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A B S T R A C T   

This extensive review aims to provide a thorough understanding of entropy generation (Egen) in confined 
conduits, or enclosures, by examining a vast array of peer-reviewed research. The review covers various studies 
on Egen in enclosures with different geometric configurations and highlights the significant effects of thermo- 
physical dynamics, such as temperature gradient, viscous dissipation, frictional drag, and magnetic field 
strength, on Egen characterization. The review covers a broad range of studies that investigate Egen in enclosures 
with diverse geometric configurations and different types of fluids, including air, water, and various types of 
nanofluids. Furthermore, the review also includes different enclosure structures, such as I, L, C, U, semicircular, 
triangular, square, rectangular, rhombic, trapezoidal, polygonal, and channel types, as well as wavy wall con
figurations. Notably, the review also encompasses both 2D and 3D cases to present a complete comprehension of 
Egen in confined conduits. In addition, the review carefully evaluates the validity methods utilized in numerical 
investigations, incorporating a diverse array of mesh types and sizes utilized in research. A thorough examination 
of the vast literature demonstrates that enclosures with obstacles, such as single or multiple rotating cylinders, 
exhibit a noticeable increase in Egen. Also, the review highlights that the use of nanofluids significantly increases 
Egen. These findings have important practical implications in the analysis of thermofluid systems, including but 
not limited to heat exchangers, chip cooling, food storage, solar ponds, and nuclear reactor systems. Based on the 
comprehensive review conducted in this study, several future research directions have been proposed for the 
emerging field of Egen in enclosures. This study explores the intricate mechanisms of Egen in enclosures and 
highlights potential avenues for further investigation in this area. These insights will contribute to the 
advancement of the knowledge base and practical applications of thermofluid systems, including heat ex
changers, chip cooling, food storage, solar ponds, and nuclear reactor systems.   

1. Introduction 

A comprehensive study explored the entropy generation (Egen) in
side enclosed cavities of different geometries. The present work 
reviewed the importance and applications of cavities in different fields, 
such as cooling systems, storage units, and industrial thermomechanical 
optimization, etc. By exploring a multitude of enclosure shapes, this 
study provides a comprehensive analysis of the flow and thermal 
behavior within these enclosures under different thermophysical 
boundary conditions. The study considers various thermal boundary 
conditions, such as temperature, heat flux, adiabatic, isothermal, and 

mixed boundary conditions. These conditions significantly influence the 
flow patterns, temperature distribution, and Egen within the enclosures. 
Hussein et al. [1] did an analysis of natural convection in enclosures and 
showed that heat transfer and temperature distribution under 
isothermal conditions had a significant impact on the rate and distri
bution of Egen. Cho et al. [2] studied natural convection and Egen in a 
nanofluid-filled U-shaped enclosure. There was a constant heat flux on 
one wall, a constant low temperature on the other, and adiabatic con
ditions on the upper and lower walls. These factors affected Egen. This 
review paper examines how different thermal conditions affect heat 
transfer and system performance. It provides valuable insights for re
searchers to optimize heat transfer and reduce Egen. 
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In addition to thermal boundary conditions, different hydraulic 
boundary conditions also influence Egen within enclosures. Fixed, 
movable, and elastic boundaries, velocities, pressure distributions, no- 
slip conditions, and flow regimes have an impact on the fluid flow 
behavior and overall energy transport within the enclosure. In laminar 
flow, the interaction of flow instabilities and shear layers can lead to 
vortices and affect Egen. During fully turbulent flow, near-wall coherent 

structures can strongly influence eddies convection and thus increase 
entropy [3]. Ellahi et al. [4] studied the effects of constant pressure on 
Egen in the magnetohydrodynamic (MHD) flow of nanofluid through 
porous media. The constant pressure boundary condition influenced the 
rate of Egen. The selection of appropriate hydraulic boundary conditions 
is therefore crucial to minimizing Egen and optimizing enclosure 
efficiency. 

Nomenclature 

A Aspect ratio 
AB Adams-Bashforth method 
ADI Alternate Direct Implicit scheme 
ALE Arbitrary-Lagrangian–Eulerian approach 
Am Amplitude 
ANN Artificial Neural Network 
Be Bejan number 
Br Buoyancy ratio parameter 
BiCGStab Biconjugate gradient stabilized method 
Bn Bingham number 
C Concentration 
CDS Central differencing schemes 
Ca Carreau number 
CVM Control volume method 
CVFDM Control volume Finite difference method 
CVFEM Control volume Finite element method 
d Center of opening 
dc Diameter of a cylinder 
D Diffusion coefficient 
Da Darcy number 
Du Dufour number 
dp Nanoparticles diameter 
Etot Total energy per unit mass 
E Elasticity modulus 
Ec Eckert number 
Egen Entropy generation 
f Fluid 
FC Free convection 
FoC Forced Convection 
Fc Forchheimer parameter 
FDM Finite difference method 
FDLBM Finite difference Lattice Boltzmann method 
FEM Finite element method 
FVM Finite volume method 
FSI Fluid–structure interaction 
Ge Gebhart number 
Gr Grashof number 
h Opening ratio 
Ha Hartmann number 
Ir Irreversibility ratio 
K Vortex viscosity parameter 
KT Thermal conductivity ratio 
Kr Chemical reaction parameter 
Kn Knudsen number 
LBM lattice Boltzmann method 
Le Lewis number 
LRBF Local Radial Basis Function 
m nanoparticle shape factor 
M Magnetic parameter 
Ma Marangoni number 
MC Mixed convection 
ML Machine Learning 
MRT Multiple-Relaxation-Time 

MSQM Multivariate Spectral Quasilinearisation Method 
MWCNT Multi wall carbon nanotubes 
n Flow behavior index for a power-law fluid 
nf Nanofluid 
N Buoyancy ratio 
NC Natural Convection 
Nb Brownian motion 
Nt Thermophoresis parameter 
NN Neural Network 
Pe Peclet number 
PCM Phase change material 
Pr Prandtl number 
Q is the heat source or sink 
q Heat generation or absorption 
QUICK Quadratic upstream interpolation for convective 

kinematics 
R Opening ratio 
RBF-FD Radial-basis-function-based finite difference 
Rq Heat flux ratio 
Ra Rayleigh number 
RaI Internal Rayleigh number 
RaE External Rayleigh number 
RBSOR Red and black SOR method 
Rc Thermal conductivity ratio 
Rd Radiation parameter 
Re Reynolds number 
Ri Richardson number 
RSM Response surface methodology 
s, np Solid or nanoparticles 
Sc Schemidt number 
Sh Sherwood number 
SIMPLE Semi-implicit method for pressure-linked equations 
SOR Successive over relaxation 
SUR Successive under relaxation 
Sr Soret number 
Ste Stefan number 
Sff Entropy generation due to fluid friction 
SHT Entropy generation due to heat transfer 
SMT Entropy generation due to mass transfer 
STOT Total entropy generation 
t Time 
T Temperature 
TDMA Tri-diagonal matrix algorithm 
x, y, z are the Cartesian coordinate systems 
ρ Density 
μ Dynamic viscosity 
v→ = (u,v,w) Velocity vector 
φ Inclination angle 
χ Nanoparticles concentration 
ω Angular velocity 
γ Magnetic field 
τ Stress tensor 
ρg Gravitational force  
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The enclosure’s geometry, including its size and shape, has an impact 
on the system’s flow patterns, heat transfer properties, and ultimately 
the generation of entropy. Enclosures with sharp corners exhibit higher 
Egen compared to smoother geometries. Sharp edges lead to increased 
fluid disturbances and enhanced fluid mixing [5]. The presence of ob
stacles inside the enclosure influenced Egen as well [6]. Selimefendigil 
et al. [7] placed circular, square, and diamond obstacles inside a square 
enclosure and observed that average heat transfer decreased and Egen 
increased. The aspect ratio of the enclosure, which is the ratio of its 
length to width or height, also played a role in determining the flow 
patterns and heat transfer distribution, thereby affecting Egen [8]. 
Similarly, the inclination angle of the enclosure, which is the angle be
tween the enclosure’s walls and the horizontal plane, also played a 
significant role in Egen [4]. 

The study explored a wide range of fluid types, including pure water, 
air, nanofluids, phase-change materials, porous media, and non- 
Newtonian fluids. The study of various fluids provided insights into 
their respective characteristics and how they affect Egen. For example, 
nanofluids improve thermal conductivity, which leads to lower Egen. 
But it also increased the viscosity of the base fluid, which resulted in 
higher Egen [9,10]. Several factors affect nanofluids’ role in Egen in 
enclosures, including the type of nanoparticles, their volume fraction, 
the base fluid, and the geometry of the enclosure. Ahlawat and Sharma 
[11] investigated the impact of nanoparticle volume concentration and 
an external magnetic field on heat transport and Egen in a vented, 
heated complex enclosure filled with MgO/Ag-H2O hybrid nanofluid. 
They found that Egen increased with χ and Ra. Alipanah et al. [12] 
compared Egen of natural convection heat transfer in a square enclosure 
using Al2O3-H2O nanofluid and pure water. They found that the addition 
of nanoparticles to the pure fluid had a significant effect on Egen. This 
analysis of different fluids helps identify suitable fluids for specific 
purposes, resulting in better energy efficiency and lower irreversibility. 

The effect of porous media in enclosures is also extensively studied in 
this research. Porous media in enclosures generally increase Egen (more 
surface area for heat transfer between fluids) [13], but it depends on 
several variables such as porosity [4], permeability [14], the shape of 
the enclosure, flow characteristics [15], and boundary conditions [16]. 
They alter the flow patterns within the enclosure, leading to changes in 
heat transfer and fluid flow characteristics [17]. Several factors reduced 
total Egen in enclosures filled with porous media, including the Da, Ha, 
χ , and magnetic field strength [18]. 

Entropy generation in enclosures is critically influenced by the 
interplay of fluid friction, magnetic field effects, and heat transfer 
mechanisms. Understanding these mechanisms and their dependencies 
on various factors such as fluid properties, enclosure geometry, and 
boundary conditions is crucial for optimizing system performance and 
energy efficiency while minimizing Egen. The interaction between the 
fluid and the enclosure wall leads to viscous dissipation. This frictional 
force converts some of the fluid’s mechanical energy into heat, leading 
to an increase in entropy. The magnitude of Egen due to fluid friction 
depends on the properties of the fluid, the geometry of the enclosure, 
and the velocity distribution within the flow. Makinde [19] analyzed 
Egen in variable-viscosity hydromagnetic boundary layer flow and 
found that fluid friction was a significant factor contributing to Egen. 
Ciçek et al. [14] studied Egen in the mixed convection of a 
nanofluid-filled annulus and highlighted the influence of fluid friction 
on Egen. Generally, higher fluid velocities and viscosities led to 
increased fluid friction and higher Egen. 

Like fluid friction, thermal strata within the enclosures are closely 
linked to Egen. The transfer of heat from regions of higher temperature 
to regions of lower temperature leads to a dissipation of energy and an 
increase in entropy. Conduction, convection, and radiation are the pri
mary modes of heat transfer within enclosures. Conduction occurs 
through the solid walls of the enclosure and generates entropy due to 
thermal gradients [20]. Convection, on the other hand, involves the 
transfer of heat through fluid motion, leading to additional Egen due to 

fluid friction [21]. Radiation is an irreversible process that contributes 
to Egen. As electromagnetic waves emitted by the surfaces of the 
enclosure carry energy away, the system becomes more disordered, 
resulting in an increase in entropy [22]. 

Similar to thermal strata, the magnetic field also contributed to Egen 
as it induced magnetoconvection that altered flow patterns and 
increased convective heat transfer [23]. It led to reduced temperature 
gradients and Egen. The presence of magnetic fields also impacts the 
electrical conductivity of the fluid, leading to an increase in resistive 
heating and the consequent generation of entropy [24]. The orientation 
and strength of magnetic fields also affect Egen [25]. Hussain et al. [26] 
investigated the influence of an inclined magnetic field on the mixed 
convection in a partially heated square double lid-driven enclosure filled 
with Al2O3-H2O nanofluid. The inclination angle of the magnetic field 
influenced the structure of the flow inside the enclosure. Mahmud and 
Fraser [27] studied Egen in a porous enclosure and concluded that Egen 
increased with an increase in magnetic field. Sivaraj and Sheremet [28], 
in their study with ferrofluid in a square enclosure with a non-uniformly 
heated plate, found that a magnetic field suppressed convective flow, 
heat transfer, and Egen. 

Many different parts, including electronics, solar collectors, heat 
exchangers, automotive systems, and reactors, incorporate enclosures. 
Electronic components often had enclosures to help with airflow and 
cooling [29]. Smartphones have enclosures that keep the system’s 
components from overheating. They also had an impact on the func
tionality and structural quality of electronic components [30]. Solar 
collectors employ enclosures to increase energy capture and efficiency 
[31]. Enclosures in nuclear reactors are linked to swelling evolution and 
structural material degradation, which have an impact on the deterio
ration of material properties and the creation of radiation-tolerant ma
terials [32]. Additionally, improving heat transmission and lowering 
flow resistance in heat exchangers depends greatly on the form and 
geometry of enclosures [33]. Microwave enclosure perturbation 
research and better exhaust gas after-treatment systems utilize the en
closures in automotive catalytic devices [34]. Enclosures are utilized in 
additive manufacturing procedures to incorporate piezoelectric mate
rials or sensors in vehicle parts [35]. Such multifaceted applications will 
be facilitated through thermofluid system optimization from the 
perspective of Egen and its control. Thus, its study is critical to opti
mizing thermal management and increasing energy efficiency. 

The current research endeavors to establish a solid groundwork by 
conducting an extensive examination of recent studies related to Egen 
within enclosures. This comprehensive overview serves as the base for 
the study, aiming to delve into critical insights that hold significant 
importance for the sectors mentioned earlier. The foundational platform 
laid by this research enhances the depth and relevance of the study, 
enabling a more enlightened investigation into the subject matter. The 
future scope of work in Egen in enclosures is very promising. Current 
methods for calculating Egen are often computationally expensive and 
can be inaccurate. The development of more accurate and efficient 
methods would allow engineers to design more efficient systems. En
tropy generation can have a significant impact on the stability of flow 
patterns. The study of these effects could lead to the development of new 
methods for controlling flow patterns and preventing instabilities. Also, 
further research needs to be done on novel enclosure geometries, 
alternative working fluids, and multi-objective optimization to mini
mize Egen. 

2. Methodology 

We carried out a systematic review following the PRISMA guidelines 
to thoroughly explore the subject of Egen in enclosures, as shown in 
Fig. 1. The review aimed to identify and analyze articles published be
tween January 2014 and March 2023 from a range of reputable online 
databases, including ScienceDirect, Wiley and Sons, MDPI, Taylor and 
Francis, and Springer. The search strategy employed a combination of 
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keywords related to Egen and cavity types to ensure that a compre
hensive range of relevant articles were identified. The selection criteria 
for the articles included in the review were based on their relevance to 
the research question as well as their quality and reliability. To ensure a 
comprehensive and thorough search, a variety of search terms were 
employed, including ’Entropy generation’, ’Cavity and entropy gener
ation’, and a range of specific cavity types. The specific cavity types that 
were included in the search terms were square, rectangular, triangular, 
trapezoidal, wavy-shaped, C-shaped, I-shaped, L-shaped, U-shaped, 
semi-circular, three-dimensional, lid-driven, modified, hexagonal, 
octagonal, and other types of cavities. Additionally, the search terms 
also included variations on the theme of nanofluids and hybrid nano
fluids, as these have been identified as important factors affecting Egen 
within cavities. As such, search terms such as ’Cavity and entropy gen
eration and nanofluid’ and ’Cavity and entropy generation and hybrid 
nanofluid’ were also included. In the data extraction process, we 
ensured that our research was of high quality and reliable. Firstly, we 
focused only on articles written in English and checked the references to 
each article to identify related articles. Two researchers, named GS and 
AA, performed the data extraction process independently to reduce 
possible biases. To select the articles, the researchers checked the title, 
year, and abstract of each article and made independent decisions. In 
cases where there was disagreement, a third researcher, named SS, su
pervised the process and resolved the conflicts. The selected articles 
were stored in the following format: ‘Name of the first author and year’. 
We excluded duplicate articles, review articles, book chapters, letters to 
editors, books, articles that were not accessible, and articles that were 
not related to our research. We assumed that the selected databases 
maintained all the criteria during the peer-review process, thereby 
ensuring quality. Overall, our rigorous data extraction process ensured 
that the articles we selected were of high quality and relevant to our 
research. 

3. Mathematical Model 

Numerous publications have delved into the study of Egen in en
closures of various shapes over the years. These investigations have 
covered a range of enclosure geometries, including squares, rectangles, 
triangles, hexagons, octagons, trapezoids, T-shapes, U-shapes, L-shapes, 
M-shapes, V-shapes, H-shapes, I-shapes, C-shapes, arc shapes, and other 
modified configurations. In addition, these inquiries have explored the 
impact of several factors on Egen resulting from heat transfer and fluid 
friction, such as the enclosure shape, working fluid, boundary 

conditions, and the presence of inserted objects like fins, cylinders, 
blocks, and rotating blades, which may either enhance or impair heat 
transfer. 

The modeling of various fluid flow phenomena in engineering and 
physics relies on the application of the Navier-Stokes equations, which 
describe the motion of a fluid. These equations consist of three funda
mental parts: the continuity equation, which ensures the conservation of 
mass within the fluid system; the momentum equation, which accounts 
for the forces acting on the fluid; and the energy equation, which 
characterizes the transfer of thermal energy. The Navier-Stokes equa
tions find wide application across a broad range of fluid types and flow 
conditions, encompassing incompressible and compressible flows, 
steady and unsteady flows, Newtonian and non-Newtonian fluids, 
laminar and turbulent flows, and fluids with varying properties such as 
air, water, and nanofluids. Furthermore, the system under consideration 
can possess different geometries, including two-dimensional or three- 
dimensional configurations. Solving these equations presents a formi
dable challenge, compounded by the inclusion of body forces commonly 
encountered in fluid systems, such as gravity and electromagnetic 
forces. Additionally, other types of body forces may significantly influ
ence the system’s behavior and necessitate their incorporation into the 
modeling process. These forces encompass phenomena such as buoy
ancy forces, Brownian motion of particles, thermophoresis effects, heat 
generation or absorption, radiation effects, and the porous medium ef
fect, which can be described using the Foechheimer-Brinkman model. 
Properly accounting for these forces is vital when studying and modeling 
fluid systems, as they can have a pronounced impact on the overall 
behavior and dynamics of the system. A similar statement is true for the 
energy equation and the mass transfer equation as well, since there can 
be several external sources of heat and mass transfer. The general form 
of the mass, momentum, energy, and mass transfer equations is given 
below in vector form. Since there can be several external sources 
involved in the respective property transport, these other sources are 
incorporated into the respective governing equations through the term 
“other terms.” Therefore, the term “other terms” refers to the force, the 
rate of energy transfer, and the rate of mass transfer in the momentum 
equation, energy equation, and mass transfer equation respectively, 
which can be seen below. 

Continuity equation: 

∂ρ
∂t

+∇.(ρ v→) = 0 (1) 

Momentum equation: 

∂(ρ v→)

∂t
+∇.(ρ v→ v→) = − ∇p +∇.τ + ρg + other terms (2) 

Energy equation: 

∂(ρE)
∂t

+∇.(ρ v→E) = − ∇.(ρ v→) +∇.(κ∇E) + Q + other terms (3) 

Mass transfer equation: 

∂(ρC)

∂t
+∇.(ρ v→C) = ∇.(D ∇C) + other terms (4) 

Entropy generation due to fluid friction: 

Sff = μ(∇ v→)
2 

Entropy generation due to heat transfer: 

SHT = q/T 

Entropy generation due to mass transfer: 

SMT = −

(
ρD
C

)

∇.C 

Bejan number: 

Fig. 1. Flow chart of Systematic Review Process [36]  

G. Saha et al.                                                                                                                                                                                                                                    



International Journal of Thermofluids 21 (2024) 100568

5

Be =
SHT

STOT 

Details of some non-dimensional parameters are presented in 
Appendix. 

