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1  |  INTRODUC TION

Dispersal strategies of aquatic organisms vary considerably 
within and among populations and often depend on life his-
tory and environmental barriers (Cowen & Sponaugle, 2009; 
DiBacco & Levin, 2000; Fobert et al., 2019; McEdward, 1995; 
Mileikovsky, 1971; Palumbi, 1994). Many marine species are “site- 
attached” during the adult life stage and rely on a planktonic lar-
val stage for dispersal (DiBacco & Levin, 2000; Siegel et al., 2008; 
Thorpe et al., 2000). Environmental barriers, such as low energy 

oceanic currents and tides, degree of geographic separation, and 
availability of suitable settlement locations, affect the extent to 
which larvae disperse to connect geographically separate pop-
ulations (Cowen & Sponaugle, 2009; Giangrande et al., 2017; 
Treml et al., 2012; van der Meer et al., 2012; Waters et al., 2014). 
Therefore, to ensure appropriate management of populations 
and species, the degree of population connectivity must be 
quantified to reveal changes in population structure over time 
(Bohonak, 1999; Brooker et al., 2000; Gawarkiewicz et al., 2007; 
McMillen- Jackson & Bert, 2004).
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Abstract
From a conservation standpoint, species that are managed without consideration of 
their population sizes and connectivity have the potential to be over- exploited and/or 
incur population decline. The burrowing shrimp, Trypaea australiensis, is an important 
ecosystem engineer and fishery resource caught in large numbers for which popula-
tion information is unknown for properly managing the species. Here, we determined 
the level of population structure of T. australiensis across three locations along the 
East	 Coast	 of	 New	 South	 Wales,	 Australia,	 using	 genome-	wide	 single	 nucleotide	
polymorphisms	 (SNPs)	 obtained	 through	 double	 digest	 Restriction-	site	 Associated	
DNA-	sequencing	 (ddRAD-	seq).	Analysis	of	population	structure,	 including	pairwise	
Fst	 (−0.003	 to	 −0.001),	 STRUCTURE	 (K = 2)	 and	Discriminant	 Analysis	 of	 Principal	
Components	(DAPC)	showed	no	evidence	of	structure	among	locations.	Our	findings	
provide crucial preliminary population genetic data for a key cryptic species, that also 
suggests gene flow among sampling locations enables the management of fisheries 
throughout the study area as a single unit.
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Site- attached marine species often have a limited reproductive 
capacity to replenish their populations, so their exploitation as an 
economic resource by commercial and recreational fisheries is of 
particular concern (Contessa & Bird, 2004; McPhee et al., 2002; 
Moschetto et al., 2020; Thorpe et al., 2000). Catch rates for these 
species (e.g. bivalves, sea urchins, crustaceans and gastropods) 
have increased significantly in recent years, with over- exploitation 
threatening population stability (Chick, 2021; Contessa & 
Bird, 2004; McPhee et al., 2002; Rotherham, 2004; Skilleter 
et al., 2005; Thorpe et al., 2000). Interest in the management 
and regulation of invertebrate fisheries is limited, so many con-
tinue to be harvested without adequate management strategies 
(King, 1995; Koljonen, 2001). Lack of appropriate management 
can result in unforeseen consequences for species, populations 
and the ecosystem, particularly if a species has a prominent role 
in modifying the environment as “ecosystem engineers” (Castorani 
et al., 2014; Coleman & Williams, 2002; Moore, 2006; Pascal 
et al., 2019). To address gaps in marine species management, 
population connectivity and species dispersal have been studied 
to	 identify	populations	at	risk	 (Nims	et	al.,	2008; Palumbi, 2003; 
von der Heyden, 2009; Weersing & Toonen, 2009). By coupling 
knowledge of population genetic structure with ecology and life 
history of species, management strategies can be better informed 
to ensure sustainable use of key invertebrate species (Gaylord 
et al., 2005; Koljonen, 2001).

