93.10%, sensitivity of 89.75%,
and specificity of 96.20% using 23 features with an SVM
classifier.

SVM achieved high accuracy in glaucoma detection in
these studies for several reasons. Glaucoma detection often
involves analysing high-dimensional data, such as pixel
intensity values and texture features from fundus images.
SVMs are particularly effective in such high-dimensional
spaces because they find the optimal hyperplane that separates
the different classes (healthy vs. glaucomatous eyes) with
maximum margin.

Some of the datasets used in the studies by these authors
here are relatively small. SVMs are effective with smaller
datasets because they focus on the support vectors (the most
critical data points) rather than the entire dataset. SVMs
use regularisation techniques to prevent overfitting, which
is crucial when dealing with medical image data where the
number of features can be very high relative to the number
of samples. This robustness ensures that the SVM model
generalises well to new, unseen data.

SVMs can effectively handle feature selection and di-
mensionality reduction, either inherently through the use
of certain kernel functions or in combination with pre-
processing techniques. This helps focus on the most relevant
features for glaucoma detection, improving accuracy. These
properties make SVMs highly suitable for glaucoma detection
from fundus images, resulting in high accuracy and reliable
performance from different studies that employed them for

glaucoma detection.

FIGURE 12. Bar graph illustrating the maximum accuracy attained by different
authors for CNN classifier-based automated AMD identification.

The bar graph in Figure 12 shows the highest level of
accuracy that various authors were able to achieve for CNN
classifier-based automated age-related macular degeneration
(AMD) identification. Each bar represents a different study,
with the height of the bar indicating the reported accuracy.

The graph highlights the effectiveness of CNN classifiers
in automated AMD identification, with reported accuracies
ranging from 83.1% to 96.60%.

Out of the studies shown that used CNN for AMD detection,
the highest accuracy was achieved by Zapata et al. [344] and
Le et al. [354], both achieved an accuracy of 96% using CNN
or one of its variants to classify AMD.

In their study, Zapata et al. [344] developed five algorithms
and evaluated them in the Optretina dataset. Three different
retinal specialists classified all the images. The dataset was
split per patient into training (80%) and testing (20%) sets.
Three different CNN architectures were employed, two of
which were custom-designed to minimize the number of
parameters while maintaining accuracy. The main outcome
measure was the area under the curve (AUC), along with
accuracy, sensitivity, and specificity. The models were ef-
fectively used for data cleaning, quality assessment, eye
orientation classification, and disease detection (AMD and
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GON). The custom-designed CNN architectures achieved
these tasks with minimized parameters while maintaining
high accuracy, demonstrating the potential for practical
application in automated retinal image analysis and detection.

Le et al. [354] used fundus images from the Department of
Ophthalmology at King Chulalongkorn Memorial Hospital in
Thailand were collected for transfer learning, along with other
publicly available datasets for testing. Seven models based
on CNN —VGG19, Xception, DenseNet201, EfficientNetB7,
InceptionV3, NASNetLarge, and ResNet152V2—were se-
lected for training in 2-label (Normal vs. AMD) and 3-label
(Normal vs. Dry AMD vs. Wet AMD) classifications. The
experimental results indicated that the DenseNet201 model,
with its Dense block structure, showed the best efficacy in
both 2-label and 3-label AMD classifications, consistently
ranking among the Top-3 models in terms of accuracy and
generalisation performance, as measured by total accuracy
and total F1-Score. It received an accuracy and sensitivity of
96%.

Tan et al. [355] achieved an accuracy of 95.50% in using
CNN to detect AMD. They developed a fourteen-layer deep
CNN model designed to automatically and accurately detect
AMD at an early stage. The performance of the model
was evaluated using blindfold and ten-fold cross-validation
strategies, achieving accuracies of 91.17% and 95.45%,
respectively

Burlina et al. [102] achieved an accuracy of 93.4% in
using CNN to detect AMD. Using 5664 colour fundus
images from the NIH AREDS dataset, this paper details the
approach using deep learning for ARIA and AMD analysis.
The researchers used transfer learning and universal features
derived from deep convolutional neural networks (DCNN) to
address clinically relevant 4-class, 3-class, and 2-class AMD
severity classification problems.

Govindaiah et al. [356] achieved an accuracy of 92.50%
in using CNN to detect AMD. They used the Age-Related
Eye Disease Study (AREDS) dataset, which contained over
150,000 images along with qualitative grading information
provided by expert graders and ophthalmologists. They
employed a modified VGG16 neural network with batch
normalisation in the last fully connected layers. The study
involved two experiments. In the first experiment, the images
were categorised into two classes based on clinical signif-
icance: No or early AMD, and Intermediate or Advanced
AMD. In the second experiment, the images were categorized
into four classes: No AMD, Early AMD, Intermediate AMD,
and Advanced AMD. The modified VGG16 network achieved
the best accuracy of 92.5% for the two-class problem with
over 100,000 images. The results demonstrated that training
a deep neural network with a sufficient number of images
yielded better performance than using a pre-trained network,
especially for AMD detection and screening.

Grassmann et al. [357] achieved an accuracy of 83.10%
in using CNN to detect AMD. Their study included 120,656
manually graded colour fundus images from 3,654 partic-

ipants in the Age-Related Eye Disease Study (AREDS).
Participants were over 55 years old, and those with non-AMD
sight-threatening diseases were excluded from recruitment.
Additionally, the algorithm’s performance was evaluated us-
ing 5,555 fundus images from the population-based Kooper-
ative Gesundheitsforschung in der Region Augsburg (KORA;
Cooperative Health Research in the Region of Augsburg)
study. The researchers defined 13 classes (9 AREDS steps,
3 late AMD stages, and 1 for ungradable images) and
trained several convolutional deep learning architectures.
An ensemble of network architectures was used to improve
prediction accuracy. The performance of the algorithm was
evaluated on an independent dataset. The primary measures
were k statistics and accuracy to evaluate the concordance
between the algorithm’s predictions and expert human grader
classifications.

Most of these studies achieved a high accuracy using CNN
and its variants to detect AMD. CNNs excel at automatically
extracting hierarchical features from images.

In the context of AMD detection, CNNs can identify
intricate patterns, textures, and structures in fundus images
that are indicative of the disease. This ability to learn and
extract relevant features from raw images is crucial for
accurate detection. CNNs use convolutional layers that apply
filters across the input image, capturing spatial hierarchies
and relationships within the image. This spatial invariance
helps in detecting AMD features regardless of their location
within the image, improving the robustness of the model.
Overall, these studies demonstrate the high potential of CNN
classifiers in accurately detecting AMD from fundus images.

The bar graph in Figure 13 illustrates the maximum
accuracy achieved by different authors for CNN classifier-
based automated diabetic retinopathy (DR) detection. Each
bar represents a different study, with the height of the bar
indicating the reported accuracy.

The graph highlights the effectiveness of CNN classifiers
in automated DR detection, with reported accuracies ranging
from 75.70% to 99.62%.

Gayathri et al. [142] achieved the highest accuracy of
99.62% for detecting DR using CNN. In their study, a multi-
path convolutional neural network (M-CNN) is employed for
global and local feature extraction from fundus images. These
features are then classified according to the severity of DR
using various ML classifiers. The proposed model is evaluated
using several publicly available databases: IDRiD, Kaggle (for
DR detection), and MESSIDOR. Different ML classifiers,
including SVM, RF, and J48, are used for categorisation. The
experiments demonstrate that the M-CNN network combined
with the J48 classifier produces the best results. The classifiers
are assessed using features from pre-trained networks and
existing DR grading methods.

