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Abstract

Risk-sharing rules have been applied to mortality pooling products to ensure these products are
actuarially fair and self-sustaining. However, most of the existing studies on the risk-sharing rules of
mortality pooling products assume deterministic mortality rates, whereas the literature on mortality
models provides empirical evidence suggesting that mortality rates are stochastic and correlated
between cohorts. In this paper, we extend existing risk-sharing rules and introduce a new risk-
sharing rule, named the joint expectation rule, to ensure the actuarial fairness of mortality pooling
products while accounting for stochastic and correlated mortality rates. Moreover, we perform a
systematic study of how the choice of risk-sharing rule, the volatility and correlation of mortality
rates, pool size, account balance, and age affect the distribution of mortality credits. Then, we
explore a dynamic pool that accommodates heterogeneous members and allows new entrants, and
we track the income payments for different members over time. Furthermore, we compare different
risk-sharing rules under the scenario of a systematic shock in mortality rates. We find that the
account balance affects the distribution of mortality credits for the regression rule, while it has no
effect under the proportional, joint expectation, and alive-only rules. We also find that a larger pool
size increases the sensitivity to the deviation in total mortality credits for cohorts with mortality rates
that are volatile and highly correlated with those of other cohorts, under the stochastic regression
rule. Finally, we find that risk-sharing rules significantly influence the effect of mortality shocks on
fund balances since, under different risk-sharing rules, fund balances have different sensitivities to
deviations in mortality credits.
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1 Introduction

Mortality pooling products are useful tools for reducing the idiosyncratic mortality risks of their parti-
cipants. These products involve retirees in a risk-sharing pool in which surviving members benefit from
the mortality credits accrued by members who have passed away. Compared with conventional life an-
nuity products, mortality pooling products have the advantage of requiring less capital because they are
self-sustaining and do not guarantee lifetime income. As such, potential participants can purchase these
products at a lower price and providers can reduce their financial and longevity risk exposure with less
capital. At the same time, they also provide retirees with retirement income streams. Mortality pooling
products can be broadly categorised into pooled annuities (Piggott et al., 2005; Qiao and Sherris, 2013;
Bernhardt and Donnelly, 2021), tontines (Milevsky and Salisbury, 2015; Milevsky and Salisbury, 2016;
Chen and Rach, 2019; Chen et al., 2019; Chen et al., 2020; Weinert and Gründl, 2021), and risk-sharing
products (Sabin, 2010; Donnelly et al., 2014; Donnelly and Young, 2017; Denuit, 2019; Fullmer and
Sabin, 2018) with an additional decumulation plan. These products share the advantage of requiring
zero or almost zero capital, while the ways of distributing the mortality credits and determining income
payments are different.

Within the three broad categories of mortality pooling products, risk-sharing products apply a specific
risk-sharing rule in the step of distributing mortality credits. The risk-sharing rule is a concept of
sharing insurance losses, which can be applied to sharing the loss of individuals in the case of death for
mortality pooling products. An extensive study is conducted in Denuit et al. (2022a) on the properties
of risk-sharing rules. Due to the application of a risk-sharing rule with desirable properties, risk-sharing
products allow heterogeneity of fund members, allow new entrants, and are actuarially fair. These ideal
properties can attract potential buyers so that the fund can benefit from a large pool size to reduce the
volatility of payments. Therefore, risk-sharing products become a natural choice for this study.

Previous studies on risk-sharing products include Sabin (2010), Donnelly et al. (2014), Forman and
Sabin (2015), Donnelly (2017), Donnelly and Young (2017), Fullmer and Sabin (2018), Denuit (2019),
Weinert and Gründl (2021) and Denuit et al. (2022b). Sabin (2010) focuses on actuarial fairness and
proposes fair tontine and fair tontine annuity designs that allow heterogeneity in the pool. Despite the
product being named tontine, the risk-transfer plan essentially uses a risk-sharing rule to distribute
the total mortality credits to individual accounts of members alive. Then, an income payment is paid
from the account balance of the individual after risk sharing following a decumulation plan. Forman
and Sabin (2015) state that the two main advantages of these products are the low probability of
underfunding and the issuer will not need to bear all the mortality risk and investment risk. Weinert
and Gründl (2021) build on the framework of Sabin (2010) for tontines by introducing a model that
evolves over time and allows new members to join. However, the fair transfer plan involves solving a
system of linear equations that increases in size with the number of members, making the transfer plan
computationally difficult to implement and hard to explain to members and potential buyers. Donnelly
and Young (2017) propose a risk-sharing rule for mortality pooling products which is actuarially fair
for individuals of all ages at any point in time and thus gives members the freedom to join and leave
the pool. The distribution of mortality credits in Donnelly and Young (2017) is determined by the
risk exposure of individuals. The proportional risk-sharing rule in Donnelly and Young (2017) is the
discrete-time version of the annuity overlay fund in Donnelly et al. (2014). Denuit (2019) applies the
conditional-mean risk-sharing rule proposed in Denuit and Dhaene (2012) on sharing mortality credits
and compares it with the formalised discrete-time risk-sharing rule in Donnelly (2017). Denuit et al.
(2022b) then study the effect of pool size on conditional mean mortality risk sharing and find that
the individual risk can be fully diversified if the pool size tends to infinity. However, the focus of
Donnelly and Young (2017) and Denuit (2019) is mainly on the fair game of the fund balance but does
not specify a decumulation plan. Individuals can decide to spend part of the fund balance and invest
the remaining back into the pool, or they can take the money and leave the pool forever. As such,
there is a risk that individuals overspend their fund balance due to a preference for early spending or
short-sighted behaviour, leaving an insufficient amount of income to sustain them for their remaining
lifetimes. Fullmer and Sabin (2018) propose a risk-sharing rule that is slightly different from the one
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in Donnelly and Young (2017) and only distributes mortality credits to the members alive, and they
are also one of the earliest to study two decumulation strategies: a 10-year lump sum or annuity-like
payments. However, their risk-sharing rule is almost fair but not strictly fair mathematically. Therefore,
the literature lacks focus on both the actuarial fairness and factors that affect the decumulation of a
risk-sharing product at the same time. This research is thus motivated to study risk-sharing rules with
these properties along with a decumulation plan. The income payments are investigated over a period
of time since the initial establishment of the product.

Moreover, despite multiple risk-sharing rules proposed to distribute mortality credits, most existing
studies on mortality risk-sharing products assume deterministic mortality rates, whereas the develop-
ments in the literature on mortality models suggest that mortality rates are stochastic and correlated
(Jevtić et al., 2013; Xu et al., 2020; Zhou et al., 2023). Therefore, this paper is motivated to extend
current risk-sharing rules to a stochastic setting and explore new risk-sharing rules that are fair and
self-sustaining under the stochastic setting. Furthermore, few studies have been conducted so far on the
comparison of different risk-sharing rules and the evolution of a dynamic pool allowing heterogeneous
members. This motivates us to study the income payments and balances over time and how they are
affected by the choice of risk-sharing rules, member profiles, and mortality shock.

This paper contributes to the literature in the following aspects. Firstly, we contribute to the literature
on risk-sharing rules in mortality pooling products by considering the fact that mortality rates are
stochastic and correlated random variables in risk sharing. Most of the existing papers on mortality risk
sharing assume deterministic mortality rates (Sabin, 2010; Donnelly, 2017; Denuit and Robert, 2021;
Fullmer and Sabin, 2018). We analyse existing risk-sharing rules and extend them to the case in which
mortality rates are stochastic and correlated. Another contribution is that a new risk-sharing rule called
the joint expectation rule is proposed and tested, which takes stochastic mortality rates and correlations
between mortality rates of different cohorts into account. We show that the joint expectation risk-
sharing rule is actuarially fair and sustainable with heterogeneous cohorts when mortality rates are
stochastic and when a death benefit is included.

