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A B S T R A C T   

Driven by increased human activities in rural-urban interfaces, the construction of residential or commercial 
buildings in these areas is experiencing a notable growing trend. In comparison to those built in urban regions, 
these structures, constructed in rural-urban interfaces, are in closer proximity to natural vegetation, therefore 
facing a heightened bushfire risk. The timely execution of Structural Protection Plans (SPP) is of utmost 
importance in the case of bushfire threats, where a swift response within a short timeframe is necessary, 
considering the diverse fragility characteristics of structural components. To address this, the present study in-
troduces a novel framework for assessing the fragility of typical residential structures under both low and high 
wind speed conditions, specifically focusing on three key structural components: window frames, walls, and 
roofs. The assessment of structural probability-based fragility is performed using the newly developed limit state 
function and takes into account the influence of multiple non-deterministic factors, including vegetative con-
ditions, wind speed, different temperature thresholds of structural components, and fire response time. 
Furthermore, to enable rapid prediction of structural probability-based fragility on the fireground, a virtual 
modelling (VM) technique, named extended support vector regression (X-SVR), is introduced and incorporated 
into the proposed fragility assessment framework. The efficiency and accuracy of this virtual modelling tech-
nique in assessing the bushfire fragility of structures under different wind speed intervals have been investigated 
and validated through a comprehensive case study of a real Australian house. The proposed framework is poised 
to provide valuable insights into optimizing SPP by swiftly identifying the most fragile structural components in 
practice.   

1. Introduction 

In recent decades, bushfires have resulted in significant human ca-
sualties and extensive property losses on a global scale. The 2020 
Australian bushfire season led to the destruction of 3094 residential 
properties and the burning of over 17 million hectares of land [1], 
setting a new record for the extent of damage caused by bushfires. The 
majority of the reported damaged structures were located in areas close 
to dense natural vegetation [2]. Such an environment poses a significant 
bushfire risk to surrounding structures due to the flammable nature of 
vegetation [3], as illustrated in Fig. 1. In the face of bushfire threats, it 
becomes critically important for individuals to grasp the fragility of their 
structures to bushfires. It can assist individuals in knowing the arrival 
time of these fires and deciding when to implement a pre-prepared 

Structural Protection Plan (SPP), especially when firefighting re-
sources are limited. The SPP, which is recommended by the NSW Rural 
Fire Service, includes measures such as closing doors and windows, 
lowering bushfire shutters, activating sprinklers to moisten the yard and 
roof, and disconnecting the gas and electricity supply, amongst other 
measures [4]. 

While the fragility of structures in the face of floods [7,8], earth-
quakes [9], and hurricanes [10,11] has been extensively studied, there 
has been limited investigation into the fragility assessment of building 
structures during bushfires. Most structures have a limited ability to 
withstand high-temperature environments. When exposed to direct 
flame contact or high heat radiation, they become highly fragile and 
may quickly lose their normal functionality. This state of compromised 
functionality is also commonly referred to as the exceeding of the limit 
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state of serviceability. For instance, metal roofs and alloy window 
frames may quickly undergo large deformation, while timber walls may 
undergo charring. 

In order to reduce the fragility of structures due to bushfire, it’s 
imperative to promptly execute SPP before structural functionality is 
compromised. To this end, two key metrics, Structural Failure Time 
(SFT) and Fire Response Time (FRT), are employed to measure the 
fragility of structures during a bushfire. SFT is defined as the time span 
from the ignition of a bushfire until the structures start to sustain 
damage, whereas FRT represents the duration needed to carry out SPP. 
The fragility of structures can ultimately be evaluated by determining 
the probability that the FRT exceeds the SFT. Evaluating the fragility of 
structures, in the context of bushfire, is a complex task. It can be affected 
by a multitude of factors, such as:  

• Temperature Thresholds of Structures [12]: This term denotes the 
highest temperature that structures can withstand. When these 
temperature thresholds are surpassed, structures are likely to be 
damaged and lose their normal functionality. Typically, structures 
built with fire-resistant materials or protected well by firefighting 
measures have a longer SFT, which consequently reduces structural 
fragility.  

• Execution of SPP [13]: This term refers to the duration needed to 
carry out the SPP, otherwise known as the FRT. Multiple factors can 
impact the FRT, including the experienced level of the individuals 
involved and the preparation of SPP. A thoroughly prepared SPP can 
decrease the FRT, thereby reducing the fragility of structures. As 
demonstrated by Henok et al. [14], while 24 % of residents in 
Wildland-Urban Interface (WUI) communities choose to stay and 
protect their homes during bushfire incidents, the adequacy of their 
preparedness for SPPs raises concerns.  