Yang et al. [144] achieved the second-highest accuracy of
97.3% in detecting DR using DCNN on the EyePacs dataset.
They proposed an automatic DR analysis algorithm based on
a two-stage deep convolutional neural network. The algorithm
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FIGURE 13. Bar graph displaying the maximum accuracy attained by different
authors for CNN classifier-based automated DR detection.

can identify lesions in fundus colour images and provide
DR severity grades. By introducing an imbalanced weighting
scheme, the algorithm focuses more on lesion patches during
DR grading, significantly improving grading performance
under the same implementation setup.

Hossen et al. [358] achieved an accuracy of 94.9% in
detecting DR with CNN. The study involved developing a DR
classifier using a transfer learning technique with a DenseNet
architecture-based pre-trained model. The classification of
DR from retinal fundus images was based on its severity
level. The identification of DR was achieved by detecting
features such as micro-aneurysms, exudates, and hemorrhages
in retinal images. Additionally, the preprocessing and aug-
mentation of image data were conducted to enhance the
model’s ability to detect retinopathy. After the training and
validation procedures, the developed classifier achieved a
validation accuracy of 94.9%. The study demonstrates that
using a DenseNet architecture can effectively detect Diabetic
Retinopathy by classifying retinal fundus images according to
severity levels. The preprocessing and augmentation of image
data significantly benefit the model, resulting in high training
and validation accuracies.

Abdelmaksoud et al. [359] achieved an accuracy of 91.20%
in detecting DR with CNN. This paper presents a novel hybrid

deep learning technique named E-DenseNet, which integrates
EyeNet and DenseNet models using transfer learning. The
traditional EyeNet was customized by incorporating dense
blocks and optimising the hyperparameters of the resulting
hybrid E-DenseNet model. This approach aims to accurately
detect healthy and various DR grades from both small and
large ML colour fundus images. The model was trained and
tested on four different datasets (EyePACS, APTOS, MES-
SIDOR, IDRiD). These datasets provided a comprehensive
range of images necessary for robust training and validation
of the proposed system. The E-DenseNet model demonstrates
promising results compared to other systems, showcasing its
effectiveness in accurately detecting various DR grades. By
leveraging the strengths of both EyeNet and DenseNet through
transfer learning and dense block integration, the proposed
system provides a robust solution for the automated analysis
of DR.

Alam et al. [360] achieved an accuracy of 87.71% in
detecting DR with CNN. This study proposed a segmentation-
assisted DR classification methodology that enhances current
methods by using a fully convolutional network (FCN) to
segment retinal neovascularisations (NV) in retinal images
before classification. The study used the Kaggle EyePacs
dataset, which contains fundus images from patients with
varying degrees of DR (mild, moderate, severe NPDR, and
PDR). The FCN was trained to locate neovascularisation
in 669 retinal fundus photographs labelled with PDR status
according to NV presence. The trained segmentation model
was then used to locate probable NV in images from the
classification dataset. Subsequently, a CNN was trained to
classify the combined images and probability maps into
categories of PDR. The segmentation-assisted classification
achieved an accuracy of 87.71%. The study demonstrates
that segmentation assistance improves the identification of
the most severe stage of diabetic retinopathy.

Jiang et al. [361] achieved an accuracy of 75.7% in
detecting DR with CNN. A total of 10,551 fundus images
from the Kaggle fundus image dataset were collected for
the experiment. The images were first pre-processed using
histogram equalisation and image augmentation techniques.
A CNN was then constructed and trained using the Caffe
framework, with 8,626 images used for training the model.
The performance of the trained CNN model was validated
by classifying 1,925 fundus images into DR and non-DR
categories. The results indicated that the CNN achieved an
accuracy of 75.70% in classifying the 1,925 test fundus
images.

Overall, these studies demonstrate the high potential of
CNN classifiers in accurately detecting DR from fundus im-
ages. CNNs achieve high accuracy in DR detection for several
reasons. CNNs automatically extract features from fundus
images, identifying patterns and structures associated with
DR, such as microaneurysms, hemorrhages, and exudates
[145]. They also capture spatial hierarchies and relationships
within images, essential for detecting varying stages of DR
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across different regions of the retina [145]. The deep layers
of CNNs allow them to learn both low-level and high-level
features, crucial for accurate DR detection. Using pre-trained
CNN models on large datasets and fine-tuning them for DR
detection leverages learned features, enhancing accuracy even
with smaller medical datasets [141].

FIGURE 14. Maximum accuracy values attained by several authors for CNN
classifier-based automated glaucoma detection.

Modern CNN architectures like ResNet and DenseNet
include innovations that enhance feature extraction and model
performance [362]. These factors contribute to the high
accuracy of CNNs in DR detection, making them highly
effective tools for automated detection from fundus images.

The bar graph in Figure 14 illustrates the maximum
accuracy achieved by different authors for CNN classifier-
based automated glaucoma detection. Each bar represents
a different study, with the height of the bar indicating the
reported accuracy. The graph highlights the effectiveness
of CNN classifiers in automated glaucoma detection, with
reported accuracies ranging from 88.20% to 98.52%.

Shyamalee et al. [305] achieved the highest accuracy of
98.52% in classifying glaucoma using CNN architecture
Inception-v3 on the ACRIMA dataset. The study proposed
developing an automated system for classifying glaucoma us-
ing DL, specifically through three various CNN architectures
(Inception-v3, VGG19, ResNet50) on the publicly available

RIM-ONE and ACRIMA databases. RIM-ONE includes three
versions with a total of 942 fundus images (399 glaucomatous
and 543 healthy) and ACRIMA consists of 705 images (396
glaucomatous and 309 healthy).

To enhance the image quality, they applied pre-processing
techniques like dilation and Contrast Limited Adaptive His-
togram Equalisation (CLAHE), which improve brightness and
contrast. They also used data augmentation techniques such as
rotation, shearing, zooming, flipping, and shifting to address
data imbalance and increase the training dataset size. The
models were trained using the Adam and SGD optimizers with
binary cross-entropy as the loss function, over 150 epochs
with a 70:15:15 split for training, testing, and validation sets
[305].

The results of the study showed that the Inception-v3
model achieved the highest accuracy of 98.52% on the
ACRIMA dataset and 96.56% on the RIM-ONE dataset [305].
VGG19 and ResNet50 also demonstrated high accuracy but
slightly less than Inception-v3. The researchers evaluated
model performance using metrics such as accuracy, precision,
recall, F1-score, sensitivity, specificity, and AUC. Confusion
matrices and ROC curves were used to illustrate the models’
ability to correctly classify fundus images and their diagnostic
performance.

The study provided a comparative analysis of the proposed
CNN architectures with existing studies, highlighting the su-
perior performance of Inception-v3 in classifying glaucoma.
By addressing the class imbalance issue with augmentation
techniques, the researchers improved the model’s robustness
and reduced overfitting [305].

Sanghavi et al [363] achieved an accuracy of 96.33%
in classifying glaucoma using CNN. This study utilised
six widely used datasets of fundus images: DRISHTI-GS,
ORIGA, ACRIMA, PAPILA, g1020, and RIM-ONE. This
research investigates various segmentation and classification
techniques for optic disk segmentation and the classification
of normal and glaucomatous eyes. The approach begins with
histogram processing to determine the type of image, which
informs whether segmentation is necessary. Some datasets
contained complete retinal images, while others included
segmented optic disks. Segmented images are directly used for
classification with the proposed convolutional neural network
(CNN).

For complete retinal images, segmentation is performed
using Simple Linear Iterative Clustering (SLIC) and nor-
malised graph cut algorithms [363]. The performance of
the proposed framework is compared with that of pre-
trained neural networks, including VGG19, InceptionV3,
and ResNet50V2, using major metrics. The study trained
and tested these architectures with 3115 images from six
standard datasets. The proposed framework achieved superior
performance, with an accuracy of 96.33%, outperforming all
compared models.

