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A B S T R A C T

Nowadays, Human Activity Recognition (HAR) is a key research area with many ubiquitous innovative solutions, 
where both accelerometer and gyroscope data provide information about an observed person’s physical activity. 
HAR offers a diverse variety of important applications, including healthcare, burglary detection, workplace 
monitoring, and emergency identification. Traditional recognition approaches rely on extracting handmade 
features from the obtained data to identify the type of human action. Additionally, the efficacy of these works is 
dependent upon the specific customized features that are chosen. One potential approach to tackle this issue is to 
utilize Convolutional Neural Networks (CNN) to automatically learn the relevant features. In this paper, we 
propose a deep learning model, WISNet, a custom 1D-CNN approach to recognize six complex human activities: 
Jogging, Walking Downstairs, Sitting, Standing, Walking and Climbing Upstairs. The model includes a Convolved 
Normalized Pooled (CNPM) Block to generate significant features from the initial layers. An Identity and Basic 
(IDBN) Block is incorporated to extract residual progressive features for capturing complex sequential data de
pendencies. Channel and Spatial attention (CASb) Block is integrated with the network to prioritize or minimize 
essential features based on relative weights. The proposed WISNet model achieved an enhanced accuracy and F1- 
score of 96.41 % and 0.95 for the HAR dataset by surpassing the existing transfer learning architectures such as 
Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM), and Recurrent Neural Network (SimpleRNN). 
By strategically integrating the CNPM, IDBN, and CASb blocks, this study aims to tackle distinct challenges 
encountered in the classification process by enhancing the discernment of features essential for the precise 
identification of multi-class human activity recognition. The seamless integration of these blocks within the 
model plays a pivotal role in elevating the overall performance of the WISNet architecture. The work also val
idates WISNet with similar open-source datasets (UCI-HAR and KU-HAR) and dissimilar open-source datasets 
(Sleep state detection, Fall detection, and ECG Heartbeat).

1. Introduction

Recognizing human activity is essential to analyze human in
teractions since it aids in the comprehension of a person’s activity and 
movements. Intuitively, extracting the same information without human 

intervention is challenging, because it requires understanding compli
cated elements such as their psychological state, physiological condi
tion, and other factors. Furthermore, Human Activity Recognition 
(HAR) can assist surveillance systems in detecting illegal behavior. 
Although humans are seen to engage in a wide range of activities 
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throughout their everyday lives, this research work only focuses on 
identifying a few essential human actions such as running, sitting, 
walking upstairs and downstairs, and walking. Due to technological 
improvements and its relevance in various fields such as home auto
mation, telemedicine services, pervasive computing, robotics, computer 
engineering, physical sciences, health-related issues, natural sciences 
and industrial academic areas and so on, in recent years, HAR has 
become a popular area of research.

Concurrent and interleaving goal and activity recognition, as 
described by Hu and Yang (2008) can be achieved through the utiliza
tion of various wireless and sensor networks, either addressing multiple 
goals concurrently or focusing on a single-goal recognition approach. 
Similarly, Tapia et al. (2004) introduced the recognition of activities 
within home settings using a collection of small and simple state-change 
sensors, aiming to identify activities such as toileting, bathing, and 
grooming, with detection accuracies ranging from 25 % to 89 %. Arif 
and Jalal (2021) assessed the estimation and detection of different 
human body actions across various video and image scenes, utilizing 
factors such as the position of body portions (head, torso, arms, and 
legs), as well as size and orientation within the scene, to recognize the 
actions.

Many of these methods use data from several sensors to detect a 
single-user’s single-activity at a time. Multiple-user multiple-activity, 
however, exists as a simultaneous and interleaving activity within a 
single series of events (Jalal et al., 2012). Due to the high availability of 
sensors and accelerometers, their low cost and low power consumption, 
live data streaming, and advancements in computer vision, Machine 
Learning (ML), Artificial Intelligence (AI), and Internet of Things (IoT), 
HAR has become one of the most popular study fields.

The purpose of this activity recognition is to use sensor data to 
recognize and detect simple and complicated behaviors in real-world 
situations. This is a difficult process, since the data generated by the 
sensors is sometimes confusing in terms of the activity that is happening. 
One of the benefits of HAR is that it provides information about a per
son’s behavior, allowing computers to help people with their daily 
duties more effectively. Recognizing actions, on the other hand, is a 
challenging endeavor, due to the complexity and uncertainty of human 
activities, and as a result, only a few approaches (Kim et al., 2009) deal 
with sophisticated activity recognition. ML methods can solve activity 
recognition problems that require user input, a large amount of training 
data, sequential data, and a complex network. Deep learning, on the 
other hand, overcomes challenges like scale invariance caused due to 
different paced frequencies and local dependencies of the nearby signals 
faced by ML algorithms, resulting in various improvements in these 
applications (Thapa et al., 2020; Wang et al., 2017). The aim of HAR is to 
identify a user’s high-level activity, using a variety of sensors and ac
tions. Either logical-based methods or probabilistic approaches can be 
chosen in this scenario (Kautz, 1987). Wearable sensor-based activity 
recognition became popular in the century, following the extensive 
success of machine (Ponce et al., 2016) and DL (Ordóñez & Roggen, 
2016) techniques. Data from wearable sensors or body-worn sensors are 
analyzed using CNN (Bevilacqua et al., 2018), recurrent neural networks 
(Singh et al., 2017), or other DL algorithms to distinguish single, or basic 
activities.

Sharma et al. (2008) used artificial neural networks (ANN), whereas 
Khan (2013) included decision trees to identify human activities. Later, 
k-nearest neighbors (kNN) algorithm was identified as one of the finest 
classifiers, although it is still unsuccessful to distinguish activities that 
were highly similar (Wu et al., 2012). Ronao and Cho (2016) proposed a 
deep convolutional neural network named convent to perform efficient 
and effective HAR using smartphone sensors’ data. This model per
formed automatic and data-adaptive techniques to extract elite features 
from raw data. The convnet generates more relevant and complex fea
tures in each subsequent layer, reducing the complexity levels. Mek
ruksavanich and Jitpattanakul (2021) proposed a framework that 
utilises wearable devices and DL algorithms to achieve multi-class user 

identification. The wearable devices’ tri-axial gyroscopes and tri-axial 
accelerometers were utilised to obtain more detailed information 
about users throughout various activities. The CNN model had a peak 
accuracy of 91.77 %, while the LSTM model achieved a higher accuracy 
of 92.43 %.

Jia et al. (2021) suggested a DL-based technique for HAR, using 
stepped frequency continuous wave (SFCW) radar. This method also 
used multi-frequency spectrograms and a ring that includes several 
parallel convolutional layers, together with a sparse autoencoder to 
identify and integrate numerous human activity feature maps.

Non-wearable sensors pose intrusion concerns, while vision-based 
technologies like webcams raise privacy issues and are costly, despite 
their effectiveness in HAR. Installing such technology in homes raises 
portability challenges. Therefore, leveraging an AI-based sensor HAR 
system can offer quick and beneficial services. With ample training data, 
CNNs have shown significant success in tasks like object recognition and 
data classification, making them suitable for classifying human activity 
movements using data from devices equipped with accelerometers and 
gyroscopes. This study examines the WISDM (Wireless Sensor Data 
Mining) Smartphone and Smartwatch Activity and Biometrics dataset 
(Weiss, 2019), comprising six classes: Jogging, Walking Downstairs, 
Sitting, Standing, Walking, and Climbing Upstairs, totaling 109,816 
instances.