Thoroughly documenting the validation procedure within a study is 
crucial to guaranteeing the precision of numerical findings and offering 
a valuable reference for subsequent investigations. Regrettably, there is 
a dearth of such information in previous literature review studies. As 
such, we would like to provide some validation information here. Saha 
et al. [36] present the details regarding the validation of heat transfer 
analysis. However, as our current research is focused on Egen analysis, 
this section will specifically present validation results related to entropy. 
The following are the most frequently utilized results that we generated 
and presented here for validating Egen as shown in Fig. 2 [6,11,37–79]. 
Fig. 2 presents the variation of local thermal Egen, local frictional Egen 
and local Egen as well as local Be for a square cavity with Ra = 105. The 
thermal Egen achieved its highest point, reaching approximately 59.61, 
whereas the frictional Egen peaks at around 567.48. This significant 
contrast in their respective maximum values underscores the consider
able influence and dominance of frictional effects in comparison to 
thermal effects within the studied system. The dominance of local fric
tional Egen is notably pronounced, as indicated by the local Egen map. 
This prevailing influence is also discernible from the local Bejan map. 

4. Quantitative Data Analysis 

The visual representation in Fig. 3 provides a comprehensive view of 
the most commonly used words found in the abstracts of the selected 
articles. A detailed analysis indicates that the primary subjects explored 
in these articles include entropy, total entropy, Egen, natural convec
tion, mixed convection, steady and unsteady flow, as well as Newtonian 
and non-Newtonian fluids. Another significant area of focus is nano
fluids and hybrid nanofluids, which are increasingly becoming popular 
in the field of fluid dynamics. In addition, these articles showcase a 
strong emphasis on employing numerical methods such as Finite 
Element Method (FEM), Finite Volume Method (FVM), Finite Difference 
Method (FDM), and lattice Boltzmann method (LBM) for conducting 
numerical experiments. 

According to the data presented in Fig. 4, it is clear that among the 
various types of cavities, square enclosures are the most extensively 
researched, accounting for almost half (46.6%) of the total number of 
articles. The second most studied type of enclosure is three-dimensional 
enclosures, which make up 8.5% of the articles. However, other shapes 
of enclosures have also been studied in significant numbers. Trape
zoidal, triangular, wavy-shaped, rectangular, L-shaped, rhombic, semi- 
circular, and U-shaped enclosures are all represented in the literature. 
These different enclosure shapes represent 5.4%, 4.9%, 4.5%, 3.6%, 
3.1%, 2.7%, 2.2%, and 1.3% of the total number of articles, respectively. 
Moreover, it is worth noting that there are some less common enclosure 
shapes that have still received a fair amount of attention in the 

literature. For example, the channel flow enclosure, I-shaped, modified, 
and concave/convex side enclosures have each been studied in 1.8% of 
the articles. This indicates that researchers are exploring a wide range of 
enclosure shapes and configurations and that there is a growing interest 
in understanding the behavior and properties of different types of 
enclosures. 

The data presented in Fig. 5 reveals some interesting insights about 
the focus of research in the field of fluid dynamics. The majority of ar
ticles, 93%, concentrated on Newtonian fluids, while only a small pro
portion, 7%, considered non-Newtonian fluids. Among the types of 
fluids investigated, nanofluids and hybrid nanofluids were the most 
commonly studied, with 65% of articles focusing on these topics. The 
remaining 35% of articles explored conventional fluids such as air and 
water. In terms of the mode of heat transfer, natural convection garnered 
the most attention, with 76% of articles focusing on this area. In 
contrast, mixed and forced convection were the topics of study in only 
24% of articles. The temporal nature of the fluids being analyzed was 
also considered, with 74% of articles focusing on steady-state flow 
conditions and 26% on unsteady-state flow conditions. Another note
worthy finding was that the majority of articles, 91%, used a two- 
dimensional model to study fluid dynamics. Additionally, the single- 
phase model was the most common, with 96% of articles using this 
approach. However, this also highlights the need for further research in 
the area of two-phase models, which received less attention. Overall, 
these findings provide a glimpse into the trends and gaps in research in 
the field of fluid dynamics and highlight areas that may require further 
attention in the future. 

Fig. 2. Variation of thermal, frictional, local Egen, and local Be for Pr = 0.71, Ra = 105  

Fig. 3. Word-Cloud Map  
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The researcher’s analysis, depicted in Fig. 6, reveals the varied nu
merical approaches employed in their investigations. A significant 36% 
of the research employs the finite element method (FEM), indicating its 
widespread acceptance as a reliable approach. The finite or control 
volume method (FVM or CVM) ranks second, with 28% of the research 
utilizing this numerical approach. The finite difference method (FDM) is 
used in 11% of the research, establishing it as the third most commonly 
used approach. Interestingly, the lattice Boltzmann method (LBM) is 
used in 9% of the research, suggesting its increasing popularity as a 
reliable numerical technique. Furthermore, the literature reports the 
existence of various hybrid methods, such as FD-LBM (6%), CV-FEM 
(4%), and CV-FVM (4%). Additionally, 2% of the research employed 

other techniques not explicitly mentioned above. 

5. Entropy Generation Analysis 

Tables 1 to 24 display the findings of research conducted on Egen 
analysis by the flow of natural or mixed or forced convection in different 
shapes of enclosures. In addition, this section will provide a brief over
view of some relevant references that were selected for discussion. The 
study included in Tables 1 to 24 examined various aspects of natural or 
mixed convection flow in enclosures, such as the effect of different ge
ometries and boundary conditions on flow patterns and Egen. Addi
tionally, some investigations focused on the impact of nanoparticles on 

Fig. 4. Number (%) of physical domains  

Fig. 5. Number (%) of different categories  
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the thermal and fluid behavior of the flow. 
Table 1 presents various research works on natural convection in a 

square enclosure. Some of the selected articles are described below: 
Al-Kouz et al. [91] studied Egen analysis in a square enclosure with 

two hot fins fixed on the left wall. Their observations showed that an 
increase in nanofluid concentration resulted in an increase in Egen for 
both low Ra cases and as both heat and Ra increased. Conversely, Egen 
decreased when Ra was high and the nanofluid concentration increased. 
Baghsaz et al. [92] investigated how the sedimentation of nanoparticles 
affected natural convection within a square enclosure. Their findings 
indicated that increased porosity (ε), Ra, and Da led to a higher level of 
irreversibility. When permeability was low, the total Egen had lower 
values. Zhou et al. [93] used numerical simulations to examine Egen 
within a square enclosure. The left boundary was established as having a 
hot temperature while the left wall remained cold. Their findings 
revealed that Egen increased as the Gr rose, and the contour lines were 
concentrated near the hot wall. Additionally, CNT-Ga produced the 
highest Egen while Cu-Ga had the lowest value. Şahin [73] analyzed 
Egen in a square enclosure with linear heating. The heating center was 
positioned on the left wall, while the right wall had a uniform temper
ature, and the other boundaries were insulated. The findings revealed 
that the total Egen had the lowest value at HL=1, where the highest heat 
transfer occurred, regardless of the value of Ra. Additionally, the 
maximum Egen resulting from heat transfer happened at HL=0.25, while 
the maximum Egen due to fluid friction depends on the heating centerr’s 
location. Later, Şahin [74] conducted a study that examined entropy 
generation within a square enclosure. The study found that as Ra 
increased, Egen increased for all types of particles. At low Ra=104, heat 
transfer caused most of the Egen, with boron-H2O nanoparticles leading 
to an increase in Egen compared to other nanofluids. Ahlawat and 
Sharma [11] investigated Egen in a square enclosure. It is seen that 
increasing the thickness of the porous media resulted in an increase in Be 
and a decrease in Egen. Additionally, an increase in Ko (dimensionless 
vortex viscosity parameter) and χ led to an increase in heat transfer 
irreversibility over frictional irreversibility. Gokulavani et al. [94] 
studied Egen in a square enclosure with a hot baffle placed at the center 
of the enclosure. It is observed that entropy due to heat transfer was the 
predominant factor, with higher values observed in the suction case. 

Table 2 displays a compilation of different research studies focusing 
on MHD natural convection within a square enclosure. A summary of a 
few chosen articles is provided below: 

Ahrar et al. [106] conducted a numerical simulation aimed at 
examining how an external magnetic field affects Egen in a square 
enclosure containing a hot elliptical object. The study revealed that as 
the Ha increased, the total Egen decreased, but it increased with Ra. 
Al-Rashed [107] conducted a numerical investigation on a square 
enclosure exposed to a constant magnetic field. Their findings indicated 
that as Ra increased and Ha decreased, the total Egen increased. Alnaqi 

et al. [108] studied the impact of a magnetic field and radiation on Egen 
in an inclined square enclosure. They observed that at high Ra, the total 
Egen increased with higher χ and Rd but decreased with lower Ra 
values. Alsabery et al. [129] investigated Egen within a square enclosure 
with a hot trapezoidal object affixed to the bottom wall, exposed to an 
inclined magnetic field. The upper boundary was insulated, while the 
vertical boundaries were cold. The study revealed that Egen from 
viscous dissipation decreased. Additionally, increasing χ and the length 
of the trapezoidal object resulted in decreased global Egen. Arun and 
Satheesh [44] examined Egen in a square enclosure with an adiabatic 
rectangular block positioned at the center. Their findings indicated that 
for Ra values between 103 and 104, the non-dimensional Egen increased 
by 65.5% due to heat transfer, 99.2% due to fluid friction, and 66.2% 
due to fluid concentration. Additionally, the total Egen decreased as Ha 
increased for all Ra values. 

Goqo et al. [110] explored the flow characteristics of a porous me
dium containing nanoparticles within a square enclosure. They found 
that considering the Brownian motion of the particles, Egen increases
with Ra. Moreover, an increase in Rd resulted in a rise in the total Egen 
for all values of Ha. Hajatzadeh Pordanjani et al. [130] conducted a 
study on Egen in a square enclosure. The left boundary had a variable 
temperature distribution, with four cases: sinusoidal, fixed, first-order, 
and second-order profiles, while the right boundary remained cold 
and the other boundaries were insulated. As Ra increased, the maximum 
and minimum Nu increased by 9.1% and 7.6% for cases a and d, 
respectively, resulting in a corresponding maximum and minimum in
crease in Egen of 42.9 and 19.2 times for these cases. Additionally, 
increasing Ha led to a maximum entropy reduction of 64% and a min
imum reduction of 60% for the case with a parabolic temperature pro
file. Finally, adding a 6% volume fraction of nanoparticles resulted in a 
12% increase in Egen. Al Kalbani et al. [112] analyzed Egen within a 
square enclosure. Four different boundary conditions were considered: 
(a) cold top boundary and hot bottom boundary; (b) hot left boundary 
and cold right boundary; (c) hot top boundary and cold bottom 
boundary; and (d) cold left boundary and hot right boundary, with the 
other boundaries being adiabatic. They found that the total Egen due to 
friction was dominant for the top heated boundary. Additionally, the 
minimum Egen was higher for case (a) and lower for case (c). Li et al. 
[113] conducted a study on Egen in a square enclosure and separated by 
a diagonal partition. The partition divided the enclosure into left and 
lower sections at a high temperature and an upper right section in 
contact with a cold boundary. The study revealed that increasing Ra 
from 103 to 105 resulted in a 90% increase in Egen. Additionally, 
increasing Ha from 0 to 40 decreased Egen by 46%. The study also found 
that increasing Rd up to 3 resulted in a 6.6% intensification of Egen. 
Furthermore, when the hot length intensity increased from 0.1 to 0.9, 
Egen increased by 2.8 times. Li et al. [33] studied to investigate the Egen 
inside an inclined square enclosure, focusing on the effect of Rd and 

Fig. 6. Number (%) of numerical methods used by research  
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Table 1 
Research work on natural convection in a square enclosure  

References Tools Domain Flow details Constants 

Basak et al. 
[80] 

FEM Inclined 
square 
enclosure 

2D, steady, NC 103≤ Ra≤
105, Pr =
0.025, 998, 
0≤ φ ≤ 60 

El-Maghlany 
et al. [81] 

FVM, 
TDMA 

Square 
enclosure 

2D, laminar, NC, 
steady, 
Newtonian, 
incompressible 

Pr = 0.7, 
103≤ Ra≤
105, 0≤ q≤
10 

Lam and Arul 
Prakash 
[70] 

FEM Square 
porous 
enclosure 
with 
multiple 
blocks 

2D, laminar, NC, 
unsteady, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 10− 5≤

Da≤ 10− 2 

Singh et al. 
[77] 

FEM Tilted 
square 
enclosure 

2D, NC, steady Pr = 0.025, 
998.24, 103≤

Ra≤ 105, 
0≤ φ ≤ 75 

Alipanah 
et al. [12] 

FVM, 
SIMPLE 

Square 
enclosure 

2D, steady, NC, 
Al2O3-H2O 
nanofluid 

104≤ Ra≤
107, 0≤ χ ≤
0.05, Pr =
6.2, dp = 40, 
1 nm 

Singh et al. 
[76] 

FEM Tilted 
porous 
square 
enclosure 

2D, NC, steady Pr = 0.015, 
1000, 10− 5≤

Da≤ 10− 2, 
103≤ Ra≤
106, 0≤ φ ≤
90 

Biswal et al. 
[48] 

FEM Porous 
square 
inclined 
enclosure 

2D, steady, NC, 
laminar. 
Newtonian, 
incompressible 

0≤ φ ≤ 90, 
10− 5≤ Da≤
10− 2, Pr =
0.025, 
998.24, 
Ra=106 

Ismael et al. 
[82] 

FDM Square 
porous 
enclosure 
with 
triangular 
solid 

2D, steady, NC, 
CuO-H2O 
nanofluid 

0≤ χ ≤ 0.05, 
10≤ Ra≤ 103 

Sheremet 
et al. [6] 

FVM, 
SIMPLE 

Square 
enclosure 
with block 

2D, steady, NC, 
Cu-H2O nanofluid 

103≤ Ra≤
106, 0≤ χ ≤
0.05 

Ashorynejad 
and 
Hoseinpour 
[83] 

LBM Porous 
square 
enclosure 

2D, steady, NC, 
H2O based Al2O3, 
Cu, TiO2 

nanofluids, 
laminar, 
incompressible 

0≤ χ ≤ 0.06, 
Pr=6.2, 
Ra=105, 
Da=10− 2 

Bouchoucha 
et al. [84] 

CVM, 
SIMPLER 

Square 
enclosure 

2D, steady, FC, 
laminar, Al2O3- 
H2O nanofluid, 
Newtonian, 
incompressible 

104≤ Ra≤
106, 0≤ χ ≤
0.1 

Ghasemi and 
Siavashi 
[55] 

LBM Porous 
square 
enclosure 

2D, steady, NC, 
Cu-H2O nanofluid, 
laminar, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ χ ≤
6%, 10− 3≤

Da≤ 10− 1 

Rahimi et al. 
[10] 

LBM Square 
enclosure 
with blocks 

2D, steady, NC, 
laminar, DWCNTs- 
H2O nanofluid, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ χ ≤
0.5% 

Siavashi et al. 
[85] 

FVM, 
SIMPLE, 
TDMA 

Porous 
inclined 
square 
enclosure 
with blocks 

2D, steady, NC, 
two-phase model 

Pr=0.71, N=

- 0.8, 0≤ φ ≤
90, 10− 6≤

Da≤ 10− 1, 
104≤ Ra≤
106, 0.1≤
Le≤ 10 

Sheremet 
et al. [86] 

FDM Square 
enclosure 

2D, unsteady, NC 103≤ Ra≤
105, Pr = 7,  

Table 1 (continued ) 

References Tools Domain Flow details Constants 

Le = 1000, N 
= Nb = Nt =

0.1 
Alsabery et al. 

[87] 
FDM Square 

enclosure 
with solid 
block 

2D, steady, NC, 
laminar, Al2O3- 
H2O nanofluid 

103≤ Ra≤
106, 0≤ χ ≤
0.09, 0.44≤
KT≤ 23.8 

Kashyap and 
Dass [88] 

LBM Porous 
square 
enclosure 

2D, two-phase, 
laminar, Cu-H2O 
nanofluid, NC. 
steady, 
Newtonian, 
incompressible 

103≤ Ra≤
105, 10− 6≤

Da≤ 10− 1, 
0≤ χ ≤ 0.05 

Kefayati et al. 
[64] 

FD-LBM Inclined 
square 
enclosure 

2D, unsteady, NC, 
Bingham fluid, 
laminar, 
incompressible 

103≤ Ra≤
105, 2≤ Le≤
10, 0≤ Du, 
Sr≤ 5, 
0≤ Ec≤ 0.1, 
-1≤ N≤ 1, 
0≤ φ ≤ 120, 
Pr = 1, 0.1≤
Bn≤ 12 

Kefayati and 
Tang [69] 

FD-LBM Open square 
enclosure 

2D, unsteady, NC, 
Bingham fluid, 
incompressible 

103≤ Ra≤
105, 2.5≤
Le≤ 10, 
0≤ Du, Sr≤ 5, 
Ec = 0.001, 
0.01, -1≤ N≤

1, 0.1≤ Bn≤
12 

Rahimi et al. 
[89] 

LBM Sqare 
enclosure 
with 
multiple 
blocks 

2D, unsteady, NC, 
DWCNTs–H2O 
nanofluid 

0.01%≤ χ ≤
0.4%, 103≤

Ra≤ 106 

Siavashi et al. 
[90] 

FVM, 
SIMPLE 

Square 
enclosure 
with porous 
fins 

2D, steady, Cu- 
H2O nanofluid, 
NC, two-phase 
mixture model, 
laminar, 
Newtonian 

104≤ Ra≤
106, 10− 4≤

Da≤ 10− 1, 
0≤ χ ≤ 0.04 

Al-Kouz et al. 
[91] 

FVM, 
SIMPLE 

Square 
enclosure 
with fins 

2D, laminar, FC, 
Al2O3-Air 
nanofluid, steady 

103≤ Ra≤
106, 0≤ χ ≤
0.02, 0≤ Kn≤

0.1 
Baghsaz et al. 

[92] 
FVM, 
PIMPLE 

Porous 
square 
enclosure 

2D, unsteady, NC, 
two phase mixture 
model, laminar, 
Al2O3-H2O 
nanofluid, 
incompressible 

104≤ Ra≤
107, 10− 5≤

Da≤ 10− 2 

Zhou et al. 
[93] 

FVM, 
QUICK, 
SIMPLE 

Square 
enclosure 

2D,laminar, NC, 
steady, Cu-Ga, 
Diam-Ga, CNT-Ga 
nanofluids, two- 
phase mixture 
model, 
Newtonian, 
incompressible 

104≤ Gr≤
106, 0.01≤ χ 
≤ 0.15, dp =
20 nm 

Sahin [73] FVM Square 
enclosure 

2D, NC, steady 103≤ Ra≤
106, Pr =
0.71 

Şahin [74] FVM, 
SIMPLE 

Square 
enclosure 

2D, steady, NC, 
laminar, boron- 
H2O nanofluid 

104≤ Ra≤
106, 0≤ χ ≤
0.04 

Ahlawat and 
Sharma 
[11] 

FDM, 
SOR, SUR 

Square 
porous 
enclosure 
with block 

2D, Cu-Al2O3-H2O 
hybrid nanofluid, 
steady, laminar, 
incompressible 

10− 5≤ Da≤
10− 3, 103≤

Ra≤ 105, 
0≤ χ ≤ 0.1, 
2≤ K≤ 7 

Gokulavani 
et al. [94] 

FDM, 
TDMA 

Porous open 
square 
enclosure 
with baffle 

2D, Cu-TiO2-H2O 
hybrid nanofluid, 
unsteady, laminar, 
incompressible 

0≤ χ ≤ 0.04, 
104≤ Ra≤
106, 10− 4≤

Da≤ 10− 2, 
100≤ Re≤
500  
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Table 2 
Research work on MHD natural convection in a square enclosure  

References Tools Domain Flow details Constants 

Mahmoudi et al. [95] LBM Square enclosure 2D, MHD, NC, steady, Al2O3-H2O nanofluid, 
Newtonian, laminar, incompressible 

103≤ Ra≤ 106, 0≤ Ha≤ 60, 0≤ χ ≤
0.06 

Mejri et al. [96] LBM Square enclosure 2D, laminar, NC, MHD, Al2O3-H2O nanofluid, 
Newtonian, steady, incompressible 

103≤ Ra≤ 5 × 104, 0≤ Ha≤ 50, 0≤ φ ≤
180, 0≤ χ ≤ 0.06 

Selimefendigil and Öztop 
[7] 

FEM Square enclosure with 
obstacles 

2D, unsteady, NC, MHD 104≤ RaI, RaE≤ 106, 0≤ χ ≤ 0.05, 
0≤ Ha≤ 50 

Mamourian et al. [97] RSM, FVM, 
SIMPLE 

Square enclosure 2D, MHD, Al2O3-H2O nanofluid, NC, laminar, 
incompressible, Newtonian, steady 

103≤ Ra≤ 106, 0≤ Ha≤ 50, 0≤ φ ≤ 90, 
Pr = 6.2, 0≤ χ ≤ 0.05 

Ahrar and Djavareshkian 
[98] 