Ovreiu et al. [362] achieved an accuracy of 97% in
classifying glaucoma using CNN architecture DenseNet on
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the ACRIMA dataset. This paper proposed a method utilising
densely connected neural networks (DenseNet) with 201
layers, initially pre-trained on the ImageNet dataset, and
applied to the ACRIMA dataset. The method achieved an
accuracy of approximately 97% and an F1-score of 0.969

Natarajan et al [364] achieved an accuracy of 97.05% in
classifying glaucoma using CNN architecture U-Net on the
DRISHTI-GS1 dataset. This paper presents a two-stage deep
learning framework called UNet-SNet for glaucoma detec-
tion. Initially, each fundus image is segmented into Gaussian
Mixture Model (GMM) superpixels, and the Region of
Interest (RoI) is separated using Cuckoo Search Optimisation
(CSO). In the first stage, a regularised U-Net is trained with
RoIs for optic disc (OD) segmentation. In the second stage,
SqueezeNet is fine-tuned with deep features extracted from the
ODs to classify the fundus images as either glaucomatous or
normal. The U-Net was trained and tested with the RIGA and
RIM-ONEv2 datasets, achieving accuracies of 97.84% and
99.85%, respectively. The classifier was trained with ODs
segmented from the RIM-ONEv2 dataset and achieved an
accuracy of 97.05% on the DRISHTI-GS1 dataset.

Gobinath et al [365] achieved an accuracy of 88.2% in
classifying glaucoma using CNN. This study highlights the
potential of using semi-supervised deep learning models over
supervised methods. By utilising both labelled and unlabeled
data on fundus images, the proposed semi-supervised GAN
model comprises a SegNet, a real data generator, and a classi-
fier to enhance segmentation performance. They demonstrate
an accuracy of 88.2%, specificity of 90.8%, and sensitivity of
85%.

Perdomo et al [366] achieved an accuracy of 89.04% in
classifying glaucoma using CNN. This study introduced a
multi-stage deep learning model for glaucoma detection,
utilising a curriculum learning strategy. In curriculum learn-
ing, the model is trained sequentially to handle increasingly
difficult tasks. The proposed model consists of several stages:
segmentation of the optic disc and physiological cup, pre-
diction of morphometric features from these segmentations,
and prediction of the disease level (categorised as healthy,
suspicious, or glaucomatous). The experimental evaluation
demonstrates that the proposed method outperforms con-
ventional convolutional deep learning models. Specifically,
the method achieved an accuracy of 89.4% and an Area
Under the Curve (AUC) of 0.82 on the RIM-ONE-v1 and
DRISHTI-GS1 datasets, respectively. These results highlight
the effectiveness of the multi-stage deep learning approach
for glaucoma detection.

The figures highlight the top accuracy results achieved
with SVM and CNN classifiers. SVMs still achieve high
accuracy for glaucoma, up to 99.2% (Figure 11). Meanwhile,
CNNs now consistently surpass 95% accuracy for AMD
(Figure 12) and Glaucoma (Figure 14). Continued algorithm
improvements and larger datasets for DL will be key to further
boosting performance.

A review of the studies listed in Appendix A reveals

that each study used different datasets and involved various
subjects. The difference in datasets, the number of fundus
images and the quality of the images can also make it difficult
to gauge performance. The diversity in data and sample sizes
makes it difficult to compare the performance of the proposed
methods for detecting eye diseases accurately.

XII. CURRENT LIMITATIONS
Although the studies included in our comprehensive review
demonstrate the potential of ML and DL in the detection of
eye diseases, several limitations remain.

From the reviewed literature, we can see that the simul-
taneous occurrence of multiple pathologies has rarely been
considered and evaluated, which could aid in the recognition
and segmentation of retinal structures and lesions. For
instance, in glaucoma detection, retinal lesions caused by DR
and AMD are often ignored and not detected by the developed
algorithms. When these lesions are close to the optic disc,
they complicate the detection of its boundary, making it more
error-prone. An algorithm that simultaneously identifies both
the optic disc boundary and retinal lesions could be more
effective.

Another limitation is the limited availability of high-quality,
well-annotated eye image datasets, which are crucial for
training robust ML and DL models. The scarcity of such
datasets holds back the development of these algorithms.
There is no dataset with images from the same subjects
acquired at different time points, which hinders the validation
of specific methods for disease monitoring. Such monitoring
is crucial in clinical practice and should be considered in the
development of automatic methods to support diagnosis.

Furthermore, comparing the performance of various studies
is challenging due to the use of different datasets, which vary
in terms of the number of subjects, data collection methods,
and image quality. These factors, along with variations in
image resolution and differences between imaging devices,
can significantly impact the performance of the algorithms.

Some studies did not use enough fundus images; a larger
dataset should allow the model to train itself with more
data, leading to a more accurate diagnosis. A larger dataset
must be used to clarify the performance disparities between
ophthalmologists’ diagnoses and AI models. Imbalanced
datasets can also hinder model performance, as they may
lead to biased predictions.

CNNs and Vision Transformers excel when they have
access to large datasets. However, retinal images are rarely
available in substantial quantities and typically lack anno-
tations. DL models often overfit when trained on limited
data. Additionally, DL models are inherently complex and
computationally intensive, which can hinder their seamless
integration into clinical practice. Most of the included studies
relied on a common reference standard for image classification
decisions made by ophthalmologist graders. This implies that
the algorithm may not perform well for images with subtle
findings that many ophthalmologists might overlook.
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Another limitation of the studies is using different per-
formance metrics for evaluating ML and DL models in
detecting ODs from fundus images. While some studies
used only accuracy, sensitivity and specificity, others used
precision, mean error, AUC, correlation coefficient, IoU, and
Dice. The lack of standardisation in performance metrics has
several disadvantages. Without standard metrics, comparing
the performance of different models becomes challenging,
as each study may choose different metrics that highlight
its strengths but may not provide a complete picture of the
model’s performance.

Certain metrics might favour models that are good at
handling specific types of data imbalances or particular
aspects of the data. This could lead to the selection of models
that are not necessarily the best overall but perform well on
the chosen metric.

Focusing on a narrow set of metrics might lead to overlook-
ing important aspects of model performance, such as how well
a model can generalise to unseen data, its robustness to noise
in the data, or its performance across different subgroups
within the data. Different studies might interpret the same
metric differently, especially in the absence of context or
an understanding of what each metric truly measures. For
example, a high accuracy might seem impressive, but it may
not be as relevant in a dataset where there are only a handful
of fundus images. It is crucial to consider all metrics to assess
the success of classification fully. While various metrics offer
valuable insights into different aspects of model performance,
the lack of standardisation in their use across studies can
complicate the evaluation and make it difficult to compare
performance.

Addressing these limitations is essential for the successful
implementation of ML and DL in ophthalmology and for
realising their potential to revolutionize eye disease detection
and management.

XIII. FUTURE DIRECTIONS
Our study identified several challenges in developing and

deploying AI-based diagnostic tools for retinal diseases. One
major challenge is the limited size and lack of diversity in cur-
rent datasets, which hampers the model’s ability to generalise
across different populations and conditions, making it less
reliable. Additionally, in real-world scenarios, images often
contain noise due to varying quality, lighting conditions, and
patient movement, which can obscure important diagnostic
features and reduce the accuracy of AI models. Another
challenge is the variation in imaging devices used by different
hospitals and clinics, noise present in images, resulting in
inconsistencies in image quality and characteristics that pose
a challenge for AI models trained on data from a single type
of device. Moreover, gaining the trust of clinicians for the
widespread adoption of AI models in clinical settings requires
transparent, interpretable models and consistent performance
across diverse clinical environments.

