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Abstract

In recent decades, the development of autonomous navigation systems for mobile robots

has been a key area of research. Among the solutions gaining prominence, the Monoc-

ular Visual-Inertial Navigation System (VINS) stands out for its compact size, cost-

effectiveness, and robustness, addressing challenges in this domain.

Achieving optimal performance within resource constraints requires a delicate balance be-

tween computational efficiency and estimation accuracy. Choosing a Visual-Inertial SLAM

(VI-SLAM) approach for VINS holds substantial significance, encompassing two primary

categories: filtering-based methods and optimization-based methods. These methods offer

versatile strategies tailored to specific application needs and resource constraints.

In this thesis, Compressed-MSCKF (Comp-MSCKF) is introduced as a filtering-based

approach. This method effectively incorporates loop closure constraints for long-term

navigation based on MSCKF. It achieves this by partitioning the extensive map into local

and global maps, ensuring that the global map is updated whenever the local boundary

changes. This approach leads to updates limited to O
(
N2

L

)
, where NL represents the size

of the local map—typically smaller than the total number of states N .

To further enhance system accuracy and robustness, a novel optimization-based method

called Parallax Visual-Inertial SLAM (PVI-SLAM) is then proposed. This approach lever-

ages the parallax angle for feature parametrization, combining feature observations and

preintegrated inertial measurement unit (IMU) data to formulate a nonlinear least squares

https://www.linkedin.com/in/hughbyun/
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problem. By doing so, it adeptly avoids singularity issues linked to problematic features,

enabling PVI-SLAM to outperform VI-SLAM methods using XYZ parametrization. In-

corporating Gaussian Process (GP)-based preintegration and using the observation ray

as an objective function contribute to additional performance improvements. These en-

hancements not only address challenges posed by traditional methods but also elevate

PVI-SLAM, bestowing it with superior robustness and accuracy.

However, the high-dimensional nonlinear optimization problem does not always ensure

convergence, and even when it does, reaching the global minimum is not guaranteed.

Additionally, it poses a significant computational burden, especially in large-scale scenarios

with a very large number of poses. To tackle these challenges, a linear submap joining

method using the Linear SLAM framework is proposed. In this approach, local submaps

are constructed using the PVI-SLAM method, seamlessly joined through a combination

of linear least squares and nonlinear coordinate transformations. This technique aims to

enhance computational efficiency and overall system robustness, making it well-suited for

challenging and resource-intensive scenarios.

A comprehensive series of quantitative analyses was conducted on a range of challenging

datasets, validating the effectiveness of the proposed VI-SLAM algorithms.
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Chapter 1

Introduction

1.1 Background

In the contemporary landscape, the significance of robotics has become increasingly unde-

niable, assuming a pivotal role in our daily lives. Notably, mobile robots have emerged as

a burgeoning and versatile field of research, holding immense promise for advancing our

society, both socially and economically. These robots, encompassing aerial, terrestrial, and

underwater varieties, are being harnessed to replace humans across a spectrum of applica-

tions, including but not limited to service, surveillance, planetary exploration, patrolling,

emergency rescue, and reconnaissance.

Mobile robots have gained widespread recognition due to their practicality, maneuverabil-

ity, and agility, making them essential in both military and civilian operations for carrying

out a wide variety of tasks. These robots typically receive predefined mission plans from

ground control stations, relying on Global Positioning System (GPS) for accurate localiza-

tion. However, challenges arise in environments with high levels of interference, potentially

compromising the reliability of GPS, leading to localization inaccuracies. Such inaccura-

cies pose safety concerns during the execution of critical missions, highlighting the need

for robust solutions in navigating complex and cluttered environments.

To overcome this challenge, there has been an increased research focus on the development

of autonomous navigation systems over the past few decades. The primary objective of an

autonomous navigation system is to enable robots to navigate independently in environ-

ments where they lack prior knowledge, determining the optimal path. To achieve this, the

Simultaneous Localization And Mapping (SLAM) was introduced, allowing mobile robots

1
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to perceive unknown environments in real-time, construct maps, and simultaneously esti-

mate their own positions based on sensor data.

Numerous SLAM systems have been developed, employing a variety of sensors, including

cameras, Inertial Measurement Units (IMU), Light Detection And Ranging (LIDAR),

Sound Navigation And Ranging (SONAR), and more. Recognizing the inherent limitations

of individual sensors, such as the level of uncertainty in the observations, the field has

embraced the adoption of multi-sensor fusion algorithms to enhance the overall accuracy

and reliability of these systems.

In the context of addressing the challenges faced by mobile robots, the Visual-Inertial

Navigation System (VINS) has emerged as a fundamental solution, capitalizing on the

complementary nature of its components. The ability of the visual sensor to detect and

track numerous features enriches the data with image-based information, which can then

be used to improve the state estimation accuracy significantly. Simultaneously, the IMU

plays a crucial role in bridging gaps and compensating for errors, particularly during

instances where visual tracking encounters difficulties.

1.2 Visual-Inertial Navigation System

The central concept of VINS is sensor fusion, where data from both visual and inertial

sensors are combined to provide accurate estimations of the device’s motion and pose. The

complementary nature of these two sensor types enhances the accuracy and robustness of

the system.

1.2.1 Visual Sensor

Referring to the visual sensor, the VINS utilizes a camera for capturing image frames. In

the process of estimating the motion or structure of the scene within VINS, information

from these captured image frames can be extracted using two primary methods.

The first method is the direct approach, which bypasses the extraction of distinct features

and instead directly utilizes entire pixel-intensity information from images. This approach,

exemplified by methods like Dense Tracking and Mapping (DTAM) [15], leverages all

available pixel data in each frame, thereby enhancing accuracy and robustness, particularly

in featureless environments. However, processing all pixel intensities in each frame can

be computationally expensive. To address this computational challenge, sparse mapping
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techniques have been developed. These techniques focus on selected sparse sets of pixels

within the image frame, particularly those associated with high-gradient regions of the

scene [16]. Additionally, the selection of specific frames within these high-gradient regions

is implemented to further enhance computational efficiency [17].

The second method is the indirect (feature-based) approach, which initially extracts a

set of feature observations from the image. Subsequently, it calculates the camera’s po-

sition and scene geometry based solely on these extracted observations. These observa-

tions are typically derived from points that are readily recognizable or specific line and

curve segments. This method utilizes well-known feature descriptors such as Harris [18],

Speeded-Up Robust Features (SURF) [19], Scale-Invariant Feature Transform (SIFT) [20],

Features from Accelerated Segment Test (FAST) [21], and Oriented FAST and Rotated

BRIEF (ORB) [22]. The extracted features can be tracked through various techniques,

including descriptor matching, filter-based tracking, optical flow tracking, and direct pixel

processing [4, 23, 24].

1.2.2 Inertial Measurement Unit

The IMU, an integral component equipped with accelerometers and gyroscopes, serves as

a valuable source of information, delivering crucial data pertaining to both angular rate

and acceleration. Within this sensory system, gyroscopes play a pivotal role in precisely

calculating the platform’s attitude, providing insights into its orientation with respect to

a given reference frame. Simultaneously, accelerometers contribute significantly to the

estimation of the platform’s position and velocity. Their function involves incorporating

specific forces into their calculations, thereby offering a comprehensive understanding of

the platform’s dynamic state. Synthesizing the information from both accelerometers and

gyroscopes yields a detailed and accurate 6 Degree of Freedom (DoF) description, encap-

sulating the platform’s orientation and motion concerning the desired reference frame.

Nevertheless, in VINS, utilizing raw IMU measurements at high frequencies for each time

step can impose a significant computational burden. Additionally, challenges arise due to

the noise in sensor readings, which can adversely affect position and velocity estimate ac-

curacy. To address this inherent issue, sophisticated integration techniques are employed.

These integration methods [1, 8, 25] play a critical role in managing the growth of esti-

mate errors. This helps in maintaining a reasonably high level of precision and reliability

in the resulting orientation and motion estimations, all while minimizing computational

complexity.
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1.2.3 Visual-Inertial SLAM

Visual-Inertial SLAM (VI-SLAM) stands as a major advancement in navigation systems,

marking a decisive step toward achieving better precision in VINS. The fundamental

objective of this technology is to surmount the inherent challenges of SLAM by seamlessly

integrating data from visual and inertial sensors.

Earlier methods within VI-SLAM focus on filtering-based approaches. These methods

involve a continuous update of the system’s location through the assimilation of incoming

sensor data. Renowned for their real-time performance and efficiency, these filtering-based

methods are particularly adept in scenarios demanding prompt updates. This attribute

renders them highly suitable for applications characterized by dynamic environmental

conditions or those requiring rapid adjustments to the navigation state [26].

On the other hand, the alternative approach within VI-SLAM leverages optimization-based

methods. This approach embraces nonlinear optimization techniques to refine the estima-

tion of the system’s pose and map. Despite their computational demands, optimization-

based methods stand out for achieving robust accuracy. Moreover, they offer the notable

advantage of lower memory utilization, proving beneficial for applications requiring ex-

tended operational periods [26]. This careful trade-off between computational demands

and enhanced accuracy positions optimization-based methods as valuable assets in scenar-

ios where prolonged and reliable navigation is of paramount importance.

1.2.4 Initialization

Initialization in VI-SLAM is a pivotal phase in setting up the system and its sensors to

provide an accurate starting point for the estimation of the camera or robot’s initial pose

and the initial map of the environment. Proper initialization is of paramount importance as

it significantly influences the robustness and precision of the ensuing VI-SLAM operation.

The initialization process typically commences with the meticulous calibration of the sys-

tem’s sensors, with special emphasis on the cameras and the IMU. This calibration in-

volves determining the exact relative positions and orientations of the sensors concerning

one another, ensuring the precise fusion of data from both sensor types.

Subsequently, the system needs to estimate the initial pose of the camera or robot within

the environment. This estimate is critical for providing a starting point for the SLAM
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system. Often, this involves employing techniques such as visual odometry or IMU in-

tegration. Visual odometry tracks visual features in the camera images over time, while

IMU integration utilizes data from the IMU to estimate motion. A combination of both

methods can yield a more accurate initial pose estimate.

The initialization process also entails selecting and tracking visual features in the camera

images during the initial frames. These features are then used to initialize their Three-

Dimensional (3D) positions in the map.

Scale estimation is another essential element of initialization. Since monocular cameras

cannot directly estimate scale, the inclusion of IMU data is critical to resolve the scale

ambiguity, ensuring that distances in the map are accurately represented.

The robustness of the initialization process is vital, and it should be capable of handling

various conditions, including changes in lighting, dynamic scenes, and sensor noise. This

robustness ensures that the system can effectively deal with challenging situations right

from the outset.

1.2.5 Long-term Navigation

Loop-closure is another essential process in VI-SLAM, triggered when the system detects

that the platform has returned to a previously visited location. This action is vital for

enhancing overall map accuracy through a global optimization process. Loop-closure detec-

tion can be achieved through either odometry-based geometric relationships or appearance-

based approaches. However, appearance-based methods, which assess the similarity be-

tween two different images, are often preferred over odometry-based techniques due to

concerns about cumulative errors that can accumulate throughout the trajectory [27].

The loop-closure recognition process is essential, which can be done utilizing Distributed

Bag-of-Words (DBoW) proposed by [28] to achieve a binary bag of words with Binary

Robust Independent Elementary Features (BRIEF) and FAST features. To address the

limitations of the BRIEF descriptor, which lacks rotation and scale invariance and is

primarily suited for Two-Dimensional (2D) environments, [12] proposed a method based on

DBoW and ORB that incorporates covisibility information. This innovation significantly

enhances the system’s ability to detect loop-closures in challenging environments.
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1.3 Motivation

The deployment of small-scale systems for mobile robots, even in GPS-denied environ-

ments, has been made possible by the advantages offered by VINS. This capability has

proven highly effective in addressing the unique challenges faced by these robots.

However, it is essential to acknowledge the significant computational complexity introduced

by the substantial volume of data generated by the visual-inertial sensors. Achieving a

delicate balance between computational complexity and estimation accuracy is crucial,

especially in resource-constrained systems. This equilibrium is vital for ensuring the ro-

bustness of the system, particularly in scenarios demanding real-time performance. The

development of reliable algorithms within the VI-SLAM system becomes imperative to

effectively leverage onboard sensors for safe environment mapping and accurate pose esti-

mation.

In the field of VI-SLAM, while highly efficient, conventional filtering-based methods can

pose significant processing challenges in systems characterized by high dimensionality and

high-frequency processing requirements. To overcome this, practical heuristic methods,

such as sliding windows that marginalize past information, are commonly utilized. How-

ever, these methods introduce a trade-off, as they may lead to considerable information

loss, resulting in substantial drift accumulation. The incorporation of keyframes is a strat-

egy to address certain challenges. However, treating them as static variables, even with the

continuous updating of correlation covariance, has the potential to introduce a compromise

in accuracy.

In the optimization-based method, especially within the context of this thesis, problematic

features like collinear features can lead to system divergence. In practice, heuristic methods

are often employed by discarding these features and treating them as outliers through

filtering. However, this approach can result in considerable information loss, affecting the

accuracy of the system. Additionally, directly addressing the high-dimensional nonlinear

optimization problem may lead to getting stuck in local minima.

Understanding the challenges inherent in both approaches within VI-SLAM unveils a com-

plex landscape of possibilities and trade-offs. Ongoing improvements in these methodolo-

gies are poised to transform navigation systems, aiming for a balance between computa-

tional complexity and accuracy. Mitigating these challenges holds the potential to elevate

the robustness and performance of navigation systems, particularly in the realm of mobile

robot deployments.
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1.4 Contributions

The main contributions of this thesis are:

• Utilizing the Compressed Filtering Framework to Reduce Computational

Complexity: The thesis introduces the application of the compressed filtering

framework to Multi-State Constraint Kalman Filter (MSCKF) including loop-closure.

This approach preserves key-frame poses within the state vector while effectively

managing computational complexity, achieving a complexity of O(N2
L), where NL

denotes the number of local key-frames.

• Enhanced Visual-Inertial SLAM with Parallax Bundle Adjustment: The

thesis evaluates the efficacy of parallax parametrization in VI-SLAM to address sin-

gularity issues common in VI-SLAM with Standard Bundle Adjustment (SBA). It

highlights favourable attributes such as convergence, robustness, and high accuracy.

The robustness of the Parallax Visual-Inertial SLAM (PVI-SLAM) system is signif-

icantly strengthened by leveraging the pre-integrated IMU method with Gaussian

Process (GP) and incorporating the observation ray as an objective function.

• Efficient Optimization through Linear Submap Joining utilizing PVI-

SLAM: The thesis presents Linear Submap Joining algorithms designed to tackle

high-dimensional optimization challenges in PVI-SLAM. These algorithms signifi-

cantly contribute to improving computational efficiency and reinforcing the overall

robustness of the system. Rigorous evaluations on multiple datasets underscore their

effectiveness, even in instances of suboptimal initialization.

1.5 Publications

1.5.1 Directly Related Publications

Parallax Visual-Inertial SLAM: Parallax Bundle Adjustment with IMU and

Linear Submap Joining (Byun H, Zhao L, Kim J, Huang S, The 41st IEEE

Conference on Robotics and Automation 2024, ICRA) (Under review)

• This paper first proposes a new method for VI-SLAM. It uses a parallax angle for

feature parametrization. The feature observation and the pre-integrated IMU infor-

mation are used together to formulate a Nonlinear Least Squares (NLLS) problem.
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To improve computational efficiency for large-scale problems involving a large num-

ber of poses, a linear submap joining method is proposed using the Linear SLAM

framework. Local submaps are built using PVI-SLAM, and these submaps are then

joined together through linear least squares and nonlinear coordinate transforma-

tions.

Comparison Between MATLAB Bundle Adjustment Function and Parallax

Bundle Adjustment (Byun H, Kim J, Zhao L, Huang S, The 17th International

Conference on Control, Automation, Robotics and Vision 2022, ICARCV)

• This paper evaluates two bundle adjustment techniques using SBA functions from

MATLAB and Parallax Bundle Adjustment (PBA). The two Bundle Adjustment

(BA) techniques are compared using data from the “Starry Night” and “MALAGA

Parking-6L” with different initial inputs. In most cases, the results of PBA show

better accuracy with lower final reprojection error and are less sensitive to the ini-

tialization values. Furthermore, VI-SLAM, based on PBA, has been presented.

Schmidt or Compressed filtering for Visual-Inertial SLAM? (Byun H, Kim J,

Vanegas F, Gonzalez F, Australasian Conference on Robotics and Automation,

Australasian Conference on Robotics and Automation 2021, ARAA)

• Focusing on VI-SLAM, computational complexity is a significant factor that needs to

be considered, especially with small-scale applications. However, the accuracy of the

system still needs to be ensured. Therefore, Compressed-MSCKF (Comp-MSCKF)

has been proposed to ensure both the computational cost and accuracy of the system

while Schmidt-MSCKF can yield sub-optimal performance.

Compressed Pseudo-SLAM: Pseudorange Integrated Generalised Compressed

SLAM (Kim J, Byun H, Guivant J, Johansen T, 10 Dec 2020, Australasian

Conference on Robotics and Automation, Australasian Conference on Robotics

and Automation 2020, ARAA)

• The compressed SLAM has been proposed to acquire stable computational complex

and accurate estimation by dividing the state vector into local and global to accu-

mulate the information gained from the local part and update the global part much

lower rate. It has been evaluated using the flight dataset from Unmanned Aerial Ve-

hicle (UAV) with Global Navigation Satellite System (GNSS) and the visual-inertial

sensor.
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Cascaded Nonlinear Attitude Observer and Simultaneous Localisation and

Mapping (Kim J, Bhambhani Y, Byun H, Johansen T, Australasian Confer-

ence on Robotics and Automation, Australasian Conference on Robotics and

Automation 2020, ARAA)

• This paper presented a system that integrates the nonlinear observer theory and

SLAM for aerial navigation. Using a nonlinear observer, the attitude of the platform

can be estimated and the feedback term from utilizing the pseudo-inverse of a skew-

symmetric matrix from the linear SLAM estimator increased the accuracy of the

system. A simplified Lyapunov-based stability was also implemented.

1.5.2 Partially Related Publications

Towards a Pantograph-based Interventional AUV for Under-ice Measurement

(Byun H, Kim J, Liu D, Woolfrey J, Australasian Conference on Robotics

and Automation, Australasian Conference on Robotics and Automation 2021,

ARAA)

• In this paper, the pantograph mechanism is presented with the concept design work-

ing with Autonomous Underwater Vehicles (AUVs). With the ability of the panto-

graph, it can effectively generate a constant interaction force to the surface during

the contact, which aims to perform an autonomous sampling and measurement under

the thin ice in the Antarctic environment.

Iterative Smoothing and Outlier Detection for Underwater Navigation (Hassan

S, Byun H, Kim J, Australasian Conference on Robotics and Automation,

Australasian Conference on Robotics and Automation 2021, ARAA)

• Due to the poor visibility causing significant outliers in underwater visual-inertial

navigation, outlier detection and elimination became an essential part of the system.

Existing methods show accurate outlier detection, yet, it is not valid for low-cost

applications. Therefore, iterative smoothing and outlier detection utilizing Biswas-

Mahalanabis Fixed-lag Smoother is proposed and demonstrated with the dataset

collected from the underwater robots and fiducial makers.
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1.6 Thesis Outline

This thesis is organized into six chapters, primarily focusing on presenting the technical

contributions of the research in three of these chapters. Additionally, the appendices con-

tain supplementary derivations and algorithms that complement and support the content

presented in the technical sections.

Chapter 2 is dedicated to the literature review, exploring existing research in the field

of VI-SLAM. The existing work is explored, particularly delving into two distinct classes

of methods: filtering-based and optimization-based approaches. The chapter provides

detailed insights into fundamental methodologies within each approach and also highlights

benchmark studies conducted in the domain.

Chapter 3 delves into the first contribution, Comp-MSCKF, designed to enhance ac-

curacy while maintaining moderate computational costs. The chapter elucidates the

foundational methodology behind Comp-MSCKF and underscores the conceptual ben-

efits demonstrated through the work on Compressed-Pseudo-SLAM. A detailed examina-

tion of Comp-MSCKF is provided, concluding with a comprehensive set of experiments

conducted in simulated and real-world environments to showcase the effectiveness of the

proposed algorithmic framework.

Moving on to Chapter 4, a novel method for VI-SLAM is proposed. This method utilizes

the parallax angle for feature parametrization, combining feature observations and pre-

integrated IMU information to formulate a nonlinear least squares problem. PVI-SLAM

exhibits improved convergence properties compared to traditional methods using Euclidean

XYZ as feature parametrization. To enhance system robustness in dynamic scenarios or

with challenging initial values, alternative methods in objective functions and IMU pre-

integration are integrated into the system.

Chapter 5 tackles the challenges posed by high-dimensional nonlinear optimization prob-

lems, which often lack guaranteed convergence and computational efficiency, especially in

large-scale scenarios with numerous poses. A Linear Submap Joining method leveraging

the Linear SLAM framework is proposed. The construction of local submaps is facilitated

using the PVI-SLAM approach, and these submaps are smoothly joined through a fusion

of linear least squares and nonlinear coordinate transformations. Importantly, this submap

joining algorithm eliminates the necessity for initial guesses or iterative processes, as linear

least squares problems offer closed-form solutions. Consequently, it provides results that

closely approximate full nonlinear optimization.
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Finally, in Chapter 6, a thorough summary of the contributions is provided, accompanied

by a discussion of potential future work.





Chapter 2

Review of Related Work

Over the years, Visual SLAM (V-SLAM) systems have seen substantial advancements. The

journey began with the introduction of Mono-SLAM [29], the first real-time monocular

V-SLAM system, which utilized the Extended Kalman Filter (EKF) algorithm to estimate

camera motion and 3D elements. Following Mono-SLAM, Parallel Tracking and Mapping

(PTAM) [30] emerged, splitting the V-SLAM process into separate tracking and mapping

threads to enhance computational efficiency. DTAM [15] introduced detailed mapping

through dense tracking and mapping modules, albeit with a high computational cost.

Subsequent innovations included an RGB-D camera-based method [31], tailored for cost-

effective implementations in small robots, and SLAM++ [32], which integrated semantic

information to enhance mapping accuracy. Further advancements brought Semi-direct

Visual Odometry (SVO) [33], which combined feature-based and direct methods for robust

motion estimation, and LSD-SLAM [16], specialized for large-scale map reconstruction.

ORB-SLAM [34] and its successor ORB-SLAM 2 [35] effectively utilized ORB features for

localization and mapping, though they faced challenges in texture-less environments and

with unknown scales. ORB-SLAM 3 [12] addressed these challenges by supporting various

camera types and advancing pose estimation methodologies [36].

Despite significant advancements in pure V-SLAM algorithms, challenges persist in han-

dling image blur from fast camera movements and poor illumination when relying solely

on cameras as sensors. The integration of cameras with IMUs has emerged as a key area

of research, significantly enhancing the robustness and accuracy of V-SLAM systems in

various scenarios [37].

Initially, researchers explored the loose coupling of IMU data with existing V-SLAM meth-

ods [38–40]. While this approach is relatively straightforward to implement, it suffers from

13
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error susceptibility and has not undergone extensive research [41]. The development of

hybridization filters marked a significant advancement towards “tightly coupled” visual-

inertial methods. These methods, now widely used in systems equipped with both IMUs

and cameras, offer improved performance and reliability by more effectively fusing visual

and inertial data [41].