Moreover, we contribute to the literature by investigating the effect of fund balance, age, pool size,
and volatilities and correlations of mortality rates on fund balances and benefit payments for different
risk-sharing rules. Our findings show that for regression rules, in which the risk-sharing weights take
into account the covariance between the individual fund balance at risk and the total mortality credits,
the higher the initial balance, the higher the weighting in the difference between the empirical and
expected total mortality credits. Meanwhile, for regression, joint expectation, and alive-only rules,
individual account balance does not affect the weight of the deviation in the total mortality credits.
The weight of the deviation in the total mortality credits measures the impact on a risk-sharing rule
when there is a mortality shock. For example, when there is a systematic reduction in mortality rates,
then there will be a negative deviation from the expected total mortality credits, which will cause more
reduction in the balance and income payments in the risk-sharing rules that have a higher weight in
this deviation. Furthermore, we find that pool size plays an important role when stochasticity and
correlation of mortality rates are included in risk sharing. For the stochastic regression rule, with the
assumed correlation matrix between the mortality rates of cohorts, when the pool size increases, the
weight in the deviation of total mortality credits increases for middle-aged retirees at age 80 who have
more volatile mortality rates and are more correlated with other cohorts. Meanwhile, for young and
very old retirees at ages 60 and 100, the weight in the deviation decreases.

Finally, we study how a mortality shock will affect income payments and fund balances for different risk-
sharing rules when mortality rates are assumed to be either deterministic or stochastic and correlated.
A dynamic pool with new and heterogeneous members joining is investigated over time. It is found that
with a 5-year systematic reduction in mortality rates, the stochastic and deterministic regression rules
give lower account balances at the end of the period for younger retirees and middle-aged retirees with
high balances, compared with proportional and joint expectation rules. Meanwhile, for older retirees
and middle-aged retirees with low balances, the stochastic and deterministic regression rules give higher
account balances than proportional and joint expectation rules. The alive-only rule always gives the
highest account balances in old age.
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The rest of the paper is structured as follows. The operation of the risk-sharing product with a decu-
mulation rule along with the two important properties, namely actuarial fairness and self-sustainability,
are introduced in Section 2. We extend risk-sharing rules to the setting with stochastic and correlated
mortality rates in Section 3 and prove their fairness and self-sustainability. In particular, Subsec-
tion 3.4 introduces a new risk-sharing rule, named the joint expectation rule, which is actuarially
fair and self-sustaining with stochastic and correlated mortality rates. Meanwhile, the joint expect-
ation rule reduces to the proportional risk-sharing rule when mortality rates are deterministic. We
examine the risk-sharing rules by considering an open pool with heterogeneous members joining every
year. Section 4 presents the data, assumptions, and results of how the deviation in expected mortality
credits, different fund balances, pool sizes, and mortality shocks will affect different risk-sharing rules
respectively. Section 5 concludes the paper.

2 Fund Operation

The fund operation allows each member i to have their own account. When the pooling product
commences, each member i contributes an initial amount Fi(0) as the initial account balance. At the
end of the first period, the initial investment has an accumulated value denoted by si(1) = Fi(0)(1 +
RORi(0)), where RORi(0) is the rate of return realised on the investment of the ith member over the
period [0, 1]. A risk-sharing rule is then applied to obtain the fund balance Vi(1) after distributing the
total mortality credits from the members who have passed away over the period [0, 1], and the benefit
Bi(1) based on Vi(1) is paid to the individual. The remaining balance Fi(1) = Vi(1) − Bi(1) is then
reinvested. New members can join the fund at time 1, and the process is repeated for all members.

We now describe the fund mechanics at an arbitrary point in time t. The fund operates as the following
steps.

Step 1: Accumulation
Assume that the fund value of member i at time t after all the payments to be made is Fi(t). Then, at
time t + 1, the fund value is accumulated to:

si(t + 1) = Fi(t)(1 + RORi(t)), (1)

where RORi(t) is the return rate of individual i between time t and t + 1.

Step 2: Risk sharing
The set of members who have passed away over the period [t, t + 1] is denoted by D(t + 1). The
accumulated fund values of members in the set D(t + 1) who have passed away over the period [t, t + 1]
are added up to form the total mortality credits S(t + 1) at time t + 1, that is:

S(t + 1) =
N(t)∑
j=1

1j∈D(t+1)sj(t + 1),

where N(t) is the total number of members in the pool at time t. The total mortality credits S(t + 1)
will be distributed at time t + 1 to either every member alive at time t, or only those who survive at
the end of the period time t + 1, depending on the choice of the risk-sharing rule.

The distribution of the total mortality credit S(t + 1) to each individual account with a risk-sharing
rule is represented in Equation (2). The fund value Vi(t + 1) of individual i at time t + 1 after risk
sharing and before paying the benefit will be:

Vi(t + 1) =

gA(si(t + 1), S(t + 1)) if individual i survives this period,
gD(si(t + 1), S(t + 1)) if individual i dies during this period,

(2)

where gA(·) and gD(·) are functions of fund balance si(t + 1) of individual i and total mortality credits
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S(t + 1) at time t + 1 in the case of being alive or dead at time t + 1 respectively, representing the
risk-sharing rule. One common setting of the risk-sharing rule as an example is:

Vi(t + 1) =

si(t + 1) + wA
i (t + 1)S(t + 1) if individual i survives this period,

wD
i (t + 1)S(t + 1) if individual i dies during this period,

(3)

where wj
i (t + 1) is the weighting of individual i on the total mortality credits S(t + 1) at time t + 1

for j = A or D representing alive or dead. The weighting functions often depend on the one-year
probability of death qi(t) for individual i at time t. We can see that under this setting, members who
are alive will be better off because si(t+1) ≤ si(t+1)+wA

i (t+1)S(t+1) when the weighting wA
i (t+1)

and the total mortality credits S(t + 1) are non-negative. Meanwhile, members who have died will lose
their accumulated fund value si(t + 1).

Step 3: Benefit Payment
After risk sharing, the benefit payment as the retirement income to every individual at time t + 1 is
determined by:

Bi(t + 1) =


Vi(t+1)
äxi,t+1

if individual i survives this period,

Vi(t + 1) if individual i dies during this period,
(4)

where äxi,t+1 is the actuarial notation of an annuity due for individual i who is aged xi at time t + 1.
The fund recalculates the annuity-like payment values at each point in time, similar to the idea of a
group self-annuitisation (GSA). The annuity due factor is calculated as:

äxi,t+1 = 1 +
∞∑

s=1

E[spxi(t + 1)]
(1 + RORi)s

≥ 1,

where spxi(t + 1) is the s-year survival probability for individual i aged x at time t + 1. The annuity
due factor äxi,t+1 ≥ 1 ensures that the benefit payment is always smaller or equal to the fund value
after risk sharing Bi(t + 1) ≤ Vi(t + 1). If member i dies, their balance after risk sharing will be paid
out to them so that the remaining balance will be 0 and their account will be closed. The remaining
fund balance for member i is represented as:

Fi(t + 1) =


Vi(t + 1) − Bi(t + 1) if individual i survives this period,

0 if individual i dies during this period and
thus leaves the pool at the end of the period.

(5)

If member i survives, the fund value of member i after risk sharing will often be higher than the fund
value before risk sharing: Vi(t + 1) > si(t + 1) if the return of member i from the distribution of total
mortality credits is positive. Hence, if they live longer than expected, their sum of income payments
discounted to time zero will be higher than what they initially invested, similar to life annuities. This
coincides with the idea in the monograph Milevsky (2022) which states that the major purpose of
mortality risk sharing is pooling with people who are willing to share that risk and benefit from the
mortality credits.

Step 4: Accumulation in the Next Period
The fund value after risk sharing and benefit payment Fi(t + 1) becomes the initial value for the next
period [t + 1, t + 2]. New members can join the fund at time t + 1 with their initial contributions. The
fund value of member i is accumulated to si(t+2) = Fi(t+1)(1+ RORi(t+ 1)) following Equation (1).

2.1 Fairness and Self-sustainability

Fairness and self-sustainability are two important properties of a risk-sharing rule in Step 2, as discussed
in Denuit et al. (2022a) and Hieber and Lucas (2022).
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Definition 1 (Fairness). A risk-sharing rule is said to be fair if for each member i at time t + 1 for
t = 0, 1, 2, 3, ..., the expected fund value after risk sharing is equal to its value before risk sharing:

E
[
Vi(t + 1)

]
= si(t + 1). (6)

Condition (6) promises that members are not taking advantage or disadvantage of other members by
joining risk sharing.