To address these challenges, several AI solutions are pro-

posed, structured in a clear roadmap for future work. Firstly,
collaboration with multiple hospitals and clinics globally to
collect a large, diverse set of annotated images should be
done, ensuring the inclusion of varied demographics (age,
sex, race) and multiple pathologies. It would be beneficial
for future research to associate each image with information
not only on the presence or grading of a specific pathology
but also on any additional pathologies present. This approach
would facilitate the development of algorithms capable of
screening and analysing multiple pathologies simultaneously,
effectively managing signs related to other conditions that
currently represent noise in images. Establishing standardised
protocols for image annotation and data collection will
ensure consistency and reliability across different sources.
Secondly, to handle real-world image noise, the development
and integration of advanced preprocessing algorithms to clean
and enhance images by reducing noise and correcting lighting
variations should be done. Training models using techniques
such as data augmentation, adversarial training, and noise-
robust algorithms like uncertainty quantification will improve
their resilience to real-world noise [367].

Managing variation in imaging devices will involve creating
calibration procedures to standardise images from different
devices, ensuring that the AI model can handle variations in
image quality and settings. Training AI models on datasets
collected from various types of imaging devices will enhance
their generalisability and robustness across different clinical
environments. To build clinician trust through explainable AI
(XAI), the development of interpretable models that provide
clear, understandable insights into their decision-making
processes should be done, integrating XAI techniques to
highlight which parts of an image contributed to the diagnosis
[367], [368]. Additionally, designing user-friendly interfaces
that present AI findings in an easy-to-interpret manner should
include visual aids, confidence scores, and clear explanations
of the AI’s reasoning [369]. Elsharkawy et al. proposed an
automated, explainable artificial intelligence (XAI) system
for diagnosing age-related macular degeneration [370]. This
system mimicked physician perceptions by deriving clinically
meaningful features from optical coherence tomography
(OCT) B-scan images, enabling differentiation between a
normal retina, various AMD grades (early, intermediate, geo-
graphic atrophy, inactive wet, active neovascular disease), and
non-AMD diseases [370]. The XAI system extracted retinal
OCT-based clinical markers related to AMD progression,
including subretinal tissue, sub-retinal pigment epithelial
tissue, intraretinal fluid, subretinal fluid, and choroidal hyper
transmission using a DeepLabV3+ network; merged retina
layers using a novel convolutional neural network model;
drusen detection via 2D curvature analysis; and retinal layer
thickness and reflectivity features. These clinical features
were utilised in a hierarchical decision tree process to grade
the OCT images. Severe cases indicating advanced AMD
were further analysed to diagnose specific conditions, while
less severe cases were assessed for intermediate or early-stage
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AMD. The system was evaluated on 1285 OCT images and
achieved 90.82% accuracy, demonstrating its capability to
automatically distinguish between normal eyes, various AMD
grades, and non-AMD diseases [370].

Model explainability is a continuing area of research,
particularly with CNNs. Vision Transformers (ViTs) can be
computationally demanding and require substantial training
data, which can restrict their use in certain contexts [371].
Despite this, ViTs have inherent interpretability features,
such as self-attention mechanisms, that enable the model
to concentrate on important aspects of the input image.
This characteristic makes ViTs potentially more suitable for
developing explainable models compared to traditional CNNs
[371]. Future work should be done to comprehend the balance
between interpretability and computational complexity in
ViTs and to discover the best methods for creating lightweight,
explainable models using ViTs.

Combining modalities for comprehensive analysis is an-
other key solution. For example, fundus imaging offers a
colour photograph of the retina, providing a view of the
retinal surface, while OCT offers a cross-sectional image,
giving insight into the layers of the retina. Using both will
allow for a more complete analysis of the retina’s health.
Each imaging modality may capture different aspects of
retinal diseases. For instance, OCT can show subretinal fluid
or macular edema not visible on fundus photography. AI
models can learn to identify disease markers from both
types of images, potentially improving diagnostic accuracy.
Some changes may be more apparent or only visible in
one type of imaging. By analysing both fundus and OCT
images, AI can help in the early detection of diseases by
picking up on these subtle changes, which is crucial for
conditions like glaucoma and AMD, where early intervention
can prevent progression. AI systems can cross-verify findings
across both types of images to reduce false positives and
negatives. For example, what appears to be an abnormality in
a fundus image may be clarified as a normal variation in the
OCT, leading to more confident diagnoses. Monitoring these
diseases over time can be more effective when both types of
images are available. AI models can track changes in both
the retinal surface and sub-retinal structures, giving a clearer
picture of how a disease is responding to treatment. The
development of models that simultaneously analyse fundus
and OCT images to provide a more comprehensive assessment
of retinal health, capturing both surface and sub-surface
retinal features, should be done. Future work should focus on
creating algorithms capable of detecting and grading multiple
retinal pathologies simultaneously will involve associating
each image with information about the presence and grading
of various conditions, facilitating more holistic patient care.

Uncertainty quantification in retinal health screening refers
to the process of identifying, characterising, and manag-
ing the uncertainties inherent in predictive models [372].
Uncertainty quantification is crucial for providing reliable
and robust diagnostic outcomes from ML and DL models

[373]. Aleatoric uncertainty or data uncertainty, arises from
inherent variability in the data due to noise or insufficient
data. In retinal imaging, it might result from variations
in image quality, patient demographics, or differences in
imaging devices. Epistemic uncertainty or model uncertainty
arises from the model’s lack of knowledge, often due to
insufficient training data or limitations in the model archi-
tecture. Uncertainty quantification provides a measure of
confidence in the model’s predictions and can help clinicians
make more informed decisions [373]. For instance, if a
model predicts the presence of DR with high uncertainty,
a clinician might decide to perform additional tests before
confirming the diagnosis. Incorporating uncertainty quantifi-
cation methods will provide measures of confidence in the
model’s predictions, helping clinicians make more informed
decisions by highlighting cases that may require additional
review or testing. Developing training programs for clinicians
to understand and effectively use AI tools, including how to
interpret uncertainty measures and integrate AI findings into
their diagnostic workflow, will be crucial.

Our study found that ML and DL are the two emerging tools
that are used for screening retinal diseases. ML algorithms,
however, may not be as potent as DL for automatic detection,
as the user has to define each of the features to detect the
disease. Future work should focus on developing a novel
DL model to detect multi-retinal classes such as AMD,
DR, glaucoma, cataract, comorbid, and high blood pressure
subjects, from a combination of data from multiple imaging
modalities such as fundus and OCT. However, DL models
demand substantial computational resources for both training
and testing, which can impede their scalability and practicality
in clinical settings. Future work should focus on developing
an efficient, lightweight DL model that can be trained and
deployed on devices with limited resources.

A proposed model, like the one shown in Figure 15, can
be created in the future, which takes different modalities
such as fundus and OCT eye images as input, and with
the help of xAI makes the results more understandable for
clinicians. Combining different methods, analysing images
and data acquired through various modalities, and conducting
simultaneous analyses of multiple pathologies or retinal
lesions could lead to improved performance and predictions
that are as intuitive as those of expert clinicians. Future
work should also focus on establishing a standardised set
of performance metrics that reflect the needs and priorities
of both the medical and patient communities. The lack
of standardised evaluation metrics can be a barrier to the
clinical adoption of ML and DL models, as clinicians and
regulatory bodies may find it difficult to assess the efficacy
and safety of these models without a common framework
for evaluation. Future work should focus on developing user-
friendly interfaces that present uncertainty information clearly
to clinicians, as that will be crucial for the integration of AI
models in clinical settings. Models incorporating uncertainty
quantification may find it easier to gain regulatory approval, as
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they can provide evidence of their reliability and limitations,
aligning with the requirements for safety and efficacy.