In this chapter, the related work on VI-SLAM is introduced and categorized into two

main approaches: filtering-based and optimization-based methods. Firstly, basic filtering

methods, specifically the EKF, are explained. This is followed by an overview of related

work in the field of filtering-based approaches. Subsequently, the chapter delves into least

square problems and provides an explanation of optimization-based methods along with a

discussion of related works in this category. The structured presentation aims to provide

a comprehensive understanding of the existing literature and approaches in the domain of

VI-SLAM.

2.1 Filtering-Based Methods

2.1.1 Extended Kalman Filter SLAM

The EKF serves as a classic solution in SLAM, historically pioneering the field. It oper-

ates by estimating the state, encompassing the current robot pose, P, and environmental

feature parameters, F :

X =

[
P
F

]
=


P
f1
...

fn

 . (2.1)

Notably, EKF excludes the past robot pose from the state. The EKF continuously expands

the state vector by incorporating feature parameters as they become available, offering

insights into the uncertainty of both pose and map through the covariance matrix:

P =

[
PPP PPF

PFP PFF

]
=


PPP PPf1 · · · PPfn

Pf1P Pf1f1 · · · Pf1fn
...

...
. . .

...

PfnP Pfnf1 · · · Pfnfn

 (2.2)
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Upon receiving sensor measurements, the EKF exhibits an adaptive behavior, dynamically

refining its state and covariance matrix to mitigate uncertainty actively. In the context of

feature-based SLAM, the available information can be categorized into two types: odome-

try information, represented by the motion model, and observation information, delineated

by the observation model [42].

During the prediction phase, the EKF anticipates the subsequent state by harnessing the

motion model. This model intricately captures the expected movements of the system,

factoring in the current state and received control inputs. Simultaneously, the observa-

tion information is crucially considered during the update phase, refining the system’s

predictions by aligning them with the observed measurements.

2.1.1.1 Prediction Step

When the control input vector from the IMU is received at time k − 1, denoted as uk−1,

the generic motion model using the function f(·) can be expressed as:

Xk ← f(Xk−1,uk−1,nIk−1
). (2.3)

Given that the motion model specifically pertains to the robot pose, it is applied differently

to the pose and feature positions, resulting in distinct expressions:

Pk ← fP(Pk−1,uk−1,nIk−1
), (2.4)

Fk ← Fk−1, (2.5)

where nI represents the zero-mean Gaussian process noise from IMU measurements with

the covariance matrix Q. The prediction step of the EKF for the state and its correspond-

ing covariance is described by:

X̂k|k−1 ← f(X̂k−1|k−1,uk−1, 0), (2.6)

Pk|k−1 ← FPk−1|k−1F
⊤ +GQk−1G

⊤. (2.7)

Here, X̂k|k represents the estimate of X at time k given observations up to and including

time k. The matrices F = ∂f(X ,u,n)
∂X and G = ∂f(X ,u,n)

∂n are system Jacobians with respect

to the state vector and noise, respectively. Following the application of the motion model

to the state at time k − 1 in the prediction step (as described by Equation (2.6)), and in

accordance with Equation (2.4) and Equation (2.5), the pose and features in the prediction
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step can be expressed as:

P̂k|k−1 ← fP(P̂k−1|k−1,uk−1, 0), (2.8)

F̂k|k−1 ← F̂k−1|k−1. (2.9)

This results in sparse Jacobians:

F =

[
∂fP
∂P 0

0 I

]
, G =

[
∂fP
∂n

0

]
. (2.10)

2.1.1.2 Update Step

The subsequent phase initiates when observations from the vision sensor are received.

The generalized nonlinear camera measurement model, denoted as zk, for the EKF can be

expressed as:

zk = h(Xk) + nfk , (2.11)

where h(·) denotes the observation function, and nf represents white Gaussian noise with

covariance R. Utilizing this model, the standard EKF update unfolds through the follow-

ing steps:

ek = zk − h(X̂k|k−1), (2.12)

Sk = HPk|k−1H
⊤ +Rk, (2.13)

Kk = Pk|k−1H
⊤S−1

k , (2.14)

X̂k|k ← X̂k|k−1 +Kkek, (2.15)

Pk|k ← (I−KkH)Pk|k−1. (2.16)

Here, H = ∂h(X )
∂X represents the measurement Jacobian with respect to the state. e signifies

the measurement residual, and S stands for its covariance matrix. The state and its

covariance are updated using the Kalman gain, K, as outlined in Equation (2.15) and

Equation (2.16).

2.1.2 Filtering-based Visual-Inertial SLAM

The EKF is a widely used robust state estimation algorithm, especially in nonlinear dynam-

ics systems. However, challenges like partial observability can introduce inconsistencies in
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the EKF, potentially causing suboptimal performance and even leading to divergence or

biased estimates [43, 44].

To overcome the limitation arising from the underestimation of uncertainty associated

with the estimate, resulting in an overly confident outcome [45, 46], enhanced variants of

the EKF SLAM have been proposed. Castellanos et al. introduced the Robocentric EKF

SLAM [47]. This variant addresses linearization errors by dynamically adapting the coor-

dinate frame based on the robot’s local coordinate frame. The First Estimates Jacobian

EKF (FEJ-EKF) [45], proposed by Huang et al. computes the Jacobian within EKF using

initial available estimates. This results in an error-state system model with an observable

subspace dimension matching the underlying nonlinear SLAM system. The Observability

Constrained EKF (OC-EKF), introduced in works by Li et al. [48], Hesch et al. [49], and

Huang et al. [50], also offers enhancements in terms of consistency. The incorporation of Lie

group representation [51, 52] facilitates the introduction of the Invariant EKF (I-EKF) [53–

55]. This variant includes a geometrically adapted correction term based on an invariant

output error. This approach prevents covariance reduction in directions of the state space

where no information is available. Right Invariant Error EKF (RI-EKF) [46, 56] has been

further improved to demonstrate that the output of the filter remains invariant under any

stochastic rigid body transformation.

However, filtering methods present a computational challenge for embedded processors

in small-scale platforms. To address this, Thrun et al. proposed the Sparse Extended

Information Filters (SEIF) [57], leveraging sparsity in the information matrix. In many

large-scale systems, not all variables are interconnected, leading to a sparse covariance

matrix. SEIF exploits this sparsity to significantly reduce computational requirements.

FastSLAM [58] takes a particle filtering-based approach to represent the belief about the

robot’s pose and the map of the environment. This algorithm can leverage parallelism by

processing particles independently, enabling efficient implementation on parallel computing

platforms. An improved version was presented in [59], where the distribution relies not

only on the motion estimate but also on the most recent sensor measurement. The concept

of Compression is applied to EKF SLAM in [60]. This involves partitioning the local

and global components, thereby reducing computational complexity related only to the

number of features in the defined local map. The global part is updated only when

a new local boundary is defined. This approach has been successfully implemented in

various filtering-based approaches [2, 61, 62]. The adaptation of the Schmidt Kalman

Filter (SKF) [63] is intended to reduce computational complexity by considering certain

parameters as static [64]. These parameters are no longer updated, but their covariance
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and correlated covariance with other states are still utilized in the EKF update. Through

this method, the computational complexity becomes linear with respect to the number of

features, making it more feasible for implementation in resource-constrained environments.

In the field of VI-SLAM, researchers have successfully integrated filtering-based approaches,

showcasing notable examples such as VIO-ROVIO [65] and maplab [66]. More recently,

attention has been directed towards harnessing the capabilities of the MSCKF within the

context of VI-SLAM, as evidenced by various works [6, 64, 67, 68]. The MSCKF is an

EKF-based algorithm that strategically maintains a sliding window of camera poses in

the state vector. It uses feature observations to establish probabilistic constraints among

these poses. Unlike traditional EKF SLAM approaches, the MSCKF does not approx-

imate the feature position probability density function with a Gaussian. This unique

characteristic sets the MSCKF apart from traditional EKF SLAM methods, holding the

potential for superior performance. One key advantage of the MSCKF lies in its lin-

ear computational complexity with the number of features, contrasting with the cubic

complexity often associated with feature-based SLAM approaches. This linear complexity

enhances the computational efficiency of the MSCKF, making it particularly advantageous

in resource-constrained environments [69]. Modifications have been introduced to ensure

correct observability properties without incurring additional computational costs [69]. A

stereo version of the MSCKF has been proposed in [24].

Despite the advancements in MSCKF, a limitation in the long-term consistency of the

VI-SLAM system arises from the fact that MSCKF does not retain all past poses using

sliding windows. To enhance long-term consistency, introducing loop-closure constraints

becomes essential. However, it’s crucial to acknowledge that incorporating loop-closure

constraints may result in increased computational costs. To overcome the challenge of

long-term consistency, Schmidt-MSCKF [6] strategically incorporates keyframes of cam-

era poses in the loop-closure process, focusing on keyframes rather than adding all camera

poses. By treating keyframe state vectors as nuisance parameters, significant computa-

tional savings are achieved. This strategic approach ensures long-term consistency without

imposing excessive computational burdens. Furthermore, OpenVINS [11] introduces an

open platform online system built upon the MSCKF. This system provides a flexible and

extensible framework for the online VI-SLAM system.
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2.2 Optimization-Based Methods

2.2.1 Least Squares SLAM

In the realm of optimization-based SLAM, where achieving superior estimation results

is paramount, the method distinguishes itself by executing re-linearization at each step,

ensuring the system’s consistency. This approach involves incorporating not only the

current pose but also all past poses and observed features into the state vector. This state

vector can be represented as:

X =

[
XP

F

]
=



P1
...

Pm
f1
...

fn


. (2.17)

The dedicated framework of Least Squares in SLAM revolves around treating SLAM as

an optimization problem, seeking the optimal state vector denoted as X ∗. This optimiza-

tion task is approached as a Maximum Likelihood Estimation (MLE) problem, aiming to

minimize the negative log-likelihood of the available sensor measurements (denoted as Z)
given the state [70]:

X ∗ = argmax
X

(P (Z | X )) = argmin
X

(− log(P (Z | X ))) . (2.18)

Under the Gaussian model, Equation (2.18) is equivalent to minimizing the objective

function, J(X ),
X ∗ = argmin

X
J (X ) , (2.19)

where the comprehensive objective function consolidates the accumulated cost over all

time steps:

J(X ) =
N−1∑
i=1

C(i)imu +

N∑
i=1

C(i)cam . (2.20)
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Equation (2.19) aims to minimize the sum of squared residuals (Equation (2.20)) where

the cost functions of IMU, Cimu, and camera, Ccam, at time i can be expressed as:

C(i)imu =
∥∥∥e(i)imu

∥∥∥2
Qi

, (2.21)

C(i)cam =
∥∥∥e(i)cam

∥∥∥2
Ri

. (2.22)

This residual, e =
[
e⊤imu e⊤cam

]⊤
, represent the disparity between predicted and ob-

served measurements across all time steps. The residual at time i for the IMU, e
(i)
imu, and

vision sensors, e
(i)
cam, in VI-SLAM, utilizing the functions described in Equation (2.8) and

Equation (2.12), respectively, can be expressed as:

e
(i)
imu = Pi − fp (Pi−1,ui−1, 0) , (2.23)

e(i)cam = zi − h (Xi) . (2.24)

The One-Dimensional (1D) SLAM problem utilizes a Linear Least Squares (LLS) approach

with a closed-form solution since the functions fp(·) and h(·) are linear. In contrast, the

more complex 2D and 3D SLAM scenarios require a NLLS formulation [42].

2.2.2 Gauss-Newton Iteration and Levenberg-Marquardt Method

For the standard minimization method, the Gauss-Newton (GN) and Levenberg-Marquardt

(LM) algorithm are usually used to solve Eqaution (2.19). In the GN method, the update

to the state vector at each iteration, k, is given by:

Xk+1 = Xk +∆k, (2.25)

where ∆k is the update calculated as:

∆k = −(J⊤WJ)−1J⊤W e, (2.26)

Here, J is the Jacobian matrix, capturing the Jacobian of the residual with respect to

X evaluated at Xk, and W is the weight matrix, obtainable by inverting the covariance

matrix stacked with Qi and Ri. The corresponding covariance matrix for the optimized

state vector can then be obtained as (J⊤WJ)−1.
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The introduction of a damping parameter λ to the GN method results in the LM algorithm.

The update expression is then modified to:

∆k = −
(
J⊤WJ+ λE

)−1
J⊤W e, (2.27)

where E is the identity matrix. The inclusion of the damping term enhances the stability

of the optimization process, particularly in scenarios where the GN method may encounter

numerical challenges.

2.2.3 Gauss-Newton on Manifold

The optimization on the manifold follows the “lift-solve-retract” scheme, a well-established

methodology detailed in [71]. This systematic approach is particularly prevalent within

the framework of trust-region methods. It provides an efficient means of performing opti-

mization on manifolds, striking a balance between leveraging the advantages of Euclidean

space for optimization and ensuring the maintenance of valid solutions on the manifold.

This is crucial for respecting any inherent constraints or structures present in the problem

domain [71].

The process initiates with a “lifting” operation, wherein the optimization problem in

Eqaution (2.19) is reparametrized to operate in a tangent space associated with the current

estimate on the manifold [1]. This transformation is denoted as:

X ∗ = argmin
X∈M

J(X )

⇓

δx∗ = argmin
δx∈Rn

J (Rx(δx)) .

(2.28)

Here, Rx serves as a bijective retraction map, facilitating the mapping between an element

δx in the tangent space, Rn, and a neighbourhood around the current estimate X on

the manifold in n dimension, M [1]. This lifting operation transforms the optimization

problem from a manifold-based representation to an auxiliary Euclidean space, allowing

the application of standard optimization techniques.

Once the problem is in the lifted Euclidean space, conventional optimization techniques

like Gauss-Newton (Section 2.2.2) can be applied to minimize the cost function. The

cost function is typically near quadratic in δx around the current estimate, resulting in a
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Figure 2.1: The right Jacobian Jr establishes a connection between an additive per-
turbation δϕ in the tangent space and a multiplicative perturbation on the manifold

SO(3) [1].

quadratic approximation. The solution to this quadratic approximation provides a vector

δx∗ in the tangent space.

The final step involves “retracting” the updated estimate from the lifted space back to the

manifold using the inverse of the lifting operation. The retraction map Rx is crucial in

this step, as it maps the updated tangent space element δx back to a new estimate on the

manifold [1]:

X̂ ← Rx̂ (δx
⋆) . (2.29)

This updated estimate becomes the starting point for the subsequent iteration of the

optimization process, facilitating a coherent and effective procedure for optimization on

manifold.

2.2.4 Geometric Concepts on Manifold

The choice of rotation characterized by the Lie group known as Special Orthogonal group in

three dimensions (SO(3)) is advantageous due to its freedom from singularities; however,

it introduces certain constraints. In contrast, Lie algebra of special orthogonal group

in three dimensions (so(3)) avoids these constraints but faces challenges associated with

singularities. A strategic approach is adopted to address these issues effectively. The

dominant and nominal components are retained within SO(3), ensuring singularity-free

representation. Simultaneously, the smaller, noisy components are accommodated in so(3),

which is constraint-free and treated as a vector space. This approach provides a balanced

solution to the challenges associated with rotations in the context of state representation

[72].
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Formally, SO(3) is defined as SO(3)
.
=
{
R ∈ R3×3 : R⊤R = I, det(R) = 1

}
[25]. This

group constitutes a smooth manifold, capturing the essence of rotational transformations.

Now, consider the tangent space to this manifold, so(3). It coincides with the set of 3× 3

skew-symmetric matrices. These skew-symmetric matrices find expression as vectors in

R3 through the ∧ operator:

ϕ∧ =


ϕ1

ϕ2

ϕ3


∧

=


0 −ϕ3 ϕ2

ϕ3 0 −ϕ1
−ϕ2 ϕ1 0

 ∈ so(3). (2.30)

Here, ϕ represents a 3-by-1 axis-angle vector. A noteworthy property of skew-symmetric

matrices, crucial in this context, is given by:

a∧b = −b∧a, ∀a, b ∈ R3. (2.31)

The exponential map so(3) to SO(3) is a fundamental concept in rotational transformations

and is defined by:

exp
(
ϕ∧) = I +

sin(∥ϕ∥)
∥ϕ∥

ϕ∧ +
1− cos(∥ϕ∥)
∥ϕ∥2

(
ϕ∧)2 . (2.32)

This operation maps a skew-symmetric matrix to a rotation matrix. Conversely, the

logarithm map associates a matrix R with a skew-symmetric matrix:

log(R) =
φ ·
(
R−R⊤)

2 sin(φ)
, (2.33)

where the rotation angle, φ, is determined by φ = cos−1
(
tr(R)−1

2

)
. In another form, the

logarithm map can be expressed as log(R) = c∧φ, where c represents the rotation axis.

When R is equal to the identity matrix, the rotation angle φ becomes 0, and the rotation

axis c cannot be defined [73]. In such scenarios, the choice of a rotation axis is arbitrary

due to the absence of rotation [1].

Several key properties of the exponential map are:

exp
(
ϕ∧) ≈ I + ϕ∧, (2.34)

exp
(
ϕ∧)−1

= exp
(
−ϕ∧) , (2.35)

R exp(ϕ∧)R⊤ = exp

((
Rϕ∧R⊤

)∧)
= exp

(
(Rϕ))∧

)
, (2.36)
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exp(ϕ∧)R = R exp

((
R⊤ϕ

)∧)
. (2.37)

Additionally, first-order approximations for the exponential and logarithm with additive

perturbation, δϕ, can be derived:

exp
(
(ϕ+ δϕ)∧

)
≈ exp(ϕ∧) exp

(
(Jr(ϕ)δϕ)

∧) , (2.38)

log(exp(ϕ∧) exp(δϕ∧)) ≈ ϕ+ J−1
r (ϕ)δϕ. (2.39)

As can be seen in Figure 2.1, the right Jacobian of SO(3), Jr(ϕ) connects δϕ in the

tangent space to a multiplicative perturbation on the manifold SO(3) [1]. It’s essential to

emphasize that both Jr(ϕ) and its inverse J−1
r (ϕ) become to the identity matrix when

∥ϕ∥ = 0.

Jr(ϕ) = I − 1− cos(∥ϕ∥)
∥ϕ∥2

ϕ∧ +
∥ϕ∥ − sin(∥ϕ∥)

∥ϕ3∥
(
ϕ∧)2 . (2.40)

The inverse of the right Jacobian is

J−1
r (ϕ) = I +

1

2
ϕ∧ +

(
1

∥ϕ∥2
+

1 + cos(∥ϕ∥)
2∥ϕ∥ sin(∥ϕ∥)

)(
ϕ∧)2 . (2.41)

For notational convenience, Exp and Log are adopted from [1]:

Exp : R3 → SO(3) ; ϕ 7→ exp
(
ϕ∧) ,

Log : SO(3)→ R3 ; R 7→ log(R)∨.
(2.42)

2.2.5 Optimization-based Visual-Inertial SLAM

In the domain of SLAM, the computational complexity presents a notable challenge, es-

pecially in optimization-based methodologies. An effort to tackle these computational

challenges can be found in the work of Ranganathan et al. [74] and Sibley et al. [75],

which introduces fixed-lag smoothing approaches. This processes sensor measurements

and refines the estimated state exclusively within a predetermined fixed-lag time window.

To manage computational complexity, fixed-lag smoothing employs the marginalization of

older states and measurements located outside the fixed-lag window. While this strategy

helps control computational costs, it introduces a potential drawback—loss of sparsity in

the information matrix [76]. Sparse representations can enhance the stability and numer-

ical properties of optimization algorithms. Dense matrices may result in ill-conditioned

problems, posing challenges for optimization algorithms to converge reliably. Dong-Si et

al. [77] introduced a modification to the algorithm’s linearization process with the specific
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aim of preventing the introduction of information along directions in the state space where

no actual information is provided by the measurements.

Taking a different approach, iSAM [78] and its enhanced version, iSAM2 [79], employ

incremental processing of sensor measurements, dynamically refining the state estimate as

fresh data unfolds. These algorithms adopt a factor graph framework, offering a graphical

depiction that captures the intricate relationships among variables and the constraints

imposed by sensor measurements. To achieve efficient incremental updates, iSAM and

iSAM2 employ Givens rotations, an orthogonal transformation technique. This approach

allows for the incremental enhancement of QR decomposition and Cholesky factorization

without necessitating a complete recomputation, optimizing the computational efficiency

of the algorithms. However, it is acknowledged that this method may face challenges

related to accuracy, particularly with the accumulation of linearization errors in scenarios

involving frequent loop-closures [76].

Klein et al. introduced PTAM [30], a system employing a keyframe-based strategy for envi-

ronmental mapping. This approach selectively chooses keyframes and calculates a 3D map

for this subset at a reduced frame rate, discarding non-keyframes to streamline the pro-

cess [76]. Unlike approaches that discard information from non-keyframes, C-KLAM [76]

maximizes the use of this data. It leverages most of the information to establish consis-

tent pose constraints between keyframes while preserving the sparsity of the information

matrix.

Despite the efficacy of keyframes in SLAM, challenges emerge as the trajectory expands,

primarily stemming from the increased size of the state vector. This growth in com-

putational complexity raises concerns about the system’s robustness, particularly when

confronted with high-dimensional nonlinear optimization. To address these issues, vari-

ous research endeavours within the realm of SLAM have strategically tackled the balance

between computational efficiency and system resilience [80–84]. A notable contribution in

this context is the Linear SLAM framework proposed by Zhao et al. [85]. Unlike methods

that require initial guesses or iterations, this framework leverages closed-form solutions

for linear least squares problems, enhancing computational efficiency while maintaining

accuracy in the optimization process.

In the realm of VI-SLAM, there is a growing emphasis on nonlinear optimization tech-

niques driven by the advancements in computer technology. These techniques are known

to offer higher accuracy when compared to traditional filtering-based methods. Many re-

searchers have adopted the above-mentioned techniques to manage computational costs
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effectively. OKVIS [86] introduces an optimization-based approach centered around a

keyframe-based framework. This method optimally integrates inertial and reprojection

errors while marginalizing past poses. VINS-Fusion [10], on the other hand, adopts a

graph-based approach, implementing local window optimization with loop-closure to en-

hance performance. It employs a 4-DoF pose graph optimization technique to ensure

global consistency. Balancing accuracy and computational complexity, optimization-based

VI-SLAM often leads to keyframe-based systems like ORB-SLAM3 [12], which uses ORB

descriptors for feature matching and operates with three parallel threads: tracking, local

mapping, and loop closing.

In the specific context of IMU, Lupton et al. [25] pioneered the pre-integration method.

This approach aims to mitigate the issue of repeated constraints arising from the parametriza-

tion of relative motion integration, ultimately reducing computational complexity in VI-SLAM.

Forster et al. [1] modified the pre-integration method, offering a more formal treatment

of rotation noise. This modification is crucial for addressing the manifold structure of the

SO(3), providing a more accurate representation of rotational dynamics. Additionally, Le

Gentil et al. introduced a novel pre-integration method known as Unified Gaussian Prein-

tegrated Measurement (UGPM) [8], addressing the challenge of continuous pre-integration

over Special Euclidean group in three dimensions (SE(3)) using GP. The incorporation

of GP models enables accurate pre-integrated measurements, thereby enhancing accuracy,

particularly in dynamic motion scenarios.