The major contribution of the proposed WISNet architecture is as 
follows:

• The incorporated identity and basic blocks extract both global and 
locally optimized progressive features, which are subsequently 
employed to generate the refined features.

• Integrating attention-based spatial and channel module enables the 
acquisition and prioritization of salient features at diverse hierar
chical levels, with learned attention coefficients assigning greater 
importance to significant traits for more accurate classification in 
subsequent layers.

• To acquire precise classification features, the CNN design architec
ture incorporates CNPM block by enhancing the weights and learning 
procedure through batch normalization leading to a reduction in the 
number of features throughout the depth layers. Consequently, this 
facilitates accurate and efficient classification of human activities.

The rest of the paper is organized as follows: Section 2 summarizes 
work related to the field of AI detailing 1D-CNN for Signal Processing, 
LSTM, GRU, and SimpleRNN, Section 3 presents the proposed WISNet 
architecture in detail, Section 4 elaborates the experimental analysis and 
evaluation methods, results obtained from the proposed model for the 
six class HAR using WISDM dataset, and in the end, Section 5 concludes 
the work with the future scope.

2. Related work

Dahou et al. (2022) introduced a novel HAR system that combines 
the Binary Arithmetic Optimization Algorithm (BAOA) with CNN. The 
CNN is responsible for learning and extracting features from the input 
data, while the BAOA is utilized to generate the most optimal features. 
The selected feature was categorized based on distinct activities using 
the support vector machine (SVM). The HAR model was assessed using 
three distinct public datasets, namely UCI-HAR, WISDM-HAR, and KU- 
HAR datasets. The results obtained validate the efficacy of the pro
posed model, as it achieves competitive performance metrics of 95.23 %, 
99.5 %, and 96.8 % for the UCI-HAR, WISDM-HAR, and KU-HAR 
datasets, respectively. Xiao et al. (2021) developed a learning system 
known as HARFLS, which allows individual users to effectively and 
collaboratively manage their activity recognition task while ensuring 
safety. In this study, a Perceptive Extraction Network (PEN) is employed 
as the feature extractor for each user. The PEN is designed to identify 
and extract local characteristics from the HAR data. Additionally, a 
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Relation Network is utilized, which combines LSTM and an attention 
mechanism. The primary objective of the Relation Network is to uncover 
and analyze the global relationships that are concealed within the data. 
The performance evaluation involves the utilization of four commonly 
employed datasets, including WISDM, UCI-HAR 2012, OPPORTUNITY, 
and PAMAP2. In this examination, it is observed that PEN exhibits su
perior performance compared to the existing methods for HAR.

Athota and Sumathi (2022) introduced a Hybrid Learning Algo
rithms (HLA) approach for constructing robust classification methods in 
the field of HAR using data collected from wearable sensors. Convolu
tion Gated Fusion Algorithm (CGFA) and Convolution Memory Fusion 
Algorithm (CMFA) are used in this method to efficiently capture local 
features as well as long-term and gated-term dependencies in sequential 
data. The Amalgam Learning Model was implemented on the WISDM 
dataset, resulting in the attainment of accuracy rates of 97.76 % and 
94.98 % for smartwatch and smartphone devices, respectively, using the 
CMFA approach. Additionally, the CGFA approach yielded accuracy 
rates of 96.91 % and 84.35 % for smartwatch and smartphone devices, 
respectively.

Gao et al. (2021) introduced a novel dual attention technique known 
as DanHAR. This method combines channel and temporal attention 
within residual networks, aiming to enhance the capability of feature 
representation for sensor-based HAR tasks. Extensive experiments were 
performed on four publicly available HAR datasets, along with a weakly 
labeled HAR dataset. The results showed relative improvements of 2.02 
%, 4.20 %, 1.95 %, 5.22 %, and 5.00 % respectively over regular Con
volutional Neural Networks (ConvNets) on the OPPORTUNITY dataset, 
PAMAP2 dataset, UNIMIB SHAR dataset, WISDM dataset, and the 
weakly labeled HAR dataset. In their study, Panja et al. (2023) intro
duced a novel approach to tackle the instance selection problem in 
smartphone sensing-based human activity recognition (HAR). Their 
suggested approach uses a hybrid selection and training pipeline that 
combines evolutionary computing and the closest neighbor principle. 
The authors of this study have presented a clustering technique, which is 
afterward followed by an instance selection strategy based on a Genetic 
technique. The WISDM dataset and UCI-HAR dataset were used for 
experimentation and evaluation. Experimental findings show that the 
suggested method successfully reduced the dataset size for the bench
mark datasets by about 40 % while preserving a recognition accuracy of 
over 94 %. The provided statement offers a concise representation of the 
process of eliminating outliers from a given set of instances.

The Convolution with Self-Attention Network (CSNet) and the 
Temporal-Channel Convolution with Self-Attention Network (TCCSNet) 
are two unique frameworks that Essa and Abdelmaksoud (2023) intro
duced. These frameworks were created to effectively categorize collec
tions of data on human activities that were obtained from various sensor 
devices. Convolution and self-attention methods are combined by CSNet 
to effectively capture local and global dependencies present in the input 
data. On the other hand, TCCSNet employs two separate branches of 
convolutions and self-attentions to exploit inter-channel and temporal 
dependencies, enabling the extraction of time-wise and channel-wise 
information. The evaluation of the suggested approaches encompasses 
seven distinct datasets for HAR that rely on sensor data. These datasets 
include WISDM, USC-HAD, WHARF, UTD1, UTD2, PAMAP2, and 
MHEALTH. The evaluation is conducted using the leave-one-subject-out 
cross-validation protocol. The experimental results demonstrate that the 
proposed models exhibit superior performance compared to other 
contemporary methodologies, including transformers and models based 
on LSTM.

By allowing a model to continually learn on temporal input using a 
unique method based on attentive recurrent neural networks called 
Temporal Teacher Distillation (TTD), Yin et al. (2023) addressed the 
issue of temporal-based continual learning. TTD addresses the cata
strophic forgetting issue by addressing the shortcomings of the current 
approaches to temporal-based continuous learning. TTD considerably 
beats state-of-the-art techniques on public datasets like a synthetic 

dataset called Split-QuickDraw-100 and Wireless Sensor Data Mining 
(WISDM) by up to 45.1 % and 14.6 %, respectively, for metrics like 
forgetting and accuracy. Gupta (2021) investigated DL-based human 
activity recognition using CNN-GRU, a hybrid deep neural network 
model that combines convolutional and gated recurrent units for human 
activity detection. This model’s accuracy is suggestively greater than 
that of other state-of-the-art deep neural network models like Inception 
Time and DeepConvLSTM created with AutoML, and it was successfully 
verified on the WISDM dataset.

In order to identify human activities using smartphone sensor data, 
Kumar et al. (2023) introduced clustering-based DeepTransHAR model 
and the Cross-Domain Activities Analysis (CDAA). To recognize the 
target activities, the suggested model used GRUs that automatically 
derived the useful properties from source sensory activity data. To 
evaluate the effectiveness of this method, analysis is conducted on the 
WISDM and KU-HAR benchmark datasets, two freely available test sets. 
The DeepTransHAR model outperformed the Bi-LSTM, LSTM, and the 
base RNN models in terms of average accuracy, F1 score, precision, 
recall, and elapsed average total training time with an average of 86.89 
%, 18.30 s, and 55.33 % saved training time. To minimise the overfitting 
of a single network, Qu et al. (2023) studied a semi-supervised mutual 
learning technique. Using supervised data from one another, the main 
and auxiliary networks in this system are collaboratively trained. Sec
ond, it is recommended to use the distribution-preserving loss to close 
the gap between the class distribution of predictions and the labelled 
data in order to prevent the distribution from deviating. Finally, a 
context-aware aggregation module adopts the contextual data from the 
neighbour sequences. This module is able to retrieve more detailed in
formation from a wider variety of sequences. mHealth, PAMAP2, 
WISDM, and UCI were the four datasets used for the validation. The 
experimental finding demonstrates that the suggested method out
performs four conventional semi-supervised HAR methods.