By addressing these challenges through a structured and
phased approach, the aim should be to develop AI solutions
that are reliable, interpretable, and broadly applicable in
clinical settings, ultimately improving the diagnosis and
management of retinal diseases.

FIGURE 15. Proposed AI model which takes fundus and OCT eye images of the
same patient as input and with the help of xAI makes the results more
understandable for clinicians..

XIV. CONCLUSIONS
Over the last decade, AI has significantly transformed retinal
health detection by automating and improving the accuracy
of diagnoses. In recent years, numerous automatic diagnostic
support methods have been proposed with the goal of
facilitating widespread screening and providing quantitative,
objective, and reproducible information on various retinal
diseases such as DR, AMD, and glaucoma.

This paper presents an overview of traditional, ML, and
modern DL techniques for detecting ophthalmic diseases
using retinal fundus images. Traditional computer-aided
diagnosis (CAD) systems have evolved into sophisticated
ML and DL models, reducing the need for manual feature
extraction and enabling real-time, large-scale screenings.

Our review details the main features and clinical parameters
of each disease and describes various publicly available image
datasets used for algorithm development. The paper also
provides important critical insights and discusses research
trends. Additionally, it reviews methods based on traditional
image processing techniques, highlighting their crucial role
in implementing pre-processing steps that are still necessary
to enhance the performance of ML and DL models. We have
seen from the literature, the recent trend of using DL over ML
due to its robustness and other advantages, such as no need
for manual feature extractions.

Ophthalmologists have historically performed retinal
screening using a labour-intensive, time-consuming manual
procedure that can lead to subjective bias in the diagnosis [89].
By utilising an automated system with DL, analysis time
will be shortened. Additionally, it will reduce the subjective
variations in how observers interpret images [374]. Clinicians
would have a better chance of diagnosing and treating these

disorders if ML and DL algorithms were utilised to identify
them in their early stages. Since AI models and approaches
would be used, there would not be any physician subjectivity
that could reduce diagnosis accuracy.

The performance of DL models in detecting glaucoma,
DR, and AMD can be translated into real-world clinical
settings, though challenges remain. Successful implemen-
tation depends on integrating these models into clinical
workflows, ensuring they are trained on diverse and repre-
sentative datasets, and addressing regulatory and ethical con-
siderations. However, continuous evaluation and adaptation
are needed to ensure these models perform reliably across
different populations and healthcare environments.

This review is useful for identifying the current main chal-
lenges and findings related to the automatic detection of each
specific disease, as well as common aspects and discrepancies
between various solutions developed for different diseases.
While many review papers focus on the automatic detection
of a single ophthalmic disease from fundus images, this
comprehensive overview of the literature on all pathologies
can facilitate the migration of the best solutions across
different conditions, potentially leading to the development
of more precise and clinically useful automatic analysis tools
for all retinal diseases.

The continued development and integration of AI-based
diagnostic tools in ophthalmology hold the potential to
significantly improve patient outcomes and revolutionise the
field of retinal health diagnostics. An automated retinal
health screening system in clinical settings can be utilised
to distinguish healthy eyes from ODs, hence cutting down
on the amount of time needed for retinal screening sessions.
Additionally, there would be less human error and no bias
on the part of the clinicians. When effectively implemented,
these methods would result in a faster and more consistent
OD diagnosis than a human process. By addressing current
limitations, such as the need for diverse datasets, explainabil-
ity, and uncertainty quantification integration, researchers can
continue to advance the capabilities of ML and DL systems
in detecting and monitoring retinal diseases.

By overcoming existing challenges and capitalising on the
promising results, researchers and clinicians can collaborate
to develop more accurate, efficient, and accessible diagnostic
tools for retinal diseases, explore the potential of personalised
medicine in retinal health diagnostics, and ultimately improve
patient outcomes and quality of life for millions of people
worldwide.
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APPENDIX A
The complete set of findings from the systematic review is

displayed in Tables 14 to 19. In addition, the type of ML
or DL in the study, the authors, the year that the article was
published, and the performance are all displayed. The results
presented here are based on 1601 significant research articles
found in the Google Scholar, IEEE, PubMed, and Science
Direct databases between January 2012 and June 2024.
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TABLE 14. List of research papers that have used machine learning to classify Glaucoma cases. Note: AEH = Aravind eye hospital, Madurai, India; NOI = NIO hospital, Pune;
OHT = Ophthalmology Hospital, Tunisia; KMC = Kasturba Medical College, India; BEVC = Biobank Eye Vision Consortium, UK; S1 - DRISHTI-GS, AEH (101); S2 - RIM-One;
S3 - NOI (118); S4 - DRIONS-DB (110); S5 JSIEC (124); S6 - DRIVE (44); HCECE = Homogeneity, Contrast, Entropy, Correlation and Energy; PHOVW = Pyramid histogram
of visual words; KRYE = Kapoor/Renyi/Yager entropy; SRKE = Shannon/Rényi/Kapoor entropy; LCP = Local configuration pattern; BV = Blood Vessels, SFEM = Superpixel
feature extraction module, RHT = Randomized Hough transform, SFTMH = Statistical features/texton map histogram, HOCF = Higher order cumulant features, DCGGFHHW =
DDLS/CDR/GLRM/GLCM/FoS/HOS/HOC/Wavelet; CHRF = corneal hysteresis + corneal resistance factor, VERC = Venu Eye Research Centre, India; IOP = Intraocular
Pressure; CCT = Central Corneal Thickness; ACRIMA = A1

Year Authors Classifier Dataset Feature Extracted Accuracy % Specificity % Sensitivity%
2024 [375] SVM RIMONE Various 96.21 97.16 94.18
2024 [376] SVM REFUGE, A1, ORIGA, S2, S1 Various 81 84
2024 [376] RF REFUGE, A1, ORIGA, S2, S1 Various 88 98
2024 [376] Logistic Regression REFUGE, A1, ORIGA, S2, S1 Various 95 98
2024 [376] NB Gaussian REFUGE, A1, ORIGA, S2, S1 Various 70 84
2024 [376] NB Multinomial REFUGE, A1, ORIGA, S2, S1 Various 70 70
2024 [377] Random Forest SOURCE IOP, CCT 79.2 86.5 43.9
2024 [377] Decision Tree REFUGE, A1, ORIGA, S2, S1 Various 85 77
2024 [377] Logistic Regression (L2,L1) SOURCE IOP, CCT 76.2, 77.5 80.8, 83.8 53.6,47.1
2024 [377] Elastic Net Regression SOURCE IOP, CCT 76.6 81.8 50.9
2024 [377] Gradient Boosted Trees SOURCE IOP, CCT 78.7 84.7 49.4
2024 [377] XGBoost SOURCE IOP, CCT 68.5 82.2 55.1
2023 [378] SVM, KNN ORIGA Various deep features 89.8, 81.9 89.8, 81.9
2023 [378] Decision Tree, NB ORIGA, HRF Various deep features 98.8, 53.3 98.8, 53.3
2023 [378] NB ORIGA Various deep features 69.4 69.4
2023 [378] Logistic Regression ORIGA Various deep features 99.4 99.4
2023 [378] KNN, DT, SVM, RF, LR HRF Various deep features 50 50
2023 [378] KNN DRISTHI-GS Various deep features 79.2 100
2023 [378] Decision Tree, SVM DRISTHI-GS Various deep features 96, 73.3 98.6, 100
2023 [378] RF DRISTHI-GS Various deep features 95 98.6
2023 [378] NB DRISTHI-GS Various deep features 65.3 54.3
2023 [378] Logistic Regression DRISTHI-GS Various deep features 99 100
2022 [379] ANFIS Private Various 97.1 97.3
2022 [108] LDA,RF S1, ACRIMA-DB HCECE 73.33, 82.56 88.88, 84.68
2022 [108] SVM, NB S1, ACRIMA-DB HCECE 82.64, 88.86 86.48, 90.25