In modern VI-SLAM [11], [86], [10], [12], [87], the BA algorithm plays a pivotal role as the

central back-end process. BA typically involves representing feature locations using Eu-

clidean XYZ coordinates. An alternative method is to parametrize feature positions using

the inverse-depth method, as elaborated in [88]. However, both XYZ parametrizations and

Inverse Depth Parametrization (IDP) exhibit limitations, particularly in scenarios where

camera motion aligns with the feature’s direction or when the feature is at a considerable

distance, resulting in a zero parallax angle. To address these challenges, [89] introduced

the parallax parametrization, which incorporates the parallax angle directly into the state

vector. This approach has demonstrated superior performance in terms of accuracy, effi-

ciency, and convergence compared to traditional methods. The parallax parametrization

proves particularly advantageous in scenarios where standard parametrizations may face

limitations, highlighting its significance in advancing the capabilities of VI-SLAM sys-

tems.
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Compressed Visual-Inertial SLAM

To ensure the efficiency of monocular VI-SLAM within resource-constrained environments,

it is essential to balance computational cost and estimation accuracy, thereby ensuring

robust and reliable performance. This chapter is centered on filtering-based methodology,

commencing with strategies to manage computational complexity without compromising

accuracy. As a result, Comp-MSCKF, a novel approach incorporating loop-closure,

is introduced. This entails defining the system state in a compressed manner based on

MSCKF principles. The compression methodology is detailed for both the propagation

and update steps. The study incorporates an analysis of the convergence of uncertainty in

key-frame states, evaluated using a MATLAB simulator. Furthermore, the performance

of the proposed system is assessed with real-world datasets, showcasing superior accuracy

with reasonable computational demands. Overall, these considerations typically result in

a computational complexity of O(N2
L), where NL denotes the number of local key-frames,

while maintaining the incorporation of loop-closure into the system.

3.1 Reducing Computational Complexity in SLAM: Com-

pressed SLAM and MSCKF

As mentioned in Section 2.1, filtering-based SLAM solutions play a pivotal role in estimat-

ing the state, which includes both the agent’s current pose and the environmental feature

parameters encountered during exploration. As the agent navigates new regions, these

solutions consistently integrate incoming feature parameters into the state vector, leading

27
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Figure 3.1: The compressed filter divides the environment into two regions: a local area
(depicted as a rectangular box beneath the vehicle, with map uncertainty ellipses in blue)
and a global region (outside the box, with map uncertainty ellipses in red). The local

area is redefined each time the vehicle crosses its boundary.

to a continuous expansion of the state size. The continual growth in the state vector pro-

foundly impacts the overall cost of the SLAM solution, resulting in high computational

complexity. Typically, this complexity scales quadratically, denoted as O(N2), where N

signifies the total number of features present in the system.

Various approaches have been explored to address the computational challenge associated

with the increasing state size. This section specifically delves into the compression tech-

nique introduced by Guivant et al. [60] and standard MSCKF proposed by Mourikis et

al. [4]. These methodologies are integrated into the proposed Comp-MSCKF approach, as

discussed in Section 3.2.

3.1.1 Compressed SLAM

The concept of compression was initially introduced in [60] to manage the computational

cost of SLAM solutions effectively. As can be seen in Figure 3.1, the compression approach
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divides a large map of the state, X , into local, XL, and global, XG, maps as follows:

X =

[
XL

XG

]
=


PI
FL

FG

 . (3.1)

Here, PI represents the current IMU state, and FL and FG denote features located in the

local and global maps, respectively. The corresponding covariance matrix can be expressed

as:

P =

[
PLL PLG

PGL PGG

]
=


PII PIFL

PFLI PFLFL

PLG

PGL PGG

 . (3.2)

It updates the local map with a quadratic complexity of O
(
N2

L

)
, where NL represents the

size of the local map, which is usually much smaller than the total number of features,

denoted as N . Additionally, the method compresses the correlation information between

local and global map and propagates it to the global map only when the vehicle crosses the

boundary of the local map. This strategy effectively manages computational complexity

while maintaining map accuracy.

In [62], Guivant et al. proposed Generalized Compressed Kalman Filter (GCKF). Unlike

the standard compressed filtering, where the local and global correlation is explicitly com-

puted using a closed-form expression, the generalized approach is formulated based on the

Bayesian framework. This not only simplifies the process with various local filters but also

facilitates its extension to multiple vehicle applications.

Utilizing the GCKF, the Compressed Pseudo-SLAM (CP-SLAM) was introduced as de-

scribed in [2], which fuses pseudo-range observations from GNSS with VI-SLAM. The

primary aim of this integration was to enhance navigation reliability and robustness for

UAV operating in near-Earth environments, where GNSS signals are typically available.

The fusion filter models and estimates the receiver clock and drift, which is crucial for

integrating pseudorange rate measurements. Subsequently, efficient accumulation of infor-

mation from a local map and updating the global map at a lower rate was achieved using

GCKF. This approach allows us to observe the impact of incorporating the concept of

compression into VI-SLAM.

The method is validated using a flight dataset recorded from a UAV platform [90]. The

system incorporates data from an IMU, a GPS receiver, and a camera installed in a down-

looking configuration. On-ground artificial visual landmarks are strategically placed, and
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(a) (b)

(c) (d)

Figure 3.2: The result of Compressed Pseudo-SLAM [2]: (a) The estimated vehicle
trajectory, (b) map with uncertainty, (c) receiver clock-bias error with uncertainty, and
(d) x-gyro bias error with uncertainty. The CP-SLAM trajectory is compared with the
full-SLAM (with no compression) and the on-board loosely-coupled GPS/INS solution,
showing consistent performance. The receiver clock-bias error shows large errors when
the number of SVs drops to 3 and 1. However, thanks to the SLAM aiding, the gyro bias

error is constrained adequately.

their positions are surveyed using a real-time-kinematic GPS receiver for reference. As

depicted in Figure 3.2(a) and Figure 3.2(b), the estimated trajectory of CP-SLAM closely

resembles that of the full EKF SLAM. Furthermore, the estimated map and its associated

uncertainty align well with the actual surveyed map positions. In Figure 3.2(c), receiver

clock bias error is noticeable as it results in drifts when the number of Satellite Vehicles

(SVs) drops to 3. However, the gyro bias error (Figure 3.2(d)), particularly along the

x-axis, is still constrained adequately, indicating the robustness of the SLAM system. The

total number of landmarks in the system amounts to 85, but the number of local landmarks
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(a) (b)

Figure 3.3: Computational time result of Compressed Pseudo-SLAM [2]. (a) The com-
parison of the total number of landmarks registered (in blue) and the number of local
landmarks in CP-SLAM (in red), and (b) the comparison of the update time of the Full-

SLAM (in red) and CP-SLAM (in blue).

consistently remains below 20, as depicted in Figure 3.3(a). Regarding computational

complexity, occasional peaks are observed during the local-to-global updates, primarily

influenced by the association of additional data and the sorting process associated with

map transitions. Nevertheless, these results confirm the effectiveness of the compressed

filtering approach, demonstrating its suitability for real-time processing, with an average

processing time of just 1.5 milliseconds as in Figure 3.3(b).

It is important to note that in this work, the validity was restricted to the downward-

looking camera configuration, as the camera field-of-view naturally defines the boundary

of the local map. Additionally, in restricted environments, the reliability of GNSS can be

compromised. Therefore, a robust VI-SLAM system without using the GNSS is imperative

to facilitate diverse applications and enhance overall reliability.

3.1.2 MSCKF

MSCKF [4] is a classic VI-SLAM algorithm based on EKF. The state of MSCKF, denoted

as an active state, XA, includes the IMU state at time k represented by PIk , and sliding

windows, XCk
=
[
P⊤
Ck−M

· · · P⊤
Ck−1

]⊤
, containing the states of the past M camera

poses. The structure is as follows:

XAk
=
[
P⊤
Ik
X⊤
Ck

]⊤
. (3.3)
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Figure 3.4: The geometric constraints in MSCKF are expressed without incorporating
features into the state vector, utilizing the null-space technique [3, 4].

Unlike feature-based SLAM, MSCKF provides localization information using multiple vi-

sual feature measurements without including the 3D feature positions in the filter state

vector, as illustrated in Figure 3.4. This strategy ensures linear computational complexity

with respect to the number of features, employing the null-space technique.

The null-space technique demonstrates its ability to modify the general nonlinear residual

form, as defined in Equation (2.12), to align with the requirements of MSCKF for the

execution of a general EKF update. Upon linearizing around the estimated poses and

feature positions within the MSCKF framework, the resulting expression for the residual

takes the following form:

ef = HxX̃Ak|k−1
+Hf F̃k|k−1 + nfk , (3.4)

where, the measurement noise, nf , is characterized as white Gaussian noise with covariance

R, and F represents the 3D position of the features. Hx and Hf represent the Jacobians of

the measurement with respect to the state and feature position, respectively. Additionally,

X̃Ak|k−1
and F̃k|k−1 denote the differences between the true and estimated values of the

state and feature position. However, in the MSCKF context, the feature position is not

included in the state vector. Therefore, a standard EKF update cannot be performed

with Equation (3.4) by simply ignoring the feature position, as this is unfeasible due to

the correlation between XA and F .
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To overcome this challenge, ef is projected to the left nullspace of Hf , transforming it

into a residual model independent of the feature’s position:

N⊤ef = N⊤HxX̃Ak|k−1
+N⊤Hf F̃k|k−1 +N⊤nfk , (3.5)

e′f = H′
xX̃Ak|k−1

+ n′
fk
,
(
N⊤Hf = 0

)
. (3.6)

Here, n′
fk

is white Gaussian noise with covariance R′
k = N⊤RkN. This approach enables

updating as a general EKF without requiring the feature position to be part of the state

vector.

3.1.3 Including Loop-Closure

The standard MSCKF lacks consideration for loop-closures within its algorithm, posing

a limitation in handling extended trajectories. Effectively managing the accumulation of

drift over prolonged trajectories is imperative to uphold the precision of trajectory esti-

mation. Drift may arise from inherent uncertainties and errors in sensor measurements,

leading to deviations from the actual trajectory. To address this challenge, it becomes

essential to integrate loop-closure mechanisms. loop-closure entails the identification and

closure of loops in the trajectory by recognizing previously visited locations. This integra-

tion empowers the system to detect and rectify accumulated errors through loop-closure

mechanisms.

Hence, in this chapter, the inclusion of key-frame poses, denoted as XSk
, into the state

vector plays a significant role in enhancing this process:

X =
[
X⊤
Ak
X⊤
Sk

]⊤
=
[
P⊤

Ik
X⊤
Ck
X⊤
Sk

]⊤
=
[
P⊤
Ik
X⊤
Ck
P⊤
S1
· · · P⊤

SM

]⊤
. (3.7)

Additionally, the covariance matrix is extended to accommodate these key-frame poses:

P =

[
PAA PAS

PSA PSS

]
=


PII PIC

PCI PCC

PAS

PSA PSS

 . (3.8)

In the MSCKF framework, the growth rate of the state vector size is considerably slower

than when features are added to the state vector. Despite this, the accumulation of

keyframes along the trajectory leads to an increasing number of states for estimation,

potentially challenging the real-time performance.
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In Schmidt-MSCKF [6], the adapted concept from [63] efficiently addresses the issues

of unbounded localization error and computational cost by treating the key-frames as

static. This approach leads to linear growth in computational complexity. However,

despite the reduction in computational cost, the strategy of treating the key-frame states

as a ‘nuisance’ throughout the trajectory introduces a significant loss of information that

cannot be overlooked.

Balancing computational requirements and accuracy is a critical consideration for real-time

SLAM systems. In response to these challenges, I introduce the Comp-MSCKF, a variant

that incorporates loop-closure to manage the trade-off between computational efficiency

and information loss.

3.2 Compressed Multi-State Constraint Kalman Filter

In this section, Comp-MSCKF is presented, a method that incorporates loop-

closure [91]. Within Comp-MSCKF, the key-frame states XS (in Equation (3.7)), which

are continuously integrated into the state vector for loop-closure, are further categorized.

XS are divided into states within the local boundary, denoted as XSL
, and states situated

outside the local boundary, represented as XSG
.

XS =
[
X⊤
SL
X⊤
SG

]⊤
. (3.9)

Subsequently, the state vector of Comp-MSCKF and the corresponding covariance matrix

in the local and global map are now structured as follows:

X =

[
XL

XG

]
=


XA

XSL

XSG

 , (3.10)

P =

[
PLL PLG

PGL PGG

]
=


PAA PASL

PSLA PSLSL

PLG

PGL PGG

 . (3.11)

Here, the active state, XA, mentioned in Equation (3.3) is structured as follows:

XAk
=
[
P⊤
Ik
X⊤
Ck

]⊤
=
[
P⊤
Ik

Ck−M

W q̄⊤ W t⊤Ck−M
· · · Ck−1

W q̄⊤ W t⊤Ck−1

]⊤
. (3.12)
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The representation of PIk is detailed as:

PIk =
[

Ik
W q̄⊤ b⊤

ωk
b⊤
vk

W t⊤Ik

]⊤
. (3.13)

In this representation, IkW q̄ denotes the unit quaternion that describes the rotation between

the world frame, {W}, and the IMU frame, {I}. bw and bv represent the biases associated

with gyro and velocity measurements, respectively. W tIk signifies the IMU position relative

to frame {W}. The camera rotation, represented as C
W q̄, and the camera position, denoted

as W tC , are determined using the extrinsic matrix that relates the IMU frame, {I}, to the

camera frame, {C}. This is achieved through the following equations:

C
W q̄ = C

I q̄⊗ I
W q̄, (3.14)

W tC = W tI +RW
I

ItC , (3.15)

where ⊗ represents the quaternion multiplication and RW
I is the rotation matrix from {I}

to {W}. Each key-frame state, PSi , is defined as:

PSi =
[

Ci
W q̄⊤ W t⊤Ci

]⊤
. (3.16)

3.2.1 Propagation

In the propagation step, the estimated state vector and its associated covariance are con-

tinually propagated as they evolve with incoming IMU measurements [5]. In this chapter,

the gravity-corrected linear velocity, vm, and angular velocity, ωm, are considered as

IMU measurements. The “Starry Night” dataset [5] in Section 3.3.2 provides only the

gravity-corrected linear velocities. However, the “KITTI” dataset [7] used in Section 3.3.3

provides both gravity-corrected linear velocities and raw linear acceleration. To maintain

consistency with the previous dataset, only gravity-corrected linear velocities are utilized.

Unlike the prediction step outlined in Section 2.1.1.1, the motion model equations are ob-

tained by discretizing the continuous-time IMU system model [4]. The following continuous-

time motion model describes the evolution of the estimated IMU state P̂I over time:

I
W

˙̂q =
1

2
Ω(Iω̂)IW ˆ̄q,

˙̂
bω = 03×1,

˙̂
bv = 03×1,

W ˙̂tI = R̂W
I

I v̂.

(3.17)
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The rotational velocity, ω̂, and linear velocity, v̂, are both expressed in the IMU frame.

These can be computed using the IMU’s measurements of velocity, vm, and gyro, ωm, as

follows:

I v̂ = Ivm − b̂v,
Iω̂ = Iωm − b̂ω. (3.18)

The linearized continuous-time model of the IMU error state can be expressed as:

˙̃PI = FP̃I +GnI , (3.19)

where the error-state, P̃I , is defined as:

P̃I =
[
δθ⊤

I b̃⊤
ω b̃⊤

v
W t̃⊤I

]⊤
. (3.20)

Here, nI =
[
n⊤
ω n⊤

bω
n⊤
v n⊤

bv

]⊤
represents the IMU process noise with covariance

matrix Q. While the error-state of position and biases can be directly calculated by the

difference between the true and estimated values, the error quaternion, δq̄, is defined as:

δq̄ ≃
[

1
2δθ

T 1
]T
. (3.21)

This is determined by the relation q̄ = δq̄ ⊗ ˆ̄q, and since it describes the small rotation,

where only δθ is used as a minimal representation. The Jacobians F and G are given by

F =


−Iω̂∧ −I3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

−R̂W
I

I v̂∧ 03×3 −R̂W
I 03×3

 , (3.22)

G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 03×3 I3

03×3 03×3 −R̂W
I 03×3

 . (3.23)

To account for discrete time intervals, the differential model needs to be integrated into

differences equations. As described in [5], forward Euler integration is used to propagate

the motion model. The covariance, PAA, can be propagated as follows:

PAAk|k−1
=

 Γk−1PIIk−1|k−1
Γ⊤
k−1 +GQk−1G

⊤∆t Γk−1PICk−1|k−1

P⊤
ICk−1|k−1

Γ⊤
k−1 PCCk−1|k−1

 . (3.24)
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Here, PII represents the covariance matrix of the evolving IMU state, PCC is the co-

variance matrix of the camera pose estimates in sliding window, and PIC denotes the

correlation between the IMU state and the states in the sliding window. The state tran-

sition matrix, Γk−1, is given by:

Γk−1 = I+ F∆t, (3.25)

where ∆t is the IMU sampling period. Subsequently, the covariance matrix for the entire

state vector in Comp-MSCKF is expressed as:

Pk|k−1 =


PAAk|k−1

Γk−1PASLk−1|k−1

P⊤
ASLk−1|k−1

Γ⊤
k−1 PSLSLk−1|k−1

Γk−1PLGk−1|k−1

P⊤
LGk−1|k−1

Γ⊤
k−1 PGGk−1|k−1

 . (3.26)

It is evident that the correlation between the local and global states can be compressed as

until the new image is detected:

PLG (k) =

(
k∏

i=1

Γi

)
PLG(0). (3.27)

3.2.2 Update

In the update step, the observations are first used to update the local state, and the

correlation is accumulated. As discussed in Section 3.1.2, following the update step allows

achieving Equation (3.6). The measurement Jacobian, H′
x, exhibits sparsity and solely

contains values corresponding to the local state, represented as H′
x =

[
HLx 0Gx

]
.

Consequently, the residual measurement can be expressed as follows:

e′f ≃ HLxX̃Lk|k−1
+ n′

fk
. (3.28)

Utilizing this model, the update process of the state estimate unfolds as in Equation (2.15):

X̂Lk|k = X̂Lk|k−1
+KLk

e′f , (3.29)

X̂Gk|k = X̂Gk|k−1
+KGk

e′f , (3.30)
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where the Kalman gain, K, can be computed as:

Kk = Pk|k−1H
′
xS

−1
k =

[
PLLk|k−1

H⊤
Lx

S−1
k

PGLk|k−1
H⊤

Lx
S−1
k

]
=

[
KLk

KGk

]
. (3.31)

Here, Sk = H′
xPk|k−1H

′
x
⊤ +R′

k = HLxPLLk|k−1
H⊤

Lx
+R′

k, and therefore the form of the

updated covariance matrix is represented as:

Pk|k = Pk|k−1 −KkSkK
T
k

= Pk|k−1 −

[
PLLk|k−1

HT
Lx

S−1
k

PGLk|k−1
HT

Lx
S−1
k

]
Sk

[
PLLk|k−1

HT
Lx

S−1
k

PGLk|k−1
HT

Lx
S−1
k

]T

= Pk|k−1−


PLLk|k−1

(
HT

Lx
S−1
k HLx

)
PLLk|k−1

(PLLk|k−1

(
HT

Lx
S−1
k HLx )︸ ︷︷ ︸

Υ

)PLGk|k−1((
PLLk|k−1

(
HT

Lx
S−1
k HLx

)
PLGk|k−1

)T
PGLk|k−1

(HT
Lx

S−1
k HLx︸ ︷︷ ︸
Ψ

)PLGk|k−1

.
(3.32)

Until the new local boundary is defined, the calculation of X̂G, PLG, and PGG adopts a

compressed approach to efficiently manage computational complexity while continuously

updating X̂L and PLL. The reduction of correlation and global state terms can be re-

written as follows:

PLGk|k = PLGk|k−1
−ΥPLGk|k−1

= ΦPLGk|k−1
, (3.33)

PGGk|k = PGGk|k−1
−
(
PGLk|k−1

ΨPLGk|k−1

)
, (3.34)

X̂Gk|k = X̂Gk|k−1
+
(
PGLk|k−1

HT
Lx

S−1
k e′f

)
. (3.35)

As a result, the accumulated form of the estimated global state X̂G, correlation term PLG,

and PGG can be expressed as follows:

PLG(k) =
(∏

Φ
)
PLG(0) = Φ(k, 0)PLG(0), (3.36)

PGG(k) = PGG(0)−PGL(0)
(∑

Φ(k, 0)TΨΦ(k, 0)
)
PLG(0), (3.37)

X̂G(k) = X̂G(0) +PGL(0)
(∑

Φ(k, 0)THT
LS

−1e′f

)
. (3.38)
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(a) (b)

Figure 3.5: The result of Comp-MSCKF in MATLAB simulator comparing with Full-
MSCKF (Full-MSCKF involves loop-closure and updates entire state vector and covari-
ance matrix upon each incoming data): (a) Final trajectory (b) Cumulative time cost.

Using this compressed correlation term, the global map and covariance can be recovered

at a much lower rate whenever the local map boundary changes.

3.3 Performance Evaluations of Comp-MSCKF

This section assesses the performance of Comp-MSCKF through both simulation and real-

world datasets. In the simulation, the convergence of key-frame states is evaluated, focus-

ing on the uncertainty of these states within the context of Comp-MSCKF. Additionally,

experiments are conducted using the “Starry Night” and “KITTI” datasets, comparing the

performance of Comp-MSCKF with that of standard MSCKF [4] and Schmidt-MSCKF [6].

All experiments are performed in MATLAB.

3.3.1 Simulation

For the experimental validation of the proposed method, a high-fidelity MATLAB sim-

ulator [14] was used, as illustrated in Figure 3.1. This simulator, named CP-SLAM,

is designed for comprehensive all-source navigation. To assess Comp-MSCKF, only the

visual-inertial sensors were utilized. The generation of sensor data, encompassing IMU

readings at a rate of 100Hz and vision data at 20Hz, accurately follows a simulated tra-

jectory employing realistic sensor models to replicate real-world conditions. Detailed IMU
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Table 3.1: Simulation setup parameters for the IMU and Camera [14].

Sensor Type Unit Specification

IMU

Sampling rate Hz 100
Accel bias mg 2
Gyro bias °/h 100

Accel bias stability g, 1σ 0.02
Gyro bias stability °/h, 1σ 100

Accel bias correlation time s 300
Gyro bias correlation time s 300

Camera

Frame rate Hz 20
FOV angle ° 30
Range noise m 1
Bearing noise ° 1
Elevation noise ° 1.5

and camera parameters used in the simulation are provided in Table3.1. To demonstrate

the effectiveness of Comp-MSCKF, the simulator is adapted to enable the integration of

key-frames into the state vector. The frequency of this integration is linked to the camera’s

field-of-view and the vehicle’s speed. For simplicity, a 5-second interval is employed in this

work to achieve a balanced coverage of the trajectory.

The outcomes of the proposed method, Comp-MSCKF, are presented in Figure 3.5(a),

showcasing the trajectory results in comparison to Full-MSCKF. The Full-MSCKF updates

the entire state vector along with its covariance matrix upon each data input, incorpo-

rating loop-closure without compressing the data. The Root Mean Square Error (RMSE)

of Comp-MSCKF is 8.655m, higher than that of Full-MSCKF, which is 4.519m. How-

ever, as illustrated in Figure 3.5(b), Comp-MSCKF provides a temporal perspective on

computational efficiency over Full-MSCKF.

Figure 3.6 provides insights into the uncertainty evolution of keyframes, featuring a total

of 14 registered keyframes. The compressed update strategy is strategically applied as

the vehicle approaches the local map boundary, leading to the re-centering of the local

map at the current vehicle location. In the simulation, the local map is re-centered at

approximately 1.5 − 2 seconds. A notable loop-closure event occurs around 70 seconds,

during which the uncertainty of keyframes significantly decreases. Figure 3.6(d) provides

an enhanced view of key-frame number 4, illustrating the effects of both sensor updates

and compressed updates. Around 20 seconds, the fourth key-frame is incorporated into

the state vector and consistently updated based on vision information. By approximately

24 seconds, it transitions to a global state as it surpasses the local boundary. From that

point, it compresses all incoming information, and at around 25 seconds, with the bound-

ary change, all the compressed information related to the fourth key-frame is updated.
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(a) Uncertainty of position X (b) Uncertainty of position Y

(c) Uncertainty of position Z (d) Uncertainty of 4th key-frame

Figure 3.6: The evolution of uncertainty in key-frames: A comparison between XYZ
and an enhanced view of 4th key-frame, highlighting compressed updates during the sim-

ulation.