The Gated Recurrent Unit-Inception (GRU-INC) model, an Inception- 
Attention-based strategy that successfully utilizes the spatial and tem
poral information of the time-series data, was employed by Mim et al. 
(2023). On publicly accessible datasets, including UCI-HAR, OPPOR
TUNITY, PAMAP2, WISDM, and Daphnet, the proposed model received 
an F1-score of 96.27 %, 90.05 %, 90.30 %, 99.12 %, and 95.99 %, 
respectively. For the model’s temporal component, GRU and the 
Attention Mechanism (AM) were used, and for its spatial component, 
Inception and the Convolutional Block Attention Module (CBAM) were 
used. For identifying human activities, Diykh et al. (2023) presented a 
novel hybrid technique combining adaptive boosting and hierarchical 
dispersion entropy (HDE) with convolutional neural networks 
(AdaB_CNN). A sliding window approach is used to segment HAR data 
into intervals, and the segmented data is then divided into several fre
quency bands. The dispersion entropy of several frequency bands is 
calculated to build a feature vector set. Using Joint Approximate Diag
onalization of Eigenmatrices (JADE), the obtained features are lowered 
to further screen out extraneous information. The completed feature 
vector collection is then used to categorize human activities using the 
AdaB_CNN technique. Three publicly available datasets, PAMAP2, UCI- 
HAR 2012, and WISDM, are used to test the suggested methodology. The 
experimental findings show that the suggested model outperforms the 
majority of current techniques in HAR.

An attention-based multi-head model for HAR was put forth by Khan 
and Ahmad (2021). Each of the three compact convolutional heads in 
this framework was created using a one-dimensional CNN to extract 
features from sensory data. In order to improve CNN’s capacity for 
representation, a lightweight multi-head model is introduced, enabling 
automatic selection of salient elements and suppression of unimportant 
ones. In order to assess the model’s performance, ablation studies and 
experiments were carried out on the WISDM and UCI-HAR benchmark 
datasets. The experimental result shows how the suggested framework 
performs well in activity recognition and improves accuracy while 
maintaining the computing economy. To recognize human activities, 
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Sekaran et al. (2023) suggested the Lightweight Multiheaded TCN 
(Light-MHTCN) model of lightweight deep learning. Light-MHTCN uses 
parallelly organized Convolutional Heads to extract the multiscale fea
tures from the inertial sensor signals in order to collect more detailed 
data. Additionally, preserving longer-term dependency through the 
integration of dilated causal convolutions and residual connections can 
improve the performance of the model as a whole. Three well-known 
smartphone-based HAR databases are used to evaluate the perfor
mance of Light-MHTCN: UCI-HAR, WISDM V1, and UniMiB SHAR. On 
these databases, our lightweight model achieves state-of-the-art per
formance with recognition accuracies of 96.47 %, 99.98 %, and 98.63 % 
using just 0.21 million parameters.

DNN-based HAR designs were offered by Suwannarat and Kurd
thongmee (2021) as the benchmarks and starting points for developing 
the candidate architectures. The Real World 2016, UCI-HAR, and the 
WISDM datasets were used to evaluate the experimental results. The 
recommended classifiers with optimized settings are advantageous 
because they require less CPU time and power to process acceleration 
data when it is received from the sensor. They also lower the memory 
needs for parameter saving and can be included into wearable tech
nology. Climent-Pérez et al. (2022) suggested that it is still difficult to 
accurately and automatically assess daily living activities (ADLs) using 
ML algorithms, in part because there aren’t many realistic datasets 
available to develop and test such algorithms on. 52 participants data 
with an equal number of males and females are included in the gener
ation of the dataset. The data were gathered over the course of two 
periods, beginning with 33 people and ending with 19 more. The par
ticipants performed 24 distinct ADLs up to five times. First, a description 
of the dataset that was gathered while wearing the Empatica E4 wrist- 
worn measuring device. Second, the data collection process and the 
actual environment in which participants carried out the chosen activ
ities. Finally, a few current and pertinent target applications, including 
lifelogging, behavioral analysis, and measurement equipment evalua
tion, where the gathered dataset can be employed.

3. Proposed methodology

In this study, a custom CNN framework called WISNet is proposed to 
recognize human activity in six different categories, including Jogging, 
Sitting, Standing, Walking, and Walking upstairs and downstairs. The 
proposed WISNet HAR system’s overall flow is depicted in Fig. 1. The 
purpose of this work is to provide a computationally straightforward and 
precise learning model that combines the benefits of skip learning and 
the attention mechanism to precisely classify the HAR. An analysis of a 
deep neural network-based prediction system like SimpleRNN, GRU, 
and LSTM is tested to demonstrate the improved performance of the 

proposed WISNet in HAR.

3.1. WISNet architecture

The architecture of the proposed WISNet is shown in Fig. 2. The 
accuracy of the WISNet model was increased by incorporating residual 
and skip connections that were fine-tuned by varying the number of 
stacked filters and filter size. The three phases of this model are 
Convolved Normalized Pooled (CNPM) Block: extracts important fea
tures from the top layers; Identity and Basic (IDBN) Block: extracts basic 
image-level features like edges and progresses to complex sequential 
data differences, and Channel and Spatial attention (CASb) Block: selects 
essential features with a high weight relative to other features. The 
learning is enhanced due to optimization between the optimal mapping 
and dilated block, which resulted OCNPM ss shown as Eq. (1). 

OCNPM = fCNPM (O1DCN) (1) 

The input 1D signal processed for classification fCNPM is the function 
representing the CNPM. The input is fed to the 1D-convolutional layer 
which is a passive layer that receives the raw 1D signal followed by 
batch normalization, max pooling, and ReLU optimization function.

The IDBN1 retrieves the global features and local optimized residual 
progressive features, where IN refers to the global and OIDB local fea
tures. The implementation is represented as given in Eq. (2). 

OIDBN1 = fIDBN (OCNPM ) = (IN, OIDB) (2) 

Where OIDB and IN represents the output of residual identity and Basic 
block and OIDBN represents the output of IDBN, respectively. The pro
gressive residual feature is fed to channel and spatial attention block 
fCASb for feature refinement resulting OCASb and is given in Eq. (3). 

OCASb = fCASb (OIDBN1 ) (3) 

This resulting output is summed with the output from the convolu
tion of OCASb using element-wise summation resulting in attention- 
enhanced features OCLIDB as shown in Eq. (4). 

OCLIDB = OCNPM +OIDBN1 (4) 

This normalized feature OCLIDB is fed to the IDBN2 for generating elite 
progressive features shown as Eq. (5). 

OIDBN2 = fIDBN2 (OCLIDB ) (5) 

This resulting feature is normalized using global average pooling 
which is fed to fully connected layer incorporating Softmax activation 
layer resulting in enhanced human activity recognition.