2022 [334] SVM S1-R, ORIGA-R, S2-R Various 93.4, 79.6, 91.3
2022 [334] SVM A1-R, LAG-R Various 99.5, 99.6

2021 [121] Densenet,
InceptionResnetV4 BEVC, UK (2476 images) IOP, CHRF 81

2021 [109] SVM, NN, Adaboost i. S1, ii. S2, iii. S3,
iv. S4, v. S5, vi. S6

CDR+NRR
+BV ISNT ratio 100 100 100

2020 [110] KNN
i. DRISHTI-GS,
AEH (101 images),
ii. RIM-One (159 images)

DCGGFHHW 91.6 90 91

2020 [110] NN
i. DRISHTI-GS,
AEH (101 images),
ii. RIM-One (159 images)

DCGGFHHW 94.4 93 94

2020 [110] SVM
i. DRISHTI-GS,
AEH (101 images),
ii. RIM-One (159 images)

DCGGFHHW 97.2 96 97

2020 [110] RF
i. DRISHTI-GS,
AEH (101 images),
ii. RIM-One (159 images)

DCGGFHHW 94.4 93 94

2020 [110] NB
i. DRISHTI-GS,
AEH (101 images),
ii. RIM-One (159 images)

DCGGFHHW 89.6 89 88

2020 [87] Inception-v3, Adam
Optimizer Private Various 92.65

2020 [380] SVM Private (298 images) CDR 95.5
2020 [380] KNN Private (298 images) CDR 93.3
2020 [380] NB Private (298 images) CDR 94.35
2019 [351] SVM RIM-One, Spain (166 images) SFEM 98.6 97.6 92.3
2019 [381] CNN, RF Private (208 images), Helsinki RNFL/GCC thickness map
2019 [111] SVM DRIONS-DB (110 images) SFTMH 99.2 99.3 96.9
2018 [122] RF, CNN, SVM Private (304 images) RNFL/GCC thickness map 96
2018 [113] RF KMC (2220 images) PHOVW, Fisher vector 96.79 96.96 96.73
2018 [347] Fuzzy logic OHT (104 images) RHT 90.2 94.8 97.8
2017 [114] KNN KMC (702 images) LCP 95.7 93.7 96.2
2017 [127] LS_SVM KMC (488 images) KRYE, fractal dimensions 94.8 93.6 95.9
2017 [128] LS_SVM KMC (60 images) EWT, Correntropy 98.3 96.7 100
2016 [116] KNN VERC(63 images) Wavelet feature extraction 94.8 100 90.9
2015 [382] SVM RIM-One, Spain (158 images) HWT 90.1 85.7 94.4
2015 [352] SVM VERC (67 images) CDR, NRR, BV ISNT 94.1 90 100
2015 [353] SVM KMC (510 images) Statistics/energy, SRKE 93.1 96.2 89.7
2013 [341] SVM, NB KMC (272 images) HOCF 92.65 92 100
2012 [383] SMO KMC (60 images) Wavelet energy 93.33
2012 [342] SVM KMC (60 images) Wavelet energy, HOS 95 93.3 96.6
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TABLE 15. List of papers that used DL to classify Glaucoma. Note: LALES = Los Angeles Latino Eye Study. S = SVM, k = KNN, C/R-18/G = ResNet-18/GlaucomaNet; R =
ResNet, G2 = GoogleNet, A = AlexNet, V = VGGNet

Year Authors Classifier Dataset Accuracy % Specificity % Sensitivity% AUC
2024 [312] Inception-v3 RIM-ONE 98.79 95.58 99.22 0.99
2024 [384] DNN Private 93.51 92.05 0.96
2024 [363] CNN Private (3115 images) 96.33
2024 [118] MFR-Net Private (1426 images) 98.36 100 97.6 0.98
2024 [118] CDAM-Net Private (1426 images) 99.3 100 98.8 0.99
2024 [377] Deep Learning Embedding Model SOURCE 77.7 83.4 50.1
2024 [377] Deep Learning FCN SOURCE 72.5 75.3 58.8
2024 [385] GDA Private (66,742 images) 90 96 0.98
2024 [385] GDA Private (66,742 images) 87 94 0.96
2024 [385] GDA Private (66,742 images) 85 91 0.93
2024 [385] GDA ACRIMA 65 85 0.87
2024 [385] GDA RIM-ONE 75 89 0.92
2023 [327] LSVT-Net REFUGE 99.6 0.99
2023 [332] ESS-Net REFUGE 99.88 99.91 97.98
2023 [332] FBSS-Net REFUGE 99.91 99.95 97.41
2023 [332] ESS-Net Rim-One-r3 99.69 99.74 97.48
2023 [332] FBSS-Net Rim-One-r3 99.74 99.86 97.04
2023 [332] ESS-Net Drions-DB 99.76 99.95 94.45
2023 [332] FBSS-Net Drions-DB 99.82 99.91 97.41
2023 [332] ESS-Net Drishti-GS 99.85 99.97 96.45
2023 [332] FBSS-Net Drishti-GS 99.87 99.93 97.87
2022 [159] U-Net with Inception-v3 (on ODS) RIM-ONE, ACRIMA 98.45, 97.91 97.14, 96.57 99.38, 98.69
2022 [159] U-Net with VGG19 (on ODS) RIM-ONE, ACRIMA 99.02, 98.12 98.38, 96.03 99.47, 99.34
2022 [159] U-Net with ResNet50 (on ODS) RIM-ONE, ACRIMA 99.53, 99.23 99.25, 98.45 99.73, 99.67
2022 [159] U-Net with Inception-v3 (on OCS) RIM-ONE, ACRIMA 96.34, 96.46 97.46, 96.64 92.58, 96.16
2022 [159] U-Net with VGG19 (on OCS) RIM-ONE, ACRIMA 96.55, 97.22 89.82, 97.61 97.95, 95.08
2022 [159] U-Net with ResNet50 (on OCS) RIM-ONE, ACRIMA 97.37, 97.85 97.97, 98.05 96.53, 96.61
2022 [305] Inception-v3 RIM-ONE 96.56 90.9 98.31
2022 [305] VGG19 RIM-ONE 94.95 86.13 97.98
2022 [305] ResNet50 RIM-ONE 95.49 88.88 97.59
2022 [305] Inception-v3 ACRIMA 98.52 90.9 99.5
2022 [305] VGG19 ACRIMA 92.64 78.78 97.08
2022 [305] ResNet50 ACRIMA 95.58 83.33 98.21
2022 [312] U-Net with Inception-v3 (on ODS) RIM-ONE 98.65 96.81 99.01
2022 [312] U-Net with Inception-v3 (on ODS) ACRIMA 97.91 90 98.63
2022 [312] U-Net with VGG19 (on ODS) RIM-ONE 99.07 97.46 99.38
2022 [312] U-Net with VGG19 (on ODS) ACRIMA 98.18 91.66 98.78
2022 [312] U-Net with ResNet50 (on ODS) RIM-ONE 99.58 98.69 99.75
2022 [312] U-Net with ResNet50 (on ODS) ACRIMA 99.26 94.73 99.54
2022 [312] U-Net with Inception-v3 (on OCS) RIM-ONE 96.39 91.27 97.49
2022 [312] U-Net with Inception-v3 (on OCS) ACRIMA 96.65 82.25 98.01
2022 [312] U-Net with VGG19 (on OCS) RIM-ONE 96.7 91.81 97.74
2022 [312] U-Net with VGG19 (on OCS) ACRIMA 97.35 86.66 98.32
2022 [312] U-Net with ResNet50 (on OCS) RIM-ONE 97.42 92.98 98.37
2022 [312] U-Net with ResNet50 (on OCS) ACRIMA 98.05 89.83 98.78
2022 [364] U-Net ACRIMA 99.86
2022 [364] U-Net DRISHTIGS1 97.05
2022 [336] ViT ORIGA, RIM-ONEv3 91.2, 95.7 92.3, 94.1
2022 [371] ViT ORIGA 0.96
2021 [146] InceptionResNetV2 Private (22972 images) 94.3-98.4 97.5-98.2
2021 [365] CNN Private (1426 images) 88.2 90.8 85
2021 [374] TCNN RIM-One, Spain/RIGA 91.5 92 90.5
2021 [374] SSCNN RIM-One, Spain/RIGA 92.4 93.3 91.7
2021 [374] SSCNN-DAE RIM-One, Spain/RIGA 93.8 90.5 98.9
2021 [386] ViT ORIGA 73.7 0.964
2021 [387] ViT RIGA 90.2 0.975
2020 [362] DenseNet-201 ACRIMA 97 100 94.1 0.971
2020 [306] DCNNs DRIVE, DIARETDB1 97.3
2020 [140] CNN Private (1155 images) 99
2020 [388] ResNet-50 Private 97
2019 [141] AG-CNN LAG 96.2 96.7 95.4 0.983
2019 [389] GoogleNet, ResNet-50 RIM-ONE 91, 90 99, 94 17, 42 0.91, 0.84
2019 [390] CNN, RF Private (357 images) 0.94
2019 [391] S, k, C/R-18/G LALES (93 images) 0.91 to 0.92
2019 [392] Multi-task CNN REFUGE (400 images) 0.95
2019 [389] GoogleNet ResNet RIM-ONE 85, 86 91, 93 29, 21 0.75, 0.74
2018 [366] DCNN RIM-ONE 89.4
2018 [22] DCNN LabelMe 92 95.6 0.986
2018 [393] MB-NN Private 91.5 90.9 92.3
2018 [394] CNN Private (3239 images) 79.4 90 0.926
2018 [395] DL Private (50000 images) 92 95.6 0.986
2015 [123] CNN ORIGA SCES 0.831, 0.887
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TABLE 16. List of research papers which have used machine learning to classify AMD.