Subsequently, only global updates occur until the loop-closure event. This comprehen-

sive set of results provides a detailed understanding of the performance, accuracy, and

computational efficiency of the Comp-MSCKF.

3.3.2 “Starry Night” Dataset

The “Starry Night” dataset [5] consists of stereo vision and pre-processed IMU readings

within an environment featuring static landmarks, as illustrated in Figure 3.7 and Ta-

ble 3.2. Only the monocular camera data from the left is utilized for this experiment, and
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(a) (b)

Figure 3.7: Dataset environment of “Starry Night” [5]: (a) The hand-held sensor head
used in experiments. (b) Overview of the data collection environment.

Table 3.2: Sensor parameters used in ”Starry Night” dataset [5].

Sensor Type Unit Specification

IMU

Sampling rate Hz 10
Gyro measurement noise rad/s/

√
s 0.2

Velocity measurement noise m/s/
√
s 0.2

Gyro bias random work noise rad/s2/
√
s 0.001

Velocity bias random walk noise m/s2/
√
s 0.001

Camera

Frame rate Hz 10
Horizontal focal length pixels 484.4998
Vertical focal length pixels 484.4998

Horizontal optical center pixels 321.6805
Vertical optical center pixels 247.4814

the right camera’s information is disregarded. The Vicon motion capture system records

sensor head motion and feature positions, serving as the ground-truth.

The original dataset observes a set of 20 features, but it has been enhanced by introducing

synthetic features distributed with larger spatial extents, resulting in a maximum of 500

features. The modified dataset preserves the IMU data from the original set and introduces

zero-mean Gaussian noise to corrupt the synthetic camera measurements [5].

For the experiments, instead of marginalizing cloned camera poses from the sliding window

of the active state, specific clones are retained as key-frames in the state vector for loop-

closure as similar to [6]. The selection of key-frames can be based on various heuristics.

In this work, new key-frames are simply added at fixed time intervals, and all feature IDs

are pre-defined for identifying loop-closure candidates in key-frame-based loop closing.

The trajectory estimation results of the proposed Comp-MSCKF are visually presented
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(a) The Estimated Trajectories

(b) Translation and Rotational Error

Figure 3.8: The trajectory estimations for the “Starry Night” dataset are provided for
the proposed Comp-MSCKF, Schmidt-MSCKF [6], and standard MSCKF [4]. Examin-
ing the translation error, it is evident that the error of the standard MSCKF increases
over time. In contrast, both Comp-MSCKF and Schmidt-MSCKF effectively maintain

bounded error throughout the duration.

in Figure 3.8(a), offering a comparative analysis alongside Schmidt-MSCKF and stan-

dard MSCKF. Notably, both Comp-MSCKF and Schmidt-MSCKF demonstrate a rea-

sonable degree of proximity to the ground-truth trajectory, highlighting their efficacy in
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Table 3.3: Comparison of RMSE values for translation and rotation, alongside the
final translation error: Standard MSCKF, Schmidt-MSCKF, and Comp-MSCKF on the

“Starry Night” Dataset.

MSCKF (no loop-closure) Schmidt - MSCKF Comp - MSCKF

Trans.RMSE (m) 0.248 0.091 0.082

Rot.RMSE (deg) 0.161 0.070 0.062

Final Trans Err (m) 1.279 0.155 0.123

accurately estimating the pose by including the key-frames for loop-closure. In contrast,

standard MSCKF exhibits a divergence from the ground-truth trajectory, suggesting a

susceptibility to cumulative error over time, as evident in Figure 3.8(b). These results

affirm the superior accuracy and precision of Comp-MSCKF in trajectory estimation,

particularly when compared to standard MSCKF without loop-closure. The inclusion of

key-frames for loop-closure proves instrumental in mitigating cumulative errors.

For a more detailed evaluation, Table 3.3 comprehensively compares translational and ro-

tational accuracy metrics among the three methodologies—MSCKF, Comp-MSCKF, and

Schmidt-MSCKF. The standard MSCKF, operating without loop-closure, demonstrates

the highest errors in translation RMSE, rotational RMSE, and final translation error, with

recorded values of 0.248m, 0.161°, and 1.279m, respectively.

In contrast, Comp-MSCKF emerges as the standout performer, showcasing the lowest er-

rors in translation RMSE at 0.082m, rotational RMSE at 0.062°, and final translation er-

ror at 0.123m. Schmidt-MSCKF also exhibits favourable performance, with errors slightly

higher than Comp-MSCKF, recording values of 0.091m, 0.070°, and 0.155m for translation

RMSE, rotational RMSE, and final translation error, respectively.

The integration of key-frames for loop-closure proves instrumental in mitigating cumulative

errors, underscoring the superior accuracy and precision of Comp-MSCKF in trajectory

estimation when compared to both Schmidt-MSCKF and standard MSCKF. However, it

is essential to consider the computational complexity as well. As highlighted in Table 3.4,

the computational time for Comp-MSCKF is 328.86 seconds, which is marginally higher

than Schmidt-MSCKF at 320.92 seconds. Nevertheless, this difference in computational

time can be perceived as reasonable in comparison to the Full-MSCKF, which reports a

computational time of 338.90 seconds. The efficiency of Comp-MSCKF in terms of both

accuracy and computational time makes it a compelling choice for applications demanding

a balance between precision and computational efficiency.
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Table 3.4: Total computational time for each method on the “Starry Night” dataset.

MSCKF (no loop-closure) Schmidt - MSCKF Comp - MSCKF Full - MSCKF

Compute
time (sec)

124.566 320.921 328.862 338.897

(a) Hardware Platform (b) Sensor Extrinsic setup

Figure 3.9: The sensor setup for collecting the “KITTI” dataset [7].

3.3.3 “KITTI” Dataset

The publicly accessible dataset mentioned here was collected by moving platforms, as

illustrated in Figure 3.9(a). It stands as a widely used benchmark dataset in the fields of

computer vision and robotics. The “KITTI” dataset provides a rich set of data, including

camera images, laser scans, high-precision GPS measurements, and IMU. The GPS/IMU

system is combined, and the extrinsic setup is depicted in Figure 3.9(b). For each frame,

30 different GPS/IMU values are provided, encompassing geographic coordinates such as

altitude, global orientation, velocities, accelerations, angular rates, accuracies, and satellite

information. The dataset offers ground-truth trajectory information obtained from high-

precision GPS measurements to assess the accuracy and reliability of SLAM algorithms.

As outlined in Section 3.2.1, the IMU measurement incorporates a pre-processed linear

velocity instead of raw linear acceleration. Image processing for feature extraction is

conducted using ORB-SLAM3 [12], a state-of-the-art SLAM algorithm. Each extracted

feature is assigned a predefined ID, enhancing the understanding and tracking of visual

features throughout the experiment.
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(a) (KITTI-06) Top View (b) (KITTI-06) Isometric View

(c) (KITTI-07) Top View (d) (KITTI-07) Isometric View

Figure 3.10: Comparative Trajectories of Comp-MSCKF and standard MSCKF on
“KITTI” datasets (Both methods failed to close the loop, demonstrating divergence.
Notably, MSCKF in sequence 07 exhibited divergence, even in the middle of the trajectory.

Trajectories are plotted only until the point of divergence).

The results of the Comp-MSCKF estimation are depicted in Figure 3.10. Schmidt-MSCKF

yields very similar outcomes to Comp-MSCKF; hence, only the results of Comp-MSCKF

are presented in comparison with the standard MSCKF. Unfortunately, both Schmidt

and Comp-MSCKF encounter difficulties in closing the loop. The presented figures extend

only until the divergence point in sequences 06 and 07 of the “KITTI” dataset. In the

case of the standard MSCKF, it exhibits drift over time and fails to complete sequence 07

of the “KITTI” dataset, diverging in the middle of the trajectory.

To offer a more comprehensive assessment of the proposed method’s effectiveness in loop-

closure with key-frame states, a dataset that provides the advantage of observing the same

features multiple times is necessary. This facilitates more frequent loop-closure updates,

which can reveal and address significant drifts in the trajectory. In contrast, the “KITTI”

dataset involves collinear motion within a large environment, requiring an extended dura-

tion to observe loop-closure features. The extended duration in the “KITTI” dataset poses

a challenge when performing loop-closure updates using key-frame states. Over time, the
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trajectory estimate accumulates drift, and uncertainties may collapse after a loop-closure.

Moreover, in the feature extraction process using ORB-SLAM3 [12], features with minimal

parallax are deliberately removed. While this is done to improve computational efficiency,

it may potentially impact the effectiveness of the proposed Comp-MSCKF, particularly in

scenarios where minimal parallax features could contribute to loop-closure.

3.4 Summary

The application of the compressed filtering framework to an MSCKF (Comp-MSCKF)

has the advantage of retaining pose key-frames in the state while effectively limiting com-

putational complexity to O(N2
L), where NL represents the number of local key-frames.

This approach demonstrates improved performance when compared to both the standard

MSCKF and Schmidt-MSCKF.

However, challenges arise when simultaneously dealing with the information of states

marginalized within the sliding window and compressed within the local area. This con-

current processing introduces the potential for information loss, significantly impacting

the overall accuracy of the system. Distinguishing between local and global information

becomes particularly challenging, especially in the context of a monocular camera. There-

fore, developing a suitable strategy for compressing data is essential while preserving the

fundamental MSCKF framework.

Furthermore, in scenarios where loop closing fails, this consideration becomes crucial, espe-

cially given the demonstrated effectiveness of optimization-based methods over filtering-

based methods. Optimization methods stand out for their ability to propagate loop-

closure data backward along the trajectory estimate. It’s noteworthy that, while the

Comp-MSCKF offers advantages in terms of computational complexity, it tends to be

more sensitive to tuning parameters than optimization-based methods.

Additionally, as observed in the “KITTI” dataset, characterized by larger and longer

trajectories, addressing the handling of features with minimal parallax emerges as a crit-

ical aspect requiring thoughtful consideration and tailored solutions. In the next chapter

(Chapter 4), I present PVI-SLAM, a novel approach founded on PBA, aimed at addressing

and overcoming the challenges presented in this chapter.





Chapter 4

Parallax Bundle Adjustment with

Inertial Measurement Unit

As highlighted in Chapter 3, filtering-based approaches encountered difficulties when clos-

ing loops, especially in larger and longer trajectories. These difficulties were due to the

accumulated drift over time, even with the incorporation of key-frames in the state vector

for loop-closure. Addressing these challenges, the current chapter shifts its attention to-

ward optimization-based methods. Nonlinear optimization techniques employed in these

methods have demonstrated the potential for achieving superior accuracy compared to

their filtering-based counterparts. This shift in focus is fueled by the advancements in

computer technology.

In this chapter, a novel solution named PVI-SLAM is proposed. The method aims to

deliver robust, tightly-coupled, optimization-based VI-SLAM by leveraging parallax angle

for feature parametrization and pre-integrating IMU measurements in continuous-time.

BA plays a crucial role in the back-end process of modern VI-SLAM systems. The chapter

begins by introducing the parallax feature parameterization method for BA. This approach

proves effective in addressing challenges related to features observed at minimal parallax

angles, particularly in scenarios involving collinear motion.

Building upon the PBA foundation [89], the chapter proposes the integration of IMU data

to enhance the accuracy of state estimation and overcome the challenge of recovering the

correct metric scale in monocular vision-only systems. The IMU measurements undergo

pre-integration using UGPM, and a comparative analysis is conducted with Standard

Preintegrated Measurement (PM). In the case of UGPM, the GP method is utilized,

49
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providing continuous and non-parametric representations of the system’s dynamics. This

integration introduces a dynamic dimension to the system, enhancing its robustness and

enabling a more accurate representation of the state.

Following this, a novel VI-SLAM system that employs parallax parametrization in the

manifold domain (PVI-SLAM) is presented. A compatible error function utilizing the

observation ray is implemented to further enhance the robustness of the system. This ap-

proach aims to improve the accuracy and reliability of the system, particularly in scenarios

with challenging visual conditions or complex motion patterns.

The subsequent sections conduct a robustness analysis of the proposed method through

evaluations on publicly available datasets, including “MALAGA”, “Starry Night”, “Eu-

RoC”, and “KITTI”. The proposed system’s robustness is demonstrated and compared

with state-of-the-art methods, highlighting its efficacy in addressing the aforementioned

challenges and providing a comprehensive understanding of its performance across diverse

scenarios.

4.1 Parallax Feature Parametrization

The modern BA algorithm commonly uses Euclidean XYZ coordinates to represent the

locations of features, fj , in 3D [94–96], as illustrated in Figure 4.1(a):

fXY Z
j = [Xj , Yj , Zj ]

⊤ . (4.1)

An alternative method for parametrizing feature position is the IDP proposed by Civera

et al. [93], as depicted in Figure 4.1(b). It was proposed that the inverse depth of the

feature can be used in monocular SLAM. IDP is defined relative to the first camera pose

that observed the feature as:

f IDP
j = [xj , yj , zj , ψj , θj , ρj ]

⊤ , (4.2)

where xj , yj , and zj are the camera pose in the first observation of feature fj , and ψj and

θj represent azimuth and elevation. The point’s depth along the ray di is encoded by its

inverse ρj = 1/di.

Both the XYZ feature parametrization and IDP prove effective when dealing with features

situated at a considerable distance with sufficient parallax angles, as demonstrated in

Figure 4.2(a). However, the advantages of IDP become particularly pronounced when
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(a) Euclidean XYZ parametrization [92]

(b) Inverse depth feature parametrization [93]

(c) Parallax feature parametrization [89]

Figure 4.1: Different feature parametrization methods.
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(a) Depth from parallax (b) Infinity depth (c) No depth information

Figure 4.2: Different case of feature observations.

features are at a long distance, as depicted in Figure 4.2(b). In such scenarios, the XYZ

feature parametrization tends to be less effective due to the high uncertainty in-depth

estimates for distant features and the elevated position uncertainty for features with low

parallax. Conversely, neither the XYZ feature parametrization nor IDP provides adequate

information when feature observations are close and aligned with the two cameras, as

shown in Figure 4.2(c).

Various strategies have been employed to address the challenges posed by problematic

features in the context of VI-SLAM, as discussed in [97]. RANdom SAmple Consensus

(RANSAC)[98] is a common choice for feature selection and elimination of features with

small parallax, as seen in many modern SLAM approaches [10, 12, 30]. However, RANSAC

is essentially a randomized method lacking awareness of the frame’s structure, including

motion state and feature reliability [46]. As highlighted in [93], an approach proposed by

[99] introduces a hybrid method. This selectively utilizes problematic features for rotation

estimation, aiming to maintain consistency and enhance accuracy by combining them

with reliable nearby features, which inherently have lower uncertainty. Another approach,

proposed by [100], involves using inertial measurements to determine weights for each

feature. This assigns lower weight to problematic features, mitigating their impact on the

overall estimation.

However, the challenge persists in the detection and categorization of features into non-

problematic and problematic categories, underscoring the complexity of this mechanism

and its potential impact on the entire system [89].
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To overcome this challenge in the proposed PVI-SLAM, the parallax parametrization

method proposed by Zhao et al. [89] is integrated, which introduces the parallax angle

into the state vector as:

fj = [ψj , θj , ωj ]
⊤ , (4.3)

where ψj , θj , and ωj are the azimuth, elevation angle, and parallax angle, respectively.

These parametrization parameters are determined by way of selecting main and associate

anchors. The main anchor corresponds to the pose at which the observation of fj is

initially recorded. Subsequently, the pose that observes the same feature for the second

time becomes the associate anchor. When the feature is observed more than twice, the

main and associate anchors can be substituted with either the maximum or parallax angle

exceeding a predefined threshold.

The inclusion of parallax parameters has demonstrated superior accuracy, efficiency, and

convergence properties compared to other BA parametrization methods [89].

4.2 IMU pre-integration

Different from the content covered in Chapter 3, this chapter centers on a 6-DoF IMU,

which integrates measurements from a 3-axis gyroscope and a 3-axis accelerometer. These

measurements result in noisy and biased data for the linear acceleration, represented as

am, and the angular velocity, denoted as ωm, at time t in the inertial frame {I}, expressed
as:

Itam(t) = RW
It (t)

⊤ (Wa(t)− Wg
)
+ ba(t) + ηa(t), (4.4)

Itωm(t) = Itω(t) + bω(t) + ηω(t), (4.5)

where RW
It
∈ SO(3) represents the IMU rotation matrix at time t. ω is the true instanta-

neous angular velocity of the {I} relative to global frame {W}, true linear acceleration, a,
and the gravity vector, g, are specified in {W}. ba and bω refer to slowly varying sensor

biases. The terms ηa and ηω represent zero-mean Gaussian noises associated with linear

acceleration and angular velocity, respectively, with variances σ2
a and σ2

ω.
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The kinematic model is expressed through the following equations:

ṘW
It (t) = RW

It (t)
Itω(t)∧, (4.6)

W v̇It(t) =
Wa(t), (4.7)

W ṫIt(t) =
WvIt(t), (4.8)

where ˙ represents the differentiation operator with respect to time t. WvIt and
W tIt are

the position and velocity of the IMU at time t in the global frame W , respectively. The

computation of the pose and velocity at time t2 based on the known initial conditions at

time t1 is expressed as follows:

RW
I2 = RW

I1

(
t2∏
t1

Exp
(
Itω(t)

)dt)
(4.9)

WvI2 = WvI1 +

∫ t2

t1

Wa(t)dt (4.10)

W tI2 = W tI1 +
WvI2∆t+

∫ t2

t1

∫ t

t1

Wa(s)dsdt (4.11)

Using Equation (4.4) and Equation (4.5), the above equations can be expressed as a

function of the IMU measurements am and ωm:

RW
I2 = RW

I1

(
t2∏
t1

Exp
(
Itωm(t)− bω(t)

)dt)
(4.12)

WvI2 = WvI1 + g∆(t) +

∫ t2

t1

RW
It (t)

(
Itam(t)− bω(t)

)
dt (4.13)

W tI2 = W tI1 +
WvI1∆t+

1

2
Wg∆t2

+

∫ t2

t1

∫ t

t1

RW
Is (s)

(
Isam(s)− bω(s)

)
dsdt

(4.14)

These equations, while suitable for factor graph optimization, possess the limitation of re-

quiring recomputation whenever the linearization point at time ti changes. To circumvent
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Figure 4.3: Overview of UGPM utilizing continuous pre-integration with GP [8].

this issue, the relative motion between t1 and t2 can be pre-integrated, offering indepen-

dence from pose and velocity. This pre-integration is expressed as follows:

∆Rt1
t2

.
= (RW

I1 )
⊤RW

I2 =

t2∏
t1

Exp
(
Itωm(t)− bω(t)

)dt
(4.15)

∆vt1
t2

.
= (RW

I1 )
⊤ (WvI2 − WvIt1

− Wg∆t
)

=

∫ t2

t1

RI1
It
(t)
(
Itam(t)− bω(t)

)
dt

(4.16)

∆tt1t2
.
= (RW

I1 )
⊤
(

W tI2 − W tI1 − WvI1∆t−
1

2
Wg∆t2

)
=

∫ t2

t1

∫ t

t1

RI1
Is
(s)
(
Itam(s)− bω(s)

)
dsdt

(4.17)

Unlike ∆Rt1
t2
, neither ∆vt1

t2
nor ∆tt1t2 represent the true physical change in velocity and

position. Instead, they are defined to ensure the right-hand side of equations remains

independent of the state at time ti and gravitational effects.

In the proposed work, PVI-SLAM, GP is employed for continuous pre-integration, a tech-

nique introduced by Le Gentil et al. [8], as illustrated in the overview presented in Fig-

ure 4.3. This approach differs from PM, as in [25] and [1], where Equation (4.15) −
Equation (4.17) were numerically integrated using the rectangle rule with discrete IMU

measurements. Conventional numerical integration treats acceleration and angular ve-

locity between two consecutive IMU timestamps as constant, potentially impacting the

accuracy of the system. The use of GP for continuous pre-integration provides a more

refined and continuous model of the IMU measurements, allowing for improved accuracy

in the integration process.
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{W}

{I}

{C}

fj

RW
I

tW I

RI
C

tI C

ωj

Main Anchor Associate Anchor

Figure 4.4: The illustration of PVI-SLAM system.

4.3 Parallax Visual-Inertial SLAM

In this chapter, the primary objective within the VI-SLAM framework is to simultaneously

track the state of the system and map landmarks. These systems are equipped with an

IMU and a monocular camera. To achieve this goal, a PVI-SLAM [101] system is

proposed, making use of both PBA and UGPM.

4.3.1 Problem Statement

The state of PVI-SLAM can be represented as:

X = {PI1 , · · · ,PIN , f1, · · · , fM} , (4.18)

where fj represents the jth feature position in PBA parametrization as in Equation (4.3)

and the IMU state, PI , at time i can be written as:

PIi =
{
RW

Ii ,
W tIi ,

WvIi ,bωi ,bai

}
. (4.19)

Here, RW
Ii
∈ SO(3) is the rotation matrix of IMU at time i, {Ii}, in the global frame, {W}.

WvIi ∈ R3 and W tIi ∈ R3 are the velocity and position of the IMU in {W} at time i.

bai and bωi are slowly varying sensor biases from the IMU’s accelerometer and gyroscope,

treated as constant between two state timestamps. Camera pose can be obtained using the

known extrinsic matrix,
(
RI

C ,
ItC
)
, as shown in Equation (4.20). A detailed illustration
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of the reference frames is presented in Figure 4.4.

RW
C = RW

I RI
C ,

W tC = W tI +RW
I

ItC . (4.20)

The estimation of these states employs MLE as Eqaution (2.19). The objective function

J(X ) integrates information from various sensor measurements relevant to state estima-

tion. In PVI-SLAM, the objective function of the optimization problem tightly couples

the measurements from the IMU and the monocular camera, allowing joint estimation of

all states [86] as mentioned in Equation (2.20). The formulation of this objective function

is as follows:

J(X ) :=
N∑
i=1

∑
j∈J (i)

ei,jr
⊤
Wi

re
i,j
r︸ ︷︷ ︸

visual

+
N−1∑
i=1

eis
⊤
Wi

se
i
s︸ ︷︷ ︸

inertial

, (4.21)

where i and j identify the IMU frame and feature index. J (i) includes all visible features

in IMU frame at time i. ei,jr is the reprojection error, eis is the inertial error, and Wi
s

represents the inverse covariance of the IMU residual at time i. As the uncertainty of the

image coordinates for all features is assumed to be independent and identical, the weight

matrix Wi
r is considered as an identity matrix.

4.3.2 Parallax-Based Reprojection Error

The reprojection error, ei,jr , is computed as the disparity between the observed value, ui
j ,

and the estimated value, ûi
j :

ei,jr = ui
j − ûi

j ∈ R2. (4.22)

As discussed in Section 4.1, the computation of the reprojection error depends on the

selection of anchors. Here, the position of main anchor (m) in the camera frame is denoted

as W tCm , the position of associate anchor (a) in the camera frame is referred to as W tCa ,

and all other camera positions are defined as W tCi . Then, the projection model based on

parallax angle parametrization can be presented as:

ui
j =

[
uij

vij

]
= π(K (RW

Ci
)⊤ xi

j), (4.23)
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where the function π(·) is defined as:

[
u

v

]
= π



x

y

z


 =

[
x/z

y/z

]
. (4.24)

Here, K is the camera intrinsic matrix, RW
Ci

is rotation matrix of camera pose i, ui
j is the

reprojected image point from feature fj to image i, and:

xi
j =

{
xm
j , if i = m, else

sin (ωj + φj)
∥∥W tCa − W tCm

∥∥xm
j − sinωj

(
W tCi − W tCm

)
.