Definition 2 (Self-sustainability). A risk-sharing rule is said to be self-sustaining if at any time t =
0, 1, 2, 3, ..., the sum of member fund balances before and after risk sharing are equal to each other:

N(t)∑
j=1

Vj(t + 1) =
N(t)∑
j=1

sj(t + 1). (7)

When a risk-sharing rule is self-sustaining, it will not pay higher than the total fund balance. Thus,
insurance companies do not need to worry about the huge loss in the case of systematic mortality
improvement. Therefore, it benefits from a lower capital requirement and thus a lower loading compared
with life annuities.

3 Risk-sharing Rules and Extensions to Stochastic Mortality Rates

We study and extend three risk-sharing rules in the literature, which are the proportional rule in
Donnelly and Young (2017), regression rule in Denuit and Robert (2021), and alive-only rule in Fullmer
and Sabin (2018). We explain each of the risk-sharing rules in a consistent framework and extend them
to the setting with stochastic and correlated mortality rates.

3.1 Proportional Rule

Firstly, we define the proportional rule that pays the total mortality credits in proportion to the capital
at risk when the mortality rates qi(t) are deterministic.

Definition 3 (Deterministic Proportional Rule). Consider a risk-sharing rule that the weights of the
total mortality credits in Equation (3) are determined in proportion to the capital at risk si(t + 1)qi(t)
which is the product of accumulated fund balance and the one-year probability of death. At the end
of a period, the fund value after risk sharing of an individual i initially alive is:

Vi(t + 1) =


si(t + 1) + si(t+1)qi(t)∑N(t)

j=1 sj(t+1)qj(t)
S(t + 1) if individual i survives this period,

si(t+1)qi(t)∑N(t)
j=1 sj(t+1)qj(t)

S(t + 1) if individual i dies during this period.
(8)

We call the risk-sharing rule in Equation (8) a deterministic proportional rule.

Proposition 1. The deterministic proportional rule in Equation (8) is fair and self-sustaining under
deterministic mortality rates.

Proof. See Denuit (2019).

We now extend the proportional risk-sharing rule to the case where mortality rates are stochastic and
correlated. That is, we seek a risk-sharing rule of the form

Vi(t + 1) =

si(t + 1) + wi(t + 1)S(t + 1) if individual i survives this period,
wi(t + 1)S(t + 1) if individual i dies during this period,
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where the weights wi(t + 1) are to be determined such that they are proportional to the total risk
exposure and the rule is actuarially fair.

Proposition 2. When mortality rates are stochastic and correlated random variables, the risk-sharing
rule:

Vi(t + 1) =


si(t + 1) + si(t+1)E[qi(t)]∑N(t)

j=1 sj(t+1)E[qi(t)]
S(t + 1) individual i survives this period,

si(t+1)E[qi(t)]∑N(t)
j=1 sj(t+1)E[qi(t)]

S(t + 1) individual i dies during this period,
(9)

is fair and self-sustaining.

Proof. When the mortality rates are stochastic, we denote Q(t) as the set of mortality rates Q(t) =
{q1(t), q2(t), ..., qi(t)}, where qi(t) are random variables of the one-year mortality rates of individual i
during the period.

Assume the following payout function holds:

Vi(t + 1) =

si(t + 1) + wi(t + 1)S(t + 1) if individual i survives this period,
wi(t + 1)S(t + 1) if individual i dies during this period.

Using the law of conditional expectation, we obtain:

E[Vi(t + 1)] =E[E[Vi(t + 1)|Q(t)]]

=E

si(t + 1)(1 − qi(t)) + wi(t + 1)
N(t)∑
j=1

sj(t + 1)qj(t)


=si(t + 1)(1 − E[qi(t)]) + E[wi(t + 1)]

N(t)∑
j=1

sj(t + 1)E[qj(t)] = si(t + 1),

which yields

E[wi(t + 1)] = si(t + 1)E[qi(t)]∑N(t)
j=1 sj(t + 1)E[qj(t)]

.

Since the weight wi(t + 1) is deterministic, we can write wi(t + 1) = E[wi(t + 1)] = si(t+1)E[qi(t)]∑N(t)
j=1 sj(t+1)E[qj(t)]

.

Therefore, the risk-sharing rule in Equation (9) is a fair risk-sharing rule.

The risk-sharing rule in Equation (9) is self-sustaining because:

N(t)∑
j=1

Vi(t + 1) =
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

si(t + 1)E[qi(t)]∑N(t)
j=1 sj(t + 1)E[qi(t)]

S(t + 1)

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) + S(t + 1)

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)sj(t + 1)

=
N(t)∑
j=1

sj(t + 1),

where A(t + 1) is the set of people alive at time t + 1 given alive at time t.

The risk-sharing rule satisfying Equation (9) is called the stochastic proportional rule. One thing to
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notice is that E[qi(t)] is assumed to be equal to the qi(t) used in the numerical illustration of the
deterministic case. Effectively, this is saying that the results on weighting are not affected when we
move from deterministic to stochastic mortality rates.

Lemma 1. The stochastic proportional rule in Equation (9) can be rewritten as:

Vi(t + 1) =



si(t + 1) + si(t + 1)E[qi(t)]
+ wProportional

i (t + 1)(S(t + 1) − E[S(t + 1)])
if individual i
survives this period,

si(t + 1)E[qi(t)]
+ wProportional

i (t + 1)(S(t + 1) − E[S(t + 1)])
if individual i dies
during this period,

where wProportional
i (t + 1) = si(t+1)E[qi(t)]∑N(t)

j=1 sj(t+1)E[qi(t)]
stands for the weighting for individual i at time t + 1

with the stochastic proportional rule.

Proof. We can rewrite the share of mortality credits as:

si(t + 1)E[qi(t)] + si(t + 1)E[qi(t)]∑N(t)
j=1 sj(t + 1)E[qi(t)]

(S(t + 1) − E[S(t + 1)])

=si(t + 1)E[qi(t)] + si(t + 1)E[qi(t)]∑N(t)
j=1 sj(t + 1)E[qi(t)]

S(t + 1) − si(t + 1)E[qi(t)]

= si(t + 1)E[qi(t)]∑N(t)
j=1 sj(t + 1)E[qi(t)]

S(t + 1),

which is equal to the form in Equation (9).

3.2 Regression Rule

Denuit and Robert (2021) consider a regression risk-sharing rule, which develops from linear regression
and takes the volatility of the risky event into account. The regression risk-sharing rule is also referred
to as the covariance risk-sharing rule in Jiao et al. (2022). However, this risk-sharing rule has not been
discussed in detail with the setting of mortality-sharing products, nor under stochastic mortality rates.

Definition 4 (Regression Rule). Consider a risk-sharing rule that the distribution of the total mortality
credits in Equation (2) is defined as the following:

Vi(t + 1) =



si(t + 1) + E[Xi(t + 1)]

+ Cov(Xi(t + 1), S(t + 1))
V ar(S(t + 1)) (S(t + 1) − E[S(t + 1)])

if individual i
survives this period,

E[Xi(t + 1)]

+ Cov(Xi(t + 1), S(t + 1))
V ar(S(t + 1)) (S(t + 1) − E[S(t + 1)])

if individual i dies
during this period,

(10)

where Xi(t + 1) = 1i∈D(t+1)si(t + 1) and S(t + 1) = ∑N(t)
j=1 Xj(t + 1). The risk-sharing rule that satisfies

Equation (10) is called the regression rule.
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Proposition 3. The regression risk-sharing rule in Equation (10) is actuarially fair and self-sustaining.

Proof. This risk-sharing rule in Equation (10) is fair because:

E[Vi(t + 1)] =si(t + 1)pi(t) + E[Xi(t + 1)]

+ Cov(Xi(t + 1), S(t + 1))
V ar(S(t + 1)) (E[S(t + 1)] − E[S(t + 1)])

=si(t + 1)pi(t) + si(t + 1)qi(t)
=si(t + 1).

This risk-sharing rule in Equation (10) is self-sustaining because:

N(t)∑
j=1

Vi(t + 1) =
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

E[Xj(t + 1)]

+ (S(t + 1) − E[S(t + 1)])
N(t)∑
j=1

Cov(Xj(t + 1), S(t + 1))
V ar(S(t + 1))

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) + E[S(t + 1)] + (S(t + 1) − E[S(t + 1)])

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)sj(t + 1)

=
N(t)∑
j=1

sj(t + 1).