• Weather Conditions [15]: Weather conditions, particularly wind 
speed, significantly impact bushfire features such as the rate, in-
tensity, and direction of bushfire spread. These factors, in turn, 
impact the fragility of structures. Typically, strong wind conditions 
tend to accelerate the spread rate, causing the firefront to reach 
structures more rapidly than under mild wind conditions. This re-
sults in a shorter SFT, necessitating a quicker execution of SPPs. To 
emphasize this point, the fragility of structures under both strong and 
mild wind scenarios is assessed concurrently in this study.  

• Vegetation Conditions [15,16]: Factors such as moisture content, 
height, density, and type of vegetation significantly affect bushfire 
features and, subsequently, the fragility of structures. For instance, 
the intensity of a firefront burning in dry and dense vegetation tends 
to be much higher than that in wet and sparse vegetation, resulting in 
a stronger heat release rate and heat radiation. This can cause the 
firefront to damage structures from a greater distance, leading to a 
shorter SFT. 

To simulate bushfire propagation while taking into account the 
aforementioned factors, it is first necessary to determine a suitable 
bushfire model. Generally, bushfire models can be classified into three 
categories: fully physical, semi-physical, and empirical models. Each 
category is distinguished by the mechanisms it uses to simulate bushfire 
propagation. Empirical models, such as the classical Rothermel fire 
spread model [17] and various fire spread equations tailored to different 
types of vegetation fuel reviewed in [18], are constructed based on 
historical bushfire datasets or experiments, without involving any 
physical mechanisms of bushfires. While empirical equations allow for 
computationally efficient simulation, the predicted bushfire features 
may lack reliability due to the approximate nature of the simulation 
process. To assess the impact of the wind field, arguably the most sig-
nificant factor influencing bushfire features, a dynamic terrain-shaped 
wind field can be incorporated into the empirical model, resulting in a 
semi-physical model - the level set bushfire model in the Fire Dynamics 
Simulator (FDS) [19]. The advent of high-performance computing has 
facilitated the development of several computational fluid 
dynamics-based fully physical bushfire simulation models, including the 
Lagrangian particle model, boundary fuel model in FDS [19]. The full 
physical models provide a rigorous description of turbulent flows and 
combustion reaction kinetics, enabling the simulation of the intricate 
interaction between fire, fuel, weather, and topography with high 
spatiotemporal resolution. Based on these various models, numerous 
studies have been undertaken to examine the impact of various vege-
tation and environmental parameters, such as wind speed [20], the 
spatial distribution characteristics of vegetation [21,22], and the mois-
ture content within the vegetation [23,24], on bushfire features. Beyond 
the scope of vegetation and environment, the impact of bushfire on the 
performance of residential buildings [25], and critical infrastructures 
[26] such as the traffic network [27] and the power grid [28] have been 
widely studied recently. 

Previous studies have made significant contributions to our under-
standing of bushfire features and their impact on our society. However, 
there is still a lack of a unified framework for assessing the fragility of 
structures from the perspective of uncertain bushfire propagation, which 
is closer to real-world conditions. To address this, the current study 
proposes a novel Probability-based Fragility Assessment Framework 
(PFAF) for the structures in the context of bushfire, taking into account 
the non-deterministic nature of vegetation and environmental condi-
tions. For obtaining a reliable outcome, the full physical bushfire model 
in FDS is utilized to simulate bushfire propagation. Additionally, a vir-
tual modelling (VM) technique – the Extended Support Vector Regres-
sion (X-SVR) model – is introduced to mitigate the heavy computational 
burden caused by the full physical model. Essentially, the X-SVR is a type 
of supervised Machine Learning (ML) technique [29,30,31]. It stands out 
from other ML techniques in its ability to efficiently and accurately 
capture the nonlinear statistical correlation between bushfire features 
and concerned responses in an explicit manner, based on the dataset. 

Fig. 1. (a) House engulfed in flames [5]; (b) Proximity of bushfires to properties [6].  
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The robustness and capacity of the X-SVR have been proven in solving 
complex nonlinear engineering challenges, such as elastoplastic analysis 
[32], nonlinear geometric-material analysis [33,34], impact load anal-
ysis [35,36,37], structural dynamic fracture analysis [38], nonlocal 
damage for quasi-brittle materials [39,40]. Considering the highly 
nonlinear nature of bushfire propagation, the capacity of the X-SVR 
technique in solving the fragility of structures by analysing the rela-
tionship between vegetation and environmental factors and the con-
cerned structural response “SFT” marks a novel attempt in the context of 
bushfire. Ultimately, the proposed Virtual Modelling aided 
Probability-based Fragility Assessment Framework (VM-PFAF) can uti-
lize this statistical correlation to rapidly update the monitoring “SFT” 
responses by analysing ever-changing vegetation and environmental 
conditions in the fireground. This rapid prediction allows individuals 
involved to stay up-to-date with the latest bushfire developments, 
thereby enabling a more efficient decision-making process. 