Fig. 1. Overall workflow of the proposed system.
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3.1.1. Convolved normalized pooled (CNPM) block
In the proposed work the input 1D signal ‘l ‘ is being fed into the 

Convolved Normalized Pooled (CNPM) block adapted with ReLU and 
batch normalization layer overcomes the vanishing gradient during the 
initial phase, with a filter size 5. A series of convolutions are performed 
by the CNN layer, producing features that are then transferred to the 
activation function, and the subsampling procedure. The 1D filter ker
nels are chosen with a size of 5 and a sub-sampling factor of 2. The input 
signal al is processed using a kernel wl+1 resulting in convolved features 
Cn(l) as shown in Eq. (6). 

Cn(l) =
(
al*wl+1)(l) (6) 

The generated features are normalized in-order to speed up the 
training, resulting in decreasing the initial weight importance wl and 
regularizes the model. Each layer of a neural network identifies a unique 
feature from the previous layer after each gradient update on a batch of 
data. The data distribution of this input feature map changes dramati
cally throughout training because the parameters of the preceding layers 
are adjusted. This significantly affects the training rate and demands the 
employment of various strategies to select parameter initialization. A 
typical method for dealing with this shift in internal covariate is batch 
normalization Bn. Batch normalization is accomplished by implement
ing a normalizing process that adjusts the means βn and variances γ2

n of 
the inputs for each layer ‘n’.

The features Cj
⏞⏟⏟⏞

are normalized to improve the computational 
speed as shown in Eq. (7) where ε an arbitrarily small constant is 
included for numerical stability. By adjusting the parameters to a range 
between − 3 and 3, batch normalization solves the vanishing/exploding 

gradient issue by fitting a maximum likelihood estimate for a normal 
distribution to the line of channel activations over a batch. 

Cj

⏞⏟⏟⏞
=

Cj − βn̅̅̅̅̅
γ2

n

√
+ ε

(7) 

This block consists of a skip connection with convolution and a batch 
normalizing layer supplied with information from a max pooling layer 
with a 1x7 filter size. The values are scaled and shifted, where σ is 
learned in the optimization process. The normalized output COj is sub
jected to the IDBN block referred to in Eq. (8). 

COj = Cj

⏞⏟⏟⏞
+ σ ≡ ∈ Bn(Cn) (8) 

3.1.2. Identity and Basic (IDBN) Block
The IDBN block includes two identity and basic blocks (IDBN1, IDBN2) 

as shown in Fig. 3. The CNPM layer COj characteristics are fed into the 
Identity and Basic blocks. The basic block Fb

(
COj

)
includes 1D convo

lution layer, max pooling, batch normalization and ReLU layer. One 
variable filter for each channel is included in the convolution layer, 
which clearly convolves across the face of the feature map that has been 
padded to the same size. The ’Conv’ layer’s filter sizes are sensitive to a 
narrower region of interest along the block’s line (3 for the first block, 5 
for the second, and 7 for the third). Fb

(
COj

)
performs a set of fed forward 

progressive feature optimization operations to the next blocks. Fs
(
COj

)

represents skip connection that includes a set of convolution, max 
pooling and batch normalization operations, which is summed with 
Fb
(
COj

)
features resulting in elite features of OBB1.

The Basic block mainly addresses problems with the loss derivate 

Fig. 2. Architecture of the proposed WISNet.

Fig. 3. The representation of Identity and Basic (IDBN) Block.
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approaching towards zero. Similarly, the Identity block Gid
(
COj

)
is 

similar to a basic block where the skip connections are not included, 
represented as Gid

(
COj

)
+COj resulting in OID1 features. Identity block 

enhances the spatial and semantic feature maps. The resultant identity 
and basic block features OBB1 and OID1 are separately subjected through 
Rectified Linear Unit (ReLU) activation function to rectify the convolved 
features, thereby eliminating any negative values. The ReLU activation 
function was employed due to its ability to maintain a consistent 
gradient, even when dealing with greater activation values. This char
acteristic contributes to the stabilization of the learning process as 
represented in Eqs. (9) to (11). 

OBB1 = (∁BB(wn
(
r3(∁BB

(
wn

(
r5( ∁BB

(
wn

(
Oj
) ) )

©Oj
)
r7 (9) 

OID1 = (∁ID
(
wn(r3(∁ID

(
wn(r5(∁ID

(
wn(r7( Oj

))
))))©

(
∁ID

(
wn

(
Oj
) ))

r7 (10) 

OIDBN1 = OBB1 +OID1 =
{
F
(
Oj,wn

)
+Oj

}
+
{(

Oj,wn
)
+ wsOj

}
(11) 

In contrast, an increasing number of filters are stacked backward in 
the Identity and Basic block IDBN2 to avoid loss derivative squashing. 
The input to this block is the attention-enhanced features from CASb 
block. Similarly, the convolution kernel sizes of 64, 128, and 256 were 
incorporated to extract the rich semantic features resulting OIDBN 

through exploiting the spatial locality thus encompass all of its distinct 
components inside a single frame.

3.1.3. Channel and spatial attention (CASb) block
The inter-channel and inter-spatial features are learned by the 

channel and spatial attention block (Fig. 4). After the channel attention 
map has been generated, the spatial attention is initially computed from 
the intermediate feature map. Each feature is multiplied using element- 
wise computation. Global averaging and max-pooling are employed to 
achieve more excellent feature representation. The feature map (Qc)

CxHxW is fed to the global max and average pooling generating inter- 
channel features. These are then fed to fully connected layers and are 
concatenated and fed to the sigmoid function, which normalizes the 
features generated by the channel attention model. The inter-spatial 
features (Qs) process the CxHxW and generate 1xHxW dimension. This 
is fed to a convolution block of 5 kernel and is normalized through the 
sigmoid function.

Let OIDBN1 ∈ RCXHXW be the input to the channel and spatial attention 
module used in the CASb block, where the feature map’s height referred 
as H, width as W and number of channels as C, respectively. The weights 
of the channel attention module WCA are expressed in Eq. (12): 

WCA = α
(
Wl+1

CAB(ReLU[Wl
CABGap(OIDBN1 )

])

+
(
Wl+1

CAB(ReLU[Wl
CABGmp(OIDBN1 )

])
(12) 

Where WCAB represents the channel attention weights, α refers to 
sigmoid activation function, ReLU refers to activation function and 
Wl+1

CAB,Wl
CAB refers to the weight matrices whose size is defined as CXC/x 

and C/xXC respectively. Gap and Gmp are the global average pooling and 
global max pooling of the channel respectively.

Similarly, spatial attention WCS weight is expressed in the Eq. (13). 

WCS = α
(
Con1X7[Gap(OIDBN1 );Gmp(OIDBN1 )

])
(13) 

Here Con1X7 refers to convolution operation with filter size of 1x7, ‘;’ 
refers the concatenation of Gap and Gap which is global average pooling 
and global max pooling. To obtain essential spatial information, the 
channel spatial and attention layer CASb compresses channel “C” into a 
single channel and spatial dimension HXW into a single pixel, ignoring 
cross-dimensional integration information between spatial and channel 
dimensions.

3.1.4. Output layer
The 1D CNN forward propagation is denoted as Eq. (14): 

Cn
m = Nn

m +
∑zj− 1

j=1
conv1D

(
Kwe

n− 1
jm ,An− 1

j

)
(14) 

Here Cn
m refers to the input, Nn

m is the bias of the mth neuron, An− 1
j 

output of the jth neuron of layer ‘n’, Kwe
n− 1
jm is the kernel. conv1D refers 

convolution without zero-padding. Output arrays An− 1
j dimension is 

more than the dimension of the input array Cn
m. The intermediate output 

Iter, can be expressed by passing the input Cn
m through the activation 

function Fact .