An	important	yet	understudied	ecosystem	engineer	is	the	bur-
rowing mud shrimp, Trypaea australiensis, that is endemic to the 
East	coast	of	Australia	from	upper	Queensland	down	to	Victoria	
and	 South	 Australia	 and	 supports	 important	 fisheries	 (Butler	
et al., 2009; Hailstone & Stephenson, 1961; Rotherham, 2004). 
The life cycle of T. australiensis typically begins with production 
of one to five broods during warm months of the year (Hailstone 
& Stephenson, 1961; Rotherham & West, 2007). Fertilised 
broods hatch as planktonic larvae that disperse to other areas 
where they settle into uninhabited burrows. Larval duration 
ranges	from	2 weeks	(Butler	et	al.,	2009)	to	6 weeks	(Hailstone	&	
Stephenson, 1961; Rotherham & West, 2007), and their average 
lifespan	 is	 3–4 years	 (Hailstone	 &	 Stephenson,	 1961). Dispersal 
distance and population genetic structure are unknown for T. aus-
traliensis, although population structure has been investigated 
for the related species Callichirus major, Callichirus islagrande and 
Lepidophthalmus	 sp.	 (Nates	 et	 al.,	1997; Staton & Felder, 1995). 
T. australiensis has the potential to exhibit high connectivity (open) 
among populations (Chick, 2021; Cowen et al., 2000; Staton 
et al., 2000; Staton & Felder, 1995; Strathmann et al., 2002) 
because larval duration before settlement is relatively long 
(Hailstone & Stephenson, 1961; Rotherham & West, 2007) and 
oceanic	currents	are	extensive	along	the	East	Coast	of	Australia	
(Cetina- Heredia et al., 2015; Everett et al., 2017). However, 
local processes within the habitat of this species, such as tidal 
fluctuations within low- energy estuaries and coastal topogra-
phy constraints, may act as environmental barriers that could 
limit dispersal of these small shrimp and cause distinction among 

populations or even create closed populations (Silva et al., 2019; 
Waters et al., 2014; White et al., 2010).

As	a	fundamental	ecosystem	engineer	on	Australian	mud	flats	
(Butler & Bird, 2008; Katrak & Bird, 2003) T. australiensis indirectly 
influences abundance of coexisting species such as bivalves, sea-
grasses, algae and benthic fish (Berkenbusch & Rowden, 2003; 
Pillay & Branch, 2011; Pinnegar et al., 2000; Rotherham, 2004). 
The species is also an important economic and social com-
modity in commercial and recreational fisheries, as a common 
bait for anglers (Contessa & Bird, 2004; McPhee et al., 2002; 
Rotherham, 2004). Because of its importance to the ecosystem 
and anglers, the degree of population connectivity and genetic 
structure of this species must be understood to maintain popula-
tion health. Before 2010, no catch limits were in place for T. aus-
traliensis and populations were classified as “moderately fished” 
by	the	New	South	Wales	Department	of	Primary	Industries	(DPI)	
(Chick, 2021; Rotherham, 2004), which indicates that the species 
was fished in most of its range and that fishing resulted in less than 
50% of the species dying from natural causes (Stewart, 2017). 
Since 2010, bag limits have been placed on recreational (100 
shrimp per angler trip) and commercial (5.6 tonnes total) fisher-
ies (Chick, 2021). The latest (2020–2021) stock assessment stated 
that T. australiensis was classified as “sustainable,” although the 
report acknowledged that population dynamics could have been 
underestimated (Chick, 2021). Population estimates were largely 
based on one location with inconsistent sampling periods that lim-
ited its applicability to the entire range of the species. Therefore, 
to inform effective management, a wider geographic area should 
be sampled to ensure populations can be delimited if present.

To quantify the degree of connectivity of T. australiensis along 
the	 New	 South	Wales	 coast	 in	 Australia,	 we	 used	 a	 genomic	 ap-
proach to compare population structure at three locations often 
targeted for collections. Given the potential for larval dispersal 
by	 the	 East	 Australian	 Current	 (EAC)	 (Chick,	 2021; Hailstone & 
Stephenson, 1961; Rotherham, 2004; Silva et al., 2019), we hypothe-
sised that local populations would exhibit little population structure. 
Results could provide a preliminary assessment of this species pop-
ulation structure and connectivity.

2  |  METHODS

2.1  |  Sample sites and collection

The study area included three locations along the East Coast of 
New	South	Wales	Australia:	Port	Hacking,	 Shoalhaven	Heads	and	
Moruya,	between	September	2018	to	August	2019.	Sampling	sites	
were spread over ~250 km,	with	~120 km	between	Port	Hacking	and	
Shoalhaven Heads and ~130 km	 between	 Shoalhaven	 Heads	 and	
Moruya (Figure 1). Sites were chosen to ensure that: (i) shrimp were 
collected in areas open to fishing (no collections in no- take zones or 
protected areas); (ii) similar methods were used at each site (similar- 
sized mudflats enabling collection along the low to mid tide area 
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2–3 hrs	before	low	tide);	and	(iii)	site	access	and	sampling	were	not	
obstructed by high and low tidal changes.

DNA	was	collected	from	shrimp	that	were	suctioned	from	their	
burrows using a standard 30- inch nipper pump (Wilson, Brisbane, 
QLD,	Australia).	 Scissors	were	used	 to	 collect	 tissue	 from	 the	 last	
pair of pleopods on shrimp and then preserved in 80% ethanol. 
Samples were taken from all individuals suctioned from a single 
burrow when more than one individual was collected. Fifty- three 
T. australiensis were sampled from each site for population genetic 
analysis, totalling 159 specimens (Table S1).