The structure of this study is as follows: Section 2 offers an in-depth 
overview of the research methodology employed. This section encom-
passes detailed descriptions of the process for evaluating the probability- 
based fragility of structures, the adopted probability theory, and an 
elucidation of the virtual modelling technique. Subsequently, Section 3 
showcases the efficiency of the proposed framework in predicting the 
fragility of structures, illustrated through a real individual house in an 
Australian WUI community. Section 4 highlights the limitations and 
scope for the current study and finally, the main findings are concluded 
in Section 5. 

2. Virtual modelling aided structural probability-based bushfire 
fragility assessment 

In this study, FDS [19] is utilized as the numerical simulation tool to 
simulate bushfire propagation and capture the dynamic temperature 
response of structures. FDS is a computational fluid dynamics (CFD) 
simulation platform that employs the large eddy simulation (LES) 
approach to model fire-driven fluid flow, based on the Navier–Stokes 
equations. 

The adiabatic surface temperature AST is adopted to represent the 
temperature response of structures. It is initially introduced by Ulf 
Wickström [41] and is a hypothetical temperature at which the net heat 
flux between the gas and solid structure is zero. At a given time t after a 
bushfire is ignited, AST can be calculated using the following equation: 

εs
[
qinc(t) − σTAST(t)4]

+ hc
[
Tg(t) − TAST(t)

]
= 0 (1)  

where εs[qinc(t) − σTAST(t)4
] denotes the net radiative heat flux of the 

surface of a solid structure at time t; hc[Tg(t) − TAST(t)]is the net 
convective heat flux at time t; εs represents the surface emissivity; qinc(t)
denotes the incident radiative heat flux onto the surface; σ is the Ste-
fan–Boltzmann constant; hc represents the convective heat transfer co-
efficient; and Tg(t) is the surrounding gas temperature at time t. 

The non-deterministic vegetation conditions are characterized by 
four vegetation parameters, which are modelled as random variables. 
These four vegetation parameters include vegetation surface-to-volume 
ratio xSAV , vegetation moisture content xmoi., vegetation height xthick., 
and vegetation bulk density xdens.. More details regarding these vegeta-
tion parameters can be found in [42]. Moreover, the non-deterministic 
environmental conditions are also represented by random wind speed 
xwind and random ambient temperature xtemp.. Finally, a random vector x, 
encapsulating these six random variables, can be formulated to repre-
sent a non-deterministic bushfire event. 

x =
[
xSAV , xmoi., xthick. , xdens., xtemp., xwind

]
∈ ℜ6 (2) 

Ultimately, the AST on the structural surface in a non-deterministic 
bushfire event can be expressed as: 

εs
[
qinc(x, t) − σTAST(x, t)4]

+ hc
[
Tg(x, t) − TAST(x, t)

]
= 0 (3) 

It is evident that the TAST is no longer solely dependant on time t but 
is also dependant on the random vector x. Consequently, the TAST, at 
time t, is no longer a deterministic value but rather a function of the 
random vector x. 

Utilizing the temperature response TAST , the bushfire-adapted limit 
state function of structures for assessing the structural fragility was first 
proposed. Generally, a structure consists of various components with 
respective capacities to withstand high-temperature environments. 
When the temperature response TAST first exceeds the temperature 
thresholds of the structures at time T0, the structure loses its primary 
functionality and enters a state of failure, indicating the SFT. It is 
important to note that, although a structural component may serve 
multiple functions and have corresponding temperature thresholds for 
each function, this study considers only the primary function of each 
component. For example, the primary function of an alloy window 
frame is to secure the glass in place. If large deformation in the window 
frame occurs at T0, leading to the inability to hold the glass securely, T0 
is then regarded as the temperature threshold for the window frame. 
Fig. 2 demonstrates the process of determining SFT according to the 
temperature threshold of structural primary function. 

Ultimately, the SFT can be expressed as: 

SFT(x) = min(t|TAST(x, t) ≥ Tth) (4)  

where the Tth denotes the temperature threshold corresponding to the 
primary function of each structural component. 

FRT is another important factor in the formulation of the limit state 
function for structures under bushfire. It represents the time required to 
execute SPPs and can be influenced by various factors, including the 
proficiency of operators and their preparedness. In this study, the FRT is 
also considered as a non-deterministic parameter that follows a specific 
probability distribution. However, there is a lack of studies investigating 
the appropriate probability representation for the FRT. Herein, consid-
ering the non-negative nature of the FRT and the successful application 
of the lognormal distribution in modelling probability distribution in 
relevant real-life scenarios [43,44], it is assumed that the FRT follows a 
lognormal distribution with a coefficient of variation of 0.05. This 
assumption is based on both the statistical properties of the lognormal 
distribution and its applicability to similar time-related variables in 
practical applications. Ultimately, the limit state function g(x) of struc-
tures under bushfire propagation can be formulated as: 

g(x) = SFT(x) − FRT (5) 

A value of g(x) less than or equal to zero indicates that the SPP cannot 
be fully implemented before structural damage occurs, and thus to be 
deemed as fragile. Therefore, the fragility of structures (Pf ) can be 
estimated by Eq. (6). 