(4.25)

xm
j is the unit vector from W tCm to fj :

xm
j =


sinψj cos θj

sin θj

cosψj cos θj

 , (4.26)

and φj is the angle between the vector
(
W tCa − W tCm

)
and vector xm

j :

φj = arccos

(
xm
j ·

W tCa − W tCm

∥W tCa − W tCm∥

)
. (4.27)

The values of ψj and θj can be computed using the following equations:

ψj = atan 2
(
xmj , z

m
j

)
, (4.28)

θj = atan 2

(
ymj ,

√(
xmj

)2
+
(
zmj

)2)
, (4.29)

where xm
j =

[
xmj ymj zjm

]⊤
. Additionally, ωj can be determined using the equation:

ωj = arccos

 x̂m
j · x̂a

j∥∥∥x̂m
j

∥∥∥ ∥∥∥x̂a
j

∥∥∥
 . (4.30)

4.3.3 Observation Ray Based Error Function

The reprojection error, as mentioned in Equation (4.22), plays a crucial role in VI-SLAM by

quantifying the disparity between observed image points and the corresponding projections
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of 3D points in the image space. The reprojection error is highly sensitive to pixel-

level noise in the images, which highlights the need for careful consideration during the

optimization process.

Moreover, challenges may arise during the initialization phase, especially when dealing

with features positioned behind the camera. This scenario has the potential to impede the

convergence of the optimization process to a valid solution. The reprojection error is known

to be influenced by the initial guess, emphasizing the significance of robust initialization

strategies in mitigating such challenges.

The observation ray objective function introduces geometric constraints based on the di-

rections of observation rays. This proves advantageous in handling features and their

corresponding 3D positions, explicitly considering occluded or unseen points. In situa-

tions where features are intermittently located behind the camera, this method becomes

instrumental in preventing the optimization process from erroneously projecting them onto

the image plane. The utilization of observation rays gains particular relevance in resolving

depth ambiguities associated with points situated behind the camera, depending on the

specific geometry and camera setup [97].

By incorporating these geometric constraints, the observation ray objective function sig-

nificantly enhances the overall robustness and accuracy of the system. This contribution is

particularly valuable in addressing challenges related to feature initialization and mitigat-

ing potential depth ambiguities, ultimately fortifying the system’s performance in various

scenarios [97].

In PBA framework, the observation ray error function, integral to the work in this chapter,

is computed using the ray derived in Equation (4.25):

ei,jr = vi
j − v̂i

j ∈ R3, (4.31)

where

vi
j = ξ

K−1


uij

vij

1


 , v̂i

j = ξ
(
(RW

Ci
)⊤ xi

j

)
. (4.32)

Here, ξ(·) = ·
|·| represents the normalization operation. This error function plays a crucial

role in the system and helps enhance its accuracy by considering the direction of the

observation ray.
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4.3.4 Inertial and Bias Error

To perform GP as in [8], the modelling process commences by defining the following

equations and representing I1 ṙIt(t) and
Itam(t) as six independent GP:

Jr

(
I1rIt(t)

)
I1 ṙIt(t) =

Itω(t) (4.33)

I1am(t) = ∆Rt1
t (t)

Itam(t). (4.34)

Here, the rotation vector in {I} at time t1 is obtained using the logarithm map, I1rIt(t) =

Log
(
RI1

It
(t)
)
, and I1am(t) represents the accelerometer measurements reprojected to {I}

at time t1. The inducing values of these GP are learned by formulating a nonlinear

optimization problem based on the actual IMU measurements, am(t) and ωm(t). After

learning, it is possible to infer the pre-integrated measurements, ∆Rt1
t2
, ∆vt1

t2
, and ∆tt1t2 at

any timestamp by analytically integrating and double integrating the continuous signals

I1 ṙIt and
I1am(t) [8].

In [8], the update of biases is incorporated using the first-order expansion, following a

similar approach to [1, 25]:

∆Rt1
t2
(bω) ≈ ∆Rt1

t2

(
bω

)
Exp

(
∂∆Rt1

t2

∂bω
δbω

)

∆vt1
t2
(ba,bω) ≈ ∆vt1

t2

(
ba,bω

)
+
∂∆vt1

t2

∂ba
δba +

∂∆vt1
t2

∂bω
δbω,

∆pt1
t2
(ba,bω) ≈ ∆pt1

t2

(
ba,bω

)
+
∂∆pt1

t2

∂ba
δba +

∂∆pt1
t2

∂bω
δbω.

(4.35)

The corrected bias vector is denoted as b = b+δb, where · represents the prior knowledge
at the time of pre-integration.

Utilizing Equation (4.35), the IMU residual, eis, between the two consecutive frames at

time i and i+ 1, can be written as follows:

eis =



Log
((

∆Ri
i+1

)⊤
∆R̂i

i+1

)
∆v̂i

i+1 −∆vi
i+1

∆t̂ii+1 −∆tii+1

bω(i+1)
− bωi

ba(i+1)
− bai ,


∈ R15, (4.36)
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where ∆Ri
i+1, ∆vi

i+1, and ∆tii+1 stand for the pre-integrated values of rotation, velocity,

and position as from Equation (4.35). These contrast with ∆R̂i
i+1, ∆v̂i

i+1, and ∆t̂ii+1,

which represent estimated relative motion changes and are independent of the pose and

velocity at time i.

4.3.5 Nonlinear Least Squares Optimization

The optimization process on the manifold follows the “lift-solve-retract” scheme, as de-

tailed in Section 2.2.3. Initially, it involves lifting the cost function (Equation (4.21)) to

the Euclidean space, followed by the application of retraction to PVI-SLAM:

RW
Ii ← RW

Ii Exp (δϕi) , δϕi ∈ R3

W tIi ← W tIi +RW
Ii δti, δti ∈ R3

WvIi ← WvIi + δvi, δvi ∈ R3

δbωi ← δbωi + δ̃bωi , δbωi ∈ R3

δbai ← δbai + δ̃bai , δbai ∈ R3

(4.37)

In the solving step, GN and LM algorithms (Section 2.2.2) are leveraged for the lifted

cost function to refine the δϕi, δti, δvi, δ̃bωi , and δ̃bai in all the timestamps. In the

retracting step, the refined solution is lifted back to the manifold, as shown in (4.37).

With the updated estimate, the optimization process can repeat the subsequent steps.

Detailed information on the Jacobian calculation of the residual in Equation (4.22) and

Equation (4.36) can be found in Appendix A and Appendix B, respectively.

4.4 Performance Evaluations of PVI-SLAM

This section undertakes a comprehensive quantitative evaluation of the proposed method-

ology, PVI-SLAM. In Section 4.4.1, the evaluation begins with a comparative analysis

of the pure-vision performance between PBA and SBA, employing the parallax and XYZ

parametrization methods, respectively. Two distinct datasets, namely the “MALAGA

PARKING-6L” dataset [9] and the “Starry Night” Dataset [5], are utilized for the assess-

ment, incorporating a variety of initialization strategies.

To explore the impact of IMU integration on PBA, the IMU measurements from Chap-

ter 3 (Equation (3.18)) are incorporated. This analysis provides valuable insights into the

simplicity and effectiveness of PBA when combined with IMU data.
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Figure 4.5: (Left) Trajectory (Right) Sample frame from “MALAGA” Dataset [9]

Subsequently, the performance of PVI-SLAM is evaluated using the “EuRoC” dataset in

Section 4.4.2. The system incorporates the suitable objective function, as elucidated in

Section 4.3, and operates within a manifold framework, thereby serving as a benchmark

against state-of-the-art methodologies.

The investigation then shifts its focus to the “KITTI” dataset, highlighting the advantages

of employing the parallax parametrization method in Section 4.4.3. In Section 4.4.3.2, Ro-

bustness assessments are carried out by integrating UGPM and comparing its performance

with the PM proposed in [1].

Initialization relies on feature observations and poses extracted through ORB-SLAM3

[12]. In Section 4.4.3.3, the system’s robustness is further examined by deploying Visual

Odometry (VO) without closing the loop, and a comparative analysis is carried out using

both the observation ray objective function and the reprojection error. This comprehensive

evaluation aims to provide a nuanced understanding of the proposed methodology across

various datasets and scenarios, ensuring a robust assessment of its performance.

4.4.1 “MALAGA” and “Starry Night” Dataset

The publicly accessible “MALAGA PARKING-6L” dataset was collected by an electric ve-

hicle equipped with a camera providing a reliable ground-truth with estimated uncertainty

bounds [9]. Images collected during the 250m close-loop trajectory, called the PARKING-

6L dataset, are chosen for evaluation as in Figure 4.5. To make the dataset to be suitable

for monocular BA, only images from the right-side camera are used. The information of
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features from those images has been extracted using SIFT [20], RANSAC [98], and the

eight-point algorithm [102] as described in [103]. The number of images has been reduced

from 508 to 170 as the key-frame for this loop, now containing 170 poses, 58, 404 features,

and 167, 285 projections [89]. The “Starry Night” dataset aligns with the data previously

utilized in Chapter 3.

4.4.1.1 Comparison Criteria

For an accurate comparison between the two implementations of BA, identical initial input

of camera poses and observations are required. Due to the different methods of feature

parameterization, the input parameters for features need to be converted to suit the re-

spective BAs. The output of the comparison includes assessments of the initial and final

reprojection errors, along with the number of iterations required. Calculation of repro-

jection error can be done by averaging the squared reprojection error (Equation (4.22)),

which is stacked with all the related features from all the camera poses. The RMSE val-

ues for poses and features are also compared. In the case of PVI-SLAM, the RMSE of

camera pose and feature position has been compared with the results of PBA to assess

the improvement achieved through the utilization of IMU.

4.4.1.2 Comparison Result

Since the “MALAGA” dataset does not provide the ground-truth feature position, two

different initial inputs for both BAs are used, which are Initialization 1 and Initialization 2.

• Initialization 1 : Ground-truth poses, and observations in (u, v) value are used to

compute the initial feature values for both BAs. For the PBA, the estimated parallax

parameter for features can be computed with the given poses and the observation

as mentioned in Section 4.1. The same initial value needs to be used for both BAs

to allow a fair comparison. The estimated feature position in the XYZ parameter

for SBA can be calculated from the PBA parameters using the ground-truth anchor

poses.

• Initialization 2 : Estimated poses obtained from VO and observations are used to

compute the initial values of poses. In addition, estimated feature positions in paral-

lax and XYZ parameters are used as initial values of features, which were computed

in the same way as Initialization 1.
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Table 4.1: Comparison result of “MALAGA” from 30 and 170 images with two different
initialization methods.

Init 1 Init 2
30 170 30 170

PBA

Trans.RMSE (m) 0.2940 0.000003 0.0286 0.0718
Rot.RMSE (deg) 0.0087 0.00029 0.0293 0.0728

Iteration 9 104 8 51
Initial Cost 580.2133 498896 8.2879 462.998
Final Cost 0.1415 212.6789 0.1415 0.1092

SBA

Trans.RMSE (m) 0.6472 0.0075 1.9635 1.1164
Rot.RMSE (deg) 0.0086 0.00081 0.0305 0.1291

Iteration 30 79 13 10
Initial Cost 580.2133 498896 8.2879 462.998
Final Cost 0.9938 7897.9 0.9925 282.764

(a) 30 images:
Initialization 1

(b) 30 images:
Initialization 2

(c) 170 images:
Initialization 1

(d) 170 images:
Initialization 2

Figure 4.6: The result of PBA and SBA from 30 and 170 images in “MALAGA”
dataset with two different initialization methods (Red Trajectory: Ground-Truth, Green

Trajectory: PBA, Blue Trajectory: SBA).

Whereas the “Starry Night” dataset provides ground-truth for both poses and feature

positions, it allows for testing with more variety of initial inputs, including Initialization 1

and Initialization 2, shown as follows:

• Initialization 3 : Ground-truth of poses is used as the initial value. Ground-truth

feature positions in the parallax parameter can be computed using the ground-truth
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Table 4.2: Comparison result of “Starry Night” (500 features) from 200 images with
four different initialization methods.

Init 1 Init 2 Init 3 Init 4
200 200 200 200

PBA

Trans.RMSE (m) 0.0047 0.0047 0.0047 0.0047
Rot.RMSE (deg) 0.0004 0.2936 0.0004 0.2936

Feature.RMSE (m) 0.2405 0.1997 0.1997 0.1997
Iteration 101 22 11 22

Initial Cost 4.5201 64152 1.9843 4.8201
Final Cost 2.1122 1.8374 1.8374 1.8374

SBA

Trans.RMSE (m) 0.0020 0.1070 0.00004 0.0047
Rot.RMSE (deg) 0.0006 0.3126 0.00001 0.00041

Feature.RMSE (m) 1.7506 4.5561 0.00016 2.0701
Iteration 27 90 28 1

Initial Cost 4.8201 64152.1 1.9843 1.8374
Final Cost 2.8219 2895.4 1.9539 1.8374

(a) Initialization 1 (b) Initialization 2

(c) Initialization 3 (d) Initialization 4

Figure 4.7: The result of PBA and SBA from 200 images (500 features) in “Starry
Night” dataset with four different initialization methods.
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poses and ground-truth feature positions instead of using the observation data to cal-

culate the parallax parameter. Ground-truth feature positions in the XYZ parameter

provided from the data are directly used as the initial value of SBA.

• Initialization 4 : For PBA, estimated poses and observations are used to compute

the initial feature values. Estimated poses are achieved with the IMU measurements

and extrinsic matrix from the “Starry Night” dataset. Estimated feature positions in

the parallax parameter can be computed using the estimated poses and observations.

The output poses and feature positions from PBA are used as the initial value of

SBA. This is to check whether the result obtained from PBA is a minimum for SBA

or not.

“MALAGA” dataset with 30 images. The results of PBA and SBA on the “MALAGA”

dataset with 30 images are presented in Table 4.1 and Figure 4.6. For the Initialization 1

and Initialization 2, PBA converges to a lower final reprojection error in fewer iterations.

Also, in the case of PBA, the RMSE of translation and rotation are smaller than SBA in

both cases. The larger reprojection error, in both initial and final, can be seen in Initial-

ization 1 compared to Initialization 2, which is due to the absence of ground-truth feature

parameters for initial value in both BAs.

“MALAGA” dataset with 170 images. As the loop is closed, PBA stably converged

close to the ground-truth with a final reprojection error of 0.1092 using Initialization 2,

as indicated in Table 4.1, and Figure 4.6(d). In contrast, loop-closure did not perform

well with SBA, resulting in a final reprojection error of 282.764 with Initialization 2. In

the case of Initialization 1, where the ground-truth feature is not provided, both methods

exhibit significant initial and final costs. Despite PBA converging to a lower final cost of

212.679 compared to SBA’s convergence to 7897.9, both methods seem to be trapped in a

local minimum.

“Starry Night” dataset (500 Features) with 200 images. In Initialization 4, when

refined poses and feature positions from the PBA are used as an initial value to SBA, the

same final reprojection error is obtained as shown in Table 4.2. The SBA result presented

in Initialization 2 did not converge close enough to ground-truth poses compared to PBA,

as can be easily seen in Figure 4.7(b). In all the cases, PBA converged to a lower final

reprojection error and yielded better-refined poses and feature positions (Figure 4.7).
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Table 4.3: Comparison result of “Starry Night” (80 features) from 500 images with four
different initialization methods.

Init 1 Init 2 Init 3 Init 4
500 500 500 500

PBA

Trans.RMSE (m) 0.0088 0.0088 0.0088 0.0088
Rot.RMSE (deg) 0.0017 0.1943 0.0017 0.1943

Feature.RMSE (m) 0.8883 0.0833 0.0883 0.0883
Iteration 41 44 41 44

Initial Cost 4.1902 5642 2.0208 5642
Final Cost 1.3778 1.3778 1.3778 1.3778

SBA

Trans.RMSE (m) 0.0013 0.1729 0.00008 0.0088
Rot.RMSE (deg) 0.00065 0.2357 0.00003 0.0039

Feature.RMSE (m) 0.8883 2.3860 0.00067 0.3952
Iteration 74 297 66 1

Initial Cost 4.1902 5642 2.0208 1.3778
Final Cost 2.6636 77.6693 1.8102 1.3778

(a) Initialization 1 (b) Initialization 2

(c) Initialization 3 (d) Initialization 4

Figure 4.8: The result of PBA and SBA from 500 images (80 features) in “Starry Night”
dataset with four different initialization methods.
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Table 4.4: Comparison result of PBA and PVI-SLAM with 200 images and IMU mea-
surements from “Starry Night” (40, 60, 80, 100, and 500 features).

Init 2 - 200 Images
40 60 80 100 500

PBA
Trans.RMSE (m) 0.0148 0.0127 0.0065 0.0069 0.0047
Rot.RMSE (deg) 0.2944 0.2960 0.2946 0.2957 0.2936

Feature.RMSE (m) 0.1344 0.8764 0.9576 0.1461 0.1997

PVI-SLAM
Trans.RMSE (m) 0.0150 0.0114 0.0102 0.0142 0.0074
Rot.RMSE (deg) 0.2964 0.2956 0.2959 0.2955 0.2941

Feature.RMSE (m) 0.5253 0.2912 0.4471 0.2496 0.3257

(a) PVI-SLAM (b) Parallax BA

Figure 4.9: Comparison between PVI-SLAM and PBA with 200 images (40, 60, 80,
100, 500 features) from “Starry Night” dataset.

“Starry Night” dataset (80 Features) with 500 images. The result of PBA (Ta-

ble 4.3) shows that the final reprojection error converges to a smaller value, 1.3778, than

SBA in Initialization 1 to 3. Results using Initialization 4 are the same, meaning the

result of PBA is a minimum of SBA. The results of both BAs are close enough to the

ground-truth in all initialization methods except the result of SBA with initialization 2,

as seen in Figure 4.8(b).

VI-SLAM: “Starry Night” dataset (40, 60, 80, 100, 500 Features) with 200

images. PVI-SLAM and PBA have been compared with different numbers of feature

observations during the whole trajectory. As can be seen in Table 4.4, the performance of

the pure vision system, PBA, seems to be comparable to PVI-SLAM. However, it cannot
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(a) EuRoC-V101

(b) EuRoC-MH01

PVI-SLAM OpenVINS ORB-SLAM3 VINS-Fusion GT

(c) EuRoC-MH03

Figure 4.10: The comparison of estimated trajectories between PVI-SLAM, VINS-
Fusion [10], OpenVINS [11], and ORB-SLAM3 [12] using the “EuRoC” datasets.

recover the right metric scale without ground-truth while IMU naturally helps to recover

the metric scale. Moreover, PVI-SLAM shows more consistence and reliable performance

than PBA, even with fewer feature observations.

4.4.2 “EuRoC” dataset

The “EuRoC” Micro Aerial Vehicle (MAV) dataset [104] is collected from two different

environments. One setting is a machine hall, providing a challenging industrial environ-

ment with diverse conditions. The other environment is a Vicon room designed to evaluate
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Figure 4.11: Comparison of translation error and rotation error between PVI-SLAM,
VINS-Fusion [10], OpenVINS [11], and ORB-SLAM3 [12] for each “EuRoC” dataset.

the performance of multi-view reconstruction. The dataset comprises high-frequency IMU

measurements, capturing rapid changes in acceleration and angular velocity with precision

at rates of 200Hz. Simultaneously, front-down-looking stereo camera images are captured

at a lower frequency, typically around 20Hz, facilitating visual feature tracking and map-

ping. The synchronization of IMU and camera data through precise timestamps ensures

accurate temporal alignment, a critical factor for the successful fusion of visual and in-

ertial information. Additionally, ground-truth odometry information obtained from laser

tracking systems and Vicon is provided at the same high frequency as the IMU data.

This provision serves as a reliable reference for evaluating the performance of VI-SLAM

algorithms.
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For the evaluation, sequences MH01, MH03 and V101 from the machine hall and the

Vicon room, respectively, are utilized. Comparative analyses involve VINS-Fusion [10],

OpenVINS [11], and ORB-SLAM3 [12]. In the case of the proposed PVI-SLAM method,

estimated poses and image coordinates of feature observations are initialized using ORB-

SLAM3. The impact of this initialization on PVI-SLAM is discussed in Section 4.4.3.3.

The trajectories estimated by the proposed method, PVI-SLAM and other state-of-the-art

techniques are visually compared in Figure 4.10, while the average errors relative to the

distance and angle travelled are depicted in Figure 4.11. The visualizations clearly indicate

that PVI-SLAM and ORB-SLAM3 outperform VINS-Fusion and OpenVINS. Particularly

in the more challenging MH01 and MH03 dataset, both PVI-SLAM and ORB-SLAM3

stand out prominently compared to other methods.

In the assessment of translation accuracy measured by RMSE, PVI-SLAM consistently

outperforms other state-of-the-art methods across different sequences. For MH01, MH03,

and V101 sequences, PVI-SLAM achieves translation RMSE values of 0.033m, 0.030m,

and 0.035m, respectively. In comparison, ORB-SLAM3 reports translation errors with

values of 0.036m, 0.034m, and 0.038m for the corresponding sequences. OpenVINS records

the highest translation errors with values of 0.142m, 0.108m, and 0.103m, while VINS-

Fusion falls in between with values of 0.077m, 0.078m, and 0.110m.

Moving to the evaluation of rotational RMSE, PVI-SLAM maintains commendable per-

formance across MH01, MH03, and V101 sequences, recording rotational RMSE values of

1.097°, 1.186°, and 5.513°, respectively. Though slightly higher, these values remain com-

parable to those of other state-of-the-art methods. OpenVINS, ORB-SLAM3, and VINS-

Fusion exhibit rotational RMSE values of 1.606°, 1.106°, and 2.501° for MH01; 1.417°,

1.338°, and 1.640° for MH03; and 5.377°, 5.504°, and 6.281° for V101, respectively. The

consistent performance of PVI-SLAM underscores its effectiveness in achieving accurate

and competitive results in both translation and rotation, establishing it as a robust method

in comparison to other leading techniques.

4.4.3 “KITTI” dataset

In contrast to the “EuRoC” dataset, the “KITTI” dataset is known for exhibiting more

instances of collinear motion among its sequences. Consequently, the proposed PVI-SLAM

approach demonstrates a notable advantage over alternative methods when applied to the

“KITTI” dataset. This advantage is more pronounced and evident, showcasing the efficacy
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Table 4.5: Data sizes for sequences 06, 07, and 09 from the “KITTI” dataset extracted
using ORB-SLAM3 [12].

Dataset 06 07 09

Total Number of Poses 412 412 677

Total Number of Features 28141 41183 56439

Total Number of Observations 151990 236482 299513

Table 4.6: Comparison between parallax angle feature parametrization and XYZ
parametrization in BA.

Dataset 06 07 09

parametrization PBA SBA PBA SBA PBA SBA

Strategy GN LM GN LM GN LM GN LM GN LM GN LM

Initial Cost 31.994 31.994 - 31.994 207.022 207.022 - 207.021 347.115 347.115 - 347.115

Final Cost 4.041 4.041 - 4.066 4.590 5.296 - 7.410 2.918 2.919 - 3.254

Iteration 20 18 - 16 20 16 - 11 11 27 - 17

Time (sec) 72.474 83.328 - 124.916 100.013 103.170 - 148.443 73.479 91.250 - 249.308

of the proposed approach in addressing and mitigating the challenges posed by collinear

motion in the feature-rich environment of the “KITTI” dataset.