The back-propagation (BP) algorithm calculates the error from the 
output layer of the MLP. The error ∊v is computed using mean squared 
error (MSE) for the output layer. The learning factor ρ can be used to 
update biases Nn

m and weights Kwe by computing the weight and bias 
sensitivities as given in 15 and 16: 

Kwe
n− 1
jm (ta+1) = Kwe

n− 1
jm (ta) − ρ δ∈v

δKwe
n− 1
jm

(15) 

Nn
m(ta+1) = Nn

m(ta) − ρ δ∈v

δNn
m

(16) 

3.1.5. HAR classification loss function
The categorical cross-entropy loss function is applicable for the 

classification of six classes in the WISDM dataset, namely Climbing 
Upstairs and Downstairs, Walking, Standing, Sitting, and Jogging. One 
hot encoding is used to represent the true labels and expected proba
bility associated with each signal. The categorical cross-entropy loss 
function Closs for 6 human activity classification is shown in Eq. (17). 

Closs(Pi, P̂i) = −
∑∑

∀mi

(Pi, log(P̂i)) (17) 

The difference between actual labels and expected probabilities is 
measured by the categorical cross-entropy loss, written as Closs(Pi ,̂Pi). Pi 

denotes the one-hot encoded true label for the ith landmark in this 

Fig. 4. Channel and Spatial attention (CASb) Block.
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context, while ,̂Pi stands for the predicted probability for the same 
landmark. Two crucial dimensions are included in this formulation. The 
losses from all human actions are aggregated in the outer summation, 
which ranges from i = 1 to 6. The inner summation computes the loss for 
each class within this outer summation while considering the two 
possible class labels indicating the presence or absence of an activity. 
Comprehensive loss evaluation is ensured by this nested summing 
approach.

The loss for each landmark is calculated by multiplying the accurate 
label Pi by the anticipated probability’s logarithm ,̂ Pi , and using the 
negative sign to achieve a positive loss value. The objective of the 
training procedure is to modify the model’s parameters to reduce this 
categorical cross entropy loss. In turn, this improves the model’s ability 
to categories the six activities in the WISDM dataset accurately by 
allowing it to assign a larger probability to the precise Human Activity 
Recognition classes.

4. Result and discussion

The implementation work for the human activity recognition model 
WISNet is described in this section. The following sections describe the 
dataset and data description, the division of data for training and testing 
data, the proposed custom WISNet architecture, transfer learning 
models like GRU, LSTM, and SimpleRNN results and discussion based on 
the evaluation metrics. This section also includes a comparison of the 
performance of the proposed method with the already existing works.

4.1. Experimental setup

Anaconda Navigator, a GUI program, was used to implement the 
designed WISNet. TensorFlow, an open-source Python framework, is 
used to train and test the WISNet model on a machine with an NVIDIA 
GeForce RTX 3050 with 4 GB of GDDR6 Dedicated Graphics and a 
maximum TGP 95 W VRAM, a 4.6 GHz Intel Core i7 – 11800H CPU, and 
32 GB of memory. To recognizing human activity, the Adam optimizer 
initialized and modified the WISNet settings with 0.001 initial learning 
rate and 0.0001 wt decay across 30 epochs.

4.2. Experimental signal WISDM 1D dataset description

The WISDM dataset (Weiss, 2019) is used in this research work, 
which includes six classes: Walking, Upstairs, Standing, Sitting, Jogging 
and Downstairs. The dataset includes tri-axial accelerometer data sam
ples from 36 volunteers who participated in a predetermined set of ac
tivities, leading to a total of 109,816 instances. Table 1 provides a 
detailed description of the dataset.

During each of the six activities, each volunteer was expected to 
carry a smartphone in order to collect data for this study. They were also 
instructed to walk, jog, sit, climb downstairs and upstairs, and do other 
activities at specific intervals. Furthermore, the supervisor was able to 
regulate the type of data from various sensors, which included gyro
scope, accelerometer, as well as the frequency of data. The sample signal 
for each class is given in Fig. 5.

4.3. Data splitting

The entire dataset was split into two sets: training and testing. When 
splitting the data, it was made sure that the data in the testing did not 
alter the data in the training set, which is accomplished by allocating 80 
% of data to training and 20 % to testing. This method is also used to 
evaluate the model’s overall performance throughout training and 
testing. Before splitting, the shape of the training set was (109816, 50, 
3). After splitting into train and test, the shape of the training set was 
(87852, 50, 3), and the testing set was (21964, 50, 3).

4.4. Hyperparameter tuning

The tuning approach employed the following five hyperparameters: 
learning rate, epochs, dropout rate, batch size, and optimization units 
used in the gradient. The dropout factor for the hyperparameter was 30 
%, and the number of epochs was 30. The used search space’s batch size 
was 1024, and the chosen gradient optimizers was Adam. In most iter
ations of the model, a dropout probability of 30 % was found to work 
well. The number of epochs to be trained was chosen as 30 with a batch 
size of 1024, resulting in improved results. Adams was the gradient 
optimizer with the best performance for WISNet. To reduce overfitting 
and improve the impact of generalization, a 30 % dropout for regula
rization was used. As stated in our proposal, the WISNet model under
went training with hyperparameters. These included β1 = 0.9, β2 =

0.999, and a learning rate of 0.001. A channel and a spatial attention 
block were also incorporated into the model architecture to allow for 
adaptation to the problem’s various levels of complexity. To dynami
cally enhance the channel-wise characteristics throughout the network, 
these blocks were selectively used in conjunction with the convolutional 
and max pooling layers.

4.5. Ablation study

An ablation study was done to evaluate the impact of different 
modules within the proposed WISNet model, which is intended for the 
classification of six different human activity classes. Table 2 displays the 
performance of these network elements: CNPM, IDBN, and CASb. The 
WISDM dataset is used to conduct these experiments. The quantitative 
assessment findings of these various components when applied to the 
WISDM dataset, are shown in Table 2. The objective of identifying the 
six different activity classes was to assess the performance of the pro
posed WISNet classification architecture utilizing important metrics 
such as Confusion Matrix, ROC Curve, F1-Score, Recall, Precision, and 
Accuracy.

The core module of our suggested model, CNPM, had an 87.52 % 
classification success rate. There are only two convolutional layers in it, 
which are followed by a max pooling layer. These two convolutional 
layers can extract complex and abstract features from the input data 
because they use higher filter sizes and fewer feature maps. As a result, 
on the testing data, this configuration resulted in an classification rate 
that resulted in 83.26 %. We incorporated both CNPM and IDBN modules 
to further improve the network’s depth and ability to recognize intricate 
patterns and data linkages. The deeper network architecture produced 
by this integration increased classification accuracy to 89.49 %. This 
advantage is justified by the fact that each layer of a neural network is 
skilled at extracting unique landmark features from the input data, 
which boosts overall performance. Subsequent layers can then integrate 
and recombine the features learned in earlier layers to create more ab
stract representations of the data. Without significantly losing context, 
IDBN aids in improving progressive features while also reducing the 
possibility of overfitting. Regardless of the input size, this effectively 
equates to sliding a classifier over the input signal and making pre
dictions at each window.

The proposed model’s convolutional layers incorporate the CASb 
block, which allows the network to concentrate on the most informative 

Table 1 
WISDM dataset description.