Pf = Pr[g(x) ≤ 0] (6) 

Fig. 2. Determination of SFT.  
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Monte Carlo Simulation (MCS) is a widely utilized and powerful tool 
to estimate the probability-based fragility of structures Pf in a non- 
deterministic bushfire event. By generating numerous bushfire sam-
ples randomly, MCS can provide a reliable probability density distri-
bution of desired responses in an uncertain event, such as [45,46]. To 
approximate the fragility of structures Pf using MCS, numerous bushfire 
samples are initially generated randomly from the probability distri-
bution across the domain of the random vector x, and modelled using 
FDS. The numerical simulations aim to obtain the responses: SFTs of the 
individual components. By determining the value of the limit state 
function g(x) for structural components, the fragility of each structural 
component Pf can be calculated using Eq. (6). 

Despite its conceptual and algorithmic simplicity, the MCS entails a 
substantial computational cost. Typically, to achieve a reliable approx-
imation, a large number of samples is required. This process can lead to 
extensive computational time, particularly in cases where the physics- 
based model is numerically demanding, such as bushfire simulation 
using FDS. Although the computational cost for running MCS can be 
reduced through parallel computing strategies on high-performance 
clusters, the limited accessibility to such clusters restricts its wide-
spread availability. Furthermore, in the ever-changing fireground, some 
structural responses need to be assessed based on the latest bushfire 
information, such as SFT. These often exhibit a significant time sensi-
tivity, preventing the time-consuming MCS from being utilized to esti-
mate these time-sensitive structural responses. 

To address the aforementioned gaps in MCS, surrogate models are 
being extensively studied to reduce the computational cost when ana-
lysing complex engineering structures. As a type of surrogate model, the 
X-SVR is adopted to substantially reduce the computational cost for 
rapid prediction of structural fragility with real-time data in the fire-
ground. It enables the approximation of the inherent relationship be-
tween variable vegetation inputs and the SFT output, bypassing physics- 
based models and facilitating rapid predictions. The mathematical fun-
damentals of X-SVR method can be regarded as an extension of the 
kernelized Doubly Regularized Support Vector Machine (DrSVM) [47]. 

Given the training dataset with the training size n and input random 
variables m, the training dataset with input xtrain and output ytrain can be 
expressed as: 

xtrain =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
trial− 1 x2

trial− 1 ... xm
trial− 1

x1
trial− 2 x2

trial− 2 ... xm
trial− 2

... ... ... ...

x1
trial− n x2

trial− n ... xm
trial− n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; ytrain

= [ ytrial− 1 ytrial− 2 ... ytrial− n ]
T (7) 

Nonlinear support vector regression, also referred to as kernelized 
support vector regression, is based on the core concept of mapping 
original input data points xtrial− i, often linearly inseparable in the original 
feature space ℜm, to a higher-dimensional feature space through the 
application of a kernel function, as expressed in Eq.(A1). In this study, a 
new polynomial kernel function, combining the Padé expansion for 
diagonally approximating exponential function ex and the Gaussian 
kernel function is introduced. 

K
(
xi, xj

)
=

∑K
k=0Pk(xi)

T Pk
(
xj
)

exp
(
σ‖ xi − xj ‖

2
2

) (8)  

where xi ∈ ℜm×1represents the ith random vector and is defined in 
[− 1,1] after normalizing the original data, σis the positive kernel scale 
parameter, K is the order of the polynomial, andPk(xi)is the Padé ex-
pansions for ex [48] and can be expressed as: 

Pk(x) =
(2K− k)!
k!(K− k)!x

k

(2K− k)!
k!(K− k)!( − x)k (9) 

In the higher-dimensional feature space, there exist multiple hyper-
planes that can effectively separate distinctive classes. The objective of 
X-SVR is to identify the optimal hyperplane that maximizes the distance 
to the nearest data points. To determine this optimal hyperplane, the 
following quadratic programming problem must be solved: 

min
pk ,qk ,γ,ξ,ξ̂

:
λ1

2
(
‖ pk ‖

2
2 + ‖ qk ‖

2
2

)
+ λ2eT

n (pk + qk) +
C
2
(
ξT ξ + ξ̂

T
ξ̂
)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
K(pk − qk) − γeT

n

)
− ytrain ≤ εeT

n + ξ

ytrain −
(
K(pk − qk) − γeT

n

)
≤ εeT

n + ξ̂

pk,qk, ξ̂, ξ ≥ 0n

(10)  