Proposition 4. When mortality rates are deterministic, the regression risk-sharing rule in Equa-
tion (10) is:

Vi(t + 1) =



si(t + 1) + si(t + 1)qi(t)

+ wRD
i (t + 1)(S(t + 1) −

N(t)∑
j=1

sj(t + 1)qj(t))
if individual i
survives this period,

si(t + 1)qi(t)

+ wRD
i (t + 1)(S(t + 1) −

N(t)∑
j=1

sj(t + 1)qj(t))
if individual i dies
during this period,

(11)

where wRD
i (t + 1) = si(t+1)2qi(t)(1−qi(t))∑N(t)

j=1 sj(t+1)2qj(t)(1−qj(t))
stands for the weighting for individual i at time t + 1 with

the regression deterministic (RD) risk-sharing rule.

Proof. By using S(t + 1) = ∑N(t)
j=1 Xj(t + 1), we have:

Cov(Xi(t + 1), S(t + 1)) =V ar(Xi(t + 1))
=si(t + 1)2qi(t)(1 − qi(t)),

(12)
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and

V ar(S(t + 1)) =
N(t)∑
j=1

V ar(Xj(t + 1))

=
N(t)∑
j=1

sj(t + 1)2qj(t)(1 − qj(t)).

(13)

Substituting Equations (12) and (13) into Equation (10) completes the proof.

The regression risk-sharing rule with deterministic mortality rates in Equation (11) is referred to as the
deterministic regression rule in this paper. Since the mortality rate qi(t) in wRD

i (t+1) of Equation (11)
is deterministic, the source of randomness comes from the uncertainty of survival for given deterministic
mortality rates.

Proposition 5. Assuming stochastic mortality rates, the fair regression risk-sharing rule in Equa-
tion (10) becomes:

Vi(t + 1) =



si(t + 1) + si(t + 1)E[qi(t)]

+ wRS
i (t + 1)(S(t + 1) −

N(t)∑
j=1

sj(t + 1)E[qj(t)])
if individual i
survives this period,

si(t + 1)E[qi(t)]

+ wRS
i (t + 1)(S(t + 1) −

N(t)∑
j=1

sj(t + 1)E[qj(t)])
if individual i dies
during this period,

(14)

where wRS
i (t + 1) =

si(t+1)2E[qi(t)(1−qi(t))]+si(t+1)
∑N(t)

j=1 sj(t+1)Cov(qi(t),qj(t))∑N(t)
j=1 sj(t+1)2E[qj(t)(1−qj(t))]+

∑N(t)
j=1

∑N(t)
k=1 sj(t+1)sk(t+1)Cov(qj(t),qk(t))

stands for the

weighting for individual i at time t + 1 with the regression stochastic (RS) risk-sharing rule, and
E[qi(t)(1 − qi(t))] = E[qi(t)] − E[qi(t)2] = E[qi(t)] − V ar[qi(t)] − E[qi(t)]2.

Proof. Using the law of conditional expectation, we have:

E[Xi(t + 1)] =E[E[Xi(t + 1)|Q(t)]]
=E[E[si(t + 1)1i∈D(t+1)|Q(t)]]
=E[si(t + 1)qi(t)]
=si(t + 1)E[qi(t)],

and

E[S(t + 1)] =E[E[S(t + 1)|Q(t)]]

=E[E[
N(t)∑
j=1

sj(t + 1)1j∈D(t+1)|Q(t)]]

=E[
N(t)∑
j=1

sj(t + 1)qj(t)]

=
N(t)∑
j=1

sj(t + 1)E[qj(t)].
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By the law of total covariance, we have:

Cov(Xi(t + 1), S(t + 1))
=E[Cov(Xi(t + 1), S(t + 1)|Q(t))] + Cov(E[Xi(t + 1)|Q(t)], E[S(t + 1)|Q(t)])

=E

Cov

si(t + 1)1Di ,

N(t)∑
j=1

sj(t + 1)1Dj |Q(t)




+ Cov

E
[
si(t + 1)1Di |Q(t)

]
, E

N(t)∑
j=1

sj(t + 1)1Dj |Q(t)




=E
[
V ar(si(t + 1)1Di |Q(t))

]
+ Cov

si(t + 1)qi(t),
N(t)∑
j=1

sj(t + 1)qj(t)


=si(t + 1)2E

[
qi(t)(1 − qi(t))

]
+ si(t + 1)

N(t)∑
j=1

sj(t + 1)Cov(qi(t), qj(t)).

(15)

Similarly, we have:

V ar(S(t + 1))
=E[V ar(S(t + 1)|Q(t))] + V ar(E[S(t + 1)|Q(t)])

=E

N(t)∑
j=1

sj(t + 1)2qj(t)(1 − qj(t))

 + V ar

N(t)∑
j=1

sj(t + 1)qj(t)


=

N(t)∑
j=1

sj(t + 1)2E[qj(t)(1 − qj(t))] +
N(t)∑
j=1

N(t)∑
k=1

sj(t + 1)sk(t + 1)Cov(qj(t), qk(t)).

(16)

Substituting Equations (15) and (16) into Equation (10) completes the proof.

The regression risk-sharing rule with stochastic mortality rates in Equation (14) is referred to as the
stochastic regression rule in this paper.

3.3 Alive-only Rule

The alive-only rule is a risk-sharing rule proposed in Fullmer and Sabin (2018) that only distributes
the total mortality credits to members alive at the end of each period.

Definition 5 (Alive-only Rule). Consider a risk-sharing rule that only the members alive at the end
of the period share the total mortality credits as the following:

Vi(t + 1) =


si(t + 1) + si(t+1)ri(t)∑

j∈A(t+1) sj(t+1)rj(t)S(t + 1) if individual i survives this period,

0 if individual i dies during this period,
(17)

where ri(t) = qi(t)
1−qi(t) , and the major difference is that the dead individual loses everything. The

risk-sharing rule in Equation (17) is called the alive-only rule.

The weight si(t+1)ri(t)∑
j∈A(t+1) sj(t+1)rj(t) is not predetermined, but it depends on the realised survivorship at the

end of the period. As the name implies, only members alive receive part of the total mortality credits
to compensate, while members who die lose everything.
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Proposition 6. The alive-only risk-sharing rule in Equation (17) is self-sustaining and almost fair,
but not exactly fair.

Proof. The expected value of Vi(t + 1) is:

E
[
Vi(t + 1)

]
=E[E[Vi(t + 1)|Fi(t + 1)]]
=P (i ∈ A(t + 1))E[Vi(t + 1)|i ∈ A(t + 1)] + P (i /∈ A(t + 1))E[Vi(t + 1)|i /∈ A(t + 1)]

=
(
1 − qi(t)

) si(t + 1) + E

 si(t + 1)ri(t)∑
j∈A(t+1) sj(t + 1)rj(t)S(t + 1)|i ∈ A(t + 1)


 ,

where Fi(t + 1) is the filtration representing the survival status of individual i up to time t + 1.
Fullmer and Sabin (2018) mention that this is not strictly fair. This is because of the approximation

of E

[
si(t+1)ri(t)∑

j∈A(t+1) sj(t+1)rj(t)S(t + 1)|i ∈ A(t + 1)
]

= si(t + 1)ri(t), which gives:

E
[
Vi(t + 1)

]
=

(
1 − qi(t)

)
si(t + 1) + (1 − qi(t))si(t + 1)ri(t)

=
(
1 − qi(t)

)
si(t + 1) + (1 − qi(t))si(t + 1) qi(t)

1 − qi(t)
=si(t + 1).

This is an approximation because:

E

 1∑
j∈A(t+1) sj(t + 1)rj(t) |i ∈ A(t + 1)

 =E

 1∑N(t)
j=1 1j∈A(t+1)sj(t + 1)rj(t)

|i ∈ A(t + 1)


̸= 1∑N(t)

j=1 (1 − qj(t))sj(t + 1)rj(t)

since we cannot move expectation into the summation in the denominator.

Due to the approximation, the alive-only rule in Equation (17) is an almost fair risk-sharing rule.
However, the alive-only rule in Equation (17) is still self-sustaining because:

N(t)∑
j=1

Vi(t + 1) =
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈A(t+1)
si(t + 1)ri(t)∑

j∈A(t+1) sj(t + 1)rj(t)S(t + 1)

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)sj(t + 1)

=
N(t)∑
j=1

sj(t + 1).