Hybrid FD-LBM Square enclosure 2D, MHD, NC, unsteady 103≤ Ra≤ 108, 0≤ Ha≤ 100 

Gibanov et al. [99] FDM Partially porous square open 
enclosure 

2D, MHD, FC, unsteady, Fe3O4-H2O nanofluid Ra=105, Da=10− 5, Pr = 6.26, 0≤ Ha≤
100, 0≤ φ ≤ 180, 0≤ χ ≤ 0.05 

Ghasemi and Siavashi 
[100] 

LBM Porous square enclosure 2D, MHD, FC, Cu-H2O nanofluid, steady, 
incompressible 

103≤ Ra≤ 106, 0≤ Ha≤ 20, 0≤ χ ≤
0.12, 0≤ KT≤ 70 

Malik and Nayak [101] FVM, QUICK, 
SIMPLE 

Porous square enclosure 2D, MHD, unsteady, laminar, Newtonian, 
incompressible 

104≤ Gr≤ 106, 1≤ Ha≤ 50, 0.001≤
Da≤ 1, Pr=6.2, 0≤ χ ≤ 0.2 

Mohammadpourfard et al. 
[102] 

CVM, SIMPLEC Square enclosure 2D, steady, MHD, FC, two-phase mixture, Fe3O4- 
H2O nanofluid 

χ=0.04, dp = 10 nm, 105≤ Ra≤ 106 

Gibanov et al. [103] FDM Open square enclosure with 
porous blocks 

2D, MHD, FC, unsteady, Fe3O4-H2O nanofluid Pr=6.82, Ra=104, Da=10− 3, 10− 7, 
0≤ Ha≤ 100, 0≤ χ ≤ 0.05 

Mansour et al. [104] FDM, SUR Porous square enclosure 2D, MHD, FC, steady, Cu-Al2O3-H2O hybrid 
nanofluid, laminar, incompressible 

0≤ Ha≤ 100, 0.03≤ χ ≤ 0.1, 10− 6≤

Da≤ 10− 2, Ra=104 

Mehryan et al. [71] FEM Square enclosure 2D, MHD, FC, steady, Fe3O4-H2O nanofluid, 
Newtonian 

103≤ Ra≤ 106, 0≤ Ha≤ 50, 0≤ χ ≤
0.08 

Rashad et al. [105] FDM, SUR Inclined square porous 
enclosure 

2D, steady, MHD, NC, Cu-H2O nanofluid, laminar, 
incompressible 

Ra=105, 0≤ χ ≤ 0.05, 0≤ Ha≤ 25, 0≤ φ 
≤ 360 

Sivaraj and Sheremet [28] FVM, SIMPLE, 
QUICK, TDMA 

Square enclosure with plate 2D, MHD, NC, laminar, Newtonian, unsteady, 
Fe3O4-H2O nanofluid 

0≤ φ ≤ 90, 0≤ Ha≤ 100, 0≤ χ ≤ 0.04 

Zhang et al. [79] LBM Porous square enclosure 2D, MHD, steady, incompressible 0≤ φ ≤ 60, 105≤ Ra≤ 6 × 106, 10− 5≤

Da≤ 10− 1 

Ahrar et al. [106] FD-LBM, SIMPLE Square enclosure 2D, MHD, FC, unsteady, Al2O3-H2O nanofluid, 
laminar 

0≤ Ha≤ 90, 0≤ χ ≤ 0.04, 1≤ Le≤ 105, 
0≤ φ ≤ 90, 105≤ Ra≤ 106 

Al-Rashed [107] CVM, SIMPLE Square enclosure with blades 2D, MHD, FC, steady, Al2O3-H2O nanofluid, 
incompressible 

103≤ Ra≤ 106, -45≤ φ ≤ 45, 0≤ Ha≤
40, 0≤ χ ≤ 0.06 

Alnaqi et al. [108] FVM, SIMPLE Inclined square enclosure 
with fin 

2D, MHD, steady, laminar, Newtonian, 
incompressible, Al2O3-H2O nanofluid 

103≤ Ra≤ 106, 0≤ Ha≤ 40, 0≤ χ ≤
0.06, 0≤ Rd ≤ 3 

Alsabery et al. [109] FEM Square enclosure with 
trapezoidal body 

2D, MHD, Al2O3-H2O non-homogeneous 
nanofluid, steady, laminar, Newtonian 

103≤ Ra≤ 106,0≤ Ha≤ 50, 0≤ χ ≤ 0.04 

Arun and Satheesh [44] LBM Square enclosure with block 2D, MHD, FC, steady, incompressible 103≤ Ra≤ 105, 0≤ Ha≤ 50, 2≤ Le≤ 10, 
-2≤ N≤ 2, Pr = 0.054 

Goqo et al. [110] MSQM Porous square enclosure 2D,MHD, steady, FC, laminar, incompressible 0≤ Ra≤ 105, 0.1≤ Nb≤ 0.5, 0.1≤ Nt≤

0.5, 0.2≤ Le≤ 4, 0≤ Ha≤ 20 
Hajatzadeh Pordanjani 

et al. [111] 
FVM, SIMPLE Inclined square enclosure 2D, MHD, Al2O3-H2O nanofluid, laminar, 

Newtonian, steady, incompressible 
103≤ Ra≤ 106, 0≤ Ha≤ 60, 0≤ φ ≤ 90, 
0≤ χ ≤ 0.06 

Al Kalbani et al. [112] FEM Titled square enclosure 2D, unsteady, MHD, Cu-H2O nanofluid, FC, 
laminar 

0.001≤ χ ≤ 0.1, 103≤ Ra≤ 106, 
0≤ Ha≤ 60 

Li et al. [113] CV-FDM, SIMPLE Inclined square enclosure 
with conductive partition 

2D, MHD, NC, steady, Al2O3-H2O nanofluid, 
laminar, Newtonian, incompressible 

103≤ Ra≤ 105, 0≤ Ha≤ 40, 0≤ χ ≤
0.05, 0≤ Rd≤ 3, 0≤ φ ≤ 90 

Li et al. [114] CV-FDM, SIMPLE Inclined square enclosure 
with baffle 

2D, MHD, FC, steady, Al2O3-H2O nanofluid, 
laminar, Newtonian, incompressible 

103≤ Ra≤ 106, 0≤ Ha≤ 40, 0≤ φ ≤ 90, 
0≤ χ ≤ 0.06, 0≤ Rd≤ 3 

Rabbi et al. [115] ANN, FEM Square enclosure 2D, MHD, Cu-H2O nanofluid, steady 103≤ Ra≤ 107, 0≤ Ha≤ 100, 0≤ χ ≤
0.05 

Selimefendigil and Öztop 
[116] 

FEM Inclined square enclosure 
with conductive region 

2D, MHD, NC, laminar, Newtonian, steady 104≤ Ra≤ 106, 0≤ φ ≤ 180, 0≤ Ha≤
50, 0≤ χ ≤ 0.03 

Seyyedi et al. [117] CV-FEM Inclined square enclosure 2D, steady, MHD, NC, laminar Pr = 0.733, 0≤ Ha≤ 100, 104≤ Ra≤
105, 0≤ φ ≤ 60 

Tayebi and Chamkha [118] FVM, SIMPLE Square enclosure with hollow 
cylinder 

2D, steady, MHD, FC, laminar, Cu-Al2O3-H2O 
hybrid nanofluid, Newtonain, incompressible 

0≤ χ ≤ 0.09, Pr = 6.2, 0≤ Ha≤ 50, 
103≤ Ra≤ 106 

Khetib et al. [119] FVM, SIMPLE Square enclosure with fins 2D, MHD, NC, steady, Al2O3-H2O nanofluid 0≤ φ ≤ 90, 0≤ Ha≤ 40, Ra=105, 
χ=0.03 

Reddy and Sreedevi [120] FDM Square enclosure 2D, MHD, steady, laminar, FC, Ag-Cu-EG hybrid 
nanofluid, incompressible 

0.01≤ Rd, χ ≤ 0.1, 5.2≤ Pr≤ 8.2, 104≤

Ra≤ 105, 0.1≤ M≤ 1 
Tian et al. [121] CV-FDM, SIMPLE Oblique square enclosure 

with block 
2D, steady, laminar, Al2O3-H2O nanofluid, 
incompressible 

0≤ χ ≤ 0.06, 0≤ φ ≤ 90, 0≤ Ha≤ 90 

Ahmed et al. [39] FVM Porous square enclosure 2D, MHD, NC, steady, Cu-Al2O3-H2O hybrid 
nanofluid 

-2≤ q≤ 2, 0≤ Rd≤ 1, 0≤ K≤ 2, 0≤ Ha≤
100, 0≤ χ ≤ 0.05, 0≤ φ ≤ 180 

Reddy and Sreedevi [122] FDM Square enclosure 2D, MHD, FC, steady, Ag-SWCNT-H2O hybrid 
nanofluid, laminar, incompressible 

0.01≤ Rd, χ ≤ 0.1, 5.2≤ Pr≤ 8.2, 0.1≤
M≤ 0.7, 103≤ Ra≤ 104 

Reddy et al. [123] FDM, SUR Porous square enclosure 2D, MHD, NC, Cu-H2O nanofluid, laminar, 
Newtonian, steady, incompressible 

0≤ χ ≤ 0.1, 0≤ φ ≤ 360, 0≤ Ha≤ 50, 
10− 7≤ Da≤ 10− 2, 102≤ Ra≤ 106 

Reddy et al. [124] FDM Square enclosure 2D, steady, MHD, MWCNT-H2O nanofluid, 
laminar, incompressible 

0.01≤ Rd, χ ≤ 0.1, 103≤ Ra≤ 104, 5.2≤
Pr≤ 8.2, 0.1≤ M≤ 0.7 

Shah et al. [125] NN, ML, LBM Square enclosure with 
multiple fins 

2D, MHD, NC, steady, Al2O3-H2O nanofluid 0≤ φ ≤ 90, 102≤ Ra≤ 106, 0≤ χ ≤ 0.04 

(continued on next page) 
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Egen. The study revealed that increasing the heat transfer rate and 
aspect ratio resulted in a magnification of Egen. Furthermore, increasing 
Ha led to a 35% reduction in Egen. The maximum Egen occurred when 
the inclination was 0o, and an increase in nanoparticles led to an in
crease in Egen. 

Selimefendigil and Öztop [116] studied the impact of two crossed 
elliptic geometries within a square enclosure of varying inclinations. 
They discovered that an increase in Ha led to a reduction in total Egen. 
The angle of 135o had the least effect on Egen in the enclosure. Addi
tionally, Egen increased when the vertical elliptical radius was greater 
than the horizontal elliptical radius. The presence of nanoparticles had a 
minor impact on Egen, and there was hardly any difference in the effect 
between pure water and nanofluid. Seyyedi et al. [117] examined MHD 
natural convection occurring within an inclined square enclosure. It is 
found that, for each Ha, the maximum Egen was associated with the 
inclination angle, and that Egen decreased as Ha increased. Addition
ally, increasing the Ra value resulted in greater Egen as a result of the 
magnetic field’s influence. Tayebi and Chamkha [118] examined Egen 
within a square enclosure. Their findings indicated that an increase in 
buoyancy forces led to an increase in both heat transfer Egen and total 
Egen. However, an increase in Ha caused a reduction in heat transfer and 
Egen. Additionally, an increase in the amount of hybrid nanoparticles 
had a negligible effect on total Egen. Khetib et al. [119] investigated 
Egen within an inclined square enclosure. They attached two hot fins to 
the right wall, which were positioned at different inclination angles: 
straight, angular, and curved. Their findings revealed that the curved 
fins generated the highest amount of entropy compared to the other two 
types of fins, while the straight fins had the lowest Egen values. More
over, increasing the angle of the fins (in the case of angular fins) led to an 
increase in Egen, and Egen increased further as the curvature of the fins 
(in the case of curved fins) increased. Reddy and Sreedevi [120] studied 
the Egen phenomenon in a square enclosure. They observed that an 
increase in the magnetic field resulted in a reduction of Egen. 
Conversely, an increase in Rd led to an increase in the total Egen. 

Tian et al. [121] investigated Egen in a square enclosure. A square 
heater was situated at the enclosure’s center. They found that Egen rises 
with Ra and that the lowest Egen occurs at a low magnetic field. Addi
tionally, increasing the enclosure’s inclination results in a decrease in 
Egen. Furthermore, a 21% increase in Egen occurs when the magnetic 
field is increased. Ahmed et al. [39] examined Egen in a square enclo
sure filled with a hybrid nanofluid. They observed that the total Egen 
was improved by Rd. Shah et al. [125] sought to examine the behavior of 
Al2O3-H2O nanofluid within a square enclosure at varying inclinations. 
The right side of the enclosure was cool while the left side was hot, with 
two fins attached to the left boundary in straight and triangular shapes. 
Their findings revealed that the inclusion of radiation led to a decrease 
in Egen by 4.2% and 2.6% for rectangular and triangular fins, respec
tively. Additionally, the rectangular fin demonstrated the highest Egen 
across various inclination angles of the enclosure. An increase in χ by 4% 
resulted in a 5.4% increase in Egen for both fins. Akhter et al. [126] used 
numerical analysis to examine Egen inside a square enclosure. It is seen 
that an increase in Ra, Da, and χ led to an increase in Egen, while Ha led 
to a decrease in Egen. Furthermore, they found that at low Ra, Egen due 
to heat transfer was dominant, while at high Ra, fluid friction Egen was 
higher. Bilal et al. [127] investigated Egen within a square. The top wall 
of the enclosure was hot, while the other walls were cold. Their findings 

revealed that magnetic Egen was zero when Ha was zero but increased 
for Ha values less than 40 and decreased for Ha values greater than 40. 
Kumar et al. [128] studied the phenomenon of Egen within a square 
enclosure. The findings revealed that the Egen was predominantly 
concentrated in the regions adjacent to the vertical wall, specifically at 
the top right and bottom left corners. Interestingly, as the viscous 
dissipation increased, Egen was found to amplify. The study also 
observed that an elevated buoyancy ratio resulted in augmented up
thrust forces, subsequently leading to increased Egen. Furthermore, as 
the ratio of thermal diffusivity to molecular diffusivity increased, the 
overall entropy within the system decreased. 

Table 3 presents a collection of diverse research investigations 
concentrating on mixed convection within a square enclosure. Here are 
brief summaries of selected articles included in the table: 

Selimefendigil and Oztop [131] carried out a study on Egen in a 
square enclosure that included inlet and outlet ports, with each port 
being 0.25 of the length of the wall. A cold flow was introduced into the 
enclosure from the inlet port with a uniform velocity, while all bound
aries were considered to be hot. The findings revealed that total Egen 
increased for Ha between 0 and 50 but decreased beyond this range. 
They also noted that there was only a slight change in Egen with vari
ations in the angle of the magnetic field. Alsabery et al. [132] studied 

Table 2 (continued ) 

References Tools Domain Flow details Constants 

Akhter et al. [126] FEM, SIMPLER Square porous enclosure with 
obstacle 

2D, MHD, NC, Cu-Al2O3-H2O hybrid nanofluid, 
steady 

0≤ Ha≤ 100,104≤ Ra≤ 107, 0≤ χ ≤
0.05,10− 5≤ Da≤ 10− 2 

Bilal et al. [127] FEM Inclined square enclosure 2D, MHD, Cu-H2O nanofluid, natural convection, 
unsteady 

0≤ Ha≤ 100, 0≤ φ ≤ 90, 103≤ Ra≤
106, 0≤ χ ≤ 0.8 

Kumar et al. [128] FEM Porous square enclosure 2D, MHD, FC, laminar, incompressible, steady 10≤ Ra≤ 500,0.5≤ Le≤ 10, 0.1≤ Sr≤
1, 0≤ Ge≤ 10, 0≤ Du≤ 1  

Table 3 
Research work on mixed convection in a square enclosure  

References Tools Domain Flow details Constants 

Alsabery et al. 
[129] 

FEM, 
ALE 

Square 
enclosure 
with FSI & 
cylinder 

2D, unsteady, MC, 
laminar, 
Newtonian, 
incompressible 

104≤ Ra≤
107, -1≤ ω ≤
1, Pr =
4.623, 1012≤

E≤ 1015 

Selimefendigil 
and Oztop 
[131] 

FEM Vented 
square 
enclosure 

2D, steady, MHD, 
MC, CuO-H2O 
nanofluid, 
Newtonian, 
incompressible 

100≤ Re≤
500, 0≤ Ha≤
50, 0≤ χ ≤
0.04, Pr =
6.9, Ra=105, 
φ=45 

Alsabery et al. 
[132] 

FEM Square 
enclosure 
with 
cylinder 

2D, steady, MC, 
laminar, two- 
phase, Newtonian, 
Al2O3-H2O 
nanofluid 

104≤ Ra≤
107, 0≤ ω ≤
600, 0≤ χ ≤
0.04, Pr =
4.623, Le =
3.5 × 105, Sc 
= 3.55 × 104 

Hamzah et al. 
[57] 

FVM, 
SIMPLE 

Vented 
square 
enclosure 
with 
multiple 
cylinders 

2D, steady, MC, 
Newtonian, 
incompressible 

0≤ ω ≤ 15, 
100≤ Re≤
500, 103≤

Gr≤ 106 

Kashyap et al. 
[133] 

MRT- 
LBM 

Lid-driven 
square 
enclosure 
with block 

2D, steady, 
laminar, 
Newtonian, 
incompressible, NC 
& MC 

104≤ Gr≤
106, Pr =
0.025, 5.83, 
151, 0.01≤
Ri≤ 100 

Çiçek and 
Baytaş [134] 

FVM, 
SIMPLE 

Vented 
square 
enclosure 

2D, laminar, MC, 
SiO2-H2O 
nanofluid, 
Newtonian, 
incompressible, 
unsteady 

0.1≤ Ri≤ 20, 
50≤ Re≤
500, Pr =
0.71, 0.01≤
dp (μ)≤ 5  
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Egen in a square enclosure. They discovered that Egen increased with 
the rotational speed of the cylinder for all Ra values, with the highest 
value observed at Ra=107. However, the increase in Egen was minimal 
for low and medium Ra values. Additionally, a significant increase in 
global Egen occurred after Ra>105, while the change was negligible 
before Ra < 105. Hamzah et al. [57] used numerical simulation to 
investigate the thermal and hydraulic behavior, as well as Egen, 
resulting from the rotation of two reversely rotating cylinders around a 
heated cylinder inside a square enclosure. Their findings indicated that 
the average Egen increased with Gr for all rotational speeds of the cyl
inders. Additionally, the local Egen reached its highest value when the 
rotating cylinders were positioned before the heated cylinder. Kashyap 
et al. [133] studied Egen within a square enclosure containing fluids 
with different Pr. They placed a square hot block at the enclosure’s 
center and treated the left boundary as insulated while considering the 
other three boundaries as cold. The study revealed that for the pre
scribed Gr, the increase in Pr augmented Egen due to viscous effects was 
more significant in natural convection than mixed convection. Çiçek and 
Baytaş [134] investigated the elimination of solid particles ranging from 
5 μm to 0.01 μm, as well as Egen within a vented square enclosure under 
mixed convection. The enclosure featured an inlet port on the bottom 
left boundary for incoming fluid at a temperature of 273K and an exit 
port at the top of the right boundary. The findings indicated that the 
lowest Egen was observed at Ri = 5 for a given Re = 50. Additionally, an 
increase in Re led to greater local and overall Egen in the presence of 
solid particles, with larger particle diameters resulting in even higher 
Egen. 

Table 4 showcases a compilation of various research studies that 
examine the flow of non-Newtonian fluids within a square enclosure. 
Below are concise summaries of the selected articles featured in the 
table: 

In a study by Kefayati and Tang [137], a square enclosure containing 
two inner cold circular objects was examined for Egen. It is found that an 
increase in Ra resulted in higher Egen due to fluid friction, and an in
crease in buoyancy ratio led to enhanced Egen. Additionally, an increase 
in Ha led to a higher total Egen. In a separate study by Kefayati and Tang 
[138], Egen within a square enclosure containing an inner cold cylinder 
at varying positions was investigated. Results indicated that an increase 
in Ra led to higher Egen due to friction, while an increase in buoyancy 
ratio enhanced Egen due to heat transfer. An increase in Le resulted in 
higher mass transfer and Egen but decreased Egen due to fluid friction 
and heat transfer. The study also found that the minimum Egen occurred 
when the cold cylinder was close to the bottom wall, while the highest 
total Egen occurred when the cylinder was at the center of the enclosure 
and had a larger size. Vahabzadeh Bozorg and Siavashi [139] conducted 
a study on Egen inside a square enclosure. Two cylinders were placed in 
the middle of the enclosure, with one at a hot temperature of 315K and 
the other at a cold temperature of 305K. Four different rotation cases 
were considered: both cylinders rotating anticlockwise, both rotating 
clockwise, cold rotating anticlockwise and hot rotating clockwise, and 
cold rotating clockwise and hot rotating anticlockwise. The study found 
that thermal irreversibility was the primary cause of Egen. The 
maximum Egen rates were caused by shear-thinning nanofluids, and 
their values were higher for Ri equal to 0.01 or 100. Iftikhar et al. [140] 
investigated Egen in a square enclosure. They found that the lowest Egen 
occurred when the bi-viscosity parameter was β = 0.002. They also 
observed that an increase in Ha resulted in a higher level of Egen due to 
flow friction. In addition, the maximum and minimum Egen occurred 
when Ri was equal to 1 and 103, respectively. 