Year Authors Classifier Dataset Feature Extracted Accuracy % Specificity % Sensitivity%
2024 [396] SVM Private Various 96
2024 [396] SVM Private Various 92
2024 [303] SVM Private Various 96.85 97.89 93.72
2021 [397] NN Private 88.8 91.8
2020 [398] ResNet34 Private 87.2 80-100 50
2019 [131] MM, SVM STARE Various 83.58
2017 [399] RF, Wavelet transform Private Energy and entropy features 92.48 95.58 89.37
2017 [260] SVM, PHOG KMC, Manipal, India Nonlinear features 83.3 84.8 82.6
2017 [18] DNN Private Various 87.63
2015 [166] NN Private Edges of drusen 96.17 99 89.81
2015 [339] Pixel-wise feature extraction Private Various 96.32 97
2014 [348] Tree-based approach STARE 99.9 99 99.5
2014 [400] Gabor filter STARE Various 96
2014 [124] SVM, Energy, entropies, DWT KMC, Manipal, India First-order statistics 93.7 96.3 91.11
2012 [343] Hierarchical decomposition ARIA 100 100 100
2012 [117] WFSGM ARIA + STARE Various 99.6 100 99.4

TABLE 17. List of research papers that used deep learning to classify AMD.

Year Authors Classifier Dataset Accuracy % Specificity % Sensitivity% AUC
2024 [327] LSVT-Net Ichallenge 99.1 0.989
2023 [119] GAN LabelMe 88.5 94 88.5 0.967
2023 [119] GAN LabelMe 83.7 93.2 83.7 0.931
2023 [330] DeepDrAMD Private 95.43 96.75 0.9876
2023 [330] DeepDrAMD Private (dryAMD vs wetAMD) 90.57 92.54 0.9346
2023 [330] DeepDrAMD Private (type-1 vs type 2 MNV) 97.2 96.08 0.9936
2023 [354] VGG19 Private 83 91
2023 [354] Xception Private 94 91
2023 [354] DenseNet201 Private 96 96
2023 [354] EfficientNetB7 Private 95 92
2023 [354] InceptionV3 Private 94 92
2023 [354] NASNetLarge Private 95 93
2023 [354] ResNet152V2 Private 93 90
2022 [333] MuMo-GAN Private 58.2 78.7 56
2022 [333] Pix2pix Private 46.1 75.4 50.6
2022 [333] PAN Private 50.4 75.4 51.2
2021 [401] CNN Private 90 88 0.983
2021 [402] AMDOCT-Net Private 99.1, 95.7 100, 92 98.2, 99.3
2021 [403] ViT MESSIDOR, APTOS 91.3 0.963
2020 [344] CNN Optretina 96 92.4 97.7 0.979
2019 [404] CNN Private 97 94 0.9925
2019 [404] DCNN THDJ (364 images) 97.31 100
2019 [404] DCNN Private 0.998
2018 [356] VGG16 AREDS 92.5
2018 [355] CNN Private 95.45 93.5 96.43
2018 [357] Ensemble AREDS 84.2 94.3
2018 [17] DCNN Private 96.6 97.4 97.8 0.999
2018 [139] DCNN Private 100, 99.6, 99.8 100, 99.2, 99.6 100, 100, 100
2018 [357] CNN Private 83.1
2018 [395] DL Private (8000 images) 94 98 0.995
2017 [102] DCNN NIH AREDS 93.4
2017 [405] DCNN + SVM AREDS 95 95.6 96.4
2016 [406] RT, DWT, LSDA STARE 99.49 99.75 99.21
2016 [406] RT, DWT, LSDA ARIA 96.89 91.67 100
2016 [407] DCNN AREDS 95 95.6 96.4
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TABLE 18. List of research papers that have used machine learning to classify DR. Note: THDJ = Tsukazaki Hospital Database, Japan; MDKEH = Mashhad Database,
Khatam-Al-Anbia Eye Hospital.