Proposition 7. The risk-sharing rule below in Equation (18) is a self-sustaining and almost fair alive-
only rule under stochastic mortality rates:

Vi(t + 1) =

si(t + 1) + wAlive
i (t + 1)S(t + 1) if individual i survives this period,

0 if individual i dies during this period,
(18)

where wAlive
i (t + 1) =

si(t+1) E[qi(t)]
1−E[qi(t)]∑

j∈A(t+1) sj(t+1)
E[qj (t)]

1−E[qj (t)]

stands for the weighting for individual i at time t + 1

with the alive-only rule under stochastic mortality rates.
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Proof. By the law of total expectation, we have:

E[Vi(t + 1)] =E

[
E

[
E

[
Vi(t + 1)|Q(t)

]
|Fi(t + 1)

]]

=E

(1 − qi(t))(si(t + 1) +
si(t + 1) qi(t)

1−qi(t)∑
j∈A(t+1) sj(t + 1) qj(t)

1−qj(t)

S(t + 1))|i ∈ A(t + 1)


=si(t + 1)(1 − E[qi(t)]) + E

 si(t + 1)qi(t)∑
j∈A(t+1) sj(t + 1) qj(t)

1−qj(t)

S(t + 1)|i ∈ A(t + 1)

 .

When we make the approximation E

 si(t+1)qi(t)∑
j∈A(t+1) sj(t+1)

qj (t)
1−qj (t)

S(t + 1)|i ∈ A(t + 1)

 = si(t + 1)E[qi(t)],

it gives us:

E[Vi(t + 1)] ≈ si(t + 1),

which means the risk-sharing rule in Equation (18) is almost fair. The risk-sharing rule in Equation (18)
is self-sustaining because:

N(t)∑
j=1

Vj(t + 1) =
N(t)∑
j=1

1j∈A(t+1)si(t + 1) +
∑

j∈A(t+1)

si(t + 1) E[qi(t)]
1−E[qi(t)]∑

j∈A(t+1) sj(t + 1) E[qj(t)]
1−E[qj(t)]

S(t + 1)

=
N(t)∑
j=1

1j∈A(t+1)si(t + 1) +
N(t)∑
j=1

1j∈D(t+1)si(t + 1)

=
N(t)∑
j=1

sj(t + 1).

(19)

3.4 A New Risk-sharing Rule: Joint Expectation Rule

In this subsection, a new fair and self-sustaining risk-sharing rule is proposed. The weight in the total
mortality credits of an individual is higher with a higher fund balance, the mean of the mortality rate,
the variance of the mortality rate, and the covariance between the mortality rates of other fund members
are higher. The risk-sharing rule is named the joint expectation (JE) rule, and it will reduce to the
proportional rule when the mortality rates are no longer stochastic and correlated random variables
but deterministic values.

Proposition 8. The following risk-sharing rule is a fair and self-sustaining rule incorporating correl-
ations between stochastic mortality rates:

Vi(t + 1) =



si(t + 1) + si(t + 1)E[qi(t)]
+ wJE

i (t + 1)(S(t + 1) − E[S(t + 1)])
if individual i
survives this period,

si(t + 1)E[qi(t)]
+ wJE

i (t + 1)(S(t + 1) − E[S(t + 1)])
if individual i dies
during this period,

(20)

where wJE
i (t + 1) = si(t+1)

∑N(t)
k=1 sk(t+1)E[qi(t)qk(t)]∑N(t)

j=1
∑N(t)

k=1 sj(t+1)sk(t+1)E[qj(t)qk(t)]
, and S(t + 1) = ∑N(t)

j=1 1j∈D(t+1)sj(t + 1).
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Proof. The risk-sharing rule in Equation (20) is fair because:

E[Vi(t + 1)] =E[E[Vi(t + 1)|Q(t)]]
=si(t + 1)(1 − E[qi(t)]) + si(t + 1)E[qi(t)] + wi(t + 1)(E[S(t + 1)] − E[S(t + 1)])
=si(t + 1).

The risk-sharing rule in Equation (20) is self-sustaining because:

N(t)∑
j=1

Vj(t + 1) =
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

sj(t + 1)E[qj(t)] + S(t + 1) − E[S(t + 1)]

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)sj(t + 1)

=
N(t)∑
j=1

sj(t + 1).

We name the risk-sharing rule in Equation (20) as the joint expectation rule because the term E[qi(t)qk(t)]
in the numerator is the joint expectation of the one-year mortality rates qi(t) and qk(t) of individual i
and individual k at time t.

The joint expectation E[qi(t)qk(t)] in the weight captures not only the expected values of mortality
rates but also the volatility of mortality rates and the correlation between mortality rates of different
individuals because:

E[qi(t)qk(t)] =Cov(qi(t), qk(t)) + E[qi(t)]E[qk(t)]
=ρ(qi(t), qk(t))σ(qi(t))σ(qk(t)) + E[qi(t)]E[qk(t)],

(21)

where Cov(qi(t), qk(t)) is the covariance between the one-year mortality rates qi(t) and qk(t) of indi-
viduals i and k at time t, ρ(qi(t), qk(t)) is the correlation between qi(t) and qk(t), and σ(qi(t)) is the
standard deviation of qi(t).

Lemma 2. When the mortality rates are deterministic (that is E[(qj(t))2] = E[qj(t)]2 so V ar(qj(t)) =
E[(qj(t))2] − E[qj(t)]2 = 0) and the mortality rates for different cohorts are independent (that is
E[qj(t)qk(t)] = E[qj(t)]E[qk(t)]), then the risk-sharing rule proposed in Equation (20) reduces to the
fair proportional rule in Equation (9):

Vi(t + 1) =


si(t + 1) + si(t+1)E[qi(t)]∑N(t)

j=1 sj(t+1)E[qj(t)]
S(t + 1) if individual i survives this period,

si(t+1)E[qi(t)]∑N(t)
j=1 sj(t+1)E[qj(t)]

S(t + 1) if individual i dies during this period.
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Proof. When E[(qj(t))2] = E[qj(t)]2 and E[qj(t)qk(t)] = E[qj(t)]E[qk(t)], the weighting becomes:

wJE
i (t + 1) = si(t + 1) ∑N(t)

k=1 sk(t + 1)E[qi(t)qk(t)]∑N(t)
j=1

∑N(t)
k=1 sj(t + 1)sk(t + 1)E[qj(t)qk(t)]

= si(t + 1) ∑N(t)
k=1 sk(t + 1)E[qi(t)]E[qk(t)]∑N(t)

j=1
∑N(t)

k=1 sj(t + 1)sk(t + 1)E[qj(t)]E[qk(t)]

= si(t + 1)E[qi(t)]
∑N(t)

k=1 sk(t + 1)E[qk(t)]
(∑N(t)

j=1 sj(t + 1)E[qj(t)])(∑N(t)
k=1 sk(t + 1)E[qk(t)])

= si(t + 1)E[qi(t)]∑N(t)
j=1 sj(t + 1)E[qj(t)]

.

The proposed risk-sharing rule can be extended to include death benefit so that when a member dies
they do not lose all of the accumulated fund balance but get di(t + 1) as the death benefit in the case
of death. The capital at risk thus becomes si(t + 1) − di(t + 1).

Proposition 9. With death benefit protection included, the risk-sharing rule in Equation (20) can be
extended to:

Vi(t + 1) =



si(t + 1) + (si(t + 1) − di(t + 1))E[qi(t)]
+ wi(t + 1)(S(t + 1) − E[S(t + 1)])

if individual i
survives this period,

di(t + 1) + (si(t + 1) − di(t + 1))E[qi(t)]
+ wi(t + 1)(S(t + 1) − E[S(t + 1)])

if individual i dies
during this period,

(22)

where wJE
i (t + 1) = (si(t+1)−di(t+1))

∑N(t)
k=1 (sk(t+1)−dk)E[qi(t)qk(t)]∑N(t)

j=1
∑N(t)

k=1 (sj(t+1)−dj(t+1))(sk(t+1)−dk)E[qj(t)qk(t)]
, and S(t + 1) =∑N(t)

j=1 1j∈D(t+1)(sj(t + 1) − dj(t + 1)). In this case, the risk-sharing rule is still fair and self-sustaining.