Table 5 presents a collection of diverse research investigations 
focusing on square cavities with one wavy side wall. Here are brief 
summaries of the selected articles included in the table: 

Parveen and Mahapatra [9] conducted a study on Egen in a square 
enclosure with a wavy top wall. It is seen that the overall Egen increased 
as Ra increased but decreased with an increase in Ha, buoyancy ratio, 
and undulation number. Egen in a wavy-walled inclined square 

Table 4 
Research work on square enclosure with non-Newtonian fluid  

References Tools Domain Flow details Constants 

Kefayati [66] FD-LBM Square 
enclosure 

2D, laminar, NC, 
steady, non- 
Newtonian, 
incompressible 

104≤ Ra≤
105, 0.6≤
n≤ 1.4, 2.5≤
Le≤ 5, 
0≤ Sr, Du≤
1, -1≤ N≤ 1, 
Pr = 5 

Kefayati [67] FD-LBM Square 
enclosure 

2D, unsteady, Cu- 
H2O nanofluid, 
NC, non- 
Newtonian 

104≤ Ra≤
105, 0.6≤
n≤ 1, 
0≤ Ha≤ 90, 
0≤ χ ≤ 0.06 

Kefayati [68] FD-LBM Square 
enclosure 

2D, laminar, NC, 
unsteady, non- 
Newtonian, 
incompressible, 
MHD 

104≤ Ra≤
105, 0.6≤
n≤ 1, 
0≤ Ha≤ 90, 
0≤ χ ≤ 0.06 

Kefayati [62] FD-LBM Porous 
square 
enclosure 

2D, laminar, NC, 
Cu-H2O nanofluid, 
unsteady, non- 
Newtonian 

104≤ Ra≤
105, 10− 3≤

Da≤ 10− 1, 
0.6≤ n≤ 1, 
0≤ χ ≤ 0.04 

Selimefendigil 
and Öztop 
[135] 

FEM Square 
enclosure 
with 
cylinder 

2D, unsteady, 
MHD MC, non- 
Newtonian 

0.01≤ Ri≤
100, 
0≤ Ha≤ 50, 
-50≤ ω ≤ 50, 
0≤ φ ≤ 90, 
0.6≤ n≤ 1.4 

Kefayati [63] FD-LBM Porous 
square 
enclosure 

2D, unsteady, NC, 
laminar, non- 
Newtonian, 
incompressible 

104≤ Ra≤
105, 10− 4 ≤

Da≤ 10− 2, 
0.1≤ Pr≤
10, 0.1≤ N≤

4, 0.4≤ n≤
1, 1≤ Le≤
10, 0.1≤
Nt≤ 1, 0.1≤
Nb≤ 5, Pr =
0.1 

Kefayati and 
Tang [65] 

FD-LBM Square 
enclosure 

2D, MHD, NC, 
unsteady, non- 
Newtonian, 
laminar, 
incompressible 

104≤ Ra≤
105, 0≤ Ha≤
30, 0.1≤ N≤

4, 0.4≤ n≤
1, 1≤ Le≤
10, 0.1≤
Nt≤ 1, 0.1≤
Nb≤ 5, Pr =
1 

Wang et al. 
[136] 

LRBF Square 
enclosure 
with 
cylinder 

2D, MHD, MC, 
unsteady, non- 
Newtonian 

Pr = 0.71, 
1≤ Re≤ 50, 
0.1≤ Ri≤ 20 

Kefayati and 
Tang [137] 

LBM Square 
enclosure 
with 
multiple 
cylinders 

2D, MHD, NC, 
Carreau fluid, non- 
Newtonian, 
incompressible, 
laminar, unsteady 

104≤ Ra≤
105, -1≤ N≤

1, 0≤ Ha≤
90, 0.2≤ n≤
1.8 

Kefayati and 
Tang [138] 

FD-LBM Square 
enclosure 
with 
cylinder 

2D, laminar, 
unsteady, FC, 
Carreau fluid, non- 
Newtonian, 
incompressible 

104≤ Ra≤
105, 1≤ Ca≤
20, 2.5≤
Le≤ 10, 
0≤ Du, Sr≤
5, 1≤ Ec≤
10, -1≤ N≤

1, 0.2≤ n≤
1.8 

Vahabzadeh 
Bozorg and 
Siavashi 
[139] 

FVM, 
SIMPLE, 
QUICK 

Square 
enclosure 
with 
cylinders 

2D, steady, MC, 
Cu-H2O nanofluid, 
Two-phase 
mixture, laminar, 
non-Newtonian, 
incompressible 

0.01≤ Ri≤
100, 104≤

Ra≤ 106, 
0≤ χ ≤ 0.04, 
0.5≤ n≤ 1.5 

Iftikhar et al. 
[140] 

FEM Square 
enclosure 

2D, steady, MHD 
MC, non- 

Pr = 6.2, 10, 
0.1≤ Ri≤

(continued on next page) 
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enclosure and exposed to a uniform magnetic field was investigated by 
Shahriari et al. [75]. The study concluded that as Ha decreased and Ra 
increased, there was an increase in Egen. Additionally, in the presence of 
a magnetic field at Ra=105, the increase in χ resulted in more Egen. 
Alsabery et al. [144] investigated Egen in a square enclosure, divided 
into three parts. The first part was located at the top, while the second 
part consisted of a porous medium. The third part was the bottom wall, 
which had a wavy surface and was kept at a high temperature, while the 
vertical walls were cold and the top wall was adiabatic. They observed a 
significant decrease in Egen at a porosity level of 0.2. Furthermore, as Da 
increased from 10− 3 to 10− 2, Egen increased by an order of magnitude, 
and the presence of nanoparticles in the system resulted in a reduction in 
total Egen. Geridonmez and Oztop [145] studied the behavior of Egen 
within a square enclosure that had a wavy wall. It is seen that increasing 
Ha from 10 to 100 resulted in a 71.58% reduction in total Egen. Addi
tionally, an increase in the ratio of solid thermal conductivity to fluid 
conductivity led to an increase in Egen. The total Egen was found to 
increase as the angle of the magnetic field increased from 0o to 45o, but 
then decreased for angles between 45o and 90o. 

Table 6 displays a compilation of various research studies that 
investigate cavities with wavy side walls. Below are concise summaries 
of the selected articles featured in the table: 

Alsabery et al. [40] conducted a study on hydraulic and thermal 
behavior as well as Egen inside a square enclosure. Two fins, each with a 
length of 0.25 of the enclosure’s side length, were attached to the top 
wall. They concluded that an increase in Ra and heater height led to an 
enhancement in global Egen, but this effect decreased as χ decreased. 
Alsabery et al. [42] examined the impact of mixed convection on Egen in 
a wavy square enclosure. The enclosure features a cold left wall and a 
partially heated center on the right wall, as well as a conductive rotating 
cylinder at the center. The study findings indicate that when Ra is low, 
the rotational direction of the cylinder does not affect Egen, which is 
solely driven by heat transfer. In cases where conduction dominates, 
Egen near the wavy walls is caused by heat transfer, whereas in cases 
where fluid friction prevails, entropy is generated due to fluid friction. 
Chattopadhyay et al. [148] studied Egen inside a double lid-driven wavy 
square enclosure. They found that Egen decreased linearly with 
increasing Ri and that the highest total Egen occurred when the walls 
were moving in the opposite directions. Afsana et al. [149] investigated 
Egen inside a square, wavy enclosure. According to their investigation, 
they discovered that as the value of χ increased, the effect of fluid 

friction and heat transfer on Egen decreased in the absence of a magnetic 
field. Additionally, an increase in the power-law index resulted in a 54% 
reduction in total Egen with the magnetic field and an 80% reduction 
without the magnetic field. Boulahia [49] examined the behavior of 
Egen in a square enclosure. The enclosure had corrugated and thermally 
insulated upper and lower bottom surfaces, while the vertical walls were 
cold, and a hot square object was located at the center of the enclosure. 
The study found that increasing χ and decreasing Ha improved Egen due 
to heat transfer. Meanwhile, Egen due to fluid friction decreased with χ 
and Ha but increased with the number of undulations. Abderrahmane 
et al. [150] investigated Egen in a square enclosure with wavy vertical 
walls. It is found that Ha, degree of undulation, power-law index, and 
maximum and minimum values of the rotational angle of the elliptical 
cylinder all contributed to an increase in Egen. 

Table 7 presents a variety of research studies focusing on cavities 
with a Z-shaped configuration. The following are brief summaries of the 
selected articles included in the table: 

Hussain et al. [151] studied the double diffusive behavior of a MHD 
laminar flow and Egen in a Z-staggered enclosure. It is found that as Le 
increased from 0.1 to 10, Egen decreased, and also Egen decreased with 
an increase in Ha. Rasool et al. [152] investigated Egen within a 
Cleveland Z-staggered enclosure under the influence of a magnetic field. 
Their findings revealed that as Re increased, Be decreased, indicating a 
rise in Egen due to friction. 

Table 8 showcases a compilation of diverse research investigations 
centered around cavities with a triangular configuration. Some of the 
selected articles are described below: 

Liu et al. [159] investigated Egen in an inclined enclosure, which was 
divided into two triangular cavities. The study found that increasing Ra 
from 103 to 105 resulted in a 13% increase in Egen. Furthermore, when 
Ha was changed from 0 to 40, there was an 8% reduction in Egen. 
Increasing the inclination angle resulted in a greater reduction in Egen. 
Selimefendigil et al. [160] studied the impact of nanofluid on Egen in a 
triangular enclosure. They placed a rotating cylinder in the enclosure’s 
center and had a flexible inclined cold wall, a partially heated left wall, 
and an insulated base wall. Their findings indicated that the total Egen 
rose as the elastic modulus, rotational speed, and χ increased. Afrand 
et al. [161] examined Egen in an inclined triangular enclosure. Their 
findings revealed that the total Egen increased by 2.32% as Ra increased. 
Additionally, the increase in Egen decreased with an increase in the 
enclosure angle, with the highest value observed at an angle of 60o. Li 
et al. [162] conducted research on Egen within a slanted triangular 
container. In case (a), the top wall, which formed the hypotenuse, was 
chilly, while the left wall was partially heated. In case (b), the right wall 
was partially heated, while the left wall remained insulated. Their 
findings indicated that as Ra increased, thermal Egen increased by 80% 
in case (a) and 88% in case (b) for the Newtonian fluid, while for the 
non-Newtonian fluid, the increase was 210% in case (a) and 175% in 
case (b). 

Table 4 (continued ) 

References Tools Domain Flow details Constants 

Newtonian, 
laminar, bi- 
viscosity fluid 

103, 0≤ Ha≤
102, 
Gr=105, 
10≤ Re≤ 60  

Table 5 
Research work on Square enclosure with one wavy side  

References Tools Domain Flow details Constants 

Shirvan et al. [141] FVM, SIMPLE, 
RSM 

Wavy square enclosure 2D, steady, NC, Cu-H2O nanofluid, Newtonian, 
laminar, incompressible 

103≤ Ra≤ 105, 0≤ χ ≤ 4% 

Chamkha and 
Selimefendigil [142] 

FEM Porous square enclosure with 
triangular wavy side 

2D, steady, MHD, FC, Cu-H2O nanofluid 104≤ Gr≤ 106, 0≤ Ha≤ 50, 10− 4≤ Da≤ 10− 1, 
0≤ χ ≤ 5% 

Pal et al. [143] FVM, SIMPLE, 
QUICK 

Lid-driven square enclosure 
with wavy wall 

2D, unsteady, MC, Cu-H2O nanofluid, Newtonian, 
incompressible 

0≤ Ri≤ 5, 103≤ Gr≤ 5 × 104, 0≤ χ ≤ 9%, 
100≤ Re≤ 500 

Parveen and Mahapatra 
[9] 

FDM, Bi- 
CGStab, TDMA 

Wavy square enclosure 2D, MHD, NC, steady, Al2O3-H2O nanofluid, 
laminar, incompressible 

103≤ Ra≤ 105, 0≤ Ha≤ 60, 0≤ χ ≤ 0.2, Pr =
6.2, Le = 2, -2≤ N≤ 2 

Shahriari et al. [75] LBM Inclined wavy square 
enclosure 

2D, MHD, CuO-H2O nanofluid, NC Pr = 6.2, 103≤ Ra≤ 105, 0≤ χ ≤ 0.04, 0≤ Ha≤
90, 0≤ φ ≤ 60 

Alsabery et al. [144] FEM Wavy square enclosure with 
partially porous 

2D, laminar, steady, incompressible, NC, Al2O3- 
H2O nanofluid, Newtonian 

0≤ χ ≤ 0.04, 10− 6≤ Da≤ 10− 2, Ra = 106, Pr =
4.623, A = 1.0 

Geridonmez and Oztop 
[145] 

RBF-FDM Square enclosure with wavy 
conducting solid block 

2D, MHD, steady, FC, TiO2-Cu-H2O hybrid 
nanofluid, laminar, Newtonian, incompressible 

Pr = 6.2, 10≤ Ha≤ 100, 103≤ Ra≤ 105, 0.01≤
A≤ 0.1, 0≤ φ ≤ 90, 0≤ χ ≤ 2%, 1≤ KT≤ 10  
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Table 9 displays a collection of research studies examining cavities 
with a trapezoidal shape. The following are brief summaries of the 
selected articles included in the table: 

Mahapatra et al. [169] studied Egen within a trapezoidal enclosure. 
In case 1, the right boundary was linearly heated, while in case 2, it was 

kept cold. The study also explored different aspect ratios at angles of 45◦, 
60◦, and 90◦. They found that in case 1, the maximum values of Egen due 
to heat transfer and fluid friction decreased as Ha increased, assuming 
other parameters remained constant. Additionally, the highest value of 
Egen due to heat transfer occurred near the top of both side boundaries 
in case 1, while the maximum values were observed at the right bottom 

Table 6 
Research work on wavy sides enclosure  

References Tools Domain Flow details Constants 

Hussain [58] CVM Sinusoidal 
porous 
enclosure 

2D, MHD, NC, 
laminar, 
incompressible, 
steady 

Pr =
0.024, 
0≤ φ ≤ 90, 
103≤ Ra≤
106, 
0≤ Ha≤
100, 
10− 6≤

Da≤ 10− 2, 
1≤ Le≤
10, 0≤ N≤

10 
Alsabery et al. 

[146] 
FEM Wavy porous 

enclosure 
with cylinder 

2D, steady 105≤ Ra≤
106, 
-1000≤ ω 
≤ 1000, 
10− 6≤

Da≤ 10− 2 

Alsabery et al. 
[41] 

FEM Wavy 
enclosure 
with cylinder 

2D, laminar, MC, 
steady, Al2O3- 
H2O nanofluid, 
Newtonian 

103≤ Ra≤
106, 0≤ χ 
≤ 0.04, 
0≤ ω ≤
750 

Cho [147] FVM, 
SIMPLE, 
TDMA 

Lid-driven 
wavy 
enclosure 

2D,steady, MC, 
Cu-H2O 
nanofluid, 
laminar, 
Newtonian, 
incompressible 

10− 2≤ Ri≤
102, 0≤ χ 
≤ 0.04, Pr 
= 6.2, 1≤
Re≤ 200 

Alsabery et al. 
[40] 

FEM Wavy 
enclosure 
with blocks 

2D, NC, laminar, 
Cu-H2O, Al2O3- 
H2O nanofluids, 
steady, Cu-Al2O3- 
H2O hybrid 
nanofluid, 
Newtonian 

103≤ Ra≤
106, 0≤ χ 
≤ 0.04, Pr 
= 4.623 

Alsabery et al. 
[42] 

FEM Wavy 
enclosure 
with cylinder 

2D, laminar, MC, 
steady, 
Newtonian 

103≤ Ra≤
105, 0≤ χ 
≤ 0.04, 
-1000≤ ω 
≤ 1000, Pr 
= 4.623 

Chattopadhyay 
et al. [148] 

FDM, 
hybrid 
BiCGStab 

Double lid- 
driven wavy 
enclosure 

2D, steady, 
laminar, MC, 
incompressible 

0.01≤ Ri≤
100, 
Gr=104, 
0≤ φ ≤ 90, 
Pr = 0.71 

Afsana et al. 
[149] 

FVM, CDS, 
SIMPLER, 
Bi- 
CGSTAB 

Rectangular 
wavy 
enclosure 

2D, MHD, NC, 
Fe3O4-H2O 
nanofluid, non- 
Newtonian 

103≤ Ra≤
105, 
0≤ Ha≤
20, 0.6≤
n≤ 1.4, 
0≤ χ ≤
0.01, Pr =
6.8377 

Boulahia [49] FVM, 
SIMPLE, 
TDMA 

Wavy 
enclosure 
with hot 
object 

2D, unsteady, 
MHD, free 
convection, Cu- 
H2O nanofluid, 
Newtonian 

103≤ Ra≤
106, 
0≤ Ha≤
45, 0≤ χ ≤
0.05 

Abderrahmane 
et al. [150] 

FEM Wavy porous 
enclosure 
with 
elliptical 
obstacle 

2D, non- 
Newtonian, FC, 
steady, MHD, 
Al2O3-CMC 
nanofluid, 
laminar, 
incompressible 

0.8≤ n≤
1.4, 103≤

Ra≤ 106, 
10− 5≤

Da≤ 10− 2, 
0≤ Ha≤
100, 0≤ φ 
≤ 90  

Table 7 
Research work on Z-shaped enclosure  

References Tools Domain Flow details Constants 

Hussain 
et al. 
[151] 

FEM Z-staggered 
enclosure 

2D, MHD, NC Casson 
fluid, steady, laminar, 
incompressible 

104≤ Ra≤ 107, 
0≤ φ ≤ 90, 0.1≤
Le≤ 10, Pr=6.8, 
Ha = 25 

Rasool et al. 
[152] 

FEM Z-staggered 
enclosure 

2D, MWCNT-H2O 
nanofluid, laminar, 
steady, 
incompressible 

0≤ Ha≤ 30, 
10− 5≤ Da≤
10− 2, 1≤ Re≤
1000  

Table 8 
Research work on triangular enclosure  

References Tools Domain Flow details Constants 

Bhardwaj et al. 
[45] 

FDM Porous 
right-angled 
triangular 
enclosure 

2D,unsteady, NC, 
laminar, 
incompressible 

103≤ Ra≤
106, 10− 4≤

Da≤ 10− 2 

Rathnam et al. 
[153] 

FEM Porous 
triangular 
cavities 

2D, steady, NC Pr=0.015, 
7.2, 10− 5≤

Da≤ 10− 2, 
Ra=106 

Selimefendigil 
et al. [154] 

FEM Lid-driven 
triangular 
enclosure 

2D, steady, MHD 
MC, CuO-H2O 
nanofluid 

0≤ Ri≤ 100, 
0≤ Ha≤ 50, 
0≤ φ ≤ 90, 
0≤ χ ≤ 0.05 

Bondareva 
et al. [155] 

FDM Open 
triangular 
enclosure 

2D, steady, 
laminar, 
Newtonian, NC, 
Cu-H2O nanofluid 

104≤ Ra≤
106, Pr = 7, 
0≤ χ ≤ 0.05 

Roy et al. [156] FEM Lid-driven 
triangular 
cavities 

2D, steady, MC, 
laminar, 
Newtonian 

103≤ Gr≤
105, 1≤ Re≤
100, Pr =
0.026, 7.2 

Roy et al. [157] FEM Lid-driven 
porous 
triangular 
cavities 

2D, steady, MC, 
laminar 

Gr= 105, 
10≤ Re≤
100, Pr =
0.026, 7.2, 
10− 4≤ Da≤
10− 2 

Chamkha et al. 
[158] 

FEM Lid-driven 
triangular 
enclosure 

2D, MHD, MC, 
steady, Al2O3-H2O 
nanofluid 

0.01≤ Ri≤
100,0≤ Ha≤
40, Pr=6.9, 
0≤ χ ≤ 0.03 

Liu et al. [159] FV-FEM Triangular 
enclosures 

2D, steady, MHD 
NC, Al2O3-H2O 
nanofluid, laminar, 
Newtonian, 
incompressible 

103≤ Ra≤
105, 0≤ Ha≤
40, 0≤ φ ≤
90, 0≤ χ ≤
0.06 

Selimefendigil 
et al. [160] 

FEM, 
ALE 

Triangular 
enclosure 
with 
cylinder 

2D, steady, MC, 
Newtonian, 
laminar 

1≤ Ri≤ 100, 
104≤ Ra≤
106, -3000≤
ω ≤ 3000, 
0≤ χ ≤ 0.05 

Afrand et al. 
[161] 

FDM, 
SIMPLE 

Inclined 
triangular 
enclosure 

2D, FC, MHD, 
Al2O3-H2O 
nanofluid, laminar, 
steady, Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ Ha≤
40, 0≤ φ ≤
90, 0≤ Rd≤
2, 0≤ χ ≤
0.03 

Li et al. [162] FD- 
LBM 

Inclined 
triangualr 
enclosure 

2D, MHD, laminar, 
incompressible, 
non- Newtonian, 
steady 

0.6≤ n≤
1.4,103≤

Ra≤ 105, 
0≤ Ha≤ 60, 
0≤ φ ≤ 90  
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corners. Shuvo et al. [170] studied Egen within two tilted isosceles 
trapezoidal cavities with lid-driven motion. The angle of inclination for 
the hot bottom boundary was set at 0◦, 30◦, and 45◦. They observed that 
both cases exhibited similar behavior in terms of Egen, where the 
contribution from heat transfer was more dominant than that from fluid 
friction. Zidan et al. [171] employed numerical simulation to investigate 
the entropy convection occurring within a trapezoidal-shaped enclo
sure. The enclosure was subjected to cold top and bottom walls and 
adiabatic side walls. Additionally, three hot baffles of varying sizes were 
affixed at the middle positions of both side walls. The top baffle was the 
largest, with the size gradually decreasing to the third baffle. Three 
different scenarios were analyzed: case A, where all baffles were present; 
case B, where the top baffles were removed; and case C, where the 
middle baffles were removed. The research findings revealed that the 
total Egen increased with higher Da and decreased with Ha. However, 
for higher Ra values, the situation was reversed in case A. Aljaloud [172] 
conducted a study that focused on examining MHD mixed convection 
and Egen within a trapezoidal enclosure. To investigate the impact of 
temperature variation, a rectangular object with an aspect ratio of 0.25 
was introduced into the enclosure. The findings of the study indicated 
that a decrease in Ri resulted in an increase in Egen. Specifically, a 
reduction of 14% in Egen was observed when the rectangular block’s 
temperature transitioned from hot to cold. 