where pk,qk ∈ ℜn×1are the two non-negative variables of kernelized X- 
SVR model; λ1, λ2 > 0are tuning parameters that control the balance 
between the classification performance and feature selection; ξ and ̂ξ are 
the non-negative slack variables; ytrain is the structural output; and γ ∈ ℜ

is the bias. 
For simplicity, the above quadratic programming problem can be 

reformulated to the following optimization problem [49]: 

min
dk

:
1
2
dk

T Ekdk − nk
T dk s.t.dk ≥ 04n (11)  

where Ek ∈ ℜ4n×4nand nk ∈ ℜ4n, whose details are represented in Ap-
pendix A: 

Let d∗

k
∈ ℜ4n be the obtained solution for Eq.(11), the optimal hy-

perplane can be expressed as the following regression function: 

f̂ (x) = (pk − qk)
T k̂(x) − êk

T M̂kd∗

k
(12) 

For any updated bushfire characteristics xupd. = [x1
upd., x2

upd., ..., xm
upd.]

T, 

the corresponding SFT f̂ (xupd.) can be predicted by: 

f̂
(
xupd.

)
= (pk − qk)

T k̂
(
xupd.

)
− êk

T M̂kd∗

k
(13) 

To this end, the implementation of the proposed kernelized X-SVR 
model follows the key steps as described below:  

1. Generate n bushfire samples xMCS = ℜn×6 randomly from the pre- 
defined probability distribution across the domain of the random 
vector x.  

2. Select l bushfire samples xtrain using Sobol’s sequence from the whole 
bushfire samples xMCS.  

3. Simulate l bushfire samples on the FDS platform and determining the 
SFT of the investigated structural components in each sample to form 
the initial training dataset (xtrain,ytrain).  

4. Train the X-SVR model based on the initial training dataset 
(xtrain,ytrain) to obtain the relationship between random vector x =

[xSAV , xmoi., xthick., xdens., xtemp., xwind] and SFT.  
5. For validating the accuracy of the predicted result ypred., the actual 

result yMCS of the whole 1000 bushfire samples is obtained through 
the FDS. With yMCS as benchmark, goodness of fit (R2) and root mean 
square error (RMSE) of the ypred is calculated to judge the conver-
gence of the trained X-SVR model corresponding to the training size 
of l. 

6. After obtaining the converged X-SVR model, the SFTs of any struc-
tural component can be estimated according to Eq. (13) under any 
newly generated bushfire samples.  

7. Based on the newly estimated SFTs, the probability-based fire 
fragility of the corresponding structural component can be re- 
assessed and updated finally. 

To provide a visual representation of the aforementioned steps, a 
flowchart depicting the process is presented in Fig. 3. 
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3. Case study 

In this study, the proposed framework is utilized to predict the 
fragility of three key structural components in a real residential house: 
the window frame, wall, and roof. This house was destroyed in the 2020 
Perth bushfire [50], as shown in Fig. 4. Numerical simulations, including 
the training of surrogate model, were conducted on a single workstation. 
This workstation is equipped with an Intel(R) Xeon(R) Gold 5215 CPU @ 
2.5 GHz, has 10 cores, and is supported by 192 GB of RAM. 

To simulate the bushfire propagation, a simulation domain with di-
mensions of 200 m in length, 42 m in width, and 10 m in height is 

established, as illustrated in Fig. 5. To monitor the temperature response 
of the three structural components, three detectors are positioned on the 
surfaces of the analysed structural components, as shown in Fig. 5. Fig. 5 
showcases the visual representation of the bushfire spread at four 
distinct time points following its ignition. 

To evaluate the failure status of structural components, a determin-
istic criterion is required, which further aids in assessing the probability- 
based fragility of these structural components. For this purpose, the 
temperature threshold is treated as the deterministic boundary value to 
determine the Structural Failure Time (SFT). The three temperature 
thresholds for the three structural components are defined in Table 1. 

Fig. 3. The flowchart for assessing the fragility of structures.  
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Additionally, the statistics of the random vegetation and environmental 
variables, listed in the random vector x, have been summarized in 
Table 2. 

To generate a dataset with input-output data pairs for training and 
verifying the surrogate model, numerous MCS bushfire samples are first 
randomly generated from the statistical distributions outlined in 
Table 2. The non-deterministic dynamic AST responses of the three 
structural components in the scenarios of both strong and mild winds are 
represented in Fig. 6. It can be observed that the consideration of un-
certainty in the vegetation and environmental conditions significantly 
contributes to the non-deterministic SFTs. 