Proof. The risk-sharing rule in Equation (22) is fair because:

E[Vi(t + 1)] = E[E[Vi(t + 1)|Q(t)]] =si(t + 1)(1 − E[qi(t)]) + di(t + 1)E[qi(t)]
+ (si(t + 1) − di(t + 1))E[qi(t)]
+ wi(t + 1)(E[S(t + 1)] − E[S(t + 1)])

=si(t + 1).
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The risk-sharing rule in Equation (22) is self-sustaining because:

N(t)∑
j=1

Vj(t + 1) =
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)dj(t + 1) +
N(t)∑
j=1

(sj(t + 1) − dj(t + 1))E[qj(t)]

+ S(t + 1) − E[S(t + 1)]

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)dj(t + 1) + S(t + 1)

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)dj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)(sj(t + 1) − dj(t + 1))

=
N(t)∑
j=1

1j∈A(t+1)sj(t + 1) +
N(t)∑
j=1

1j∈D(t+1)sj(t + 1)

=
N(t)∑
j=1

sj(t + 1).

3.5 Summary of Risk-sharing Rules

We summarise the properties of different risk-sharing rules in Tables 1 and 2. Table 1 compares the
weightings in the total mortality credits S(t + 1) between different deterministic and stochastic risk-
sharing rules. We can see that when extended to stochastic risk-sharing rules, only the joint expectation
rule and the stochastic regression rules take the correlation between mortality rates into consideration.
Table 2 further compares how the increment in one statistic (mean, variance, or correlation of mortality

Table 1: Comparison of weighting in S(t + 1) of member i between deterministic and stochastic
versions of risk-sharing rules.

Deterministic Stochastic
Proportional si(t+1)qi(t)∑N(t)

j=1 sj(t+1)qj(t)
si(t+1)E[qi(t)]∑N(t)

j=1 sj(t+1)E[qi(t)]

Joint Expectation Reduces to the proportional rule
si(t+1)

∑N(t)
k=1 sk(t+1)E[qi(t)qk(t)]∑N(t)

j=1
∑N(t)

k=1 sj(t+1)sk(t+1)E[qj(t)qk(t)]

Regression si(t+1)2qi(t)(1−qi(t))∑N(t)
j=1 sj(t+1)2qj(t)(1−qj(t))

si(t + 1)2E
[
qi(t)(1 − qi(t))

]
+ si(t + 1)

∑N(t)
j=1 sj(t + 1)Cov(qi(t), qj(t))∑N(t)

j=1 sj(t + 1)2E[qj(t)(1 − qj(t))]

+
∑N(t)

j=1
∑N(t)

k=1 sj(t + 1)sk(t + 1)Cov(qj(t), qk(t))

Alive-only si(t+1)ri(t)∑
j∈A(t+1) sj(t+1)rj(t)1i∈A(t+1)

si(t+1) E[qi(t)]
1−E[qi(t)]∑

j∈A(t+1) sj(t+1)
E[qj (t)]

1−E[qj (t)]

1i∈A(t+1)

rates) affects the weighting in the total mortality credits between different risk-sharing rules, holding
the other two statistics the same. We can see that the stochastic regression risk-sharing rule gives higher
weight when the variance and correlation of mortality rates are higher, while the effect of the mean is
not monotonic. The proposed joint expectation risk-sharing rule will distribute a higher proportion of
total mortality when the mean, variance, or correlation of mortality rates is higher.

4 Numerical Analysis

This section outlines the methodology used in this research, including data and assumptions on mor-
tality rates, the definition of the rate of return on mortality credits, and an overview of experiments to
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Table 2: Change in weighting wi(t + 1) when mean, variance of mortality rates, or correlation to
mortality rates of other cohorts increase for different risk-sharing rules.

Mean Variance Correlation
Proportional Det Increase No Change No Change
Regression Det Not Monotonic No Change No Change
Alive-only Det Increase No Change No Change
Proportional Sto Increase No Change No Change
Regression Sto Not Monotonic Increase Increase
Alive-only Sto Increase No Change No Change
Joint Expectation Increase Increase Increase

be conducted.

4.1 Data and Assumptions

We establish a risk-sharing pool that allows mixed-age cohorts with different initial balances and new
members to join. The assumptions on the risk-sharing pool are the following:

• A total of 586 members in the initial pool at time zero as presented in Table 3.

• Age range: 60 to 100.

• Age distribution refers to Australian population exposure in 2020.

• For each age, half of the members have a high balance and the other half have a low balance,
where the high balance is 1.5 times the low balance.

• The balance decreases with age to reflect the consumption of retirement balance.

• New members joining every year have the same size of 586 members and the same age and balance
distributions as in Table 3.

The pool size of 586 is chosen to demonstrate the pooling effect while maintaining computation effi-
ciency, as we study 50 times the pool size and perform 30 years of analysis with new members of the
same size joining each year.

The assumptions on mortality rates are:

• Mortality rates follow a multivariate log-normal distribution since they are non-negative.

• The covariance matrix of the multi-variate log-normal distribution is estimated by using an 11-
year bracket for each cohort at every point in time and calculating the covariance.

Examples of the means, standard deviations, and correlation matrix of mortality rates for a selection of
cohorts at ages 60, 70, 80, 90, 100 in the calendar year 2020 are displayed in Table 4 and Table 5. We can
see that the means of mortality rates increase with age. The standard deviations of mortality rates also
increase with age, except for age 100. From Table 5, we can see that the correlation is generally higher
when the age difference is lower. Age 100 is also an exception in this case because an improvement
in the mortality at younger ages, for example, age 90 often leads to a worsening mortality at age 100
because people will die in the end.
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Table 3: Assumptions on the pool and members.

Age Size Balance High Balance Low
60 30 720,000 480,000
61 30 708,000 472,000
62 30 696,000 464,000
63 28 684,000 456,000
64 28 672,000 448,000
65 26 660,000 440,000
66 26 648,000 432,000
67 26 636,000 424,000
68 26 624,000 416,000
69 24 612,000 408,000
70 24 600,000 400,000
71 24 588,000 392,000
72 24 576,000 384,000
73 22 564,000 376,000
74 20 552,000 368,000
75 18 540,000 360,000
76 18 528,000 352,000
77 16 516,000 344,000
78 14 504,000 336,000
79 14 492,000 328,000
80 12 480,000 320,000
81 12 468,000 312,000
82 12 456,000 304,000
83 10 444,000 296,000
84 10 432,000 288,000
85 8 420,000 280,000
86 8 408,000 272,000
87 6 396,000 264,000
88 6 384,000 256,000
89 6 372,000 248,000
90 4 360,000 240,000
91 4 348,000 232,000
92 4 336,000 224,000
93 2 324,000 216,000
94 2 312,000 208,000
95 2 300,000 200,000
96 2 288,000 192,000
97 2 276,000 184,000
98 2 264,000 176,000
99 2 252,000 168,000
100 2 240,000 160,000

Total 586 NA NA
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Table 4: Mean and standard deviation of mortality rates at different ages in 2020.

qx 60 70 80 90 100
µ 0.00638 0.01370 0.04159 0.14561 0.38578
σ 0.00017 0.00076 0.00307 0.00525 0.00277

Table 5: Correlation of mortality rates at different ages in 2020.

corr 60 70 80 90 100
60 1 0.88435 0.81642 0.84444 -0.51903
70 0.88435 1 0.87124 0.92396 -0.43913
80 0.81642 0.87124 1 0.96875 -0.67331
90 0.84444 0.92396 0.96875 1 -0.66694

100 -0.51903 -0.43913 -0.67331 -0.66694 1

4.2 Overview of Experiments

We compare risk-sharing rules by the rate of return from the distribution of mortality credits in the
case of survival: RORmc

i (t) = (Vi(t + 1) − si(t + 1))/Fi(t). We do not directly compare the weightings
because they are heavily affected by the pool size and the fund value. The RORmc

i (t) for different
risk-sharing rules in the case of survival are shown below:

• Proportional: si(t+1)E[qi(t)]+wProportional
i (t+1)(S(t+1)−E[S(t+1)])

Fi(t)

• Joint Expectation: si(t+1)E[qi(t)]+wJE
i (t+1)(S(t+1)−E[S(t+1)])

Fi(t)

• Regression Det: si(t+1)qi(t)+wRD
i (t+1)(S(t+1)−E[S(t+1)])

Fi(t)

• Regression Sto: si(t+1)E[qi(t)]+wRS
i (t+1)(S(t+1)−E[S(t+1)])

Fi(t)

• Alive: wAlive
i (t+1)S(t+1)

Fi(t)

We omit the deterministic proportional and alive-only rules because we assume that the mortality rates
qi(t) used in the deterministic case are equal to E[qi(t)] used in the stochastic case. We can see that
the major difference in risk-sharing rules is their weighting on the difference between the empirical and
expected mortality credits S(t + 1) − E[S(t + 1)], except for the alive-only rule which is on S(t + 1).
This means different risk-sharing rules have different sensitivities when there is a deviation from the
expected mortality credits. We measure this difference in the sensitivity by plotting RORmc(t) versus
the deviation in total mortality credits S(t + 1) − E[S(t + 1)] for different (1) risk-sharing rules, (2)
ages and thus mortality rates of members, (3) fund balances of members, and (4) pool sizes.