Table 10 presents a compilation of research studies investigating 
square cavities with one or more moving walls. Some of the selected 
articles are described below: 

Taghizadeh and Asaditaheri [78] delved into the exploration of 
mixed convection and Egen within an inclined square enclosure. A 
porous circular object with a diameter of 0.2 times the length of the wall 
was present, with a porosity of 0.8. The findings revealed several 
noteworthy observations. Firstly, for low Ri (Ri = 0.01), the primary 
contributor to the total Egen was fluid friction induced by the movement 
of the top wall. In the case of MC with Ri = 1, heat transfer emerged as 
the main source of Egen. Furthermore, the study demonstrated that 
reducing the permeability of the porous cylinder resulted in enhanced 
Egen for Ri = 0.01, whereas the angle of enclosure inclination had no 
effect. However, for Ri = 5 and 10, the angle of enclosure inclination 
exhibited a considerable impact on Egen compared to the effect of Da. 
Additionally, both the angle of inclination and permeability were found 
to have a significant influence on Egen for Ri = 0.01. Barnoon et al. 
[179] studied the effect of Egen in an inclined square enclosure. Inside 
the enclosure, two cylinders with identical radii were placed equidistant 
from the walls. One of the cylinders rotated at a constant speed towards 
the right, while the other walls remained stationary. They observed that 
an increase in Ha led to a decrease in Egen at a specific Ri. Furthermore, 
when Ha was held constant, a decrease in Ri resulted in a reduction in 
Egen. It was also noted that the contribution of viscous Egen increased 
with higher Ri compared to that of heat transfer. Kashyap and Dass 
[180] examined Egen inside a square enclosure under different bound
ary conditions. Three cases were investigated, each involving specific 
movements and heating/cooling arrangements of the boundaries. The 
findings revealed that heat transfer played a significant role in Egen. 
Additionally, in Case 1, the left boundary was heated and moved up
ward, while the right boundary was cooled and moved downward. The 
remaining boundaries were stationary and insulated. Case 1 resulted in 
the highest Egen, and increasing χ led to an increase in Egen. Alshare 
et al. [181] examined the phenomenon of Egen in a square lid-driven 
enclosure. The findings of their research indicated that as Ri 
increased, the total Egen also increased. Interestingly, the highest Egen 
was observed within the range of Ri = 50 to 100. At higher Ri values, the 
dominant contributor to Egen was friction. Additionally, an increase in 
Ha led to an augmentation of Egen due to the magnetic field, but a 
reduction in Egen was caused by heat transfer. 

Table 11 showcases various research studies focusing on rectangular 
cavities. Some of the selected articles are described below: 

El-Maghlany and Minea [184] examined the Egen of various ionic 

Table 9 
Research work on trapezoidal enclosure  

References Tools Domain Flow details Constants 

Ramakrishna 
et al. [72] 

FEM Porous 
trapezoidal 
enclosure 

2D, steady, NC, 
Newtonian, 
laminar, 
incompressible 

10− 5≤ Da≤
10− 3, 
0.015≤ Pr≤
103, 
Ra=106, 
0≤ φ ≤ 90 

Aghaei et al. 
[163] 

FVM, 
SIMPLER 

Trapezoidal 
enclosure 

2D, steady, MHD, 
MC, Cu-H2O 
nanofluid 

15≤ φ ≤ 60, 
Gr=104, 
30≤ Re≤
103, 25≤
Ha≤ 100, 
0≤ χ ≤ 0.04 

Selimefendigil 
et al. [164] 

FEM Trapezoidal 
cavities 

2D, unsteady, 
NC, laminar, 
CuO-H2O, Al2O3- 
H2O nanofluids 

103≤ Ra≤
106, 0≤ Ha≤
50, 0≤ χ ≤
0.04 

Astanina et al. 
[165] 

FDM Trapezoidal 
porous 
enclosure 

2D, MHD, NC, 
unsteady, Fe3O4- 
H2O nanofluid 

Pr=6.82, 
Ra=105, 
Da=10− 3, 
0≤ Ha≤
100, 0≤ φ ≤
180, 0≤ χ ≤
0.05 

Ishak et al. 
[60] 

FEM Lid-driven 
trapezoidal 
enclosure 
with cylinder 

2D, steady, MC, 
Al2O3-H2O 
nanofluid, 
incompressible 

0.01≤ Ri≤
10,5≤ Re≤
500, 0≤ χ ≤
0.04 

Mebarek- 
Oudina et al. 
[166] 

FEM Trapezoidal 
enclosure 
with cylinder 

2D, steady, 
laminar, Cu- 
Al2O3-H2O 
hybrid nanofluid, 
Newtonian 

0≤ Ha≤
100, -4000≤
ω ≤ 4000, 
0≤ φ ≤ 90, 
103≤ Ra≤
105, 0≤ χ ≤
0.08 

Mondal and 
Mahapatra 
[167] 

FDM, 
BiCGStab 

Trapezoidal 
enclosure 

2D, MHD, MC, 
steady, Al2O3- 
H2O nanofluid, 
laminar 

0.5≤ A≤ 2, 
0.01≤ Ri≤
100, 102≤

Ra≤ 103, 
45≤ φ ≤ 90, 
20≤ Ha≤
40, 0≤ χ ≤
0.05, 1≤
Le≤ 2 

Mondal et al. 
[168] 

FDM Trapezoidal 
enclosure 

2D, steady, MHD, 
MC, laminar, 
Al2O3-H2O 
nanofluid 

0.2≤ A≤
0.4, Pr=6.2, 
Re=100, 
20≤ Ha≤
60, 0≤ χ ≤
0.1 

Mahapatra 
et al. [169] 

FDM, 
BiCGStab 

Trapezoidal 
enclosure 

2D, steady, MHD, 
NC, laminar, 
incompressible 

0.5≤ A≤
1.5, Pr =
0.015, 0.7, 
103≤ Ra≤
105, 20≤
Ha≤ 40, 
45≤ φ ≤ 90 

Shuvo et al. 
[170] 

FEM Lid-driven 
trapezoidal 
enclosure 

2D, steady, MC, 
laminar, 
incompressible, 
Al2O3-H2O 
nanofluid 

0≤ φ ≤ 45, 
0≤ Re≤ 103, 
10− 2≤ Gr≤
106, 0.1≤
Ri≤ 10, 0≤ χ 
≤ 0.01 

Zidan et al. 
[171] 

FEM Porous 
trapezoidal 
enclosure 
with baffles 

2D, MHD, NC, 
Al2O3-H2O 
nanofluid 

104≤ Ra≤
106, 0≤ Ha≤
40, 10− 3≤

Da≤ 10− 1, 
0≤ χ ≤ 0.02 

Aljaloud et al. 
[172] 

LBM Trapezoidal 
enclosure 
with obstacle 

2D, MHD, MC, 
steady, Ag-MgO- 
H2O hybrid 
nanofluid, 
laminar 

0≤ Ha≤ 60, 
0.25≤ Ri≤
4, -5≤ Q≤ 5, 
0≤ χ ≤ 0.04  
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liquids within a rectangular enclosure. The outcomes of their research 
revealed that the inclusion of nanoparticles led to an increase in Egen. 
Hu and Mei [185] studied the influence of Sr and Du effects on ther
mosolutal behavior and Egen within an inclined rectangular enclosure. 
They observed that the buoyancy ratio and Da played a significant role 
in enhancing Egen, resulting from heat transfer, fluid friction, and 
moisture-based heat transfer. Specifically, raising the buoyancy ratio 
and Da increased Egen by 90%. Furthermore, when the wall thickness 

increased, all forms of Egen decreased by 30%. Regarding the horizontal 
position of the enclosure, Egen approached a minimum and maintained 
a constant value. Additionally, variations in Sr from 0 to 1.5 led to a 22% 
increase in Egen due to heat transfer and a 110% increase in Egen due to 
fluid friction. On the other hand, an increase in Du from 0 to 1.5 resulted 
in a 50% decrease in Egen due to heat transfer and a 7% decrease in Egen 
due to moisture transfer. Finally, the total Egen experienced a 16% in
crease due to the Sr effect and a 40% increase due to the Du effect. 
Alqaed et al. [186] studied the phenomenon of Egen within a rectan
gular enclosure. They deduced that an increase in Ra correlated with a 
rise in Egen. Similarly, an increase in Ha resulted in higher Egen. 
Additionally, the maximum value of Egen was observed when the 
inclination angle of the closure was set at 30 degrees, whereas the 
minimum Egen occurred when the enclosure was positioned vertically 
or horizontally. In their study, Kumar and Gangawane [187] examined 
the phenomenon of Egen within a rectangular enclosure. They intro
duced a heated rectangular object, occupying a width that is 0.2 times 
the width of the enclosure, at the center of the enclosure. They observed 
that the density of Egen caused by fluid friction increased as Ra 
increased. When Ra changed from 104 to 105, Egen due to heat transfer 
and species transport (SC) increased by 56% and 47%, respectively. 

Table 12 showcases various research studies focusing on C-shaped 
cavities. Some of the selected articles are described below: 

Chamkha et al. [8] explored Egen occurring in a C-shaped enclosure. 
Additionally, all other boundaries of the enclosure were thermally 
insulated. The findings of the study confirmed that an increase in χ led to 
a corresponding increase in Egen. Furthermore, this effect was observed 
to intensify as Ra increased. Additionally, the application of a magnetic 
field was found to enhance Egen within the system. Mansour et al. [188] 
studied numerically to understand Egen in a C-shaped enclosure. The 
research revealed that as χ, Egen within the system also increased. This 
effect was observed across all values of the magnetic field. 

Table 13 showcases various research studies focusing on channel 
flow type cavities. Some of the selected articles are described below: 

Hussain et al. [191,192] conducted two separate studies regarding 
mixed convection, entropy generation, and the influence of various 
parameters on these processes. In their first study [191], they investi
gated Egen within a horizontal channel containing an open enclosure. 
An adiabatic square obstacle of square shape was introduced, with the 
bottom wall being hot. The other walls of the enclosure and the channel 
were insulated, while the left end of the channel was cold. Three 
different vertical positions of the obstacle were considered. They 
concluded that an increase in Ha resulted in an elevation of Egen due to 
fluid friction and the magnetic force. Conversely, there was a decrease in 
Egen due to heat transfer and the total Egen. Additionally, the study 
revealed that Egen increased with higher values of Ri, Re, and χ. In their 
second study [192], they examined Egen within an inclined open 
channel enclosure. The left wall of the enclosure was hot, while the fluid 
entering the channel had a cold temperature. The remaining boundaries 
were maintained under constant conditions. They found that for an 
inclination angle of 135o, Egen due to fluid friction, heat transfer, and 
the total Egen all increased. Furthermore, an increase in the porosity 
parameter led to enhanced Egen due to heat transfer and fluid friction. 

Table 14 showcases various research studies focusing on I-shaped 
cavities. Some of the selected articles are described below: 

Armaghani et al. [193] examined Egen in an inclined porous I-sha
ped enclosure. They observed that the maximum Egen was observed 
when Da was equal to 10− 1, regardless of the enclosure’s inclination 
angle. Additionally, they observed that for a range of positions (D) of the 
bottom heat source between 0.5 and 0.7, Egen decreased as Ha 
increased. However, when D was set to 0.3 and 0.4, there was a slight 
increase in Egen with increasing Ha. Asadi et al. [194] studied Egen in a 
double lid-driven I-shaped enclosure that was filled with a porous me
dium containing nanoparticle at a concentration of 4%. The top wall of 
the enclosure moved with a velocity of 10 m/s to the right, while the 
bottom wall moved at the same speed to the left. The temperature of the 

Table 10 
Research work on lid-driven square enclosure  

References Tools Domain Flow details Constants 

Roy et al. 
[173] 

FEM Lid-driven 
square 
enclosure 

2D, steady, MC, 
laminar, 
incompressible 

Pr = 0.026, 
7.2, 10≤ Re≤
100, 103≤

Gr≤ 105 

Roy et al. 
[174] 

FEM Lid-driven 
porous 
square 
enclosure 

2D, steady, MC, 
laminar 

10− 5≤ Da≤
10− 2, 103≤

Gr≤ 105, Pr =
0.026, 7.2, 
10≤ Re≤ 100 

Roy et al. 
[175] 

FEM Lid-driven 
square 
enclosure 

2D, steady, MC, 
laminar, 
incompressible 

103≤ Gr≤ 105, 
Pr = 0.015, 
7.2, 10≤ Re≤
100 

Bouabda et al. 
[176] 

CV- 
FEM 

Lid-driven 
porous 
square 
enclosure 

2D, unsteady, 
MHD, MC, 
Newtonian, 
incompressible 

10− 3≤ Da≤ 1, 
0≤ Ha≤ 100, 
Pr = 7.0, 104≤

Ra≤ 105, 10≤
Re≤ 50, 
0.25≤ Fc≤
0.87 

Hussain et al. 
[26] 

FEM Double lid- 
driven 
enclosure 

2D, unsteady, 
MHD, MC, Al2O3- 
H2O nanofluid 

1≤ Re≤ 100, 
1≤ Ri≤ 50, 1≤
Ha≤ 100, 
0≤ χ ≤ 0.2, 
0≤ φ ≤ 90, Pr 
= 6.2 

Roy et al. 
[177] 

FEM Lid-driven 
porous 
square 
enclosure 

2D, steady, MC, 
laminar, 
incompressible 

Gr = 105, Pr 
= 0.015, 7.2, 
10≤ Re≤ 100, 
10− 4≤ Da≤
10− 2 

Gibanov et al. 
[103] 

FDM Lid-driven 
square 
enclosure 

2D, unsteady, MC, 
laminar, Al2O3- 
H2O nanofluid 

0.01≤ Ri≤ 10, 
0≤ χ ≤ 0.05, 
1.0≤ KT≤

20.0, dp = 47 
nm 

Hussain et al. 
[178] 

FEM Lid-driven 
porous 
square 
enclosure 

2D, Newtonian, 
steady, Al2O3-H2O 
nanofluid, MC, 
incompressible 

10− 5≤ Da≤
10− 2, 0.01≤
Ri≤ 5, 0.1≤
Le≤ 7, 0≤ χ ≤
4%, 0≤ Kr≤
4%, -0.4≤ q≤
0.4, -2≤ Br≤ 2 

Taghizadeha 
and 
Asaditaheri 
[78] 

FVM, 
SIMPLE 

Lid-driven 
square 
enclosure 
with porous 
cylinder 

2D, laminar, MC, 
steady 

0.01≤ Ri≤ 10, 
10− 5≤ Da≤
10− 2, 0≤ φ ≤
90, Re = 100, 
Pr = 0.7 

Barnoon et al. 
[179] 

FVM, 
SIMPLE 

Lid-driven 
square 
enclosure 
with 
rotating 
cylinders 

2D, steady, MHD, 
MC, laminar, two 
phase, Newtonian, 
Al2O3-H2O 
nanofluid 

1≤ Ri≤ 100, 
0≤ Ha≤ 30, 
0≤ φ ≤ 90, 
-3≤ ω ≤ -1, 1≤
χ ≤ 3%, 
dp=30 nm 

Kashyap and 
Dass [180] 

LBM Double lid- 
driven 
square 
enclosure 

2D, two phase, 
MC, Cu-Al2O3-H2O 
hybrid nanofluid 

0≤ χ ≤ 3%, 
0.1≤ Ri≤ 10, 
Gr = 104, Pr 
= 6.2 

Alshare et al. 
[181] 

FEM Lid-driven 
square 
enclosure 
with 
elliptical 
cylinder 

2D, steady, MHD 
MC, Al2O3-H2O 
nanofluid 

0≤ φ ≤ 90, 1≤
Ri≤ 100, 0≤ χ 
≤ 8%  
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cold wall was maintained at 306 K, while the hot wall was set at 346 K, 
and all other walls were insulated. The study considered three different 
scenarios, each involving a different shape of the hot block inside the 
enclosure: triangular, circular, and square. Furthermore, two different 
materials were utilized in the porous medium, namely sand and compact 
metallic powder. They observed that as the aspect ratio of the enclosure 
and χ increased, Egen decreased. Additionally, they found that the 
porous enclosure containing metallic powder exhibited higher Egen 
compared to the one containing sand. Ghasemiasl et al. [195] examined 
Egen in a double lid-driven I-shaped enclosure. They investigated six 
cases involving different hot object shapes (triangular, square, and cir
cular) and two types of porous medium (sand and metallic powder). It 
was found that the sand porous medium had higher Egen compared to 
metallic powder for all hot block shapes. The triangular hot block had 

the highest Egen at 25.56%, followed by the square and circular ge
ometries at 24.43% and 23.33%, respectively. In the case of metallic 
powder, the circular hot block had an Egen of 10.56%, the square ge
ometry had 10.04%, and the triangular block had 9.76%. Tayebi et al. 
[196] examined Egen in an inclined I-shaped enclosure. To create 
different conditions, two hot cylinders were placed at varying positions 
within the enclosure. The findings of the study confirmed that an in
crease in the vortex viscosity parameter (K) resulted in a decrease in 
total Egen. 