To guarantee that the trained surrogate model can promptly regress a 
converged function to reliably express the impact of the random input 
vegetation and environmental data in the statistics of non-deterministic 
output SFT response, different training sample sizes are selected to 
observe the convergence trend. The statistics R2 is used to quantify the 
performance of trained surrogate models under different training sizes. 
According to the results shown in Fig. 7, the size of the training samples 
is determined to be 40 % of the total sample size. 

Based on the well-trained surrogate model, Fig. 8 demonstrates the 
comparison results of the graph of the probability density and the cu-
mulative probability of the non-deterministic SFTs predicted by the 
surrogate model and simulated in FDS. Overall, the R2 of the predicted 
results is well above 0.94 for all components in the scenarios of both 
strong and mild winds. 

Additionally, Table 3 also lists the key statistical moments “mean” 
and “standard deviation” of the predicted random output SFTs. The 
maximum relative error (RE) of the predicted results is − 3.25 % in the 
scenario of strong winds and − 3.37 % in the scenario of mild winds. 

Finally, the accuracy of the well-trained surrogate model is validated 
more thoroughly by predicting the SFTs of all bushfire samples. Fig. 9 
demonstrates the predicted SFTs of components in all samples in the two 

Fig. 4. (a) The house before the fire [51]; (b) in the fire [50].  

Fig. 5. The simulation domain of the residential house.  

Table 1 
The temperature thresholds for the three analysed structural components [52].  

Component Materials Damage type Temperature threshold 

Window frame Metal Thermal softening 321℃ 
Wall Timber Ignited and burning 281℃ 
Roof Metal Thermal softening 385℃  

Table 2 
The statistical characteristics of the random variables in the random vector x 
[42].   

Random 
variables 

Distribution Mean COV 

Random 
environmental 
conditions 

Wind speed (m/s) 
Normal 

13 (Strong 
wind 
scenario) 

0.04 

6 (Mild wind 
scenario) 

Ambient 
temperature (℃) 

28 

Random vegetation 
conditions 

Surface-to- 
volume ratio 
(1/m) 

Lognormal 4920 

Height (m) Beta 0.6 
Moisture content Normal 0.08 
Bulk density 
(kg/m3) 

Uniform 0.8  
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Fig. 6. The non-deterministic SFT responses in the scenarios of both strong and mild winds.  

Fig. 7. The R2 of the trained surrogate model under different training sample sizes.  
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Fig. 8. The probability density and cumulative probability of the predicted SFTs.  

Table 3 
The statistical characteristics of the predicted SFTs.  

Scenarios Moments 

Window Wall Roof 

SFT 
(min) 

RE 
(%) 

SFT 
(min) 

RE 
(%) 

SFT 
(min) 

RE 
(%) 

Strong winds 
Mean 2.06 − 0.20 2.04 − 0.20 2.09 − 0.22 
Std. 0.23 − 3.23 0.27 − 3.25 0.23 − 3.11 

Mild winds 
Mean 9.16 − 0.09 9.13 − 0.07 9.21 − 0.06 
Std. 0.60 − 2.96 0.60 − 2.87 0.60 − 3.37  
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Fig. 9. The predicted SFTs and its RE in all samples under two wind scenarios.  
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wind scenarios. The maximum RE is 6.87 % under strong winds and 4.98 
% under mild winds. The RE of the predicted results is well restricted to 
within 5 % in most samples. 

After verifying the accuracy and robustness of the well-trained sur-
rogate model in predicting the output response SFT, the predicted SFTs 
can be considered reliable and utilized to further assess the fragility of 
structural components. Based on the definition of structural fragility in 
Eq. (6), the fragility curves of three structural components are plotted in 
Fig. 10. It is evident that wind conditions play a significant role in the 
fragility of structures. In the scenario of strong winds, to maintain a low 
fragility level of the structural components as in mild winds, the FRT 
need to be dramatically reduced from about 8 min to 2 min, which will 

Fig. 10. The fragility curves of structural components at different confidence levels (CL) of FRT.  

Table 4 
The maximum allowable FRT required to ensure a 0 % fragility level.  

Confidence level Scenario Window frame Wall Roof 

5 % CL Strong winds 1.7 min 1.6 min 1.7 min 
Mild winds 8.3 min 8.2 min 8.4 min 

50 % CL 
Strong winds 1.6 min 1.5 min 1.6 min 
Mild winds 7.6 min 7.5 min 7.7 min 

95 % CL 
Strong winds 1.5 min 1.4 min 1.5 min 
Mild winds 7.0 min 6.9 min 7.1 min  
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undoubtedly put immense pressure on the operation of SPP. 
To ensure all the structural protection measures are completed 

before the structures are damaged, Table 4 lists the maximum allowable 
FRTs under different CLs in both wind scenarios. It is observed that at 
the same CL, the maximum allowable FRTs under strong winds shrink 
from about 8 mins under mild winds to less than 2 mins. This implies 
that the SPP must operate much more efficiently and quickly on windy 
days to provide as much protection to the structure as possible. 