2.2  |  DNA extraction and genotyping

Genomic	 DNA	 was	 extracted	 with	 a	 Wizard	 Genomic	 DNA	
Purification	 Kit	 (Promega,	Madison,	WI,	 USA)	 using	manufacturer	
protocol	and	quantified	using	a	NanoDrop	2000c	(Thermo	Scientific,	
Waltham,	 MA,	 USA).	 Samples	 were	 processed	 using	 the	 ddRAD	
(double digest restriction- site associated digest) library prepara-
tion protocol (Peterson et al., 2012). Restriction enzymes EcoRI 
and	Nlalll	were	used	 to	digest	 libraries,	which	were	barcoded	and	
pooled. Pools were size selected using a Blue Pippin (Sage Science, 
Beverly,	 MA,	 USA)	 to	 obtain	 280–375 bp	 fragments,	 then	 tagged	

with indexed primers and amplified using PCR. Libraries were se-
quenced	on	a	NextSeq	500	to	yield	2 × 150 bp	sequences	(Illumina,	
San	Diego,	CA,	USA).

2.3  |  Data analysis

2.3.1  |  SNP	filtering

Initial quality control and demultiplexing were completed using 
STACKS	v.2.3d	software	(Catchen	et	al.,	2011, 2013), and sequences 
were	only	retained	with	exact	barcodes	before	trimming	to	150 bp.	
Next,	we	 used	 STACKS	 v.2.54	 following	Rochette	 et	 al.	 (2019) to 
assemble	 loci	 and	 call	 Single	 Nucleotide	 Polymorphisms	 (SNPs).	
Settings for the Denovo pipeline included three for the distance 
between stacks (- M), the distance between catalogue loci (- n) and 
two for the minimum stack depth of coverage (- m). Poor- quality sam-
ples with less than 50% of loci were excluded from further analy-
sis, which left a final set of 125 samples (Supplementary Table S1). 
Within	STACKS,	the	“populations”	function	was	used	to	export	loci	
that were called in >80% of samples (- r), present in all three popula-
tions (- p), had observed heterozygosity less than 0.7 (- - max- obs- het), 
and met a minimum minor allele count of 2 (- - min- mac). Loci were 
removed if significantly out of Hardy–Weinberg Equilibrium (HWE) 
in two or more sampling locations. To calculate divergence from 
Hardy–Weinberg equilibrium for each locus, the Hardy–Weinberg 
(-	-	hwe)	 function	was	used	 in	STACKS,	and	p- values were adjusted 
for False Discovery Rate with the “BY” correction of the “p.ad-
just”	function	in	R	v3.6.3	(Rstudio	V1.4.1106)	and	RStudio	(R	Core	
Team, 2020; RStudio Team, 2021). The final set of loci was exported 
using	the	-	-	write-	single-	snp	option	to	avoid	closely	linked	SNPs.

2.3.2  |  Population	structure

To quantify population structure among sampled populations, 
Arlequin	v3.5.2.2	(Excoffier	&	Lischer,	2010) was used for analysis 
of	molecular	 variance	 (AMOVA)	with	30,000	permutations	and	 to	
assess hierarchical population structure among field sites using pair-
wise FST values. Genetic diversity statistics are estimated using the 
“basic.stats” function in the R package hierfstat (Goudet, 2005) in-
cluded observed heterozygosity (Ho), expected heterozygosity (He) 
and inbreeding coefficient (Fis).

STRUCTURE v.2.3.4 (Pritchard et al., 2000) was used to identify 
patterns	of	admixture	in	the	mud	shrimp	population	based	on	SNP	
data. Settings included 100,000 iterations for burn- in and 500,000 
iterations of Markov- chain Monte Carlo (MCMC), with nine inde-
pendent runs completed on each of K values (K = 1–4).	 The	most	
likely K	 value	was	 determined	 through	 STRUCTURE	HARVESTER	
(Earl & vonHoldt, 2012) applying the ΔK Evanno method (Evanno 
et al., 2005) (Figure S1). STRUCTURE graphs were produced in R using 
data	from	the	Cluster	Markov	Packager	Across	Ks	(CLUMPAK)	on-
line tool (Kopelman et al., 2015).	A	Discriminant	Analysis	of	Principal	

F I G U R E  1 Location	of	three	sampling	locations	for	the	
burrowing mud shrimp Trypaea australiensis along the East Coast of 
New	South	Wales,	Australia	between	September	2018	and	August	
2019. Port Hacking (34°04′37.2″S 151°07′49.8″E), Shoalhaven 
Heads (34°51′27.4″S 150°44′52.1″ E),	Moruya	(35°54′23.0″S 
150°07′49.8″E).
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Components	 (DAPC)	was	conducted	with	the	R	package	adegenet	
v1.7–16 (Jombart, 2008;	Jombart	&	Ahmed,	2011) for a dataset with 
missing data replaced by the mean allele frequency for each locus 
using	 the	 “scaleGen”	 function.	After	 analysing	 cross-	validation	 re-
sults from the function “xval.dapc,” two discriminant functions and 
three	principal	components	were	retained	for	 the	DAPC.	K values 
were found using the “find.clusters” function, which uses a k- means 
approach to identify genetic clusters, and the Bayesian Information 
Criterion (BIC) to determine the most likely K value (Figure S2).