Actions Category Instances

Walking 0 42,433
Upstairs 1 12,274
Standing 2 4839
Sitting 3 5989
Jogging 4 34,225
Downstairs 5 10,056
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channels and suppress the less informative ones. This improves 
discriminative power and raises the accuracy and prediction rates of 
human activities. The classification accuracy improved with the addi
tion of the CASb block to CNPM, reaching 92.37 % and 87.61 %, 
respectively, for training and testing HAR data. When the CASb block 
was added along with CNPM and IDBN the classification accuracy 
increased significantly to 95.62 % and 91.31 %. To effectively under
stand the characteristics of the infestation, context-relevant features are 
effectively recorded by learning attention coefficients for each pixel in 
the feature map.

The maximum accuracy in HAR categorization was attained by the 
proposed WISNet, scoring 96.41 %. According to this finding, the per
formance of HAR classification and the success rate can be greatly 
enhanced by combining several modules, such as CNPM, IDBN, and CASb. 
Several inferences can be made from the results in Table 2. First off, the 
inclusion of these elements greatly enhances CNN’s classification 

performance in terms of classification accuracy. Second, it can be 
inferred from the comparison of the IDBN and CASb modules that the 
calibration of spatial dimension features by spatial attention is advan
tageous to more reliable feature selection. Third, the addition of a deep 
supervision mechanism can help the network be further guided to have 
better-tuned features for classification.

4.6. Analysis of custom WISNet and transfer learning architecture.

The WISNet model was trained and tested on 109,816 instances of six 
classes to see how effective it was at categorization. For both the training 
and validation sets, Table 3 illustrates the accuracy and loss curves for 
each model. While training accuracy increased with time, it did so at 
first at a quicker pace. Validation accuracy improved over time; how
ever, it fluctuated during the training. The model obtained a mean 
validation accuracy of 94.52 % across all the testing processes.

4.6.1. Performance analysis
On the training set, custom WISNet had a 96.41 % accuracy, whereas 

GRU, LSTM, Simple RNN had 95.27 %, 95.15 % and 91.18 % accuracy, 
respectively. Table 4 presents confusion matrix for the proposed WISNet 
Architecture. GRU, LSTM, Simple RNN experienced few deviations 
during validation, where the WISNet performed well in both training 
and validation.

4.6.2. Effectiveness of the WISNet architecture
Based on the results obtained on the human activities prediction of 

the six class data of GRU, LSTM, SimpleRNN, and WISNet, the 

Fig. 5. Sample signal for six classes: Walking, Sitting, Upstairs, Jogging, Standing and Downstairs.

Table 2 
The classification accuracy of 6 human activity classes in train and test set for 
proposed modules.

Proposed Modules Accuracy: HAR Classification

Train Set Test Set

CNPM 87.52 % 83.26 %
CNPM + IDBN 89.49 % 85.83 %
CNPM + CASb 92.37 % 87.61 %
CNPM + IDBN + CASb 95.62 % 91.31 %
Proposed 96.41 % 94.52 %
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evaluation matrix is shown in Table 5. The sensitivity and specificity 
obtained for WISNet were 0.99 and 0.99, respectively. The training 
parameters of GRU were 41,906, whereas LSTM resulted with 52,306, 
SimpleRNN used 21,106 parameters, and the proposed WISNet gener
ated 49,666 parameters. Table 3 describes the learning rate of the DL 
models and the proposed model used for this study in terms of accuracy 
and loss plots. Table 4 presents the confusion matrix and ROC curve of 
all the trained models on the six class signals. A graph that displays how 
well a classification model works at every level of classification is called 
a receiver operating characteristic curve (ROC curve). The rate of True 
Positives and False Positives are two metrics that are plotted on this 
graph. Attaining higher true positive and true negative rates than other 
model shows that the proposed WISNet model performs better than 
other models. The area under the ROC Curve (AUC) of the WISNet model 

was found to be 0.999, which is the best compared to other models. AUC 
is a performance indicator that incorporates all feasible classification 
limits.

4.6.3. WISNet validation with similar open source dataset
The evaluation and testing of the proposed WISNet encompass a 

range of HAR tasks. Table 6 delineates the analysis of two distinct HAR 
datasets utilized in the study for various human recognition tasks. The 
inclusion of the open-source UCI-HAR and KU-HAR datasets aims to 
validate WISNet capacity for generalized 1D HAR classification.

The UCI-HAR dataset (Anguita et al., 2013) involved 30 volunteers 
aged between 19 and 48, engaging in six activities (Walking, Walking 
Upstairs, Walking Downstairs, Sitting, Standing, Laying) while wearing 
a smartphone (Samsung Galaxy S II) positioned at the waist. This dataset 

Table 3 
The learning process in terms of the epochs, models loss, and model accuracy curve of GRU, LSTM, Sample RNN and WISNet model.

MODEL LOSS ACCURACY

GRU

LSTM

SIMPLE RNN

Proposed WISNet
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comprises 10,299 instances, divided into training and testing sets. The 
training set has the shape of (7352, 564), while the testing set has the 
shape of (2947, 564).

The KU-HAR dataset (Sikder & Nahid, 2021) was carried over from 
90 participants (75 male and 15 female) and encompasses data on 18 

distinct activities, recorded through smartphone sensors (Accelerometer 
and Gyroscope). It comprises 1,945 raw activity samples directly 
collected from the participants, along with 9,185 subsamples derived 
from them. The activities include Stand, Sit, Talk-sit, Talk-stand, Stand- 
sit, Lay, Lay-stand, Pick, Jump, Push-up, Sit-up, Walk, Walk-backward, 

Table 4 
Confusion matrix recorded by the GRU, LSTM, Sample RNN and WISNet model.

GRU LSTM

SimpleRNN Proposed WISNet

Table 5 
Comparison of evaluation matrix of all the models.

Activity GRU LSTM SimpleRNN WISNet

P R F1 P R F1 P R F1 P R F1

Downstairs 0.87 0.82 0.84 0.81 0.88 0.84 0.72 0.64 0.68 0.88 0.88 0.88
Jogging 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.99 0.99 0.99
Sitting 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.98 0.99 1.00 0.99 0.99
Standing 0.99 0.98 0.99 0.98 0.99 0.98 0.96 0.98 0.97 0.98 0.99 0.98
Upstairs 0.85 0.83 0.84 0.85 0.82 0.84 0.74 0.78 0.76 0.89 0.87 0.88
walking 0.96 0.99 0.97 0.98 0.97 0.97 0.95 0.96 0.96 0.98 0.99 0.98
Sensitivity 0.995 0.987 0.977 0.993
Specificity 0.997 0.994 0.993 0.995
AUC 0.997 0.997 0.993 0.998
Accuracy (%) 95.27 95.15 91.8 96.41

Table 6 
Parameters of the WISNet model on UCI-HAR and KU-HAR dataset.

Parameters UCI-HAR KU-HAR

GRU LSTM SimpleRNN WISNet GRU LSTM SimpleRNN WISNet

Acc (%) 91.82 88.87 90.06 95.66 93.17 90.17 90.78 94.01
Pre (%) 0.92 0.90 0.90 0.96 0.92 0.91 0.88 0.94
Rec (%) 0.92 0.89 0.90 0.96 0.92 0.91 0.88 0.94
Sen (%) 0.94 0.95 0.93 0.99 0.96 0.92 0.89 0.98
Spe (%) 0.95 0.94 0.92 1.0 0.93 0.92 0.90 0.96
F1-Score 0.92 0.89 0.90 0.96 0.93 0.92 0.90 0.94
AUC 0.98 0.93 0.94 0.996 0.95 0.94 0.93 0.99

H. Sharen et al.                                                                                                                                                                                                                                 Expert Systems With Applications 258 (2024) 124999 

10 



Walk-circle, Run, Stair-up, Stair-down, and Table-tennis. This dataset 
contains 20,750 instances, split into training and testing sets, with the 
training set having a shape of (14,525, 1,800) and the testing set having 
a shape of (6,225, 1,800).