Year Authors Classifier Dataset Feature Extracted Accuracy % Specificity % Sensitivity%
2024 [408] RF EyePACS1 Microaneurysms 93 88
2024 [408] Linear SVM EyePACS1 Microaneurysms 92 89
2024 [408] Decision Tree EyePACS1 Microaneurysms 89 87
2024 [408] NB EyePACS1 Microaneurysms 89 77
2024 [408] Radial SVM EyePACS1 Microaneurysms 94 89
2023 [409] SVM APTOS2019 Various 87.04
2023 [250] SVM, KNN, MLP, NB E-ophtha Microaneurysms 94 93.8 87
2022 [292] NN APTOS2019, EyePacs Various 92
2021 [410] SVM, NB Various 99
2021 [411] NN Private Various 95
2021 [126] HIMLA CHASE (28 images) Various 96.62 96.88 95.31
2019 [125] RF Private Exudates 100
2019 [125] ANN Private Exudates 100
2019 [412] NB IDRiD Microaneurysms 77.85
2016 [238] MRF DIARETDB1 Microaneurysms 82
2016 [346] MCA DIARETDB0 Microaneurysms 99.93 89.01
2016 [346] MCA HEI-MED Microaneurysms 99.81 81.26
2016 [346] MCA e-Optha Microaneurysms 99.83 80.32
2014 [340] GMM MESSIDOR Various 97.59 97.03 97.61
2014 [340] GMM DRIVE Various 94.03 94.74 94.26
2014 [340] GMM STARE Various 97.89 97.43 98.79
2014 [340] GMM DIARETDB0 Various 92.96 92.76 93.08
2014 [101] SVM, KNN, GMM, AdaBoost Various 53.16 100
2013 [349] Radon transform MDKEH (120 images) Various 75 94
2013 [349] Radon transform Private (72 images) Various 70 100
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TABLE 19. List of papers that used DL to classify DR. E = EyePACS, A = APTOS, M = MESSIDOR, I = IDRiD, R = ResNet, G2 = GoogleNet, A2 = AlexNet, V = VGGNet

Year Authors Classifier Type Dataset Accuracy % Specificity % Sensitivity% AUC
2024 [413] VGG16 APTOS2019 80.4 70
2024 [413] VGG19 APTOS2019 78.75 97.6
2024 [413] InceptionV3 APTOS2019 96.88 85.4
2024 [413] DenseNet169 APTOS2019 88.75 72.2
2024 [326] ResEAD2Net STARE 98.07 99.01 90.24 0.975
2024 [326] ResEAD2Net DRIVE 97.55 98.01 90.07 0.976
2024 [326] ResEAD2Net MESSIDOR2 98.88 98.29 98.91
2023 [327] LSVT-Net MESSIDOR 88.8 0.961
2023 [327] LSVT-Net MESSIDOR2 92.7 0.966
2023 [327] LSVT-Net APTOS2019 94 0.981
2023 [328] DL (FundusQNet) DRIMDB 99 100 98.4 0.999
2023 [147] HemNet DIARETDB1 97.12 94.76 90.98 0.988
2023 [414] DL EyePACs 75.7 79.5 75.7 0.939
2023 [414] DL MESSIDOR2 87 91.6 87 0.972
2023 [329] Res-ViT MESSIDOR-2, APTOS 89.3 0.981
2023 [331] ensemble-ViT MESSIDOR-2, APTOS 91.2 0.977
2023 [360] FCN EyePACs 87.71
2022 [359] CNN, E-DenseNet E, A, M, I 91.2 96 69
2022 [415] VGG16 Kaggle 77.06 0.917
2022 [415] VGG19 Kaggle 78.74 0.914
2022 [415] InceptionV3 Kaggle 78.14 0.894
2022 [415] ResNet50 Kaggle 79.06 0.909
2022 [415] ResNet50V2 Kaggle 77.82 0.899
2022 [415] ResNet152 Kaggle 79.14 0.909
2022 [415] Xception Kaggle 79.06 0.898
2022 [415] InceptionResNetV2 Kaggle 79.62 0.901
2022 [415] MobileNetV2 Kaggle 76.08 0.888
2022 [415] DenseNet201 Kaggle 79.86 0.913
2022 [415] EfficientNetB0 Kaggle 77.13 0.909
2022 [120] VSUL-Net DRIVE 96.95 98.21 83.8 0.985
2022 [120] VSUL-Net CHASE-DB1 97.17 98.35 81.73 0.987
2022 [120] VSUL-Net STARE 97.27 98.13 86.64 0.99
2022 [335] R, G2, A2, V Kaggle EyePACS 92.4 to 96.6 85.4 to 95.3 0.924 to 0.971
2021 [58] ViT-DR MESSIODOR-2 0.956
2021 [58] ViT-DR e-ophtha 0.975
2021 [58] ViT-DR APTOS 0.946
2021 [58] ViT-DR IDRiD 0.924
2021 [142] M-CNN IDRiD, Kaggle, MESSIDOR 99.62
2021 [143] CNN Kaggle, DIARET-DB1 96.37 96.37
2021 [337] ViT MESSIODOR-2, e-ophtha, A 0.956, 0.977, 0.947
2020 [358] DenseNet-121 APTOS 94.9 97.1 92.6 0.88 (Kappa)
2020 [416] AttenNet (DenseNet 169) Z109 (public) 100 100
2020 [416] AttenNet (DenseNet 169) B28K (private) 91.5 92.4
2020 [417] VGG-16, VGG-19 EyePACS 82 82 80
2020 [180] EfficientNet APTOS 0.935 (Kappa)
2019 [345] Inception-V3 Private 87.91 91.5 84.4 0.935
2019 [13] Ensemble CNN EyePACS 80.8 86.7 51.5
2018 [338] CNN EyePACS 86.1 93.81 73.24 0.92
2017 [252] ConvNet EyePACS, e-optha, DiaretDB1 0.954, 0.949, 0.955
2017 [144] DCNN EyePACS 97.3, 95.9 86.3, 89.8 96.87, 96.87
2017 [361] DCNN EyePACS 75.7
2016 [418] CKML, VNXK Messidor, EyePACS 89.7, 89.3 90, 89.2 89.3, 90 0.891, 0.887
2016 [33] AlexNet Messidor-2 87 96.8
2016 [419] CNN EyePACS 66.6 96.2 0.946
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TABLE 20. List of acronyms used in this paper.

ADASYN Adaptive Synthetic Sampling
AEH Aravind Eye Hospital
AMD Age-related Macular Degeneration
AI Artificial Intelligence
ANN Artificial Neural Network
AUC Area Under Curve
ISNT Inferior, Superior, Nasal, and Temporal
CAD Computer-aided design
CDR Cup-to-Disc Ratio
CFP Color Fundus Photography
CLAHE Contrast limited adaptive histogram equalisation
CNN Convolutional Neural Networks
CWT Continuous Wavelet Transform
DCN Deep Convolutional Network
DDLS Disc Damage Likelihood Scale
DL Deep Learning
DT Decision Tree
FA Fluorescein Angiography
FoS First-order Statistics
GAN Generative Adversarial Networks
GDA Glaucoma Domain Adaptation
GLCM Grey Level Co-occurrence Matrix
GLRM Grey Level Run Length Matrix
GMM Gaussian Mixture Model
HMM Hidden Markov model
HOC Higher-order Cumulants
HOS Higher-order Statistics
IOP Intraocular Pressure
KMC Kasturba Medical College
KNN K-Nearest Neighbor
LGF Laplacian-Gaussian Filter
LBP Local Binary Patterns
LIME Local Interpretable Model-Agnostic Explanations
LRP Layer-Wise Relevance Propagation
MCA Morphological Component Analysis
MFO-KELM Mayfly optimization with kernel extreme learning machine
ML Machine Learning
MSGANet-RAV Multiscale Guided Attention Network
NN Neural Network
NPDR Non-proliferative diabetic retinopathy
NRR Neuroretinal Rim
OCS Optic Cup Segmentation
OCT Optical Coherence Tomography
OD Ophthalmic diseases
ODS Optic Disc Segmentation
PCA Principal Component Analysis
PDR Proliferative diabetic retinopathy
PHOG Pyramid histogram of oriented gradients
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSO Particle Swarm Optimisation
RF Random Forest
RH Retinal Health
ROC Retinopathy Online Challenge
SLO Scanning laser ophthalmoscopy
SURF Speeded-up robust features
SVM Support Vector machine
UBM Ultrasound Biomicroscopy
VEGF Vascular endothelial growth factor
xAI Explainable Artificial Intelligence
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