Table 15 showcases various research studies focusing on L-shaped 
cavities. Some of the selected articles are described below: 

Chamkha et al. [199] studied Egen in an L-shaped porous enclosure. 
They concluded that considering the Brownian diffusion and thermo
phoresis coefficients resulted in the highest rate of Egen. Furthermore, 
when the aspect ratio was increased from 0.3 to 0.7 for χ of 0.4, the 
average Egen increased by 2.3 times. Additionally, when χ was increased 
from 0.3 to 0.5 for an aspect ratio of 0.3, the average Egen rose by 106%. 
Seyyedi et al. [200] investigated Egen in an L-shaped enclosure. The 
findings revealed that the minimum Egen occurred when the magnetic 
field was inclined at 30o, regardless of Ha values. Zhang et al. [201] 
studied Egen in an L-shaped enclosure. The findings revealed that the 
total Egen was particularly influenced by the magnetic field when 
dealing with the Oswald de Waele fluid. Additionally, it was observed 
that the total Egen decreased as the values of Ra and Ha increased. 
Furthermore, doubling the aspect ratio from 0.2 to 0.8 resulted in a 
twofold increase in the total Egen. Ghalambaz et al. [202] studied Egen 
in an L-shaped enclosure. It is seen that at low Ra, the dominant 

Table 11 
Research work on rectangular enclosure  

References Tools Domain Flow details Constants 

Salari et al. [182] FVM Rectangular enclosure with 
circular corners 

2D, steady, NC, incompressible 103≤ Ra≤ 105, 1≤ A≤ 4, 10− 5≤ Ir≤ 10− 2 

Fersadou et al. [183] FVM, SIMPLE Rectangular open cavities 2D, MHD, MC, Cu-H2O nanofluid, laminar, steady, 
Newtonian 

0≤ Ha≤ 50, 0≤ Ri≤ 10, 0≤ R≤ 8, 0≤ Rq≤
1, 0.01≤ χ ≤ 0.1 

Hajatzadeh Pordanjani 
et al. [130] 

FVM, SIMPLE Rectangular enclosure 2D, MHD, FC, laminar, Newtonian, steady, 
incompressible, Al2O3-H2O nanofluid 

103≤ Ra≤ 105, 0≤ Ha≤ 40, 0≤ φ ≤ 90, 
0≤ Rd≤ 3, 0≤ χ ≤ 0.06 

El-Maghlany and Minea 
[184] 

FVM Rectangular enclosure 2D, steady, NC, Al2O3-H2O nanofluid 103≤ Ra≤ 105, 0≤ χ ≤ 0.1 

Hu and Mei [185] FVM, QUICK, 
SOR 

Inclined rectangular enclosure 2D, Moisture air, steady, laminar, incompressible, 
Newtonian 

10− 9≤ Da≤ 10− 1, 0≤ φ ≤ 90, 0≤ Sr≤
1.5,0≤ Du≤ 1.5, -10≤ N≤ 10 

Alqaed et al. [186] CVM, SIMPLE Rectangular enclosure with 
blades 

2D, steady MHD, NC, Al2O3-H2O nanofluid, 
Newtonian, laminar, incompressible 

103≤ Ra≤ 105, 0≤ Ha≤ 30, 0≤ χ ≤ 0.03, 
0≤ φ ≤ 90 

Kumar and Gangawane 
[187] 

LBM Rectangular enclosure with 
blockage 

2D, MHD, NC, laminar, incompressible, Newtonian, 
steady 

2≤ A≤ 4, 2≤ Le≤ 10, 103≤ Ra≤ 105,0≤
Ha≤ 100, -2≤ N≤ 2  

Table 12 
Research work on C-shaped enclosure.  

References Tools Domain Flow details Constants 

Chamkha 
et al. [8] 

FVM, 
SIMPLE 

C-shpaed 
enclosure 

2D, steady, MHD, NC, 
CuO-H2O nanofluid, 
Newtonain. laminar, 
incompressible 

1000≤ Ra≤
15000, 
0≤ Ha≤ 45, 
0%≤ χ ≤ 6%, 
0.1≤ A≤ 0.7 

Mansour 
et al. 
[188] 

FVM, 
SIMPLE 

C-shpaed 
enclosure 

2D, steady, MHD, MC, 
Cu-H2O nanofluid, 
incompressible, 
Newtonian, laminar 

0≤ Ha≤ 100, 
0%≤ χ ≤ 10%, 
Gr = 104  

Table 13 
Research work on channel flow type enclosure  

References Tools Domain Flow details Constants 

Mehrej 
et al. 
[189] 

FVM, 
QUICK 

Horizontal 
open channel 
enclosure 

2D, MHD, Cu-H2O 
nanofluid, laminar, 
Newtonian, 
unsteady, 
incompressible 

0≤ Ha≤ 100, 
0%≤ χ ≤ 6%, 
100≤ Re≤
500, 0.001≤
Ri≤ 1, 0≤ φ ≤
90 

Mehrej 
et al. 
[190] 

FVM, 
QUICK 

Inclined open 
channel 
enclosure 

2D, Cu-H2O 
nanofluid, laminar, 
Newtonian, steady, 
incompressible 

0≤ φ ≤ 360, 
0%≤ χ ≤ 6%, 
100≤ Re≤
500, Gr = 104 

Hussain 
et al. 
[191] 

FEM Horizontal 
open channel 
enclosure 
with obstacle 

2D, unsteady, MHD, 
MC, Al2O3-Cu-H2O 
hybrid nanofluid 

0.01≤ Ri≤ 20, 
10≤ Re≤ 200, 
0≤ Ha≤ 100, 
0%≤ χ ≤ 4% 

Hussain 
et al. 
[192] 

FEM Inclined 
porous open 
channel 
enclosure 

2D, steady, MC, 
laminar, Al2O3-H2O 
nanofluid, 
incompressible, 
Newtonian 

0.01≤ Ri≤ 20, 
0≤ φ ≤ 360, 
10≤ Re≤
200,0%≤ χ ≤
4%, 10− 6≤

Da≤ 10− 3  

Table 14 
Research work on I-shaped enclosure  

References Tools Domain Flow details Constants 

Armaghani 
et al. 
[193] 

FDM, 
SUR 

Inclined 
porous I- 
shaped 
enclosure 

2D, steady, MHD, FC, 
Cu-H2O nanofluid, 
incompressible, 
Newtonian, laminar 

0≤ Ha≤ 20, 
102≤ Ra≤
103, 10− 6≤

Da≤ 10− 1 

Asadi et al. 
[194] 

FVM lid-driven I- 
shaped 
porous 
enclosure 
with block 

2D, steady, MC, two- 
phase, laminar, TiO2- 
H2O nanofluid, 
incompressible, 
Newtonian 

0%≤ χ ≤ 4%, 
0.55≤ A≤
0.85 

Ghasemiasl 
et al. 
[195] 

FVM, 
SIMPLE 

Porous lid- 
driven I- 
shaped 
enclosure 
with blocks 

2D, steady, MC, 
Al2O3-H2O nanofluid 

0%≤ χ ≤ 4% 

Tayebi et al. 
[196] 

FEM Inclined I- 
shaped 
enclosure 
with 
cylinders 

2D, FC, steady, 
Al2O3-H2O nanofluid 

104≤ Ra≤
106, 0.2≤ A≤
0.6, 2%≤ χ ≤
4%, 0≤ φ ≤
90, 0.5≤ K≤
2  
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contributor to Egen was heat transfer. Conversely, at high Ra values, the 
opposite trend was observed, where heat transfer played a lesser role in 
Egen. Furthermore, the inclusion of nanoparticles in the system, espe
cially at high Ra values, was found to enhance the overall Egen. Hussain 
et al. [203] examined Egen within an elbow-shaped enclosure. The 
enclosure had a wavy top wall and a hot quarter circle installed at the 
bottom left corner, while a rotating cylinder was positioned at the top of 
the left leg. The right internal horizontal wall remained cold, while the 
remaining boundaries were considered insulated. They observed that 
Egen resulting from fluid friction increased with the augmentation of 
Ha, but this effect was negligible for a power index of 1.4. They also 
noted that an increase in the magnetic field led to a rise in Egen due to 
the magnetic field. Based on their findings, they concluded that Egen 
would be minimal for non-Newtonian fluid and would increase with an 
increment in χ. 

Table 16 presents a compilation of diverse research investigations 
centered around modified cavities. Some of the selected articles are 
described below: 

Marzougui et al. [205] examined the behavior of Egen inside an 
enclosure with chamfered corners. It is observed that Egen decreased 
with the increase of Ha for constant χ. However, it is also observed that 
Egen increased with an increase in Ra. At very high Ra values, the 
impact of an increase in Ha was found to be negligible on thermal Egen. 
Additionally, the study revealed that Egen increased with an increase in 
χ, but this trend reversed after reaching a certain value of Ha. Beyond 
this threshold, Egen decreased with an increase in χ. Yıldız et al. [206] 
investigated Egen within an enclosure with a dome shape inclined at 
different angles. The study examined three dome angles, namely 15o, 
30o, and 45o, corresponding to three different dome heights denoted as 

R15, R30, and R45, respectively. It is seen that Egen reached its mini
mum value for the R45 dome enclosure compared to the other dome 
enclosure types. Additionally, the disparity in Egen between the R45 
dome enclosure and the equivalent rectangular enclosure was more 
pronounced. On the other hand the Egen of the R15 dome enclosure was 
nearly identical to that of the rectangular enclosure. Interestingly, it was 
observed that enclosure inclinations of 30o and 60o resulted in the 
highest Egen. Rehman et al. [207] investigated Egen of a magnetized 
ferric oxide-water nanofluid surrounding a rotating heated cylinder in
side a fillet square enclosure. The enclosure consisted of a hot bottom 
wall, while the remaining walls were cold, and a downward magnetic 
field was applied. It is found that an increase in Ha resulted in a 
reduction in Egen due to the viscous effect for constant χ. Furthermore, 
they observed a decrease in thermal Egen with Ha at a specific value of ϕ 
and the rotational speed of the cylinder. 

Table 17 provides an assortment of research studies that focus on 
cavities with polygonal shapes. The following are succinct summaries of 
the selected articles included in the table: 

Acharya [37] focused on laminar flow in an octagonal enclosure 
containing a circular cylinder equipped with four fins attached to its 
surface. It is seen that an increase in χ and Ra exhibited a positive cor
relation with Egen. Conversely, an increase in the strength of the mag
netic field exhibited an inverse relationship with Egen. Higher magnetic 
field values were found to reduce the overall Egen. Additionally, the 
study investigated the impact of the fins’ height on Egen. It was observed 
that increasing the height of the fins resulted in a decrease in Egen. This 
suggests that modifying the fins’ dimensions can play a significant role 
in minimizing the overall Egen within the system. Majeed et al. [208] 
investigated the influence of magnetization on Egen and thermal flow 
within a hexagonal enclosure. The enclosure contained a cylinder object 
positioned at its center, while the upper, lower, and cylinder surface 

Table 15 
Research work on L-shaped enclosure  

References Tools Domain Flow details Constants 

Parvin and 
Chamkha 
[197] 

FEM L-shaped 
enclosure 

2D, FC, Cu-H2O 
nanofluid, steady, 
laminar, 
incompressible 

103≤ Ra≤ 106, 
0≤ χ ≤ 0.05, Pr 
= 6.6 

Rahimi et al. 
[198] 

LBM Hollow L- 
shaped 
enclosure 

2D, steady, NC, 
laminar, SiO2- 
TiO2/H2O-EG 
hybrid nanofluid 

0.5%≤ χ ≤ 3%, 
103≤ Ra≤ 106, 
0.1≤ A≤ 0.4 

Chamkha 
et al. 
[199] 

FVM, 
SIMPLE 

Porous L- 
shaped 
enclosure 

2D, steady, NC, 
laminar, CuO or 
TiO2 or Al2O3-H2O 
nanofluids, 
Newtonian, 
incompressible 

0.3≤ A≤ 0.7, 
3%≤ χ ≤ 5%, 
Ra = 1.424 ×
106 

Seyyedi et al. 
[200] 

CV-FEM Modified L- 
shaped 
enclosure 

2D, MHD, Al2O3- 
H2O nanofluid, NC, 
laminar 

105≤ Ra≤ 105, 
0≤ χ ≤ 0.06, m 
= 3, 4.8, 5.7, 
0≤ φ ≤ 90, 
0≤ Ha≤ 102, 
0.25≤ A≤ 0.75 

Zhang et al. 
[201] 

FD-LBM L-shaped 
enclosure 

2D, MHD NC, 
laminar, steady, 
Newtonian, non- 
Newtonian 

105≤ Ra≤ 105, 
0≤ Ha≤ 40, 
0.2≤ A≤ 0.8, n 
= 0.8, 1.0, 1.4 

Ghalambaz 
et al. 
[202] 

FEM L-shaped 
enclosure 

2D, FC, laminar, 
steady, Cu-Al2O3- 
H2O hybrid 
nanofluid, 
incompressible 

105≤ Ra≤ 105, 
0≤ χ ≤ 0.05, Pr 
= 6.2 

Hussain 
et al. 
[203] 

FEM Elbow- 
shaped 
enclosure 
with 
cylinder 

2D, MHD, MC, 
steady, non- 
Newtonian, Ag- 
MgO hybrid 
nanoparticles 

0.6≤ n≤ 1.8, 
0.01≤ Ri≤ 10, 
0≤ Ha≤ 100, 
-75≤ ω ≤ 50, 
Pr = 6.2, Re =
100, 0.3≤ A≤
0.5, Ha = 25, 
0.005≤ χ ≤
0.02  

Table 16 
Research work on modified enclosure  

References Tools Domain Flow details Constants 

Mohammadtabar 
et al. [204] 

FVM, 
SIMPLE 

Modified 
rectangular 
enclosure 

2D, steady, NC, 
laminar, Al2O3- 
H2O nanofluid 

103≤ Ra≤
105, 0≤ χ ≤
0.1, 1≤ χ ≤
4, 0.00005≤
Ec ≤ 0.05 

Marzougui et al. 
[205] 

FEM Modified 
enclosure 
with 
chamfers 

2D, MHD, Cu- 
H2O nanofluid, 
laminar, 
Newtonian, 
unsteady 

Pr = 7, 105≤

Ra≤ 106, 
0≤ Ha≤
102, 0.02≤ χ 
≤ 0.08 

Yildiz et al. [206] FVM, 
SIMPLE 

Dome 
shaped 
modified 
square 
enclosure 

2D, steady, NC, 
laminar 

104≤ Ra≤
106, 0≤ φ ≤
90, Pr =
0.71 

Rehman et al. 
[207] 

FEM Fillet square 
enclosure 
with cylinder 

2D, MHD, 
steady, ferric 
oxide–H2O 
nanofluid, 
incompressible 

0≤ Ha≤
102, 0≤ ω ≤
4, 0≤ χ ≤
0.06  

Table 17 
Research work on polygonal shaped enclosure  

References Tools Domain Flow details Constants 

Acharya 
[37] 

FEM Octagonal 
enclosure 
with cylinder 

2D, MHD, steady, Ag- 
MgO-H2O hybrid 
nanofluid, laminar, 
incompressible 

0≤ χ ≤ 0.015, 
103≤ Ra≤ 105, 
0≤ Ha≤ 102 

Majeed 
et al. 
[208] 

FEM Hexagonal 
enclosure 
with cylinder 

2D, MHD, steady, 
incompressible, 
laminar, Ag-MgO-H2O 
hybrid nanofluid 

0≤ Ha≤ 102, 
5≤ Ri≤ 30, 
0.02≤ χ ≤ 0.08, 
0.1≤ dc≤ 0.3, 
Pr = 6.2  
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walls were maintained at elevated temperatures. Conversely, the upper 
left boundary and lower right wall were kept cold, and the remaining 
boundaries were thermally insulated. They observed that as the values 
of Ri, Ha, and χ increased, the magnetic Egen also increased. 

Table 18 presents a compilation of diverse research investigations 
centered around cavities with rhombic shapes. Some of the selected 
articles are described below: 

Nayak et al. [210] investigated the Egen characteristics of a Cu-H2O 
nanofluid within an inclined, skewed enclosure. The bottom boundary 
of the enclosure was aligned with the horizontal axis, while the side 
boundary formed an angle φ with the horizontal axis. They observed 
that, for a fixed inclination and skewed angle of the cavity, Egen 
increased with an increase in χ in the nanofluid. Additionally, they 
found that when the buoyancy effect was negligible, Egen became in
dependent of the inclination angle. However, at a fixed Re, Egen 
increased with Ri. Moreover, an increase in χ led to an overall increase in 
Egen. Lastly, the enhancement in Egen diminished as the tilt angle of the 
cavity increased, particularly with a sharply skewed angle. Das and 
Basak [51] conducted a study on the Egen of Newtonian and incom
pressible fluids within a rhombic cavity. The cavity featured different 
angles of inclination for the side walls (45◦, 60◦, and 75◦) and various 
area ratios (0.5, 1, and 1.5). Their findings indicated that higher Da 
values led to dominant Egen from fluid friction, while lower Da values 
resulted in dominant heat transfer Egen. By altering the area ratio to 0.5, 
1, and 1.5, the total Egen witnessed a reduction of 46.37%, 39.43%, and 
15.84%, respectively. The study also recommended an inclination angle 
of 45◦ and a Pr of 1000 for achieving moderate heat transfer and lower 
Egen, irrespective of the enclosure area. Furthermore, a lower Egen was 
observed with an area ratio of 0.5. Dutta et al. [212] explored the 
behavior of Egen in a rhombic enclosure. In their study, the bottom wall 
was heated, the top wall was cooled, and the remaining walls were 

thermally insulated. Their findings indicated that an increase in Ha led 
to a decrease in total Egen across different values of Ra and enclosure 
inclination angles. 

Table 19 presents a compilation of diverse research investigations 
centered around semi-circular cavities. Some of the selected articles are 
described below: 

Shafee et al. [215] explored Egen of a ferrofluid within a 
semi-annulus enclosure. The results demonstrated that increasing values 
of Da, Ra, and Ha corresponded to an elevation in magnetic Egen. 
Ghalambaz et al. [54] studied to examine Egen within an inclined 
semi-annular enclosure. The enclosure featured a hot internal cylinder 
surface and a cold outer shell surface. They observed that Egen due to 
fluid friction was higher in all investigated cases. They also observed 
that a higher volume fraction of NEPCM particles led to increased heat 
transfer Egen at low Ra values, while viscous Egen became dominant at 
higher Ra values. Furthermore, they found that both the total Egen and 
the enclosure inclination angle exhibited a positive correlation with Ra, 
indicating that higher Ra and steeper enclosure inclination angles 
resulted in greater Egen. Afshar et al. [216] investigated Egen charac
teristics of a hybrid fluid within a porous semi-circular enclosure 
featuring a wavy inner bottom surface. The findings of the study 
revealed that regardless of the specific profiles of the wavy bottom wall, 
an increase in amplitude led to an enhancement in Egen for all values of 
Ra. 