In this study, the proposed WISNet, along with established models 
like GRU, LSTM, and SimpleRNN, underwent training and testing using 
both the UCI-HAR and KU-HAR datasets. Fig. 6 illustrates the confusion 
matrix depicting the classification performance across various activities. 
Table 5 provides a comparison of precision, recall, F1-score, sensitivity, 
specificity, AUC, and accuracy for the classification outcomes on the 
UCI-HAR and KU-HAR datasets. WISNet exhibited outstanding perfor
mance across various metrics for both the UCI-HAR and KU-HAR data
sets. WISNet demonstrated the highest accuracy among the models 
compared, achieving accuracy rates of 95.66 % for UCI-HAR and 94.01 
% for KU-HAR. The GRU model achieved the second-highest accuracy of 
91.82 % and 93.17 % for the UCI-HAR and KU-HAR datasets, respec
tively, trailing behind WISNet and outperforming the LSTM and Sim
pleRNN models. The obtained precision and recall values of 0.96 and 
0.94 for both datasets underscore WISNet’s ability to accurately identify 
positive cases and minimize false positives. Notably, WISNet showcased 
remarkable sensitivity and specificity, particularly evident in the UCI- 
HAR dataset, where it attained a sensitivity of 0.99 and a specificity of 
1. Moreover, WISNet outperformed other models in terms of F1-Score, 
indicating a harmonious balance between precision and recall. Consis
tently achieving the highest Area Under the Curve (AUC) values, WISNet 
demonstrated excellent overall performance in classifying activities. 
These results affirm WISNet’s robustness and effectiveness in human 
activity recognition tasks, positioning it as a promising model for such 
applications.

4.6.4. Comparison with state-of-the-art architectures
The proposed WISNet model performance is compared with other 

state-of-the-art architectures for HAR, as shown in Table 7. Wan et al. 
(Wan et al., 2020) proposed a CNN model for automatically classifying 
human activities using UCI-HAR and Pamap2 datasets and attained an 
accuracy of 92.71 %. Inoue et al. (2018) explored different parameters 
and architectures of the Deep Recurrent Neural Network (DRNN), uti
lizing a HASC dataset consisting of 432 trials across six activity classes 
and achieved recognition rates of 95.42 % and 83.43 %, respectively. 
Mekruksavanich and Jitpattanakul (2021) analyzed the performance of 
CNN and LSTM deep learning models in classifying 12 activities. The 
CNN model attained an accuracy of 91.77 %, while the LSTM model 
achieved 92.43 % accuracy on both the UCI-HAR and USC_HAD (Zhang 

et al., 2012) datasets. Xia et al. (2020) introduced an LSTM model 
designed to automatically extract activity features and efficiently clas
sify them across UCI, WISDM, and OPPORTUNITY datasets. Their model 
exhibited remarkable robustness and activity detection capability, 
achieving high accuracies of 95.78 %, 95.85 %, and 92.63 %, respec
tively. Ignatov (2018) presented a CNN-based deep learning approach 
on WISDM and UCI-HAR datasets, yielding accuracies of 93.32 % and 
94.35 %, respectively. The proposed WISNet model achieved an accu
racy of 96.41 %, 95.66 % and 94.01 %, respectively, for WISDM, UCI- 
HAR and KU-HAR datasets. Sikder (2019) introduced a two-channel 
CNN strategy for extracting frequency and power information from 
raw time-domain accelerometer signals, which achieved 95.25 % ac
curacy on the UCI-HAR dataset. Agarwal and Alam (2020) created a 
lightweight RNN-LSTM model that accounted for six activities carried 
out by 29 individuals with an accuracy of 95.78 %. Akter (2023) used an 
attention-mechanism-based deep learning model together with feature 

Fig. 6. Confusion Matrix of the WISNet on (a) UCI-HAR and (b) KU-HAR dataset.

Table 7 
Performance comparison with other state of art methods.

Method Data Accuracy 
(%)

Algorithm

Andrey et al. (
Ignatov, 2018)

WISDM 
UCI-HAR

93.32 % 
94.35 %

CNN

Wan et al. (Wan et al., 
2020)

UCI-HAR, Pamap2 92.71 % CNN

Kun et al. (Xia et al., 
2020)

UCI 
WISDM 
OPPORTUNITY

95.78 % 
95.85 % 
92.63 %

LSTM

Inoue et al. (Inoue 
et al., 2018)

HASC (Kawaguchi 
et al., 2011)

95.4 DRNN

Mekruksavanich (
Mekruksavanich & 
Jitpattanakul, 
2021)

UCI-HAR 
USC_HAD

91.78 % 
92.43 %

CNN 
LSTM

Sikder et al. (Sikder, 
2019)

UCI-HAR 95.25 % Multi-channel 
CNN

Agarwal et al. (
Agarwal & Alam, 
2020)

Six activities performed 
by 29 subjects 
accounted to 1,098,207 
samples(Private Data)

95.78 % Lightweight 
RNN-LSTM 

Akter et al. (Akter, 
2023)

UCI-HAR 
WISDM 
KU-HAR

93.48 % 
93.89 % 
96.86 %

Attention- 
Mechanism- 
based Deep 
Learning

Proposed WISDM 
UCI-HAR 
KU-HAR

96.41 % 
95.66 % 
94.01 %

WISNet
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combination to achieve accuracies of 93.48 % on UCI-HAR, 93.89 % on 
WISDM, and 96.86 % on KU-HAR datasets.

4.6.5. WISNet validation with different open source datasets
The proposed WISNet undergoes evaluation and testing across 

various dissimilar open-source datasets such as the Fall detection data
set, Sleep state detection and ECG Heartbeat dataset. The inclusion of 
the open-source Fall, Sleep state and ECG Heartbeat datasets serves to 
validate WISNet’s generalization capability in the realm of 1D data 
classification.

Fall detection datasets (Grimaldi, 2024) are of significant concern in 
public health, especially among the elderly population, where approx
imately 30 % of individuals aged over 65 living independently experi
ence a fall annually. The dataset comprises two primary signals: 
accelerometer and gyroscope, each with three axes (x, y, z), resulting in 
multidimensional time-series records. The features include fall, lfall 
(lateral severe fall), rfall (reverse (back) severe fall), light (light fall), sit, 
step (stairs walk) and walk. This dataset includes 96,800 instances, 
including train and test sets where the shape of the training set was 
(7352, 564) and the testing set was (2947, 564).

The Sleep state detection dataset (Esper et al., 2023) was sourced 
from the Child Mind Institute (CMI) as part of a competition aimed at 
detecting sleep onset and wake phases. This initiative aims to facilitate 
more efficient analysis of wrist-worn accelerometer data for sleep 
monitoring, enabling sleep experts to conduct large-scale studies more 
easily. By enhancing the understanding of the importance and function 
of sleep, this dataset contributes to improving overall research in this 
field. This dataset includes 551,154 instances, which included train and 
test sets where the shape of the training set was (413,365) and the 
testing set was (137,789).