For the comparative evaluation between the proposed methodology and ORB-SLAM3 [12],

the data of feature observations and poses are extracted using ORB-SLAM3. As ORB-

SLAM3 does not inherently support VI-SLAM with the “KITTI” dataset, monocular

visual SLAM is executed instead. Specifically, sequences 06, 07, and 09 from the “KITTI”

dataset are processed using ORB-SLAM3. The data sizes are summarized in Table 4.5.

In the ORB-SLAM3 package, various parameters are adjusted to extract more features

from a greater distance and to select more key-frames, thereby improving the information

available for pre-integrated IMU data. The raw IMU data, captured at a rate of 100Hz,

is utilized as input for the pre-integration method.

4.4.3.1 Comparison between PVI-SLAM and SBA+IMU

Visual SLAM. First, the V-SLAM results (no IMU data is used) using different feature

parameterizations are evaluated. The performance of PBA is compared with SBA, which

employs the XYZ parametrization (as utilized in ORB-SLAM3). Given that the outcomes

of ORB-SLAM3 show no significant deviation from those of the XYZ parametrization,

they are considered equivalent to the XYZ results.

For initialization, only the poses from ORB-SLAM3 are employed. The process of feature

initialization relies on the observations of these features, as described in [89]. It is impor-

tant to highlight that the inclusion of features extracted from greater distances presents a
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Table 4.7: Comparison of between PVI-SLAM and SBA+IMU.

Dataset 06 07 09

parametrization PVI-SLAM SBA+IMU PVI-SLAM SBA+IMU PVI-SLAM SBA+IMU

Strategy GN LM GN LM GN LM

Initial Cost 31.909 31.909 206.662 206.662 346.343 346.343

Final Cost 4.476 6.298 8.246 9.2312 3.859 4.648

Iteration 51 14 51 22 51 16

Time (sec) 298.383 64.468 481.897 109.230 614.530 101.337

0-20-40 20

-100

0

100

200

(a) KITTI-06 (b) KITTI-07

PVI-SLAM
SBA+IMU
GT

(c) KITTI-09

Figure 4.12: The comparison of trajectories between PVI-SLAM and SBA+IMU using
the “KITTI” datasets.

challenge, as even with optimized poses and feature positions from ORB-SLAM3, conver-

gence cannot be attained using the GN method. As indicated in Table 4.6, it is evident that

PBA achieves convergence to a lower final cost compared to SBA across all datasets when

using both GN and LM optimization techniques. Notably, SBA encounters singularity

issues when applying GN.

Visual-Inertial SLAM. Since the poses obtained from monocular SLAM using ORB-

SLAM3 do not provide the correct metric scale, the scale of the initial pose estimates

is adjusted using the provided IMU dataset. This correction aims to improve the initial

guesses for the evaluation of VI-SLAM. The IMU data is pre-integrated with the camera

image timestamps, following the method outlined in [1]. In addition, integrating IMU data

into the system requires an extra step to initialize the state vector. The initial velocity
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PVI-SLAM
SBA+IMU

(a) KITTI-06

(b) KITTI-07

(c) KITTI-09

Figure 4.13: Comparison of translation error and rotation error between PVI-SLAM
and SBA+IMU for each sequence of “KITTI” dataset.

value is computed from the pre-integrated data by propagating it accordingly. During the

initialization process, sensor biases are set to zero.

To address the singularity issues, only the LM algorithm is used for SBA with IMU, while

the GN algorithm is employed for PBA with IMU, as indicated in Table 4.7. Across all

datasets, the final cost of PVI-SLAM converges to a lower value compared to SBA+IMU,

even when starting from the same initial values. As evident in Figure 4.12 and Figure 4.13,

the translation and rotation errors of PVI-SLAM are significantly smaller than those of

SBA+IMU. Specifically, RMSE for PVI-SLAM across the entire trajectory is 2.405m

for sequence 06, 2.663m for sequence 07, and 3.256m for sequence 09. In contrast, for

SBA+IMU, these values are significantly higher at 20.415m for sequence 06, 4.4316m for
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Table 4.8: The comparison results between dead-reckoning using IMU measurement
pre-integrated with PM and UGPM.

KITTI-06 KITTI-07 KITTI-09
PM UGPM PM UGPM PM UGPM

IMU Intial Cost 0.2062 0.2062 0.2619 0.2616 3.3362 3.3361
Trans.RMSE (m) 32.612 32.091 27.800 34.870 272.534 284.717
Rot.RMSE (deg) 12.397 10.263 8.054 6.519 27.613 56.913

sequence 07, and 34.100m for sequence 09. Furthermore, the rotation RMSE also tends

to be smaller in the case of PVI-SLAM. While it may be slightly larger in the case of

sequence 06, it generally remains below 0.005° per meter throughout the trajectory.

4.4.3.2 Comparison between PM and UGPM

As outlined in Section 4.2, the implementation of UGPM is aimed at enhancing system

accuracy by incorporating IMU measurements within a continuous model.

During the evaluation, IMU measurements are pre-integrated using both PM and UGPM.

The process of dead-reckoning utilizes these pre-integrated IMU data from both PM and

UGPM. The comparative results of this evaluation are summarized in Table 4.8. Con-

sistently, UGPM exhibits lower initial cost values when the system is initialized with the

ground-truth pose compared to PM across the majority of datasets. For instance, in se-

quence 06, UGPM records an initial cost of 0.2062, which is identical to PM. In sequence

07, UGPM exhibits a lower initial cost of 0.2616 in contrast to PM’s 0.2619. Similarly, in

sequence 09, UGPM displays a lower initial cost of 3.3361 than PM’s 3.3362.

Concerning the RMSE for dead-reckoning translation and rotation, sequence 06 demon-

strates that UGPM outperforms PM in both aspects, with lower values of 32.091m and

10.263°, respectively, compared to PM’s 32.612m and 12.397°. However, in sequence 07,

only the RMSE of rotation is lower for UGPM with 6.519° compared to PM’s 8.054°.

The outcomes of PVI-SLAM utilizing both PM and UGPM are illustrated in Figure 4.14.

A comparison between PM and UGPM in VI-SLAM reveals similar trends, as shown in

Figure 4.15. In sequence 6, PVI-SLAM with UGPM displays lower RMSE values for

translation and rotation at 2.410m and 0.840°, respectively, while PM yields 2.411m and

0.841°. Additionally, UGPM exhibits a lower rotational error in sequence 09, with a value

of 1.296°, compared to PM’s 1.398°.
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Figure 4.14: Comparing PVI-SLAM utilizing PM, UGPM, UGPM with Observation
ray objective function (3D), and UGPM with 3D initialized using VO, without loop-
closure (While PVI-SLAM with UGPM and 3D successfully converges in KITTI-06 and
KITTI-07 when initialized with VO and without loop-closure, it encounters convergence

challenges in the KITTI-09 dataset).

Table 4.9: The initial objective function for two different pose initializations— one with
loop-closure and the other without loop-closure.

KITTI-06 KITTI-07 KITTI-09
UV IMU UV IMU UV IMU

w loop-closure 6.1756 0.333 207.021 0.335 347.118 3.255

w/o loop-closure 1466681.480 0.228 1173817.125 0.636 28529.359 3.424

While UGPM does not exhibit significant advantages over PM with the “KITTI” dataset,

which predominantly involves static motion, the notable advantage of UGPM becomes

evident in more dynamic and fast-motion datasets, as indicated in [8]. As the integration

of UGPM into PVI-SLAM produces comparable results to incorporating PM, UGPM is

utilized in PVI-SLAM, offering potential advantages for both collinear and dynamic motion

in subsequent evaluations with more suitable datasets.

4.4.3.3 Comparison between Observation Ray and Reprojection Error

In this section, the implementation of the observation ray is carried out as described

in Equation (4.31) and is then compared against the reprojection error given by Equa-

tion (4.22). To evaluate the robustness of the two objective functions further, two distinct
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(a) KITTI-06
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Figure 4.15: Comparison of translation and rotation error of PVI-SLAM utilizing PM,
UGPM, UGPM with observation ray objective function (3D), and UGPM with 3D initial-
ized using VO, without loop-closure (While PVI-SLAM with UGPM and 3D successfully
converges in KITTI-06 and KITTI-07 when initialized with VO and without loop-closure,

it encounters convergence challenges in the KITTI-09 dataset).

initializations are employed. The first initialization is identical to that used in the previ-

ous section (Section 4.4.3.1), obtained from ORB-SLAM3 [12]. The second initialization

involves poses obtained from pure VO without closing the loop. The objective function

calculated using the observation ray is subsequently converted back to reprojection error

only for comparative analysis. The disparities in the initial cost for these two different

initializations are presented in Table 4.9. Due to the absence of loop-closure, a substantial

difference in image reprojection error is observed.
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When utilizing the observation ray as the objective function for the initial pose with loop-

closure, it does not demonstrate improvement over using the reprojection error objective

function. However, attempting to optimize with the initial pose without loop-closure using

the reprojection error objective function results in system optimization failure, leading to

singularity in all datasets. In contrast, PVI-SLAM using the observation ray objective

function manages to converge with the initial pose without loop-closure to a solution

comparable to the one using loop-closed pose initialization, as depicted in Figure 4.14 and

Figure 4.15.

For PVI-SLAM utilizing UGPM and observation ray objective function without loop-

closure, the achieved translation RMSE is 2.949m and 2.699m in sequence 06 and 07,

respectively, with corresponding rotational errors of 1.531° and 1.422°. On the other hand,

PVI-SLAM utilizing UGPM and observation ray objective function with loop-closure yields

translation errors of 2.632m and 2.699m, along with rotational errors of 1.387° and 1.422°

for the same sequences. In the case of sequence 09, the system successfully converges with

a good initial value when loop-closure is incorporated. However, it fails to converge even

with the utilization of the observation ray objective function when initialized from VO

without loop-closure.

4.5 Summary

This chapter introduces and evaluates VI-SLAM based on PBA with pre-integrated IMU

data (PVI-SLAM). The incorporation of IMU into pure V-SLAM corrects the unknown

scale from the monocular camera, substantially enhancing the reliability and consistency

of the system, even with fewer feature observations.

Leveraging the “EuRoC” dataset, PVI-SLAM exhibits superior performance compared to

state-of-the-art approaches (VINS-Fusion [10], OpenVINS [11], and ORB-SLAM3 [12]).

To underscore the advantages of employing the parallax parameterization, the evaluation

extends to the “KITTI” dataset. The primary challenge addressed revolves around the

singularity issue encountered when utilizing SBA+IMU as used in ORB-SLAM3, espe-

cially with features located at a greater distance. PVI-SLAM is demonstrated to effec-

tively address this challenge. In terms of convergence properties and accuracy, PVI-SLAM

outperforms SBA+IMU, both with and without IMU data integration. Additionally, to

further enhance the system, UGPM is implemented to harness benefits in both collinear

and dynamic motion by handling IMU measurements in a continuous model. Further-

more, the incorporation of the observation ray enhances the system’s robustness, enabling
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convergence even in trajectories without loop-closure from VO when the reprojection error

objective function fails to converge.

However, it is crucial to note that the proposed method PVI-SLAMmay not always guaran-

tee convergence, especially when dealing with a large number of frames. The convergence

of this high-dimensional nonlinear optimization problem is not assured. Additionally,

considering the computational complexity is important when handling batch nonlinear

optimization for online system implementation. Therefore, the next chapter introduces

the linear map joining method to address these challenges.





Chapter 5

Linear Submap Joining using

Parallax VI-SLAM

In the field of SLAM, dealing with high-dimensional nonlinear optimization problems is

inherently challenging. The previous chapter (Chapter 4) underscores the crucial impor-

tance of precise initial values for achieving successful convergence in nonlinear optimization

problems. However, even with the provision of accurate initial values, there is no guarantee

of converging to the global minimum.

To address these issues, this chapter introduces a Linear Submap Joining method

using the Linear SLAM framework applied to the proposed PVI-SLAM method-

ology. Instead of retaining all the data and undergoing full nonlinear optimization, which

is often impractical, this method optimizes small parts of the full dataset as local maps,

utilizing information relevant to each specific local map. Subsequently, the information

from each optimized local map is fused through the map joining process to construct a

unified map. This is particularly beneficial in situations where computational resources

are limited and helps mitigate issues related to local minima.

An evaluation is performed using publicly available real datasets, such as “EuRoC” and

“KITTI”. The performance of Linear SLAM, which is built upon local maps optimized

using PVI-SLAM, is demonstrated, showcasing close proximity to solutions achievable

through a full nonlinear optimization algorithm from an accurate initial guess. Notably,

the evaluation emphasizes the effectiveness of the method in addressing challenges related

to poor initial values, situations that would typically lead to convergence failure in the

context of full nonlinear optimization.

81
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5.1 Integrating PVI-SLAM with Linear Submap Joining

Large-scale maps are effectively managed by combining submaps, as demonstrated in [80–

83]. Most of these approaches, such as [84] by Huang et al., avoid marginalizing any

states and treat the estimated state of each local map as integrated observations during

the map joining process. Another notable work by Zhao et al. [85] presents a map joining

algorithm that transforms a nonlinear optimization problem into a combination of LLS

optimization and nonlinear coordinate transformation. This algorithm eliminates the need

for initial guesses or iterative procedures since LLS problems can be resolved using closed-

form formulas.

In this section, PVI-SLAM with Linear Submap Joining algorithms is proposed to

resolve the problem of high computational cost balancing with estimation accuracy. To

perform Linear SLAM framework [85], a structured three-step procedure is required for

addressing large-scale VI-SLAM challenges. Firstly, each local map is independently built

using local information by solving a small-scale VI-SLAM problem through PVI-SLAM

(Section 4.3). Secondly, to integrate into the Linear SLAM framework, it is essential to

transform the structure of the state vector, which in turn requires a recalculation of the

information matrix for the system. Finally, submap joining can be carried out, primarily

through solving LLS and conducting nonlinear coordinate transformations.

5.1.1 Local Visual-Inertial SLAM

As illustrated in Figure 5.1, the Linear Submap Joining process begins by optimizing each

of the local maps. For simplicity in this chapter, only two local maps are considered: Local

map 1, denoted as XL1
W , and local map 2, denoted as XL2

W , are expressed as:

XL1
W =

[
WPI1 , · · · ,WPIp ,F

L1
1 ,FL1

12

]
XL2
W =

[
WPIp , · · · ,WPIq ,F

L2
2 ,FL2

12

]
,

(5.1)

where FL1
1 and FL2

2 represent features unique to each local map, and FL1
12 and FL2

12 denote

features that are common between the two local maps. All features are represented in

the form of parallax parametrization. Both local maps are in the coordinate frame of the

world frame, {W}, defined by the first pose of the state as the origin. The pose, WPIi ,
stay same as in Chapter 4:

WPIi =
{
RW

Ii ,
W tIi ,

WvIi ,bωi ,bai

}
. (5.2)
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Figure 5.1: Linear way of Map Joining.

Subsequently, each local map can be optimized through PVI-SLAM in Section 4.3, leading

to the estimated local maps, X̂L1
W and X̂L2

W .

5.1.2 Structural Transformation

After performing PVI-SLAM, the corresponding information matrix is also required as an

input for Linear SLAM. However, to align with the requirements of Linear SLAM, ad-

justments need to be made to the parameters related to poses and feature positions. The

information matrix from PVI-SLAM cannot be directly used, necessitating modifications

in this process. In this adjustment, W v̂Ii , b̂ωi , and b̂ai are removed from the state vector.

For each pose, the rotation matrix, RW
Ii
, is converted into Euler angle, W rIi . The trans-

formation of feature positions, fj , into XYZ parameters can be achieved by the following

process:

fXY Z
j = djx

m
j + W tCm , (5.3)

where dj is the depth of the feature fj from the main anchor W tCm . By utilizing the angles

ω and φ as specified in Equation (4.27) and Equation (4.30), respectively, the depth can
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be calculated as:

dj =
sin (ωj + φj)

sinωj

∥∥W tCa − W tCm

∥∥ . (5.4)

Now the state vector of both local maps can be re-written as:

X̂L1
W =

[
W P̂I1 , · · · ,W P̂Ip , F̂

L1
1 , F̂L1

12

]
X̂L2
W =

[
W P̂Ip , · · · ,W P̂Iq , F̂

L2
2 , F̂L2

12

]
,

(5.5)

where W P̂Ii =
[
W t̂Ii ,

W r̂Ii
]
and F̂L

k =
[
f̂XY Z
1 , · · · , f̂XY Z

M

]
represent all the feature posi-

tions in XYZ parametrization. To perform Linear Submap Joining, both local maps are

then transformed into the coordinate frame of the start pose of each local map, {1} and
{p}, respectively:

X̂L1
1 =

[
I1 t̂I2 ,

I1 r̂I2 , · · · , I1 t̂Ip , I1 r̂Ip , F̂
L1
1 , F̂L1

12

]
, (5.6)

X̂L2
p =

[
Ip t̂I(p+1)

, Ip r̂I(p+1)
, · · · , Ip t̂Iq , Ip r̂Iq , F̂

L2
2 , F̂L2

12

]
. (5.7)

Subsequently, the information matrices for each local, denoted as IL1
1 and IL2

p , are recalcu-

lated based on the state vector in Equation (5.6) and Equation (5.7). This process involves

utilizing the cost function defined in Equation (4.21), which still requires W v̂Ii , b̂ωi , and

b̂ai as constants for the residual. The final form of the state vector for each local map can

be expressed as follows:

ML1 =
(
X̂L1
1 , IL1

1

)
,

ML2 =
(
X̂L2
p , IL2

p

)
.

(5.8)

5.1.3 Linear SLAM: Map Joining

When the two local maps are given to perform Linear Submap Joining, the first map, X̂L1
1 ,

need to be transformed into the coordinate frame of the last pose, X̂L1
p , as in Figure 5.1:

X̂L1
p =

[
Ip t̂I1 ,

Ip r̂I1 , · · · , Ip t̂Ip−1 ,
Ip r̂Ip−1 , F̂

L1
1 , F̂L1

12

]
. (5.9)

The corresponding information matrix is recalculated through the following process:

IL1
p = ∇T

p I
L1
1 ∇p, (5.10)
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where ∇p is the Jacobian of XL1
1 with respect to XL1

p evaluated at X̂L1
p as:

∇q =
∂XL1

1

∂XL1
p

∣∣∣∣∣
X̂L1

p

. (5.11)

Then, the following two local maps can be achieved in the coordinated frame of {p}:

X̂L1
p =

[
Ip t̂I1 ,

Ip r̂I1 , · · · , Ip t̂Ip−1 ,
Ip r̂Ip−1 , F̂

L1
1 , F̂L1

12

]
,

X̂L2
p =

[
Ip t̂Ip+1 ,

Ip r̂Ip+1 , · · · , Ip t̂Iq , Ip r̂Iq , F̂
L2
2 , F̂L2

12

]
.

(5.12)

By combining two local maps (Equation (5.12)), the state vector of the integrated map,

MG12 , can be obtained in the coordinate frame of {q} as:

XG12
q =

[
IqPI1 , · · · , IqPIp , IqPIp+1 , · · · , IqPIq−1 ,F

G
1 ,F

G
2 ,F

G
12

]
=
[
IqtI1 ,

IqrI1 , · · · , IqtIp , IqrIp , IqtIp+1 ,
IqrIp+1 , · · · , IqtIq−1 ,

IqrIq−1 ,F
G
1 ,F

G
2 ,F

G
12

]
.

(5.13)

This can be optimized directly by minimizing the following objective function, similar to

the approach taken by Huang et al. [105]:

f
(
XG12

)
= ∥e1∥2IL1

p
+ ∥e2∥2IL2

p

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



R
Ip
Iq

(
IqtI1 − IqtIp

)
− Ip t̂I1

r
(
RI1

Iq
(R

Ip
Iq
)⊤
)
− Ip r̂I1

...

R
Ip
Iq

(
IqtIp−1 − IqtIp

)
− Ip t̂Ip−1

r
(
R

Ip−1

Iq
(R

Ip
Iq
)⊤
)
− Ip r̂Ip−1

R
Ip
Iq

(
FG
1 − IqtIp

)
− F̂L1

1

R
Ip
Iq

(
FG
12 − IqtIp

)
− F̂L1

12



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

I
L1
p

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



R
Ip
Iq

(
IqtIp+1 − IqtIp

)
− Ip t̂Ip+1

r
(
R

Ip+1

Iq
(R

Ip
Iq
)⊤
)
− Ip r̂Ip+1

...

−RIp
Iq

IqtIp − Ip t̂Iq

r
(
(R

Ip
Iq
)⊤
)
− Ip r̂Iq

R
Ip
Iq

(
FG
2 − IqtIp

)
− F̂L2

2

R
Ip
Iq

(
FG
12 − IqtIp

)
− F̂L2

12



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

I
L2
p

(5.14)

where r(·) is the function that converts a rotation matrix to Euler angles. However, given

that this involves a NLLS problem, successful application of this approach necessitates a

reliable initial guess and iterative optimization to find a solution. Consequently, in the
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context of Linear SLAM [85], the state vector of XG12
q undergoes redefinition:

pt1 = R
Ip
Iq

(
IqtI1 − IqtIp

)
, pr1 = r

(
RI1

Iq
(R

Ip
Iq
)⊤
)
,

...

ptp−1 = R
Ip
Iq

(
IqtIp−1 − IqtIp

)
, prp−1 = r

(
R

Ip−1

Iq
(R

Ip
Iq
)⊤
)
,

ptp+1 = R
Ip
Iq

(
IqtIp+1 − IqtIp

)
, prp+1 = r

(
R

Ip+1

Iq
(R

Ip
Iq
)⊤
)
,

...

ptq = −R
Ip
Iq

IqtIp ,
prq = r

(
(R

Ip
Iq
)⊤
)
,

(5.15)

and
FG12

1 = R
Ip
Iq

(
FL1
1 −

IqtIp

)
,

FG12

2 = R
Ip
Iq

(
FL2
1 −

IqtIp

)
,

FG12

12 = R
Ip
Iq

(
FG12
1 − IqtIp

)
.

(5.16)

Then, the new state vector, XG12

p , in the frame of {p}, as can be seen in Figure 5.1, can

be written:

XG12

p =
[
pt1,

pr1, · · · , ptp−1,
prp−1,

ptp+1,
prp+1, · · · , ptq, prq,F

G12

1 ,FG12

2 ,FG12

12

]
= g

(
XG12
q

)
,

(5.17)

where g(·) serves as the transformation function. In this way, instead of facing a NLLS

problem directly, Equation (5.14) is transformed into a LLS problem:

f̄
(
XG12

p

)
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



pt1 − pt̂1
pr1 − pr̂1

...

pt(p−1) − pt̂(p−1)

pr(p−1) − pr̂(p−1)

FG12

1 − F̂L1
1

FG12

12 − F̂
L1
12



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

I
L1
p

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



pt1 − pt̂(p+1)

pr(p+1) − pr̂(p+1)

...

ptq − pt̂q
prq − pr̂q

FG12

2 − F̂L2
2

FG12

12 − F̂
L2
12



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

I
L2
p

. (5.18)

The optimal solution for a joined map can be achieved by solving the sparse linear equation

as follows:

minimize f̄
(
XG12

p

)
=
∥∥∥AXG12

p − Z
∥∥∥2
IZ

(5.19)

A⊤IZA
ˆXG12

p = A⊤IZZ (5.20)
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I
G12

p = A⊤IZA, (5.21)

where Z =
[
X̂L1
p , X̂L2

p

]
, IZ = diag

(
IL1
p , IL2

p

)
and A is the coefficient matrix of Equa-

tion (5.18).