Table 20 presents a compilation of diverse research investigations 
centered around U-shaped cavities. Some of the selected articles are 
described below: 

Selimefendigil et al. [217] conducted an analysis of Egen in a 
U-shaped enclosure. The bottom boundary of the enclosure was hot and 
partially elastic, featuring an adiabatic rotating cylinder inserted at the 
left leg. The enclosure was vented through a cold inlet and an outlet 
located on the right leg, while all other boundaries remained insulated. 
The study revealed that the left domain exhibited a higher rate of Egen, 
which increased with higher Ha values. However, the right domain 
demonstrated a decrease in Egen for Ha values ranging from 40 to 75. In 
general, higher values of Ha are correlated with an increase in the rate of 
Egen. The influence of the modulus of elasticity on Egen was found to be 
weak. Furthermore, an increase in the rotational speed of the cylinder 

Table 18 
Research work on Rhombic enclosure  

References Tools Domain Flow details Constants 

Anandalakshmi 
and Basak 
[43] 

FEM Rhombic 
enclosure 

2D, steady, NC, 
laminar, 
Newtonian, 
incompressible 

103≤ Ra≤
105, 30≤ φ 
≤ 90, 
0.015≤ Pr≤
103 

Nayak et al. 
[209] 

FVM, 
SIMPLEC 

lid-driven 
Rhombic 
enclosure 

2D, unsteady, MC, 
Cu–H2O nanofluid, 
laminar, 
incompressible, 
Newtonian 

30≤ φ ≤
150, 0≤ χ ≤
0.2, 0.1≤
Ri≤ 5, Re =
200, 500, 
103≤ Gr≤ 5 
× 104 

Kavya et al. [61] FEM Rhombic 
enclosure 

2D, steady, NC, 
laminar, 
Newtonian, 
incompressible 

45≤ φ ≤ 75, 
0.5≤ A≤
1.5, 0.015≤
Pr≤ 103, 
103≤ Ra≤
105 

Nayak et al. 
[210] 

CVM, 
SIMPLEC 

lid-driven 
inclined 
Rhombic 
enclosure 

2D, unsteady, MC, 
Cu–H2O nanofluid, 
laminar, 
incompressible, 
Newtonian 

-30≤ φ ≤
30, 0≤ χ ≤
0.2, 102≤

Re≤ 103, 
0.1≤ Ri≤ 5 

Das and Basak 
[51] 

FEM Porous 
Rhombic 
enclosure 

2D, steady, NC, 
laminar, 
Newtonian, 
incompressible 

45≤ φ ≤ 75, 
0.5≤ A≤
1.5, 0.015≤
Pr≤ 103, 
10− 5≤ Da≤
10− 2, 
Ra=106 

Dutta et al. 
[211] 

FEM Rhombic 
enclosure 

2D, MHD, NC, 
Cu–H2O nanofluid, 
laminar, 
Newtonian, 
steady, 
incompressible 

103≤ Ra≤
106, 
0≤ Ha≤
102, 30≤ φ 
≤ 60, 0.01≤
χ ≤ 0.05  

Table 19 
Research work on semi-circular enclosure  

References Tools Domain Flow details Constants 

Mojumder 
et al. 
[213] 

FEM Half-moon 
shaped 
enclosure 

2D, MHD, NC, 
steady, laminar, 
Newtonian, Fe3O4- 
H2O, Co-Kerosene 
nanofluids, 
incompressible 

103≤ Ra≤
107,0≤ Ha≤
100, 0≤ φ ≤
90 

Bezi et al. 
[214] 

FVM, 
QUICK, 
RBSOR, 
AB 

Semi- 
annular 
enclosure 

2D, unsteady, NC, 
laminar, Au, Ag, Cu, 
CuO-H2O 
nanofluids, 
Newtonian, 
incompressible 

103≤ Ra≤
105, 0≤ φ ≤
180, 0≤ χ ≤
0.08 

Shafee et al. 
[215] 

CV-FEM Porous 
semi- 
annulus 
enclosure 

2D, MHD, Fe3O4- 
H2O nanofluid, 
steady 

103≤ Ra≤
104, 1≤ Ha≤
40, 0.01≤
Da≤ 100 

Ghalambaz 
et al. [54] 

FEM Semi- 
annular 
enclosure 

2D, steady, NC, 
PCM, nanoparticles, 
laminar, Newtonian, 
incompressible 

104≤ Ra≤
106,0≤ Ste≤
100, 0≤ χ ≤
0.04, Pr =
6.2, 0≤ φ ≤
90 

Afshar et al. 
[216] 

FEM Porous 
wavy semi- 
circular 
enclosure 

2D, FC, PCM, 
nanoparticles, 
steady, laminar, 
Newtonian, 
incompressible 

103≤ Ra≤
105, 0≤ χ ≤
0.05, 10− 3≤

Da≤ 10− 1  
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resulted in an enhancement of Egen. Pasha et al. [218] conducted a 
study on Egen within a U-shaped enclosure featuring a wavy triangular 
bottom wall. They observed that when the baffles’ length was equal to 
0.1 times the values of Ra (104, 5 × 104, 105), there was only a slight 
change in the local Be. Additionally, for baffles with a length of 0.2L, an 
increase in Ra resulted in a reduction in the local Be under the influence 
of a magnetic field (Ha = 0, 20). 

Table 21 presents a research on three dimensional cubical cavities. 
Below are the concise summaries of the selected articles featured in the 
table: 

Abderrahmane et al. [17] conducted a study on Egen in a 3D trian
gular enclosure. The left vertical boundary had a zigzag geometry and 
was kept hot, while the base was insulated and the hypotenuse remained 
cold. They found that increasing Da enhanced fluid friction entropy and 
reduced Egen due to heat transfer. Higher Ha increased Egen due to heat 
transfer but minimized fluid friction entropy. The study concluded that a 
zigzag hot wall configuration improved heat transfer and reduced Egen. 
Al-Khazaal [231] conducted a study exploring the impact of hybrid 
nanofluid presence, along with a fin composed of composite materials, 
on Egen within a 3D cubic enclosure. They observed that the addition of 
nanoparticles led to an increase in Egen, irrespective of the fin con
ductivity ratio. Notably, the highest Egen occurred when the composite 
material conductivity ratio was Rc=1000, Ra=105, and χ=0.05. These 
findings highlight the potential of utilizing the fin to control the rate of 
Egen. Banik et al. [232] conducted a study on Egen of ferrofluid within a 
cubical enclosure featuring a central hot cylinder. They explored two 
setups. In the first setup, three magnets were placed on the vertical 
opposite walls of the enclosure. In the second setup, three configurations 
were considered, involving the individual placement of magnets on the 
enclosure walls and around the heat source. Adiabatic conditions were 
maintained near the magnets, while the walls at the ends of the cylinder 
remained adiabatic, and the remaining walls were cold. The findings 
indicated that the first setup resulted in a minimum Egen. Additionally, 
the study aimed to propose an effective technique for controlling Egen. 
Cherif et al. [233] conducted a study to investigate the Egen charac
teristics of hybrid nanoliquid inside a 3D triangular porous enclosure. 
The findings suggested that for Ha of 0 and a cylinder rotational speed of 
1000, the heat transfer rate was higher, while Egen was lower. 
Furthermore, they observed that increasing Da and reducing Ha 
improved the heat transfer performance and minimized Egen. 
Conversely, higher Ha values had a detrimental effect on flow motion, 
resulting in increased Egen. Zisan et al. [234] conducted a study to 
investigate Egen within a cubic enclosure containing discrete heat 
sources positioned at the bottom. The widths of the heating surfaces 
were set at 0.2 times the length (L) of the enclosure. They examined 
three different configurations, each characterized by variations in the 
distance between the heat source (h) and the distance from the left 
surface (c). Configuration A had h = 0.4L and c = 0.5L, configuration B 

Table 20 
Research work on U-shaped enclosure  

References Tools Domain Flow details Constants 

Cho et al. [2] FVM, 
SIMPLE 

U-shaped 
enclosure 

2D, steady, NC, 
laminar, Al2O3- 
H2O nanofluid, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ χ ≤
0.04, Pr =
6.2 

Selimefendigil 
et al. [217] 

FEM, 
ALE 

U-shaped 
vented 
enclosure 
with rotating 
cylinder 

2D, MHD, FC, CNT- 
H2O nanofluid, 
laminar, steady, 
Newtonian, 
incompressible 

100≤ Re≤
500,0≤
Ha≤ 75, 
-300≤ ω ≤
300 

Pasha et al. 
[218] 

FEM U-shaped 
enclosure 
with baffles 
& wavy 
walls 

2D, steady, NC, 
PCM, nanoparticles 

104≤ Ra≤
105, 0≤ χ ≤
0.05, 
0≤ Ha≤ 20  

Table 21 
Research work on 3D enclosure  

References Tools Domain Flow details Constants 

Kolsi et al. 
[219] 

CV-FDM, 
CDS 

Cubical 
enclosure 

3D, unsteady, NC, 
laminar, Al2O3- 
H2O nanofluid, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ χ 
≤ 0.20, Pr 
= 6.2 

Hussein et al. 
[1] 

CV-FDM, 
CDS 

Cubical 
Trapezoidal 
enclosure 

3D, unsteady, NC, 
laminar, 
incompressible, 
Newtonian 

103≤ Ra≤
105, 0≤ φ 
≤ 180, Pr 
= 0.71 

Kolsi et al. 
[220] 

CV-FDM, 
CDS, SOR 

Cubical 
enclosure 
with fin 

3D, unsteady, NC Pr = 0.7, 
0.01≤ Rc≤
100, -60≤
φ ≤ 60, 
Ra=105 

Kolsi et al. 
[221] 

CV-FDM, 
CDS 

Cubical 
enclosure 
with twin 
blocks 

3D, unsteady, NC, 
laminar, Al2O3- 
H2O nanofluid, 
incompressible 

Pr = 6.2, 
0≤ χ ≤
0.15, 104≤

Ra≤ 106 

Kolsi et al. 
[222] 

CV-FDM Cubic 
enclosure 
with 
triangular 
body 

3D, laminar, NC, 
unsteady 

104≤ Ra≤
106, 0≤ χ 
≤ 0.15, 
0.01≤ Rc≤
100 

Kolsi et al. 
[223] 

CVM Cubical 
enclosure 

3D, Al2O3-H2O 
nanofluid, 
unsteady, 
laminar, 
Newtonian, 
incompressible 

Ra=105, 
0≤ χ ≤
0.2, 10− 3≤

Ma≤ 103, 
Pr = 6.2 

Al-Rashed et al. 
[224] 

FDM CDS, 
SOR 

Cubical 
enclosure 
with baffle 

3D, CNT-H2O 
nanofluid, MC, 
laminar, 
incompressible, 
Newtonian, 
unsteady 

103≤ Ra≤
105, 0≤ χ 
≤ 0.15, Pr 
= 6.2, Re 
= 0, 100, 
0≤ Ri≤ 10 

Al-Rashed et al. 
[225] 

FDM, 
SIMPLE, 
CDS 

Cubical 
enclosure 

3D, NC, laminar, 
incompressible, 
Newtonian, 
unsteady 

103≤ Ra≤
106, Pr =
0.71 

Oztop et al. 
[226] 

FVM, 
CDS, SOR 

Partially 
open cubic 
enclosure 

3D, unsteady, NC 103≤ Ra≤
105, 0.25≤
h, d≤ 0.75 

Salari et al. 
[227] 

FVM, 
SIMPLE 

Rectangular 
cubic 
enclosure 

3D, unsteady, NC, 
laminar, 
MWCNTs-H2O 
nanofluid & air, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ φ 
≤ 90, 
0.002≤ χ 
≤ 0.01 

Al-Rashed et al. 
[228] 

CVM, 
CDS, SOR 

Cubical open 
enclosure 
with block 

3D, unsteady, MC, 
laminar, Al2O3- 
H2O nanofluid, 
incompressible 

0.01≤ Ri≤
100,0≤ χ 
≤ 0.05, Pr 
= 6.2, Re 
= 10 

Hussein [229] FVM, 
modified 
SIMPLE, 
ADI 

Right angled 
triangular 
enclosure 

3D, unsteady, MC, 
laminar 

Pr = 0.71, 
0.01≤ Ri≤
10, Re =
100 

Rahimi et al. 
[230] 

LBM, 
MRT 

Cuboid 
enclosure 

3D, unsteady, MC, 
CuO-H2O 
nanofluid 

103≤ Ra≤
106, 0≤ χ 
≤ 0.04 

Boulahia et al. 
[50] 

FVM, two- 
phase 
mixture 
model, 
SIMPLE 

Rectangular 
enclosure 
with internal 
blocage 

3D, FC, TiO2- 
Al2O3-Cu-H2O 
hybrid nanofluid, 
laminar, 
Newtonian, 
incompressible 

103≤ Ra≤
106, 0≤ χ 
≤ 0.05, 
0≤ Am≤

0.2 

Abderrahmane 
et al. [17] 

FEM Triangular 
porous 
enclosure 
with cylinder 

3D, steady, MHD, 
MC, laminar, 
Fe3O4- MWCNT- 
H2O hybrid 
nanofluid 

10− 5≤

Da≤ 10− 2, 
0≤ Ha≤
102, -500≤
ω ≤ 1000 

Al‑Khazaal 
[231] 

FEM Cubic 
enclosure 
with fin 

3D, unsteady, NC 1≤ Rc≤
103, 0≤ χ 
≤ 0.05, 

(continued on next page) 
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had h = 0.4L and c = 0.7L, and configuration C had h = 0.8L and c =
0.5L. Their findings indicated that configuration A exhibited the 
maximum Egen, while configurations B and C demonstrated nearly 
equal levels of entropy formation. 

Table 22 presents a research on cavities with concave/conves sides. 
Below are the concise summaries of the selected articles featured in the 
table: 

Biswal and Basak [46] conducted a numerical analysis to investigate 
Egen within a 3D rectangular enclosure with curved side walls, which 
could be either concave or convex. The enclosure was differentially 
heated, and they considered three cases: case 1 with the smallest height 
of the curved surfaces, case 2 with a medium height, and case 3 with the 
maximum height. Their findings revealed that, irrespective of the values 
of Ra and Pr, the heat transfer Egen was consistently higher in the 
concave side cases due to the temperature gradient. Additionally, in case 
3, where the enclosure had a narrow region in the middle position, the 
heat Egen was further increased. However, for the convex side cases 
(cases 1-3), regardless of the values of Ra and Pr, the heat Egen was 
higher near the top-right and bottom-left corners of the enclosure. 
Moreover, they observed that as the convexity of the wall increased, the 
heat Egen also increased. Furthermore, in concave cases 1 and 2, the 
maximum fluid friction Egen occurred at the middle position of the side 
walls. Biswal and Basak [236] examined Egen occurring in porous, 
three-dimensional triangular cavities with right angles. These cavities 
had either concave right walls (referred to as Case 1) or convex right 
walls (referred to as Case 2). They observed that an increase in Da and Pr 
resulted in a corresponding increase in the overall Egen, regardless of 
the curvature type of the wall. The maximum Egen was observed in Case 
2, where the right wall had a highly convex shape, while the minimum 
Egen was observed in Case 1, where the right wall had a concave shape. 

Biswal and Basak [47] investigated entropy generation within 3D rect
angular porous cavities with concave and convex horizontal top and 
bottom walls. The study examined three cases, varying the height of the 
concave or convex surfaces. Case 1 represented the smallest height, case 
2 the medium height, and case 3 the maximum height. They found that 
when the concave or convex surfaces were at their smallest height, the 
maximum heat transfer Egen occurred near the core region. For case 2 
and case 3, with higher concave surfaces, the maximum heat transfer 
Egen was observed near the middle positions of the concave walls, at low 
Da, and for all Pr. However, for the convex cases, irrespective of the 
height, the maximum heat transfer Egen was found near the corner re
gions at low Da and for all Pr. At high Da, the maximum heat transfer 
Egen shifted towards the core of the enclosure for cases 1 and 2 
(concave) and cases 1-3 (convex). 

Table 23 presents research on cavities with different shapes that are 
not discussed above. Below are the concise summaries of the selected 
articles featured in the table: 

Dogonchi et al. [245] examined the entropy generation character
istics of oxide nanoparticles within a cylindrical enclosure featuring a 
wavy crown and a flat bottom wall, both of which were adiabatic. It was 
found that as the curvature increased, Egen also increased. The highest 
Egen was observed in the vicinity of the cylinder and the wavy wall. 
Dogonchi et al. [246] explored the natural convection behavior of iron 
nanoliquid within a porous enclosure with a star-shaped geometry. The 
enclosure contained two cylinders, with the left cylinder being heated 
and the right cylinder being cooled. The outer surface of the enclosure 
was adiabatic. The study findings indicated that Egen decreased with an 
increase in Ha and decreased with an increase in Da. Moreover, 
regardless of the value of Ra, an increase in porosity resulted in reduced 
Egen. Dogonchi et al. [247] employed numerical analysis to investigate 
the effect of hybrid nanoliquid within a star-shaped porous enclosure. 
The enclosure contained three cylinders, with two of them being cold 
and one being hot. The outer surface of the enclosure was thermally 
insulated. It is observed that the maximum Egen occurred at the center 
of the enclosure, where energy was lost among the active cylinders. 
Tayebi et al. [248] studied entropy generation behavior inside a circular 
enclosure containing a cylindrical object with four extended fins on its 
surface. The fins on the cylinder surface were maintained at a high 
temperature, while the outer surface of the enclosure remained cold. 
They observed that at low Ra, the dominant contribution to Egen 
stemmed from heat transfer. Conversely, at high Ra, fluid friction Egen 
became the dominant factor. 

Table 24 presents a research on mixed type cavities. Below are the 
concise summaries of the selected articles featured in the table: 

Das et al. [53] conducted numerical analysis to investigate the 
impact of different heater element positions on the thermal and hy
draulic behavior, as well as Egen, in square and triangular cavities. The 
study considered three types of cavities: regular isosceles triangular, 
inverted isosceles triangular, and square. Three cases were examined 
based on the placement of heaters: case 1 featured a larger heater in the 
lower half and a smaller heater in the center; case 2 had a larger heater 
in the center and a smaller one in the lower half; and case 3 involved two 
heaters of similar length placed in the center and lower halves. They 
found that the maximum heat Egen occurred along the interaction line 
between the hot and cold sides of the enclosure walls, while this value 
was lower on the walls due to reduced temperature gradients at low Ra 
values across all cases. Khan et al. [249] examined the natural convec
tion and Egen of a hybrid nanofluid inside square and rectangular en
closures. It is observed that decreasing the aspect ratio of the enclosure 
resulted in a reduction in Egen. Notably, the minimum value of Egen 
occurred when the aspect ratio reached 0.5. Additionally, the study 
revealed that Egen increased with χ at a constant Ra. The maximum 
Egen was observed at a χ = 0.001. 

Additional Literature Review: 
The investigation of Egen within various geometric configurations of 

porous cavities has provided insights into the interplay of Egen due to 

Table 21 (continued ) 

References Tools Domain Flow details Constants 

103≤ Ra≤
105 

Banik et al. 
[232] 

FVM, 
SIMPLE, 
QUICK 

Cubical 
enclosure 
with cylinder 

3D, MHD, 
ferrofluid, steady 

Pr = 316, 
χ=0.1% 

Cherif et al. 
[233] 

FEM Triangular 
porous 
enclosure 
with 
cylinders 

3D, steady, MC, 
laminar, Fe3O4- 
MWCNT-H2O 
hybrid nanoliquid 

10− 5≤

Da≤ 10− 2, 
0≤ Ha≤
102, -500 
≤ ω ≤
1000 

Zisan et al. 
[234] 

FEM Cubic 
enclosure 

3D, laminar, NC, 
unsteady, 
Newtonian, 
incompressible 

103≤ Ra≤
106, Pr =
0.71  

Table 22 
Research work on the enclosure with concave/convex sides  

References Tools Domain Flow details Constants 

Kashani 
et al. 
[235] 

FVM, 
SIMPLE 

Enclosure with 
concave/convex 
sides 

2D, steady, 
NC, laminar, 
Cu-H2O 
nanofluid, 

0≤ χ ≤ 5%, 
105≤ Ra≤
106, 1≤ A≤ 2 

Biswal and 
Basak 
[46] 

FEM Enclosure with 
concave/convex 
sides 

2D, NC, steady 103≤ Ra≤
105, Pr =
0.015, 0.7, 
1000 

Biswal and 
Basak 
[236] 

FEM Right-angled 
triangular porous 
enclosure with 
concave/convex 
sides 

2D, NC, steady 10− 5≤ Da≤
10, Pr = 0.01, 
7.2, 0.7, Ra =
106 

Biswal and 
Basak 
[47] 

FEM Porous Enclosure 
with concave/ 
convex sides 

2D, NC, steady 10− 5≤ Da≤
10− 2, Pr =
0.015, 7.2, Ra 
= 106  
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HT and fluid friction under different conditions. Bhardwaj and Dalal’s 
study [250] on a right-angled triangular cavity identified Egen due to 
HT as the primary irreversibility source at low Da and Ra values, with a 
notable convergence of Egen values between Egen due to HT and fluid 
friction at high Ra. Meshram et al. [251] extended this exploration to a 

square cavity, highlighting that at low Da, Egen due to HT dominates 
across cavity inclinations, while at higher Da, fluid friction becomes the 
dominant factor, revealing a sensitivity to cavity inclination at elevated 
Da values. Chandra Pal et al. [252] introduced hot circular objects in a 
porous square cavity, emphasizing the impact of Da on Egen, with a shift 
from HT dominance at lower Da to variability with Ra at higher Da. 
Dutta et al. [212] expanded the investigation to a quadrantal porous 
cavity, revealing a transition in dominant factors from HT to frictional 
Egen with increasing Da. Bhowmick et al. [253] explored NC and Egen 
in a square cavity with a hot object, observing wavelength-dependent 
variations in Egen due to HT and friction, demonstrating the nuanced 
influence of geometry and Ra. Finally, Dutta et al.’s [254] study on a 
deviated rhombic porous cavity contributed insights into the insensi
tivity of HT Egen to Da and the nuanced effect of phase shift angle on 
total Egen, thereby establishing a cohesive narrative on the intricate 
relationship between cavity geometry, Egen due to HT, and Egen due to 
fluid friction in porous media. 

Ahn et al.’s [255] examination of an annular cylindrical cavity es
tablishes the foundation by emphasizing the dominance of 
friction-induced Egen for specific Be values, particularly at low Ma 
values, a finding resonated by Nayak et al. [256] in their study of a 
hexagonal cavity with a periodic magnetic field. Al-Amir et al.’s [257] 
exploration in a Z-staggered cavity filled with a nanofluid introduces the 
influence of corrugated walls on Egen, adding complexity to the rela
tionship between Ra and Egen observed by Arshad Siddiqui et al. [258] 
in an I-shaped cavity with a magnetic ferrofluid, highlighting the sig
nificance of Ha. Hashemi-Tilehnoee et al.’s [259] examination of a cubic 
cavity with conductive spherical blocks further contributes by linking 
Egen variations to the combined effects of thermal radiation and a 
magnetic field, complementing Hamza et al.’s [260] study on Egen 
within a porous square cavity, where the imposition of a magnetic force 
highlighted Egen. Collectively, these studies underscore the intricate 
interplay between parameters such as Be, Ha, Ma, and Ra in determining 
Egen, providing a holistic understanding of engineering applications 
seeking to enhance efficiency and performance in complex systems. 