It’s worth noting that the proposed surrogate model can not only 
achieve accurate regression of the input-output relationship from the 
original sample dataset, but it can also predict the output response 
directly for newly generated bushfire samples outside of the original 
dataset by utilizing this relationship, without any additional time- 
consuming numerical simulation. To verify the accuracy and effi-
ciency of the proposed surrogate model in predicting responses for new 
samples, Table 5 lists six newly generated bushfire samples: three in 
strong wind conditions and three in mild wind conditions. 

The well-trained surrogate model is used to predict the SFTs of the 
three structural components under these 6 new bushfire samples. The 
predicted responses are listed in Table 6. In terms of computational ef-
ficiency, the computational time needed to numerically simulate a 
bushfire sample to obtain the SFT responses generally is about 1.5 h. 
However, this time can be shortened to several seconds when using the 
well-trained surrogate model to predict the same SFT responses. The 
efficiency of the proposed surrogate model in the non-deterministic 
output prediction is significant. 

According to Table 6, the maximum allowable FRT in both strong 
and mild wind scenarios, which ensures a 0 % fragility level at 95 % CL, 
can also be re-assessed. In the scenario of strong winds, the maximum 
allowable FRT is 1.72 min. This number can be extended to 10.58 min in 
the scenario of mild winds. 

To evaluate the relative influence of the six random variables on the 
SFT, a sensitivity analysis is performed. The standard deviations asso-
ciated with these random variables, as shown in Table 2, are systemat-
ically adjusted to 0.8, 0.9, 1.1, and 1.2 times the original standard 
deviations σ0, while maintaining the stable mean values. By utilizing the 
updated input information, the X-SVR model enables the rapid predic-
tion of the updated SFT. The percentage variation in the standard de-
viation of the updated SFT is presented in Fig. 11, offering insights into 
the sensitivity of SFT to the different random variables. 

Fig. 11 highlights the significant influence of the random wind speed 
xwind on the SFT, not only under the strong wind conditions, but also 
under the mild wind conditions, surpassing the impact of other input 
variables. These findings are consistent with previous investigations 
conducted by Liu, Y. et al. [53], Anderson, K. et al. [54], and Clark, R.E. 
et al. [55], in which the considerable influence of wind on bushfire 

behaviours was also observed. 

4. Scope and limitations 

To quantify the probability-based fragility of generalized individual 
structures in WUI communities under the non-deterministic grassfire, 
this study introduces two time metrics - ‘FRT’ and ‘SFT’ - and proposes a 
grassfire-induced fragility assessment framework aided by an X-SVR 
machine learning technique. Within this framework, the fragility of 
structures is defined as the probability of non-deterministic FRT 
exceeding random SFT, without considering the impact of other factors, 
such as the detailed design of structures, the effectiveness of firefighting 
plans, and the feasibility of suppressing bushfires, on the fragility of 
structures. Therefore, this does not imply that a structure can be saved 
merely by completing the necessary defensive measures before the 
firefront damages the structures. In addition, the study also faces other 
limitations and scopes:  

• For determining the failure status of structures by using the first- 
passage failure principle, a pre-set deterministic temperature 
threshold is required. If the structural temperature reaches or ex-
ceeds the pre-set temperature threshold for the first time, the struc-
ture can be defined as failed and the corresponding SFT can be 
determined. However, in practice, the derivation of temperature 
thresholds and its variability can be considerably more complex and 
highly non-deterministic, especially when considering the 
geometric-material uncertainty of the structural components and the 
height-dependant temperature distribution across all structural 
components.  

• To simulate bushfire propagation, the full physical model in FDS is 
utilized. Due to numerical implementation challenges, this model 
does not consider the ember attack fire mechanism and includes only 
two fire attack mechanisms - direct flame contact and radiative heat.  

• The spread of bushfire over grassland from one side to the structure 
was considered in the simulation. Situations in which bushfire ap-
proaches structures from multiple directions in the canopy are not 
considered in this study. However, the concept of time-based 
fragility assessment proposed in this study can still be extended to 
these scenarios in future research. 

5. Conclusions 

This paper presents a virtual modelling-aided framework for 
assessing the fragility of structures exposed to bushfires under both 
strong and mild wind conditions. The two key metrics “SFT” and “FRT” 
are introduced to define the fragility of structures, highlighting the 

Table 5 
The six newly generated bushfire samples.  

Random variables 
Mild wind scenario Strong wind scenario 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

xwind (m /s) 7 6 5 12 13 14 
xtemp(◦C) 29 28 29 28 30 31 
xSAV (1 /m) 4700 4900 5700 4850 4900 5000 
xmoi. 0.1 0.08 0.09 0.08 0.08 0.09 
xthick. (m) 0.6 0.6 0.7 0.6 0.6 0.7 
xdens. (kg /m3) 0.8 0.8 0.9 0.8 0.8 0.9  

Table 6 
The predicted SFT (min) in newly generated samples.  