ECG Heartbeat Categorization Dataset (Fazeli, 2024; Kachuee et al., 
2018) consists of two collections of heartbeat signals obtained from two 
well-known datasets in heartbeat classification, namely the MIT-BIH 
Arrhythmia Dataset and The PTB Diagnostic ECG Database. The 
Arrhythmia dataset included five categories and 109,446 instances, and 
PTB Diagnostic ECG Database included 14,552 instances of 2 categories.

Table 8 provides a comparison of precision, recall, F1 score, sensi
tivity, specificity, AUC, and accuracy coefficients for classification re
sults on open-source Fall detection, Sleep state detection and ECG 
Heartbeat datasets, assessing the performance of WISNet across various 
tasks. For sleep state detection, the WISNet model achieved an accuracy 
of 93.96 %, with precision and recall scores of 0.94. The sensitivity and 
specificity values reported were 0.95 with an F1-score of 0.92 and an 
AUC of 0.986. In contrast, the WISNet architecture demonstrated higher 
performance, achieving an accuracy of 97.52 % along with precision and 
recall scores of 0.98 for the Fall detection dataset. The proposed model 
exhibited sensitivity and specificity values of 0.95 and 0.88 with an 
enhanced F1-score of 0.96 and an AUC of 0.99. For the ECG Heartbeat 
Categorization Dataset, the WISNet model achieved an accuracy of 
98.47 %, with precision and recall scores of 0.95 and 0.88. The sensi
tivity and specificity values reported were 0.95 with F1-score of 0.92 
and an AUC of 0.986. These findings highlight the effectiveness of the 
WISNet architecture across diverse datasets, notably excelling in its 
classification performance. Fig. 7 illustrates the confusion matrix 

depicting the classification performance across various activities.
Unlike traditional Deep Convolutional Neural Networks, which 

typically consist of convolutional layers followed by pooling layers and 
fully connected layers, this framework integrates specialized blocks 
tailored for HAR, namely the CNPM Block, IDBN Block, and CASb offers 
unique functionalities for feature extraction, information flow facilita
tion, and dynamic feature focus, respectively, enhancing the model’s 
ability to accurately recognize human activities from sensor data. LSTM 
and GRU a type of recurrent neural network (RNN), focuses on capturing 
temporal dependencies and long-range dependencies in sequential data, 
whereas the proposed framework leverages convolutional operations, 
batch normalization, and attention mechanisms to extract features and 
improve discriminative representation in HAR tasks.

5. Conclusion and future work

Smartphones and smartwatches are widely used for activity recog
nition in different areas of daily life, such as workplace monitoring, 
emergency identification, and healthcare applications. This study in
troduces a highly effective methodology for identifying various human 
activities, such as Jogging, Walking Downstairs, Sitting, Standing, 
Walking, and Climbing Upstairs. The architecture comprises three 
essential blocks: the Convolved Normalized Pooled (CNPM) Block, 
responsible for extracting noteworthy features from the early layers; the 
Identity and Basic (IDBN) Block, designed to extract progressive residual 
features and adept at capturing intricate sequential data dependencies; 
and finally, the Channel and Spatial Attention (CASb) Block, which 
prioritizes significant features by assigning them higher weights 
compared to other features. The incorporation of an attention mecha
nism into the Identity and Basic block, together with the inclusion of 
skip connections, enhanced the process of feature learning. The recep
tive field at a specific layer is expanded to include feature maps from 
multiple layers of the processing hierarchy allowing the current layer to 
enrich its input processing with additional contextual information 
driven by the occurrence of backpropagation of tensors along the skip 
connections. The proposed network has approximately 700,000 pa
rameters for activity classification, which is significantly fewer than the 
number of parameters used in previous studies employing LSTM, GRU, 
and SimpleRNN learning methods. The experimental findings demon
strate that the WISNet architecture obtained an accuracy rate of 96.43 % 
in accurately distinguishing different human activities. The architecture 
and optimization strategies of the WISNet model have been meticulously 
crafted to reduce computational overhead, ensuring efficient multi-class 
human activity recognition. This research study indicates promising 
scalability for WISNet architecture through optimized algorithms and 
processing techniques to manage significant workloads without sacri
ficing performance. When compared to similar open-source datasets, 
WISNet exhibited the highest level of accuracy, achieving 95.66 % for 
UCI-HAR and 94.01 % for KU-HAR. WISNet model achieved an accuracy 
of 93.96 %, 97.52 % and 98/47 % for Sleep state detection, Fall detec
tion and ECG Heartbeat Categorization dissimilar open source datasets. 
Thus, it is demonstrated that WISNet could also be utilized for other 
tasks.

Resilient classification models in human activity recognition can be 
developed by combining deep learning and ensemble learning tech
niques. Moreover, the integration of explainable artificial intelligence 
techniques can provide users with valuable insights, thereby improving 
their comprehension of the decision-making process in these models and 
promoting confidence and adoption. Implementing resilient categori
zation systems customized for distinct activity subcategories in real- 
world scenarios enables individualized and streamlined approaches, 
ultimately bolstering the efficacy of activity identification, and leading 
to improved results for individuals.

Table 8 
Comparative study of WISNet with sleep state detection, fall detection.

Parameters Sleep State 
Detection

Fall 
Detection

ECG Heartbeat 
Categorization Dataset

Acc (%) 93.96 97.52 98.47
Pre (%) 0.94 0.98 0.95
Rec (%) 0.94 0.98 0.88
Sen (%) 0.95 1.00 0.99
Spe (%) 0.95 1.00 0.88
F1-Score 0.92 0.98 0.96
AUC 0.99 0.99 0.99

H. Sharen et al.                                                                                                                                                                                                                                 Expert Systems With Applications 258 (2024) 124999 

12 



6. Compliance with ethical standards

Human participants and/or animals: None.

CRediT authorship contribution statement

H. Sharen: Conceptualization, Data curation, Methodology, Writing 
– original draft. L. Jani Anbarasi: Data curation, Investigation, Writing 
– original draft, Supervision. P. Rukmani: Data curation, Writing – 
original draft. Amir H. Gandomi: Visualization, Writing – review & 
editing, Supervision. R. Neeraja: Investigation, Methodology, Writing – 
original draft, Visualization, Validation. Modigari Narendra: Investi
gation, Methodology, Writing – original draft, Visualization, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data are borrowed from a reference as cited in the paper.

References

Agarwal, P., & Alam, M. (2020). A lightweight deep learning model for human activity 
recognition on edge devices. Procedia Computer Science, 167, 2364–2373.

Akter, M., et al. (2023). Human activity recognition using attention-mechanism-based 
deep learning feature combination. Sensors, 23(12), 5715.

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J. L., et al. (2013). A public 
domain dataset for human activity recognition using smartphones. Esann, 3, 3.

Arif, A., & Jalal, A. (2021). Automated body parts estimation and detection using salient 
maps and gaussian matrix model. In 2021 International Bhurban Conference on Applied 
Sciences and Technologies (IBCAST) (pp. 667–672). IEEE. 

Athota, R. K., & Sumathi, D. (2022). Human activity recognition based on hybrid 
learning algorithm for wearable sensor data. Measurement: Sensors, 24, Article 
100512.

Bevilacqua, A., MacDonald, K., Rangarej, A., Widjaya, V., Caulfield, B., & Kechadi, T. 
(2019). Human activity recognition with convolutional neural networks. In Machine 
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 
2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part III 18 (pp. 541–552). 
Springer. 
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