When the optimal solution X̂
G12

p is obtained, the nonlinear coordinate transformation can

be applied to revert to the form presented in Equation (5.13) by:

X̂G12
q = g−1

(
X̂

G12

p

)
. (5.22)

The corresponding information matrix can also be obtained through the following process:

IG12
q = ∇T

q I
G12

p ∇q, (5.23)

where ∇q is the Jacobian of XG12

p with respect to XG12
q evaluated at X̂G12

q as:

∇q =
∂g
(
XG12
q

)
∂XG12

q

∣∣∣∣∣
X̂G12

q

. (5.24)

5.1.4 Sequenced Local Map Joining

When a sequence of local maps is required to be joined, the “Divide and Conquer” strategy

proposed by Zhao et al. in [85] can be applied by repeating the same procedure outlined

in Section 5.1. In contrast to the traditional approach to map joining, where each local

map is initially in the frame of its first pose and remains in that frame even after joining,

Linear SLAM [85] maintains that the first local map is always in the frame of its last pose,

and the second map is in the frame of its start pose. After map joining, the resulting map

is always in the frame of its last pose. This allows for a “Divide and Conquer” process

directly, leading to additional computational cost savings.

5.2 Performance Evaluation on Linear Submap Joining uti-

lizing PVI-SLAM

This section evaluates the robustness of the Linear Submap Joining framework within the

context of PVI-SLAM. The assessment begins with a comparative analysis of the compu-

tational time required for the proposed Map Joining process with PVI-SLAM, considering

different numbers of local maps. Subsequently, the estimated trajectory of Linear Submap
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Table 5.1: Total computation time for Linear Submap Joining process for “EuRoC”
dataset.

Dataset V101 MH01 MH03

Num of Local maps 2 4 8 2 4 8 2 4 8

Local Maps 159.536 81.330 31.331 220.537 102.893 38.985 21.013 21.193 19.285

Structure Transformation 2.970 3.241 3.669 3.808 3.858 4.335 2.821 3.095 3.549

Linear Submap Joining 5.297 9.768 19.369 5.866 15.874 34.134 4.582 9.899 17.021

Total Time (sec) 167.803 94.339 54.369 230.211 122.625 77.454 28.416 34.187 39.855

Joining is compared with the full NLLS problem solved by PVI-SLAM. Experiments are

conducted using the “EuRoC” and “KITTI” datasets. In the case of the “KITTI” dataset,

various initialization strategies, as discussed in Chapter 4, are applied to evaluate further

the robustness of PVI-SLAM utilizing Linear Submap Joining.

5.2.1 “EuRoC” Dataset

Table 5.1 displays the overall processing time for Linear Submap Joining, varying with

the number of local maps. The time dedicated to optimizing local maps decreases with an

increasing number of local maps. However, there is a concurrent rise in the time required

for structure transformation and executing Linear Submap Joining. Despite this, notable

time savings persist across various scenarios. For example, the V101 dataset, initially

taking 167.80 seconds with 2 local maps, significantly reduces to just 54.37 seconds with 8

local maps. Similarly, for the MH01 dataset, the time decreases from 230.21 seconds with

2 local maps to 77.45 seconds with 8 local maps.

The results of the estimated trajectory for Linear Submap Joining are depicted in Fig-

ure 5.2 and Figure 5.3. It is evident that Linear Submap Joining can achieve accuracy close

to that of full batch optimization. For the V101 dataset, the translation error increases

with the growing number of local maps, resulting in RMSE values of 0.086m, 0.143m, and

0.191m, while the rotation error remains relatively consistent across all cases. In the case

of MH03, Linear Submap Joining outperforms full batch optimization, yielding RMSE

values of 0.025m, 0.033m, and 0.034m with 2, 4, and 8 local maps, respectively. In con-

trast, full batch optimization achieves a translation error RMSE of 0.030m and the lowest

rotational error RMSE at 1.186°, surpassing Linear Submap Joining with rotational errors

of 1.229°, 1.215°, and 1.241°.

Furthermore, Linear Submap Joining demonstrates comparable performance to state-of-

the-art methods such as OpenVINS [11], ORB-SLAM3 [12], and VINS-Fusion [10], as

illustrated in Figure 5.4 and Figure 5.5. In the case of MH03, Linear Submap Joining
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(a) EuRoC-V101

(b) EuRoC-MH01

LSJ 2 LSJ 4 LSJ 8 Full batch GT

(c) EuRoC-MH03

Figure 5.2: Comparing Trajectories: Full Batch PVI-SLAM vs Linear Submap Joining
(LSJ) with Varying Numbers (2,4, and 8) of Local Maps in the “EuRoC” Datasets.

achieves the lowest translation and rotational error RMSE values at 0.025m and 1.229°,

respectively. In comparison, OpenVINS, ORB-SLAM3, and VINS-Fusion exhibit RMSE

values of 0.108m and 1.417°, 0.034m and 1.338°, and 0.078m and 1.640°, respectively.

5.2.2 “KITTI” Dataset

In the case of the “KITTI” dataset, local maps are constructed using PVI-SLAM with two

different initializations—one with loop-closure from ORB-SLAM3 [12] and the other with

VO without loop-closure.
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LSJ 2
LSJ 4
LSJ 8
Full batch

(a) EuRoC-V101

(b) EuRoC-MH01

(c) EuRoC-MH03

Figure 5.3: Comparative Analysis of Translation and Rotation Errors: Full Batch PVI-
SLAM vs. Linear Submap Joining (LSJ) with Different Local Map Configurations (2,4,

and 8) across “EuRoC” Datasets.

5.2.2.1 Utilizing Adequate Initial Guess

As depicted in Table 5.2, various numbers of local maps are examined to evaluate their

computational time compared to full batch optimization (in Table 4.7). In the case of the

sequence 06 dataset, using 2 local maps requires a total processing time of 370.11 seconds.

However, by increasing the number of local maps to 8, the processing time is significantly

reduced to only 206.81 seconds. Notably, for the sequence 07 dataset, there is a substantial

reduction in processing time from 513.86 seconds when using 2 local maps to a total of

257.02 seconds when employing 8 local maps, nearly halving the processing time. This

approach yields results that closely resemble those of batch optimization, as demonstrated
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(a) EuRoC-V101

(b) EuRoC-MH01

LSJ OpenVINS ORB-SLAM3 VINS-Fusion GT

(c) EuRoC-MH03

Figure 5.4: Trajectory Comparison: Linear Submap Joining vs State-of-the-Art Meth-
ods OpenVINS [11], ORB-SLAM3 [12], and VINS-Fusion [13] Utilizing the “EuRoC”

Datasets.

in Figure 5.6 and Figure 5.7. The RMSE for translation is 3.865m for sequence 06, 2.537m

for sequence 07, and 5.630m for sequence 09, which closely aligns with the performance of

batch optimization.

5.2.2.2 Absence of Favorable Initial Guess

In the previous chapter (Chapter 4), batch optimization using PVI-SLAM did not con-

sistently converge when initialized with poor poses from visual odometry (VO) without
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LSJ
OpenVINS
ORB-SLAM3
VINS-Fusion

(a) EuRoC-V101

(b) EuRoC-MH01

(c) EuRoC-MH03

Figure 5.5: Comparative Analysis of Translation and Rotation Errors: Linear Submap
Joining vs State-of-the-Art Methods OpenVINS [11], ORB-SLAM3 [12], and VINS-

Fusion [13] across Different “EuRoC” Datasets.

loop-closure. However, Linear Submap Joining consistently achieved convergence in all sce-

narios, effectively overcoming challenges in high-dimensional nonlinear optimization. As

depicted in Figure 5.6 and Figure 5.7, in most instances, although Linear Submap Joining

with VO demonstrates a higher RMSE compared to batch optimization, it closely approx-

imates the results of batch optimization. For sequence 06, 07, and 09 of the “KITTI”

dataset, the translation RMSE of Linear Submap Joining with VO is 6.232m, 3.991m, and

5.659m, while the rotation RMSE is 0.861°, 1.921°, and 1.528°.
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Table 5.2: Total computation time for Linear Submap Joining for “KITTI” dataset.

Dataset 06 07 09

Num of Local maps 2 4 8 2 4 8 2 4 8

Local Maps 359.609 263.919 165.807 469.718 306.302 191.099 401.284 358.262 188.058

Structure Transformation 3.974 3.315 3.650 4.518 4.429 4.452 5.829 5.987 6.529

Linear Submap Joining 6.530 9.390 37.354 39.624 67.872 61.469 38.455 80.228 123.270

Total Time (sec) 370.113 276.624 206.811 513.861 378.604 257.020 445.568 444.477 317.856

-100

0

0

-20-40 20

100

200

(a) KITTI-06 (b) KITTI-07

LSJ

GT

LSJ wVO
Full batch

(c) KITTI-09

Figure 5.6: The comparison of trajectories between Batch PVI-SLAM, Linear Submap
Joining, and Linear Submap Joining using VO without loop-closure using the “KITTI”

datasets.

5.3 Summary

Addressing high-dimensional nonlinear optimization problems poses challenges to sys-

tem robustness, as demonstrated in the previous chapter, particularly when confronted

with sub-optimal initialization. In response to this challenge, the integration of the

Linear SLAM framework into the PVI-SLAM system enables effective handling of high-

dimensional nonlinear optimization challenges. This strategic incorporation alleviates con-

cerns such as susceptibility to local minima traps.

The incorporation of Linear SLAM into PVI-SLAM necessitates additional processing

time for state transformation. However, this overhead proves worthwhile, as it results in

substantial time savings when compared to the execution of a full nonlinear optimization

procedure. The notable efficiency of Linear SLAM is attributed to its streamlined two-

step approach: solving LLS problem and implementing specific coordinate changes. A
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LSJ
LSJ wVO
Full batch

(a) KITTI-06

(b) KITTI-07

(c) KITTI-09

Figure 5.7: Comparison of translation error and rotation error between Batch PVI-
SLAM, Linear Submap Joining, and Linear Submap Joining using VO without loop-

closure for each “KITTI” dataset.

distinguishing feature of this method is its independence from initial guesses and its ability

to avoid local minima issues, making it particularly advantageous when a robust solution

is crucial, even in challenging initial conditions.

Consequently, this integrated system exhibits enhanced robustness in the face of challeng-

ing scenarios, showcasing improved convergence and efficiency. This innovative approach

addresses the limitations associated with high-dimensional nonlinear optimization, thereby

fortifying the reliability and performance of the PVI-SLAM system.
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Conclusion

This thesis has contributed a comprehensive framework for enhancing the robustness of

VI-SLAM by incorporating advancements in both filtering-based and optimization-based

approaches. The primary emphasis throughout the research has been on achieving the right

balance between computational complexity and accuracy within the system. This pursuit

has been driven by a recognition of the inherent challenges and limitations associated with

existing methods, necessitating a refined and innovative approach to address these issues.

Addressing computational challenges in filtering-based approaches, particularly loop-closure

issues, the thesis explores and implements a compressed framework on MSCKF. This inno-

vative approach aims to achieve efficient computational complexity without compromising

accuracy. Furthermore, to overcome challenges in filtering-based methods and enhance

accuracy, VI-SLAM integrates PBA to handle problematic features observed in collinear

motion. Lastly, to tackle the high-dimensional nonlinear optimization problem and man-

age computational complexity, a Linear SLAM framework is employed for joining the local

map constructed by PVI-SLAM.

6.1 Summary of Contributions

6.1.1 Balancing Efficiency and Accuracy in Monocular VI-SLAM: In-

troducing Compressed-MSCKF with Loop-Closure

Operating VI-SLAM in a small-scale system necessitates careful management of compu-

tational complexity to ensure the robustness of the system. However, when examining

95
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filtering-based approaches, the computational cost tends to increase as the observed map

grows larger. While sliding windows that marginalize past information can alleviate some

computational burden, they often come at the cost of sacrificing accuracy. Consequently,

incorporating loop-closure becomes essential, yet this introduces the challenge of handling

the size of the state vector as keyframes are continuously included as loop-closure con-

straints.

To address this challenge, the Comp-MSCKF with loop-closure is introduced in Chap-

ter 3. The MSCKF framework retains specific past camera poses as keyframes instead

of all observed features in the state vector, utilizing multiple visual feature measure-

ments to provide localization information. This approach enables linear computational

complexity with respect to the number of features, a significant reduction compared to

feature-based SLAM. When incorporating loop-closure constraints into the state vector, a

compressed framework is applied by dividing the state into local and global components.

This strategy limits the computational complexity to the quadratic order of the number

of local maps, which is typically much smaller than considering the entire map.

In the experimental evaluations, the Comp-MSCKF demonstrated superior accuracy com-

pared to both the standard MSCKF and Schmidt-MSCKF. Significantly, the Comp-MSCKF

emerged as a compelling choice, even considering computational complexity. However,

within the MSCKF framework and compression method, there is a potential for informa-

tion loss during simultaneous marginalization and compression. The crucial task of deter-

mining the appropriate strategy for dividing the state into local and global components

remains. Furthermore, for larger and longer trajectories without frequent loop-closure,

significant drift can impede loop-closure in filtering-based methods, especially when prob-

lematic features are present.

6.1.2 Advancing VI-SLAM: PVI-SLAM with PBA and UGPM

The shift in focus has moved from a filtering-based method to an optimization-based

approach to tackle issues stemming from significant drift, especially when loop-closure is

infrequent, thereby providing higher accuracy. Additionally, advancements in computer

technology have empowered the real-time implementation of optimization-based methods.

In Chapter 4, PVI-SLAM is introduced, incorporating PBA to effectively address prob-

lematic features arising from collinear motion. While conventional features, such as XYZ

parametrization and IDP, perform well in certain scenarios, they face challenges in low

parallax angles. The degeneracy in these situations arises from the high uncertainty in
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direct depth calculation, resulting in singularity and leading to divergence or local minima

in the optimization problem.

Furthermore, the approach incorporates pre-integrated IMU measurements, contributing

to improved accuracy and the recovery of correct metric scale in monocular VI-SLAM.

Unlike the PM method that involves numerical integration, UGPM addresses IMU data

in continuous-time using GP. This approach enhances accuracy, particularly in dynamic

motion scenarios.

To enhance the robustness of the PVI-SLAM system, an observation ray is utilized in

the objective function, departing from the conventional BA error function that relies on

2D image pixels. The observation ray objective function introduces geometric constraints

based on the directions of observation rays. This incorporation of geometric constraints

significantly enhances the overall robustness and accuracy of the system. Such improve-

ments are particularly valuable in addressing challenges related to feature initialization

and mitigating potential depth ambiguities.

The experimental results demonstrate that the integration of IMU significantly enhances

the reliability and consistency of the system, even with fewer feature observations. In

contrast, SBA+IMU encounters challenges in achieving convergence and determining ap-

propriate stopping criteria, requiring the use of the LM optimization method. Conversely,

PVI-SLAM achieves convergence using the GN method. While utilizing UGPM can re-

duce IMU initial error, it may not exhibit significant improvement in collinear motion.

The incorporation of the observation ray objective function imparts notable robustness to

the system, enabling convergence even with poorly initialized state vectors.

However, it is important to note that the convergence of high-dimensional nonlinear op-

timization problems is not guaranteed to reach the global minimum, and the proposed

system may not assure convergence. Moreover, batch optimizing the problem incurs a

high computational cost.

6.1.3 Efficient Nonlinear Optimization in VI-SLAM with Linear Submap

Joining

In Chapter 5, a Linear Submap Joining method using the Linear SLAM framework was

introduced. This technique is applied to the proposed PVI-SLAM methodology to address

challenges associated with high-dimensional nonlinear optimization and computational

complexity. Unlike the conventional submap joining approach, Linear SLAM eliminates
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the need for initial guesses or iterative processes for optimization by treating it as a LLS

problem and employing nonlinear coordinate transformation. To integrate Linear SLAM

with PVI-SLAM, an additional step is required where the state vector optimized from

PVI-SLAM is transformed to be suitable for Linear SLAM. Despite the additional time

required, this proves to be worthwhile, consuming a very small fraction of the total time.

Moreover, it results in substantial time savings compared to the execution of a full nonlin-

ear optimization procedure. Most importantly, the integrated system exhibits heightened

robustness in challenging scenarios of bad initialization, demonstrating improved conver-

gence and overall enhanced efficiency.

6.2 Future Research

The methodology presented in this thesis has showcased notable improvements in both

accuracy and efficiency when compared to existing state-of-the-art approaches throughout

the conducted experiments. Although these findings hold promise, there are compelling

prospects for additional research and development endeavours to bolster and amplify the

influence of the proposed methodology.

6.2.1 Observability Analysis

While the evaluation has provided valuable insights into the robustness of the system’s

performance, a more comprehensive exploration is essential, especially when considering

the multifaceted nature of SLAM. The current analysis has been constrained to a specific

depth, primarily examining convergence and accuracy. However, a notable gap exists in

terms of a detailed comparative study, particularly with observability, a critical factor in

SLAM systems. Observability, encompassing the system’s ability to effectively estimate

the robot’s pose and map features, is especially pertinent in SLAM scenarios where en-

vironmental dynamics and sensor characteristics play pivotal roles. To address this gap

and further advance the understanding of the proposed system, future work will focus on

an expanded and more nuanced evaluation. By extending the scope of the evaluation, a

comprehensive understanding is aimed at regarding how the proposed system compares to

alternative methods within the dynamic landscape of VI-SLAM.
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(a) QUT-SERF (b) Victoria Park (c) QUT-DVP

Figure 6.1: A comprehensive exploration of self-collecting datasets for advancements in
the proposed method.

6.2.2 Assessing Performance on Individually Collected Datasets

In the present thesis, the evaluation of the proposed method has provided valuable in-

sights into its performance through the analysis of selected real-world datasets. However,

recognizing the need for a more comprehensive understanding of the method’s capabilities

and robustness, further testing with a diverse set of datasets is considered essential.

Furthermore, as articulated in the initial project plan, the hardware configuration, detailed

in Appendix C, has enable the collection of visual-inertial data in both outdoor and indoor

settings at Queensland University of Technology (QUT) (Samford Ecological Research

Facility (SERF) and Da Vinci Precinct (DVP) Hangar facilities), as depicted in Figure 6.1.

Leveraging this dataset, there is a strategic opportunity to expand the evaluation by

subjecting the proposed method to a variety of motion scenarios. This extension to diverse

testing environments is intended to facilitate a thorough examination of the system’s

adaptability and effectiveness across a spectrum of conditions.
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6.2.3 Extension Work on Multi-Drone Systems

The robustness exhibited by PVI-SLAM in various scenarios underscores its efficacy in

real-world applications, particularly in the domain of VI-SLAM. The integration of the

Linear SLAM framework has further demonstrated the system’s ability to manage compu-

tational complexity effectively and address high-dimensional nonlinear problems inherent

in VI-SLAM.

In light of these achievements, future work will focus on extending the application of

PVI-SLAM to multi-drone systems. The adaptability showcased in handling diverse sce-

narios positions the system as a promising solution for collaborative mapping and localiza-

tion, especially in environments involving multiple drones. The results obtained through

Linear Submap Joining suggest the potential to implement this approach in a multi-drone

context, aiming to achieve results close to full optimization.

6.2.4 Real-time Implementation

The current work presented in this thesis is confined to MATLAB code, limiting its ap-

plicability to real-time systems. As part of future work, the goal is to transition the

implementation of the PVI-SLAM algorithm into a real-time system. Unlike the XYZ

parametrization and IDP, the parallax parametrization dynamically changes with improve-

ments in parallax angles during feature observations, introducing challenges in optimizing

feature parameters.

To address this issue, an approach similar to the one proposed by Mendes et al. [106]

is planned to be adopted. Their work introduces a parametrization strategy within an

incremental graph-based SLAM framework, providing a viable solution to handle changing

parallax angles. Implementing a proper method inspired by Mendes et al.’s work will

be crucial for ensuring the robust optimization of feature parameters in the context of

PVI-SLAM system.
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Jacobian for Reprojection Error

This appendix shows the derivation of the Jacobian matrix of the reprojection error (Equa-

tion (4.22)) with respect to the state vector (Equation (4.18)), considering the retraction

mapping specified in Equation (4.37). The purpose is to enable optimization of the cost

function given in Equation (4.21) within the manifold domain as explained in Section 2.2.3.

To compute the Jacobian, Ui is first defined as:

Ui =


Ui1

Ui2

Ui3

 = K (RW
Ci
)⊤ xi

j , (A.1)

where the estimated reprojected observation matrix can be achieved as Equation (4.23):

ui
j =

[
uij

vij

]
=

[
Ui1/Ui3

Ui2/Ui3

]
. (A.2)

Then, the Jacobian of ui
j with respect to Ui can be calculated as:

∂ui
j

∂Ui
=

[
1/Ui3 0 −Ui1/(Ui3)

2

0 1/Ui3 −Ui2/(Ui3)
2

]
. (A.3)

In the context of PBA, the observation is subject to variation based on the anchor, deter-

mining the vector from the anchor to feature fj as detailed in Equation (4.25). For the

optimization on the manifold, the cost function is lifted using the approach outlined in

Equation (4.37).
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A.1 Jacobian for Observation from Main Anchor, umj

In the case of the reprojected observation from the main anchor to feature j written as:

um
j =

[
umj

vmj

]
= π(K (RW

Cm
)⊤ xm

j ). (A.4)

where it is only related to the rotation of the main anchor, RW
Im

, and the feature parameter,

fj , in the state vector. The chain rule is used to calculate the Jacobian.

A.1.1 Calculation of ∂um
j /∂δϕm

Using the chain rule,
∂um

j

∂δϕm
can be written as:

∂um
j

∂δϕm
=
∂um

j

∂Um

∂Um

∂δϕm
. (A.5)

With the lifted rotation matrix, Um can be re-written as:

Um

(
RW

Im Exp (δϕm)
)
= K (RI

C)
⊤ (RW

Im Exp(ϕm))⊤ xm
j

= K (RI
C)

⊤ (1− δϕ∧
m) (RW

Im)
⊤ xm

j

= K (RI
C)

⊤ ((RW
Im)

⊤ xm
j )∧ δϕm.

(A.6)

Then, the Jacobian can be calculated as:

∂Um

∂δϕm
= K (RI

C)
⊤ ((RW

Im)
⊤ xm

j )∧ (A.7)

A.1.2 Calculation of ∂um
j /∂δfj

∂um
j

∂fj
=
∂um

j

∂Um

∂Um

∂xm
j

∂xm
j

∂fj
. (A.8)

where

∂Um

∂xm
j

= K (RW
Cm

)⊤,
∂xm

j

∂fj
=


cosψj cos θj − sinψj sin θj 0

0 cos θj 0

− sinψj cos θj − cosψj sin θj 0

 . (A.9)
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A.2 Jacobian for Observation from Associate Anchor, uaj

The reprojected observation from the associate anchor to feature j written as:

ua
j =

[
uaj

vaj

]
= π(K (RW

Ca
)⊤ xa

j ). (A.10)

In this case, it is related to RW
Ia
, W tIm ,

W tIa , and fj in the state vector.