Components Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Wall 8.27 8.73 10.20 2.60 1.96 1.72 
Window frame 8.48 9.22 10.38 2.62 1.97 1.75 
Roof 8.73 9.28 10.58 2.63 2.00 1.78  
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important role of a well-prepared SPP in the mitigation of structural 
fragility. To mitigate the computational burden during the assessment of 
structural fragility, an advanced supervised machine learning 
technique-kernelized X-SVR model-is proposed to be a surrogate model. 
The X-SVR model can approximate the inherent relationship between 
SFT and random vegetation and environmental variables, achieving 
efficient prediction of structural response-SFT. The bushfire-adapted X- 
SVR model is also enhanced by introducing a novel kernel function 
which is derived through the Padé approximation of the exponential 
function. In practice, the proposed fragility assessment framework can 
efficiently and accurately predict the SFT of structures and evaluate the 
fragility of structures without any additional time-consuming numerical 
simulations. This can help to identify the most fragile structural com-
ponents and optimize the operation of SPP in a time-sensitive fire-
ground. Future studies will be focused on optimizing and refining the 
limit state function that governs the response of structures under 
bushfire propagation, to develop a more comprehensive assessment of 
structural fragility. 
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Appendix A 

A1. Mapping input data xtrial− i from a low-dimensional origin space ℜm to a higher-dimensional space through the application of a kernel function: 

xtrial− i =
[
x1

trial− i, x
2
trial− i, ..., x

m
trial− i

]T ↦k̂(xtrial− i) =

⎡

⎢
⎢
⎣

Φ(xtrial− 1)
T Φ(xtrial− i)

Φ(xtrial− 2)
T Φ(xtrial− i)

⋮
Φ(xtrial− n)

T Φ(xtrial− i)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

K(xtrial− 1, xtrial− i)

K(xtrial− 2, xtrial− i)

⋮
K(xtrial− n, xtrial− i)

⎤

⎥
⎥
⎦ (A.1)  

where k̂(xtrial− i)is ith the empirical feature vector; Φ(xtrial− i)is the implicit mapping function and K(xtrial− i,xtrial− j)is the applied kernel function. 
A2. In Eq. (10), Ek ∈ ℜ4n×4n and nk ∈ ℜ4nare represented as: 

Ek = (L̂k + I4n×4n)Ûk
− 1
(L̂k + I4n×4n)

T
+ M̂k êk êk

T M̂k

nk
T = λ2tk

T Ûk
− 1
(L̂k + I4n×4n)

T
− εêk

T
− ĥk

T (A.2)  

where I4n×4n ∈ ℜ4n×4n represents the identity matrix. Ûk,L̂kandM̂kare written as: 

Ûk =

⎡

⎢
⎢
⎣

λ1In×n
λ1In×n

CIn×n
CIn×n

⎤

⎥
⎥
⎦ L̂k =

⎡

⎣
02n×n 02n×n 02n×2n
− K K 0n×2n
K − K 0n×2n

⎤

⎦ M̂k =

⎡

⎣
02n×2n 02n×n 02n×n
0n×2n In×n 0n×n
0n×2n 0n×n − In×n

⎤

⎦ (A.3) 

Fig. 11. Variation in the standard deviation of SFT corresponding to the change in CV of random variables.  
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The vectors, tk, êkand ĥk are written as: 

tk =

⎡

⎣
en
en
02n

⎤

⎦, êk =

⎡

⎣
02n
en
en

⎤

⎦, ĥk =

⎡

⎣
02n

ytrain
− ytrain

⎤

⎦ (A.4)  

where 0n×n ∈ ℜn×n is the zero vector, en = [1,1, ...,1]T ∈ ℜn×1, λ1, λ2 > 0 are tuning parameters that control the balance between the classification 
performance and feature selection, C > 0 represents the penalty constant, ε is the tolerable deviation between yi and f̂ (xi). K ∈ ℜn×n is the kernel 
matrix containing the original training samples can be expressed as: 

K =

⎡

⎢
⎢
⎣

K(xtrial− 1, xtrial− 1) K(xtrial− 1, xtrial− 2) ⋯ K(xtrial− 1, xtrial− n)

K(xtrial− 2, xtrial− 1) K(xtrial− 2, xtrial− 2) ⋯ K(xtrial− 2, xtrial− n)

⋮ ⋮ ⋯ ⋮
K(xtrial− n, xtrial− 1) K(xtrial− n, xtrial− 2) ⋯ K(xtrial− n, xtrial− n)

⎤

⎥
⎥
⎦ (A.5)  
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