Then, we will study the performance of the fund over time with new members joining. We will assess
benefit payments of different cohorts for the next 30 years since the initial establishment of the pool
assuming: (1) No systematic mortality risk, and (2) 20% reduction of mortality rates for the first 5
years.

4.3 Comparison of Rates of Return from Mortality Credits against Deviation in Total
Mortality Credits

We first compare the rates of return from mortality credits RORmc(t) of different risk-sharing rules
against the deviation in total mortality credits for time t = 0. As illustrated in Figure 1, S(t + 1) −
E[S(t + 1)] = 0 implies zero deviation in mortality credits and this is the point of the expected rate of
return from mortality credits E[RORmc(t)] where all risk-sharing rules except for the alive-only rule
pay the same.

19This is a preprint posted to SSRN at  http://dx.doi.org/10.2139/ssrn.4996536



-E
[S]

-0.8E[S]

-0.6E[S]

-0.4E[S]

-0.2E[S] 0

0.2E[S]

0.4E[S]

0.6E[S]

0.8E[S]
E[S]

S-E[S]

-0.01

-0.005

0

0.005

0.01

0.015

0.02

k
JE

 = 0.01304

k
RS

 = 0.02372

Proportional

Joint Expectation

Regression Det

Regression Sto

Alive

(a) Age 60 with high balance = 720, 000.

-E
[S]

-0.8E[S]

-0.6E[S]

-0.4E[S]

-0.2E[S] 0

0.2E[S]

0.4E[S]

0.6E[S]

0.8E[S]
E[S]

S-E[S]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k
JE

 = 0.78986

k
RS

 = 0.29115

k
A

 = 1.26617

Proportional

Joint Expectation

Regression Det

Regression Sto

Alive

(b) Age 100 with high balance = 240, 000.

Figure 1: Comparison of RORmc(t) between risk-sharing rules.

Figure 1(a) shows the comparison of risk-sharing rules for the cohort aged 60 with a high balance
720, 000 in year 1. The slope of the plot implies the sensitivity of RORmc(t) to the deviation in
S(t + 1). A higher slope implies a higher sensitivity, and the value of the slope is shown in the figure as
k, calculated as the vertical change in RORmc(t) between the two endpoints. This adjustment controls
variations in the scale of S(t + 1) − E[S(t + 1)] under different settings in this paper. We can see from
Figure 1(a) that the deterministic regression rule and the stochastic regression rule give higher slopes
at age 60 than the other three risk-sharing rules, while the deterministic regression rule has a slightly
higher slope than the stochastic regression rule. The differences between the regression rules and other
risk-sharing rules are due to the different weightings in mortality credits, as illustrated in Table 1. The
weighting of the regression rules have the quadratic of the accumulated fund balance in the numerator,
which results in higher slopes than the other risk-sharing rules for cohorts with high fund balances in
the pool. In addition to the quadratic accumulated fund balance, this can also be explained by the
E

[
qi(t)(1 − qi(t))

]
and qi(t)(1 − qi(t)) terms in the numerators of regression rules, whose relative rates

to E[qi(t)] and qi(t) decrease as age increases and thus expected mortality rate increases. Meanwhile,
the proportional rule, joint expectation rule, and alive-only rule have minor differences at age 60.

Figure 1(b) shows the comparison at age 100 with high balance 240, 000. In contrast to age 60, the alive-
only rule gives a higher slope than the other four risk-sharing rules with a significant difference. This is
because the E[qi(t)]

1−E[qi(t)] term for the alive-only rule in Table 1 is much higher than the expected mortality
rates E[qi(t)] at older ages, since the (1−E[qi(t)]) term is much smaller than 1 at older ages with higher
expected mortality rates. Meanwhile, the E[qi(t)]

1−E[qi(t)] term at younger ages is close to E[qi(t)] because
their expected mortality rates are relatively lower, which explains the minor difference between the
alive-only rule with the joint expectation rule and proportional rule at younger ages. The deterministic
and stochastic regression rules now have lower slopes than proportional and joint expectation rules.
The expected rate of return from mortality credits at age 100 is much higher compared with age 60
because of the much higher expected mortality rate at age 100.
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Figure 2: Comparison of RORmc(t) with different ages, balances, and rules.
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Figure 2 compares 5 cohorts aged 60, 70, 80, 90, 100, and with high or low balance. We can see that
as age increases, the expected mortality rate E[qi(t)] increases, which leads to higher E[RORmc(t)] at
the point of S(t + 1) − E[S(t + 1)] = 0. Meanwhile, as age increases, the slopes of the regression rules
increase, but not as fast as the proportional rule and joint expectation rule, leading them to be relatively
flatter at older ages. This is due to the quadratic accumulated fund balance and the E

[
qi(t)(1 − qi(t))

]
term in the regression rules explained earlier. The slope of the alive-only rule increases at the fastest
rate with age, and it starts to dominate the other rules for old cohorts. We also find that the slopes of
the regression rules are higher with high balance, keeping age the same.

4.4 Effect of Balance

To further study the effect of balance on the slope, we divide the slope of high balance by the slope
of low balance at every age and present the results in Table 6. From Table 6, we find that the ratios
for the proportional rule, joint expectation rule, and alive-only rule are 1, indicating that balance does
not affect the sensitivity to deviation in total mortality credits. However, we can see from Table 6 that
the ratio for the deterministic regression rule is 1.5, which is exactly the ratio of high balance over low
balance, indicating that the slope increases proportionally to balance for the deterministic regression
rule. Moreover, for the stochastic regression rule, it is above 1 but not equal to 1.5 exactly, indicating
that the slope still increases with balance, but the ratio is affected also by the mean, variance, and
correlation of mortality rates of all fund members.

Table 6: Slope high balance over slope low balance at different ages.

Age
Risk-sharing Rules

Proportional Joint Expectation Regression Det Regression Sto Alive
60 1 1 1.5 1.49239 1
70 1 1 1.5 1.47962 1
80 1 1 1.5 1.46428 1
90 1 1 1.5 1.47324 1
100 1 1 1.5 1.50793 1

4.5 Effect of Pool Size

Figures 3 to 5 show the slopes of different risk-sharing rules for different pool sizes and for ages 60,
80, and 100 respectively. The expected rate of return from mortality credits E[RORmc(t)] at the point
of S(t + 1) − E[S(t + 1)] = 0 does not change with the pool size. We observe from Figure 3 that the
slopes of the proportional rule, joint expectation rule, alive-only rule, and deterministic regression rule
are relatively stable when we increase pool size to 10 times and 50 times the original size. However, we
find that the slope for the stochastic regression rule decreases for member age 60. The slope values of
the stochastic regression rule and the joint expectation rule are shown in Table 7.

From Figure 4 and Table 7, we can see that the slope of the stochastic regression rule increases with
pool size at age 80. Meanwhile, from Figure 5 and Table 7, a decrease in the slope with pool size is
observed at age 100. The decrease in slope at ages 60 and 100 can be explained by the low volatility in
the mortality rates we assume, and being correlated to fewer members in the pool. Especially at age
100, the mortality rates are negatively correlated with the mortality rates of most members at other
ages. Meanwhile, the slopes of the joint expectation rule remain the same when the pool size increases.
The comparisons of all cohorts with 10 and 50 times the original pool size are displayed in Figures 9
and 10 respectively in Appendix 1.
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Figure 3: Comparison of RORmc(t) with increasing pool size: Age 60 with high balance = 720, 000.
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Figure 4: Comparison of RORmc(t) with increasing pool size: Age 80 with high balance = 480, 000.
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Figure 5: Comparison of RORmc(t) with increasing pool size: Age 100 with high balance = 240, 000.
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Table 7: Slopes of RORmc(t) for stochastic regression rule and joint expectation rule and for
high-balance individuals at ages 60, 80, and 100 with different pool sizes.