A.2.1 Calculation of ∂ua
j/∂δϕa

∂ua
j

∂δϕa
=
∂ua

j

∂Ua

∂Ua

∂δϕa
. (A.11)

With the lifted rotation matrix, Ua can be re-written as:

Um

(
RW

Ia Exp (δϕi)
)
= K (RI

C)
⊤ ((RW

Ia )
⊤ xa

j )
∧ δϕa, (A.12)

and the Jacobian of U respect to δϕa cna be written as:

∂Ua

∂δϕa
= K (RI

C)
⊤ ((RW

Ia )
⊤ xa

j )
∧. (A.13)

A.2.2 Calculation of ∂ua
j/∂δtm

∂ua
j

∂δtm
=
∂ua

j

∂Ua

∂Ua

∂xa
j

∂xa
j

∂δtm
, (A.14)

where
∂Ua

∂xa
j

= K (RW
Ca

)⊤, (A.15)

and

∂xa
j

∂δtm
=xm

j

(
∂ sin (ωj + φj)

∂δtm

∥∥W tCa − W tCm

∥∥+ ∂
(∥∥W tCa − W tCm

∥∥)
∂δtm

sin (ωj + φj)

)

− sinωj
∂
(
W tCa − W tCm

)
∂δtm

.

(A.16)

Here,
∂ sin (ωj + φj)

∂δtm
=
∂ sin (ωj + φj)

∂φj

∂φj

∂ cosφj

∂ cosφj

∂δtm
, (A.17)
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∂ sin (ωj + φj)

∂φj
= cos (ωj + φj) , (A.18)

∂φj

∂ cosφj
= − 1√

1−
(
xm
j (W tCa−W tCm )

∥W tCa−W tCm∥

)2 , (A.19)

∂ cosφj

∂δtm
=
∂
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xm
j

(
W tCa − W tCm

))
∂δtm

1

∥W tCa − W tCm∥
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xm
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(
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)) 1
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2 ,

(A.20)

∂
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∂δtm

=
∂
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j

(
W tCa −

(
W tIm +RW

Im
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)))
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(A.21)
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where
∂
(∥∥W tCa − W tCm

∥∥)
∂ (W tCa − W tCm)

= −
(
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, (A.23)

∂
(
W tCa − W tCm

)
∂δtm

=
∂
(
W tCa −

(
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Im
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∂δtm

= −RW
Im . (A.24)

A.2.3 Calculation of ∂ua
j/∂δta

∂ua
j

∂δta
=
∂ua

j

∂Ua

∂Ua

∂xa
j

∂xa
j

∂δta
, (A.25)

where

∂xa
j
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∂
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∂
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A.2.4 Calculation of ∂ua
j/fj

∂ua
j

∂fj
=
∂ua

j

∂Ua

∂Ua

∂xa
j

∂xa
j

∂fj
. (A.32)

In this case, the Jacobian with respect to azimuth and elevation angles is obtained, denoted

as fj12 =
[
ψj θj

]⊤
, and then compute it with respect to the parallax angle, ωj . Firstly,

∂xa
j

∂fj12
can be written as:

∂xa
j

∂fj12
=
(∥∥W tCa − W tCm

∥∥)(xm
j

∂ sin (ωj + φj)

∂fj12
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∂fj12

)
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cosψj cos θj − sinψj sin θj

0 cos θj
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Then, the Jacobian respect to ωj is computed as:

∂xa
j

∂ωj
=
∂ sin (ωj + φj)

∂ωj

∥∥W tCa − W tCm

∥∥ xm
j − cos (ωj)

(
W tCa − W tCm

)
. (A.37)



106 Appendix A. Jacobian for Reprojection Error

A.3 Jacobian for Observation from Camera Position (Ex-

cluding Main and Associate Anchors), uij

When calculating the reprojected observation from the camera position that is neither the

main anchor nor the associate anchor:

ui
j =

[
uij

vij

]
= π(K (RW

Ci
)⊤ xi

j), (A.38)

the Jacobian calculation can be performed as outlined in this section. Here, it is related

to RW
Ii
, W tIm ,

W tIa ,
W tIi and fj in the state vector.

A.3.1 Calculation of ∂ui
j/∂δϕi

∂ui
j

∂δϕi
=
∂ui

j

∂Ui

∂Ui

∂δϕi
, (A.39)

where
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∧. (A.40)

A.3.2 Calculation of ∂ui
j/∂δtm
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j

∂δtm
=
∂ui

j

∂Ui

∂Ui

∂xi
j

∂xi
j

∂δtm
. (A.41)

where
∂Ui

∂xi
j

= K (RW
Ci
)⊤, (A.42)

∂xi
j

∂δtm
=xm

j

(
∂ sin (ωj + φj)

∂δtm

∥∥W tCa − W tCm

∥∥+ ∂
(
W tCa − W tCm

)
∂δtm

sin (ωj + φj)

)

− sinωj
∂
(
W tCi − W tCm

)
∂δtm

,

(A.43)
∂ sin (ωj + φj)

∂δtm
=
∂ sin (ωj + φj)

∂φj

∂φj

∂ cosφj

∂ cosφj

∂δtm
, (A.44)

∂ sin (ωj + φj)

∂φj
= cos (ωj + φj) , (A.45)

∂φj

∂ cosφj
= − 1√

1−
(
xm
j (W tCa−W tCm )

∥W tCa−W tCm∥

)2 , (A.46)
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∂ cosφj

∂δtm
=
∂
(
xm
j

(
W tCa − W tCm

))
∂δtm

1

∥W tCa − W tCm∥

−
∂
(∥∥W tCa − W tCm

∥∥)
∂δtm

(
xm
j

(
W tCa − W tCm

)) 1

∥W tCa − W tCm∥
2 ,

(A.47)

∂
(
xm
j

(
W tCa − W tCm

))
∂δtm

=
∂
(
xm
j

(
W tCa −

((
W tIm +RW

Im
δtm

)
+RW

I

)))
∂δtm

= −xm
j RW

Im ,

(A.48)

∂
(∥∥W tCa − W tCm

∥∥)
∂δtm

=
∂
(∥∥W tCa − W tCm

∥∥)
∂ (W tCa − W tCm)

∂
(
W tCa − W tCm

)
∂δtm

, (A.49)

∂
(∥∥W tCa − W tCm

∥∥)
∂ (W tCa − W tCm)

= −
(
W tCa − W tCm

)
∥(W tCa − W tCm)∥

, (A.50)

∂
(
W tCi − W tCm

)
∂δtm

=
∂
(
W tCi −

(
W tIm +RW

Im
δtm

))
∂δtm

= −RW
Im . (A.51)

A.3.3 Calculation of ∂ui
j/∂δta

∂ui
j

∂δta
=
∂ui

j

∂Ui

∂Ui

∂xi
j

∂xi
j

∂δta
, (A.52)

∂xi
j

∂δta
=xm

j

(
∂ sin (ωj + φj)

∂δta

∥∥W tCa − W tCm

∥∥+ ∂
(
W tCa − W tCm

)
∂δta

sin (ωj + φj)

)
.

(A.53)

A.3.4 Calculation of ∂ui
j/∂δti

∂ui
j

∂δti
=
∂ui

j

∂Ui

∂Ui

∂xi
j

∂xi
j

∂δti
, (A.54)

∂xi
j

∂δti
=− sin (ωj)

∂
(
W tCi − W tCm

)
∂δti

, (A.55)

∂
(
W tCi − W tCm

)
∂δti

=
∂
((

W tIi +RW
Ii
δti
)
− W tCm

)
∂δti

= RW
Ii (A.56)

A.3.5 Calculation of ∂ui
j/∂fj

∂ui
j

∂fj
=
∂ui

j

∂Ui

∂Ui

∂xi
j

∂xi
j

∂fj
. (A.57)
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In this case, similar to the Jacobian calculation in Section A.2.4, the computation of the

Jacobian is divided into two parameters, fj12 and ωj as:

∂xi
j

∂fj12
=
∂xi

j

∂fj
=


cosψj cos θj − sinψj sin θj

0 cos θj

− sinψj cos θj − cosψj sin θj

 , (A.58)

∂xi
j

∂ωj
=
∂ sin (ωj + φj)

∂ωj

∥∥W tCa − W tCm

∥∥ xm
j − cos (ωj)

(
W tCi − W tCm

)
. (A.59)



Appendix B

Jacobian for IMU

This appendix provides the derivation of the Jacobian matrix of the pre-integrated IMU

(Equation (4.36)) with respect to the state vector (Equation (4.18)), considering the retrac-

tion mapping specified in Equation (4.37). The objective is to facilitate the optimization

of the cost function given in Equation (4.21) within the manifold domain, as elucidated in

Section 2.2.3.

B.1 Jacobian for Rotation Residual, e∆Rij

The residual of rotation can be derived as follows:

e∆Rij

.
= Log

(∆Ri
j

(
bωi

)
Exp

(
∂∆Ri

j

∂bωi

δbωi

))⊤

RW
Ii

⊤
RW

Ij

 , (B.1)

where its Jacobian respect to the lifted state vector is composed as:

JR =
∂e∆Rij

∂δx =
[
0, · · · ,

∂e∆Rij

∂δϕi
, 0, 0,

∂e∆Rij

∂δ̃bωi

, 0,
∂e∆Rij

∂δϕj
, 0, 0, 0, 0, · · · , 0

]
.

(B.2)
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B.1.1 Calculation of ∂e∆Rij
/∂δϕi

e∆Rij

(
RW

Ii Exp (δϕi)
)
= Log

((
∆Ri

j

(
bωi

)
E
)⊤ (

RW
Ii Exp (δϕi)

)⊤
RW

Ij

)
= Log

((
∆Ri

j

(
bωi

)
E
)⊤

Exp (−δϕi)R
W
Ii

⊤
RW

Ij

)
= Log

((
∆Ri

j

(
bωi

)
E
)⊤

RW
Ii

⊤
RW

Ij Exp
(
−RW

Ij

⊤
RW

Ii δϕi

))
≃e∆Rij

(
RW

Ii

)
− J−1

r

(
e∆Rij

(
RW

Ii

))
RW

Ij

⊤
RW

Ii δϕi,

(B.3)

where

E = Exp

(
∂∆Ri

j

∂bωi

δbωi

)
. (B.4)

Therefore, Jacobian of rotational residual, ∂e∆Rij/∂δϕi, can be achieved as follow:

∂e∆Rij

∂δϕi
= −J−1

r

(
e∆Rij

(
RW

Ii

))
RW

Ij

⊤
RW

Ii . (B.5)

B.1.2 Calculation of ∂e∆Rij
/∂δbωi

e∆Rij

(
δbωi + δ̃bωi

)
= Log

(∆Ri
j

(
bωi

)
Exp

(
∂∆Ri

j

∂bωi

(
δbωi + δ̃bωi

)))⊤

RW
Ii

⊤
RW

Ij


≃Log

(∆Ri
j

(
bωi

)
E Exp

(
J b
r

∂∆Ri
j

∂bωi

δ̃bωi

))⊤

RW
Ii

⊤
RW

Ij


= Log

(
Exp

(
−J b

r

∂∆Ri
j

∂bωi

δ̃bωi

)(
∆Ri

j

(
bωi

)
E
)⊤

RW
Ii

⊤
RW

Ij

)

= Log

(
Exp

(
−J b

r

∂∆Ri
j

∂bωi

δ̃bωi

)
Exp

(
e∆Rij (δbωi)

))

= Log

(
Exp

(
e∆Rij (δbωi)

)
Exp

(
−Exp

(
e∆Rij (δbωi)

)⊤
J b
r

∂∆Ri
j

∂bωi

δ̃bωi

))

≃e∆Rij (δbωi)− J−1
r

(
e∆Rij (δbωi)

)
Exp

(
e∆Rij (δbωi)

)⊤
J b
r

∂∆Ri
j

∂bωi

δ̃bωi ,

(B.6)

where E = Exp

(
∂∆Ri

j

∂bωi
δbωi

)
and J b

r = Jr

(
∂∆Rij

∂bωi
δbωi

)
. Therefore, the Jacobian of rota-

tion residual respect to bias can be written as:

∂e∆Rij

∂δ̃bωi

= −J−1
r

(
e∆Rij (δbωi)

)
Exp

(
e∆Rij (δbωi)

)⊤
Jb
r

∂∆Ri
j

∂bωi

. (B.7)
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B.1.3 Calculation of ∂e∆Rij
/∂δϕj

e∆Rij

(
RW

Ij Exp (δϕj)
)
= log

((
∆Ri

j

(
bωi

)
E
)⊤

RW
Ii

⊤ (
RW

Ij Exp (δϕj)
))

≃e∆Rij

(
RW

Ij

)
+ J−1

r

(
e∆Rij

(
RW

Ij

))
δϕj ,

(B.8)

where Jacobian of rotational residual, ∂e∆Rij/∂ϕj , can be achieved as follow:

∂e∆Rij

∂δϕj
= J−1

r

(
e∆Rij

(
RW

Ij

))
. (B.9)

B.2 Jacobian for Transition Residual, e∆tij

The residual of translation can be derived as follows:

e∆tij
.
= RW

Ii

⊤ (W tIj − W tIi − WvIi∆t− 1
2g∆t

2
)
−
[
∆tij

(
bωi , bai

)
+

∂∆tij
∂bωi

δbωi +
∂∆tij
∂bai

δbai

]
,

(B.10)

where its Jacobian respect to the lifted state vector is composed as:

Jt =
∂e∆tij

∂δx =
[
0, · · · ,

∂e∆tij

∂δϕi
,

∂e∆tij

∂δti
,

∂e∆tij

∂δvi
,

∂e∆tij

∂δ̃bωi

,
∂e∆tij

∂δ̃bai
, 0,

∂e∆tij

∂δtj
, 0, 0, 0, · · · , 0

]
.

(B.11)

B.2.1 Calculation of ∂e∆tij/∂δϕi

e∆tij

(
RW

Ii Exp (δϕi)
)

=
(
RW

Ii Exp (δϕi)
)⊤(W tIj − W tIi − WvIi∆t−

1

2
g∆t2

)
−C

≃
(
I − δϕ∧

i

)
RW

Ii

⊤
(

W tIj − W tIi − WvIi∆t−
1

2
g∆t2

)
−C

=e∆tij

(
RW

Ii

)
+

(
RW

Ii

⊤
(

W tIj − W tIi − WvIi∆t−
1

2
g∆t2

))∧
δϕi,

(B.12)

where C = ∆tij
(
bωi , bai

)
+

∂∆tij
∂bωi

δbωi +
∂∆tij
∂bai

δbai , then:

∂e∆tij

∂δϕi
=

(
RW

Ii

⊤
(

W tIj − W tIi − WvIi∆t−
1

2
g∆t

))∧
. (B.13)
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B.2.2 Calculation of ∂e∆tij/∂δti

e∆tij

(
W tIi +RW

Ii δti
)
= RW

Ii

⊤
(

W tIj − W tIi − WvIi∆t−
1

2
g∆t2

)
−C

= e∆tij

(
W tIi

)
− δti,

(B.14)

∂e∆tij

∂δti
= −I. (B.15)

B.2.3 Calculation of ∂e∆tij/∂δvi

e∆tij

(
WvIi + δvi

)
= RW

Ii

⊤
(

W tIj − W tIi − W tIi∆t− δvi∆t−
1

2
g∆t2

)
−C

= e∆tij

(
WvIi

)
+
(
−RW

Ii

⊤
∆t
)
δvi,

(B.16)

∂e∆tij

∂δvi
= −RW

Ii

⊤
∆t. (B.17)

B.2.4 Calculation of ∂e∆tij/∂δ̃bωi

∂e∆tij

∂δ̃bωi

= −
∂∆tij
∂bωi

. (B.18)

B.2.5 Calculation of ∂e∆tij/∂δ̃bai

∂e∆tij

∂δ̃bai
= −

∂∆tij
∂bai

. (B.19)

B.2.6 Calculation of ∂e∆tij/∂δtj

e∆tij

(
W tIj +RW

Ij δtj

)
= RW

Ii

⊤
(

WeIj − W tIi − WvIi∆t−
1

2
g∆t2

)
−C

= e∆tij

(
W tIj

)
+
(
RW

Ii

⊤
RW

Ij

)
δtj ,

(B.20)

∂e∆tij

∂δtj
= RW

Ii

⊤
RW

Ij . (B.21)
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B.3 Jacobian for Velocity Residual, e∆vij

The residual velocity can be derived as follows:

e∆vij

.
= RW

Ii

⊤ (WvIj − W vIi − g∆t
)
−

[
∆vi

j

(
bωi , bai

)
+
∂∆vi

j

∂bωi

δbωi +
∂∆vi

j

∂bai
δbai

]
(B.22)

where its Jacobian respect to the lifted state vector is composed as:

Jv =
∂e∆tij

∂δx =
[
0, · · · ,

∂e∆vij

∂δϕi
, 0,

∂e∆vij

∂δvi
,

∂e∆vij

∂δ̃bωi

,
∂e∆vij

∂δ̃bai
, 0, 0,

∂e∆vij

∂δvj
, 0, 0, · · · , 0

]
(B.23)

B.3.1 Calculation of ∂e∆vij/∂δϕi

e∆vij

(
RW

Ii Exp (δϕi)
)
=
(
RW

Ii Exp (δϕi)
)⊤ (WvIj − WvIi − g∆t

)
−D

=
(
I − δϕ∧

i

)
RW

Ii

⊤ (WvIj − WvIi − g∆t
)
−D

=e∆vij

(
RW

Ii

)
+
(
RW

Ii

⊤ (WvIj − WvIi − g∆t
))∧

δϕi,

(B.24)

where D = ∆vi
j

(
bωi , bai

)
+

∂∆vi
j

∂bωi
δbωi +

∂∆vi
j

∂bai
δbai , then:

∂e∆vij

∂δϕi
=
(
RW

Ii

⊤ (WvIj − WvIi −W∆t
))∧

. (B.25)

B.3.2 Calculation of ∂e∆vij/∂δvi

e∆vij

(
WvIi + δvi

)
= RW

Ii

⊤ (WvIj − WvIi − δvi − g∆t
)
−D

= e∆vij

(
WvIi

)
−RW

Ii

⊤
δvi,

(B.26)

∂e∆vij

∂δvi
= −RW

Ii

⊤
. (B.27)

B.3.3 Calculation of ∂e∆vij/∂δ̃bωi

∂e∆vij

∂δ̃bωi

= −
∂∆vi

j

∂bωi

. (B.28)
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B.3.4 Calculation of ∂e∆vij/∂δ̃bai

∂e∆vij

∂δ̃bai
= −

∂∆vi
j

∂bai
. (B.29)

B.3.5 Calculation of ∂e∆vij/∂vj

e∆vij

(
WvIj + δvj

)
= RW

Ii

⊤ (WvIj + δvj − WvIi − g∆t
)
−D

= e∆vij

(
WvIj

)
+RW

Ii

⊤
δvj ,

(B.30)

∂e∆vij

∂δvi
= RW

Ii

⊤
. (B.31)

B.4 Jacobian for Biases Residual, e∆bωij and e∆baij

The residual biases can be derived as follows:

e∆bωij
= bωj − bωi , (B.32)

e∆baij
= baj − bai . (B.33)

where its Jacobian respect to the lifted state vector is composed as:

Jbω =
∂e∆bωij

∂δx
=

[
0, · · · , 0, 0, 0,

∂e∆bωij

∂δbωi
, 0, 0, 0, 0,

∂e∆bωij

∂δbωj
, 0, · · · , 0

]
,

(B.34)

Jba =
∂e∆baij

∂δx
=

[
0, · · · , 0, 0, 0, 0,

∂e∆baij

∂δbai
, 0, 0, 0, 0,

∂e∆baij

∂δbaj
, · · · , 0

]
.

(B.35)

B.4.1 Calculation of ∂e∆bωij
/∂δbωi

∂e∆bωij

∂δbωi

= −I. (B.36)

B.4.2 Calculation of ∂e∆bωij
/∂δbωj

∂e∆bωij

∂δbωj

= I . (B.37)
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B.4.3 Calculation of ∂e∆baij
/∂δbai

∂e∆baij

∂δbai
= −I . (B.38)

B.4.4 Calculation of ∂e∆baij
/∂δbai

∂e∆baij

∂δbaj
= I . (B.39)





Appendix C

Specification of Hardware

The hardware specifications presented in this appendix detail the setup utilized for imple-

menting and testing proposed methods during the collection of the real dataset. This was

conducted in support of Australian Research Council Discovery Project DP200101640, as

discussed in Section 6.2.2.

Figure C.1: Image of Holybro x500

C.1 Holybro X500

• Pixhawk 4 autopilot

• Power Management PM07

117
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• Motors - 2216 KV880(V2 Update)

• Propeller 1045( V2 Update)

• Pixhawk4 GPS

• 433MHz Telemetry Radio / 915MHz Telemetry Radio

• Power and Radio Cables

• Dimensions: 410*410*300mm

• Wheelbase: 500mm

• Weight: 978g

C.2 Pixhawk 4

Figure C.2: Image of Pixhawk4

Main FMU Processor: STM32F765

• 32 Bit Arm® Cortex®-M7, 216MHz, 2MB memory, 512KB RAM

IO Processor: STM32F100

• 32 Bit Arm® Cortex®-M3, 24MHz, 8KB SRAM
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On-board sensors:

• Accel/Gyro: ICM-20689

• Accel/Gyro: BMI055

• Magnetometer: IST8310

• Barometer: MS5611

GPS: u-blox Neo-M8N GPS/GLONASS receiver; integrated magnetometer

IST8310 Interfaces:

• 8-16 PWM outputs (8 from IO, 8 from FMU)

• 3 dedicated PWM/Capture inputs on FMU

• Dedicated R/C input for CPPM

• Dedicated R/C input for Spektrum / DSM and S.Bus with analog / PWM RSSI

input

• Dedicated S.Bus servo output

• 5 general purpose serial ports

• 3 I2C ports

• 4 SPI buses

• Up to 2 CANBuses for dual CAN with serial ESC

• Analog inputs for voltage / current of 2 batteries

Weight and Dimensions:

• Weight: 15.8g

• Dimensions: 44x84x12mm



120 Appendix C. Specification of Hardware

Figure C.3: Image of NVIDIA Jeston NX

C.3 NVIDIA Jetson Xavier NX

• GPU : NVIDIA Volta architecture with 384 NVIDIA CUDA® cores and 48 Tensor

cores

• CPU : 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB L3

• DL Accelerator : 2x NVDLA Engines

• Vision Accelerator : 7-Way VLIW Vision Processor

• Memory : 8 GB 128-bit LPDDR4x @ 51.2GB/s

• Storage : microSD (not included)

• USB : 4x USB 3.1, USB 2.0 Micro-B

• Others : GPIO, I2C, I2S, SPI, UART

• Mechanical : 103 mm x 90.5 mm x 34.66 mm

C.4 Zed 2

Figure C.4: Image of ZED2
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Video output:

• 2.2K mode: 15 fps; resolution 4416 x 1242

• 1080p mode: 30/15 fps; resolution 3840 x 1080

• 720p mode: 60/30/15 fps; resolution 2560 x 720 (stereo passthrough mode)

• WVGA mode: 100/60/30/15 fps; resolution 1344 x 376

Depth:

• Resolution: native video (in ultra mode)

• FPS: up to 100 Hz

• Depth range: 20 cm to 20 m

• Field of view: 110° horizontal, 70° vertical, 120° diagonal max.

• Technology: neural stereo depth sensing

Motion:

• motion sensors: accelerometer, gyroscope (data rate: 400 Hz)

• Pose update rate: up to 100 Hz

• Position sensors: barometer, magnetometer (data rate: 25/50 Hz)

• Technology: 6-DoF visual-inertial stereo simultaneous localisation and mapping

(SLAM) with advanced sensor fusion and thermal compensation

• Pose drift: 0.35

Image sensors:

• Resolution: dual 4M pixel sensors with 2-micron pixels

• Sensor format: native 16:9 for a larger horizontal field of view

• Sensor size: 1/3” BSI (backside illumination) sensor with high low-light sensitivity

• Shutter with electronically synchronised rolling shutter

• Camera controls: adjust resolution, frame rate, brightness, contrast, saturation,

gamma, sharpness, exposure, white balance
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