6. Conclusions 

In conclusion, it can be said that analyzing Egen inside an enclosure 
and its correlation to various factors such as system geometry, orienta
tion, flow setups, fluid properties, augmentation and alteration of fluid 
properties through the introduction of nanoparticles, external factors 
such as magnetic fields, etc. has been done extensively from the 
perspective of thermal system optimization. From the present review, it 
is very evident that there is a positive correlation between thermal 
augmentation and the enhancement of Egen. This is very fundamental as 
well as intuitive since the augmentation of heat transfer basically rep
resents the greater rate of thermal transport from the thermal source to 
the heat sink. Since such transfer is unidirectional and governed by the 
temperature gradient, a greater degree of irreversibility is associated 
with a higher rate of thermal transport. Therefore, it can be seen that 
Egen increases as Ra, Pr, Re, and Ri increase. The most fundamental way 

Table 23 
Research work on other types of cavities  

References Tools Domain Flow details Constants 

Rahimi 
et al. 
[237] 

LBM H-shaped 
enclosure 

2D, laminar, NC, 
steady, SiO2-TiO2/ 
H2O-EG hybrid 
nanofluid, 
Newtonian, 
incompressible 

0.5%≤ χ ≤
3%, 103≤ Ra≤
106 

Li et al. 
[238] 

CV-FEM Wavy 
porous tank 

2D, Fe3O4-H2O 
nanoliquid, MHD, 
laminar, steady 

103≤ Ra≤ 105, 
Ha=1, 40, 
Da=0.01, 100, 
χ=0.04 

Seyyedi 
et al. 
[239] 

CV- 
FEM, 
FVM, 
SIMPLE 

Quarter- 
annulus 
enclosure 

2D, MHD, NC, 
steady, laminar 

103≤ Ra≤ 105, 
0≤ φ ≤ 90, 
0≤ Ha≤ 20 

Sachica 
et al. 
[240] 

CVM Plus-shaped 
enclosure 

MHD, MC, 2D, 
Al2O3-H2O 
nanofluid, unsteady, 
Newtonian, 
incompressible 

0≤ Ha≤ 10, 
-1≤ Ri≤ 5, 
0≤ χ ≤ 0.2, 
300≤ Re≤
700, Pr=7.0 

Seyyedi 
[241] 

CV-FEM Cardioid 
shaped 
enclosure 
inside 
cylinder 

2D, NC, Cu-H2O 
nanofluid, steady 

103≤ Ra≤ 105, 
0≤ Ha≤ 15, 
m=3, 0.01≤
Da≤ 100, 
χ=0.04, Pr =
6.2 

Tayebi et al. 
[242] 

FVM Annular 
elliptical 
enclosure 

2D, NC, steady, Cu- 
Al2O3-H2O hybrid 
nanoliquid 

Pr = 6.2, 103≤

Ra≤ 2 × 105, 
-5≤ q≤ 5, 
0%≤ χ ≤ 9% 

Zhang et al. 
[243] 

FVM, 
SIMPLE 

Inclined 
enclosure 

2D, steady, NC, 
laminar, Al2O3-H2O 
nanofluid, 
incompressible, 
Newtonian 

0%≤ χ ≤
6%,0≤ Rd≤ 2, 
103≤ Ra≤ 105, 
0≤ Ha≤ 40, 
0.3≤ A≤ 0.7 

Ahmed 
et al. [38] 

FEM Porous 
prismatic 
enclosures 

2D, PCM, unsteady 0≤ Rd≤ 5, 
0≤ φ ≤ 90, 
0%≤ χ ≤ 5%, 
Da=10− 3 

Chammam 
et al. 
[244] 

FEM Complex 
shaped 
enclosure 

2D, MHD, NC, 
Fe3O4-H2O 
nanoliquid, steady 

0.1≤ A≤
0.3,103≤ Ra≤
105, Ha = 0, 
20, χ = 0.02, 
0≤ Rd≤ 0.3 

Dogonchi 
et al. 
[245] 

FEM Crown wavy 
enclosure 

2D, NC, steady, 
Al2O3-H2O 
nanoliquid 

103≤ Ra≤ 105, 
0≤ Ha≤ 20, 
10− 3≤ Da≤
10− 1, 0.1≤
Rd≤ 0.3, 0≤ φ 
≤ 90, 0.01≤ χ 
≤ 0.04 

Dogonchi 
et al. 
[246] 

FEM Porous 
enclosure 
with two 
square 
cylinders 

2D, Fe3O4-H2O 
nanoliquid, MHD, 
NC, steady 

103≤ Ra≤ 105, 
0≤ Ha≤ 40, 
0.3≤ A≤ 0.5, 
0.01≤ Da≤
100, χ=0.02, 
m=3, 4.8, 5.7 

Dogonchi 
et al. 
[247] 

FEM Wavy 
porous 
enclosure 
with three 
circular 
cylinders 

2D, MHD, NC, 
steady, Cu-Al2O3- 
H2O hybrid 
nanoliquid 

103≤ Ra≤ 105, 
0≤ Ha≤ 40, 
m=5.7, 0.01≤
Da≤ 102, χ =
0.02 

Tayebi et al. 
[248] 

FEM Annular 
enclosure 
with fins 

2D, MHD, NC, 
Al2O3-H2O 
nanoliquid, steady 

103≤ Ra≤ 105, 
0≤ Ha≤ 40, 
1%≤ χ ≤ 4%, 
0.05≤ A≤
0.15  

Table 24 
Research work on mixed-type cavities  

References Tools Domain Flow details Constants 

Das and 
Basak 
[52] 

FEM Square & 
triangular 
cavities 

2D, steady, NC, 
Newtonian, laminar, 
incompressible 

Pr = 0.015, 
7.2, 103≤

Ra≤ 105 

Das et al. 
[53] 

FEM Square & 
triangular 
cavities 

2D, steady, NC, 
Newtonian, laminar, 
incompressible 

Pr = 0.015, 
7.2, 103≤

Ra≤ 105 

Khan et al. 
[249] 

LBM Square & 
rectangular 
cavities 

2D, FC, MWCNT- 
Fe3O4-H2O hybrid 
nanofluid, 
incompressible, steady 

0.5≤ A≤ 2, 
103≤ Ra≤
105, 0≤ χ ≤
0.01  
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to look at this topic is to analyze the increment of Egen in light of Nu 
augmentation. All the factors that contribute to the increase in Nu also 
contribute to the enhancement of local and overall Egen. Therefore, with 
the increase in nanofluid concentration at the initial stage, Egen also 
increases. The same thing is observed in the case of porous media. As Da 
increases, Nu decreases, and therefore, Egen decreases. 

Other than the thermal gradient, there are many other factors that 
also contribute to Egen in varying ways. One of the most important 
factors among them is the frictional characteristic, which is the me
chanical equivalent of thermal irreversibility. Therefore, any compli
cated geometry that contributes to the formation of eddies, an adverse 
pressure gradient, a sudden change in flow direction, or an obstacle to 
normal flow behavior experiences greater local and average Egen, which 
is very evident from the present review. Thus, in this review article, it is 
observed that the rate of Egen is higher when there is a rotating cylinder 
inside the enclosure since the rotating cylinder experiences greater flow 
drag as it rotates. As a result, the higher the rotational speed, the greater 
the Egen. The same conclusion can be drawn for other types of moving 
boundaries as well. Due to similar reasoning, fluids with higher viscosity 
also experience greater Egen. This is because, as the viscosity increases, 
the drag force and fluid friction will also increase. Therefore, the system 
undergoes greater Egen. As presented in the non-dimensional form, Pr is 
higher for higher viscosity fluids, and therefore, fluids with a higher Pr 
have higher Egen. 

The thermal gradient and frictional behavior are the internal char
acteristics of any thermal system. One of the most crucial external fac
tors is the external magnetic field. With the application of the external 
magnetic field, the charged particles, nanoparticles, and dipoles present 
in the fluid try to align themselves with the magnetic field line. There
fore, the convection current is suppressed, which reduces the irrevers
ibility associated with the flow. Thus, Egen decreases. Since Ha 
represents the magnetic field strength in its non-dimensional form, the 
higher Ha, the lower the Egen. Through the analysis of such internal and 
external factors, the present article lays the foundation for future 
research directions. To make it more comprehensive, the present article 
discusses the spatial and temporal orientation of the flow system, 
different dimensional and non-dimensional parameters, different 
methods and algorithms to solve the problems numerically, and the type 
of meshing to reach an optimum solution with reasonable accuracy. 
Such a comprehensive review and its meticulous categorization 
contribute to its novelty and possess great potential for future research 
endeavors. 

7. Limitations and Future Research 

In this review, more than 200 peer-reviewed articles on entropy 
generation and its analysis in various enclosures with diverse geome
tries, fluids, and boundary conditions are summarized. The field of en
tropy generation in enclosures has been extensively studied from the 
perspectives of thermodynamics, fluid mechanics, and heat transfer. 
While these studies have provided a thorough understanding of the 
latest advancements and findings in this area of study, some limitations 
remain. Here are some potential limitations.  

• A primary limitation of these studies is their reliance on the square 
enclosure as a representative model for practical thermofluid sys
tems in mathematical modeling. The walls of these enclosures are 
assumed to be smooth and made of homogeneous material, with 
completely rigid surfaces. However, these assumptions neglect 
various physical and geometric factors, such as surface roughness, 
non-homogeneous surface materials, and surface compressibility, 
which can compromise the model’s accuracy. These factors can 
contribute to irreversibility in the system and significantly impact 
entropy generation characteristics.  

• The simple mathematical model may not capture all the complex 
features of the system. Hence, both the qualitative and quantitative 

analyses may be questioned concerning their generalizability and the 
applicability of their findings to practical purposes.  

• Conventionally, the fluid in the enclosure is assumed to have uniform 
thermophysical properties, and in most cases, it is also assumed to be 
incompressible. Furthermore, boundary conditions are often 
assumed to be ideal, such as perfectly insulated walls and uniform 
thermal diffusivity of the wall. These assumptions may introduce 
uncertainties in the quantification of entropy generation.  

• Simulating a thermofluid system for entropy generation analysis 
involves a complex interplay between multiple independent vari
ables. Uncertainty in each variable may not have the same effect on 
the final outcome, with some having a negligible impact and others 
significantly influencing the final quantification of entropy genera
tion. To enhance confidence in the numerical analysis results, it is 
crucial to quantify the uncertainties. This involves evaluating the 
thermal system while considering uncertainties in each independent 
variable, including initial conditions, thermophysical properties of 
the system, etc., and observing how the outcome changes accord
ingly. However, this aspect of numerical analysis has been widely 
neglected in existing research.  

• Most of the reviewed articles assume a single boundary condition on 
each wall. However, in practical cases, a boundary may have mul
tiple conditions, including convection and radiation. Although 
accurately specifying such boundary conditions is challenging, most 
existing literature assumes that a single boundary assumes only one 
type of boundary condition. However, experimental and computa
tional analyses have shown that this assumption is not always veri
fied. This is significant since both analyses demonstrate that in such 
cases, radiation plays a crucial role in the thermal stratification of the 
system, which can affect entropy generation.  

• Entropy generation is typically quantified using formulas derived for 
a system in thermodynamic equilibrium. However, for transient 
analysis, this assumption does not hold true. Hence, idealistic for
mulas may not capture the non-equilibrium characteristics of the 
system, leading to inaccuracies in the results.  

• Entropy generation is the combined result of various thermophysical 
mechanisms, including heat transfer, fluid friction, turbulence, etc. 
Some studies neglect certain entropy generation mechanisms, 
assuming that the neglected mechanism will not significantly affect 
the final results. However, little to no effort is made in these articles 
to justify their reasoning for such simplifications. Consequently, 
these simplifications can lead to an incomplete assessment of overall 
entropy generation, resulting in a flawed understanding of the 
physical processes governing entropy generation in cavities. 

Although significant progress has been made in characterizing en
tropy generation in closed conduits, future studies must consider certain 
limitations. These limitations include the use of inappropriate and 
simplistic geometries and assumptions, a lack of experimental valida
tion, a sensitivity to uncertainty in independent variables, and the 
complexity of entropy generation analysis. Overcoming these limita
tions can improve the accuracy of the analysis and the dependability of 
the results, leading to a deeper understanding of entropy generation in 
enclosure research. 
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Appendix 

Non-dimensional Parameters and their Physical Significance 

Stefan number (Ste): 
The Stefan number quantifies the relationship between the transfer rates of sensible heat and latent heat. In practical terms, it finds significance in 

characterizing phase change phenomena, notably during processes like melting and freezing [261]. 

Ste =
Sensible Heat
Latent Heat

=
CpΔT

Hfs  

where Cp is the specific heat, ΔT is the temperature difference between phases, and Hfs is the latent heat of fusion. 
Schmidt number (Sc): 
The Schmidt number expresses the relationship between kinematic viscosity (momentum diffusivity) and mass diffusivity. In a broader context, Sc 

provides insight into the comparative importance of momentum and mass transport within a system. This parameter holds particular relevance when 
dealing with processes involving both mass and momentum transfer simultaneously, such as convection and boundary layer flows [262]. 

Sc =
Viscous Diffusion Rate
Mass Diffusion Rate

=
ν
D  

where, ν is the kinematic viscosity, and D is the mass diffusivity. 
Sherwood number (Sh): 
The Sherwood number represents the relationship between the rate of convective mass transfer and the rate of diffusive mass transfer. Its sig

nificance lies in measuring how effectively mass is transferred through convection compared to pure diffusion. This parameter serves as an indicator of 
the efficiency of convective mass transfer processes in a range of applications, such as heat exchangers, reactors, and biological systems [263]. 

Sh =
Convective Mass Transfer

Mass Diffusion rate
=

KmLc

D  

where Km is convective mass transfer rate, D is the mass diffusivity, and Lc is characteristic length. 
Reynolds number (Re): 
Reynolds number is the ratio of inertial forces to viscous forces within a fluid. Its practical importance lies in its ability to determine whether a fluid 

flow exhibits laminar or turbulent behavior. In various engineering and scientific applications, Reynolds number emerges as a critical parameter, 
providing valuable insights into the dynamics of fluid behavior [262]. 

Re =
Intertia Force
Viscous Force

=
ρuLc

μ  

where, u,ρ, andμ is respectively the velocity, density, and dynamic viscosity of the fluid, Lc is characteristic length. 
Peclet number (Pe): 
The Peclet number, characterized as the ratio between the rate of advection (convective transport) and the rate of diffusion, holds importance in 

discerning the relative influence of convection and diffusion in a given process. Its utility extends to predicting the prevailing mode of heat or mass 
transfer within a system [262]. 

Pe =
Advective Transport Rate

Mass Diffusion Rate
=

uLc

D  

where u is the characteristic velocity of the fluid, Lc is a characteristic length scale, and D is the diffusion coefficient of the substance being transported. 
Marangoni number (Ma): 
The Marangoni number (Ma) is the dimensionless ratio of interfacial tension gradients to viscous forces. Its physical significance lies in delineating 

the driving force behind Marangoni convection-a phenomenon where fluid movement is triggered by fluctuations in surface tension. This parameter 
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plays a crucial role in numerous applications, including thin-film coating, crystal growth, and microfluidics [262]. 

Ma =
Surface Tension Force

Viscous Force
=

ΔσLc

σμ  

where Δσ represents the gradient of interfacial tension, Lc is a characteristic length scale, μ is the dynamic viscosity of the fluid, and σ is the surface 
tension. 

Knudsen number (Kn): 
The Knudsen number (Kn) is the dimensionless ratio of a gas molecule’s mean free path to a characteristic length scale. Its practical importance lies 

in gauging the impact of rarefaction effects in gas flow, helping to discern whether the flow is situated in the continuum regime or the rarefied regime 
[262]. 

Kn =
Molecular Mean Free Path

Representative Physical Length
=

λ
L  

where λ is the molecular mean free path, and L is a characteristic length scale. 
Hartmann number (Ha): 
The Hartmann number, represented by Ha, gauges the interplay between electromagnetic and viscous forces within a moving electrically 

conductive fluid. This dimensionless parameter holds notable importance in magnetohydrodynamics (MHD) applications like liquid metal cooling and 
magnetic levitation, delineating the effects of an external magnetic field on fluid behavior [264]. 

Ha =
Electromagnetic Force

Viscous Force in Magneto − Hydrodyamics
= B

̅̅̅̅̅̅σμ
ρν

√

where, B is the strength of the applied magnetic field, σ is the electrical conductivity of the fluid, μ is the magnetic permeability of the fluid, ρ is the 
density of the fluid, ν is the kinematic viscosity of the fluid. 

Rayleigh number (Ra): 
The Rayleigh number (Ra) assesses the balance between buoyancy and viscous forces within a fluid. Its practical importance lies in predicting the 

occurrence of natural convection driven by density fluctuations in the fluid. Ra is a crucial parameter for understanding heat transfer processes in a 
range of systems, including thermal plumes, natural convection in enclosures, and the design of heat exchangers [265]. 

Ra =
Buyoancy Force
Viscous Force

=
gβΔTL3

να  

where g is the acceleration due to gravity, β is the coefficient of volume expansion, ΔT is the temperature difference across the fluid, L is a characteristic 
length scale, ν is the kinematic viscosity of the fluid, and α is the thermal diffusivity of the fluid. 

Prandtl number (Pr): 
The Prandtl number signifies the ratio of momentum diffusivity to thermal diffusivity within a fluid. In practical terms, Pr elucidates how mo

mentum and thermal diffusion rates compare in a fluid [262]. 

Pr =
Momentum Diffusivity

Thermal Diffusivity
=

ν
α  

where ν is the kinematic viscosity of the fluid, α is the thermal diffusivity of the fluid. 
Darcy number (Da): 
The Darcy number (Da) represents the relationship between the permeability of a porous medium and the square of the characteristic length scale. 

In a practical context, Da serves as a measure of the resistance encountered by fluid flow in a porous medium. Its utility extends to the examination of 
fluid flow in various porous media scenarios, including applications such as filtration, groundwater flow, and petroleum reservoir engineering [266]. 

Da =
K
L2  

where K is the permeability of the medium, L is the length. 
Lewis number (Le): 
The Lewis number (Le) denotes the relationship between thermal diffusivity and mass diffusivity. In a practical context, Le provides a measure of 

the relative rates at which heat and mass are transported within a system. This parameter holds significance across various applications, such as 
combustion, evaporation, and drying processes [262]. 

Le =
α
D  

where α is the thermal diffusivity of the fluid, and D is the mass diffusivity of the fluid. 
Eckert number (Ec): 
The Eckert number (Ec) represents the ratio of a fluid’s kinetic energy to the enthalpy difference. In a practical context, Ec serves as a measure of the 

importance of viscous dissipation in a flow. Its relevance is particularly pronounced in high-speed flows, where it plays a crucial role in determining 
the temperature increase due to friction [262]. 
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Ec =
Kinetic energy

Enthalpy Difference
=

κE
(
Cp ΔT

)

where κE is the kinetic energy, Cp is the specific heat at constant pressure, ΔT is the temperature difference. 
Soret number (Sr): 
The Soret number, denoted as Sr, expresses the proportion of the thermos-diffusion coefficient to the mass diffusivity. The Soret number specif

ically refers to the phenomenon of thermophoresis, where a component in a mixture migrates due to a temperature gradient [267]. 

Sr =
Thermal Diffusivity

Mass Diffusivity
=

α
D  

where α is the thermal diffusivity, and D is the mass diffusivity. 
Dufour number (Du): 
The Dufour number (Du) is defined as the ratio of thermal diffusion flux to mass diffusion flux. Du characterizes the heat diffusion arising from 

concentration gradients, playing a crucial role in diverse applications such as combustion, drying, and gas separation processes [267]. 

Du =
DT

D  

where DT is the thermal diffusion coefficient, D is the mass diffusion coefficient. 
Bingham number (Bn): 
The Bingham number quantifies the ratio between a fluid’s yield stress and its viscous stress. Its physical significance lies in describing the non- 

Newtonian behavior exhibited by Bingham plastic fluids. Essentially, it serves as a determinant to ascertain whether the fluid will undergo flow or 
maintain a stationary state in the presence of a given shear stress [268]. 

Bn =
τoLc

μu  

where, τ0 is the yield stress, Lc is the characteristic length, μ is the dynamic viscosity, and uis the velocity of the fluid. 
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