Origianl Size 10× size 50× size
k60

RS 0.02372 0.01940 0.01261
k80

RS 0.10461 0.11279 0.12569
k100

RS 0.29115 0.19749 0.04998
k60

JE 0.01304 0.01304 0.01304
k80

JE 0.08614 0.08614 0.08614
k100

JE 0.78986 0.78986 0.78986

4.6 Benefit Payments over Time

The discussions so far are between time 0 and time 1. We now allow new heterogeneous members
as shown in Table 3 to enter the pool at the beginning of each year. The ages of existing members
increase by one every year, and their balances after benefit payments become the initial balances at
the beginning of the next year. Under the dynamic setting, we track the performance of the pool over
the next 30 years since the initial establishment. The means, standard deviations, and correlations
of mortality rates at different ages in Table 4 and Table 5 are updated over time to reflect the time
evolution of mortality rates.

Figure 6 shows the simulated income payments for different cohorts over the next 30 years. A sudden
drop in income payments to zero represents the death of the member. We can see that for younger
cohorts, all risk-sharing rules pay a relatively stable income over the next 30 years. The alive-only rule
results in higher income payments at older ages, as illustrated in the previous subsections from their
higher slope. The income for people who joined at older ages, for example, age 90 is slightly decreasing
because of the very small annuity factor at that age, leading to high income payments relative to initial
contributions and the balance to be consumed very quickly. However, the income keeps increasing for
the alive-only rule because of the very high slope at old ages. At age 100, the income for risk-sharing
rules except for the alive-only rule is decreasing fast, while it is still increasing for the alive-only rule.

Figure 7 shows the simulated income payments when there is a systematic mortality shock of 20%
reduction in all cohorts for the first 5 years. We can see that for younger cohorts, their income
payments are still relatively stable over their lifetime. However, for older cohorts, the payments for
all risk-sharing rules experience a decrease compared with no mortality shock, mainly because the
benefits from mortality credits decrease when mortality improves. We can also observe differences
between different risk-sharing rules because as illustrated in previous sections, different risk-sharing
rules allocate different weightings to the deviation in total mortality credits.

Figure 8 further compares the difference in fund balance in year 5 when there is a mortality shock
for the first 5 years. The difference in the way of distributing this deviation leads to the difference in
the fund balances, and a lower slope leads to a higher balance. We can see that there is a significant
difference when we move from the proportional or joint expectation risk-sharing rule to the deterministic
or stochastic regression rule, or to the alive-only rule. The two regression rules give lower fund balances
at younger ages than the other three rules, but they give higher fund balances at older ages than the
proportional rule and joint expectation rule.
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Figure 6: Benefit payments over time in dynamic pool allowing new members joining.
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Figure 7: Benefit payments over time in dynamic pool allowing new members joining, under 5-year
systematic mortality shock.
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Figure 8: Balance at time 5, under 5-year systematic mortality shock.
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From Figure 8, we can see that the difference in balance is several thousand dollars for ages 60, 70, and
80, and can exceed 10, 000 for ages 90 and 100 with the initial balances we set. An obvious difference is
also observed between deterministic and stochastic regression rules. The stochastic regression rule gives
higher balances than the deterministic regression rule at age 60, 70 with high balance, 90 with high
balance, and 100. In the other cases, they will give lower balances than the deterministic regression
rule. This is because when a systematic mortality shock of 20% reduction in mortality rates happens,
empirical total mortality credits will tend to be lower than expected. The difference between the joint
expectation rule and the proportional rule is small, because when we include variance and correlation to
all cohorts, the numerator of every fund member increases, leading to a smaller change in the weighting.
Therefore, there is a dilution effect when we move from the proportional rule to the joint expectation
rule.

Finally, the difference between the alive-only rule to the other risk-sharing rules is also obvious. We can
see from Figure 8 that the difference between the alive-only rule and the joint expectation rule ranges
from a few hundred dollars at age 60, to a few thousand dollars at age 80, up until around 50, 000
dollars at age 100. We can see that a higher difference between risk-sharing rules normally happens
at older ages despite the lower initial contribution at older ages. Therefore, this paper provides a
more accurate calculation of risk sharing with different rules under stochastic and correlated mortality
rates and can help issuers decide which risk-sharing rule to choose when they establish the product
according to their needs. If the issuers do not prefer the distribution of mortality credits to be affected
by individual account balances, then they should not choose stochastic or deterministic regression rules.
Meanwhile, if the issuers prefer the account balance of younger retirees to be higher than older retirees
when a systematic reduction in mortality rates happens, then the proportional, joint expectation, and
alive-only rules are preferred. Moreover, if issuers prefer to pay more to surviving members, then they
would prefer the alive-only rule. While the difference between different risk-sharing rules exists, we
need to emphasise that all risk-sharing rules are still actuarially fair, or almost fair for the alive-only
rule.

5 Conclusions

In conclusion, this paper studies mortality pooling products that use risk-sharing rules to distribute
mortality credits first and then decumulate and calculate the benefit payments with the pooled-annuity
strategy. Existing studies on the risk sharing of mortality pooling products mostly use deterministic
mortality rates in the distribution of mortality credits. However, mortality rates are stochastic and
correlated random variables between cohorts. This paper extends the existing risk-sharing rules to the
case of stochastic mortality rates and proposes a new risk-sharing rule named the joint expectation
rule which is the general form of the proportional rule when mortality rates are stochastic. The joint
expectation rule with death benefit is also proposed and proven to be fair and self-sustaining.

Moreover, the risk-sharing pool in this paper contains heterogeneous members with different ages and
balances. In addition, the pool is dynamic so new heterogeneous members are joining every year. The
pool of mixed members is observed for 30 years since the initial establishment. The effect of age,
balance, pool size, and choice of the risk-sharing rule on the distribution of mortality credits, and thus
on the income payments and remaining balances of different members are studied in this paper.

Our results show that age mainly affects the distribution of mortality credits by the higher mortality
rates at older ages. People at higher ages have higher mean mortality rates, and thus a larger proportion
of the mortality credits, controlling balance the same. Meanwhile, with the annuity-like decumulation
strategy, a larger proportion of their remaining balance is paid out every year due to the smaller annuity
due factor at older ages. Therefore, this framework of risk sharing and decumulation can consistently
provide stable income payments to the majority of members. Moreover, we find that the fund balance
does not affect mortality risk sharing in the proportional rule, alive-only rule, and the proposed joint
expectation rule. However, for the deterministic and stochastic regression rules, a higher balance results
in a higher share of the total mortality credits.
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Furthermore, with the assumption that the ages of people joining the pool range from 60 to 100, we
study how the volatility and correlation of mortality rates and the pool size affect the distribution of
total mortality credits. The results show that for the stochastic regression rule which takes into account
the volatility and correlation of mortality rates, a larger pool size results in a smaller sensitivity to the
deviation in total mortality credits for the younger (age 60) cohorts who have less volatile mortality
rates and the older (age 100) cohorts who are less correlated with other cohorts. Meanwhile, for the
middle-aged 80 cohorts who have relatively volatile mortality rates and are highly correlated with other
cohorts, a larger pool size results in a higher sensitivity to the deviation in total mortality credits using
the stochastic regression rule.

Finally, the effect of a mortality shock is compared between different risk-sharing rules. Our results show
that under a 5-year mortality shock, the younger cohorts with deterministic and stochastic regression
rules have lower fund balances, compared with the proportional, joint expectation, and alive-only rules.
Meanwhile, the older cohorts have higher fund balances using the deterministic and stochastic regression
rules, compared with proportional and joint expectation rules, while the alive-only rule always results
in the highest account balance at older ages.
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Appendix 1: Comparison of Rates of Returns from Mortality Credits for Cohorts
with Different Ages and Fund Balances, and for Pools with Different Sizes
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Figure 9: Comparison of RORmc(t): All cohorts with 10 times the pool size.
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Figure 10: Comparison of RORmc(t): All cohorts with 50 times the pool size.
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