3  |  RESULTS

For the final sample of 125 burrowing mud shrimp, 1809 loci were 
variable	 after	 filtering.	 Among	 the	 three	 sampled	 populations,	
the observed heterozygosity was Ho = 0.0404,	 the	 expected	 het-
erozygosity was He = 0.0471	 and	 the	 inbreeding	 coefficient	 was	
Fis = 0.0037.	Population	structure	was	not	evident	among	the	three	
sampling sites (FST = −0.00266,	p = 0.840),	and	pairwise	FST between 
sampling sites did not differ significantly (Table 1).

Two patterns of admixture were evident among the three sample 
sites,	based	on	Bayesian	cluster	analysis	 (STRUCTURE)	and	DAPC	
analysis (Figures 2 and 3, Figure S1). Differentiation among individu-
als was slight and not defined by sampling location (Figures 2 and 3). 
All	individuals	had	most	of	their	ancestry	from	one	cluster	(Figure 2, 
blue colour), while 26 individuals across all three sites had another 
cluster of alleles (Figure 2, red colour) when the number of clus-
ters was set to more than two, which is also reflected along Linear 
Discriminant	1	in	the	DAPC	(Figure 3).

4  |  DISCUSSION

We found evidence of shared genes and gene flow between three lo-
cations of Trypaea australiensis	over	approximately	250 km	of	the	east	
coast	of	New	South	Wales,	Australia.	This	lack	of	genetic	structure	is	
consistent with studies of the other shrimp species Neotrypaea cali-
forniensis and Farfantepenaeus duorarum (Kozuka, 2008; McMillen- 
Jackson & Bert, 2004). Our sampling locations were closer together 
(maximum	250 km	between	sites)	than	those	sampled	by	McMillen-	
Jackson and Bert (2004;	1500 km	between	sites)	and	farther	apart	
than those sampled by Kozuka (2008;	90 km	between	sites).	Because	

of distances among our sampling locations, and the length of larval 
development (Hailstone & Stephenson, 1961;	 Nates	 et	 al.,	 1997), 
we expected T. australiensis larvae to be able to disperse to other 
estuaries on local and oceanic currents (Selkoe & Toonen, 2011; 
Weersing & Toonen, 2009).	The	East	Australian	Current	can	support	
dispersal	stretching	the	length	of	the	east	coast	of	Australia	(Everett	
et al., 2017; Waters et al., 2014) and would facilitate larval transport 
from northern to southern populations, with local tides facilitating 
the movement of larvae into adjacent estuarine habitats (Everett 
et al., 2017; Waters et al., 2014).

The two slight patterns of admixture we identified, particularly 
the secondary clustering of shared alleles for a portion of sampled 
individuals (with representative samples from each of the three lo-
cations), may have resulted from our sampling range. Meaning that 
samples were collected by chance from the admixture zone for two 
larger populations as well as the core of only one of those popula-
tions thereby creating this slight difference in shared alleles (Lessios 
et al., 2003; Palumbi et al., 1997). However, further studies over a 
larger geographical range and a study of biological (larval dispersal 
distances) and environmental (tidal fluctuations and oceanic cur-
rents) factors would be needed to determine if two larger popula-
tions contribute to gene flow (Palumbi et al., 1997).

The low level of heterozygosity we found (i.e. low genetic diver-
sity and nearly no inbreeding) suggested a large randomly mating 
population of T. australiensis along a 250- km stretch of the East Coast 
of	NSW	that	could	be	managed	as	a	single	population.	Whereby	con-
serving the population at one location will benefit the others through 
gene flow among locations (Dumbauld & Bosley, 2018; Fogarty & 
Botsford, 2006;	Sanvicente-	Añorve	et	al.,	2018). However, high catch 
rates could still cause over- exploitation of the fishery (Chick, 2021; 
Rotherham, 2004), which would ultimately reduce population sizes 
across the geographic range through time (Thorpe et al., 2000). 
Little is known about the effects of bait fishing, but recreational fish-
ery catch rates of T. australiensis have been increasing (Chick, 2021), 
with 700,800 taken in 2017–2018 (Murphy et al., 2020) and 823,391 
in 2019–2020 (Murphy et al., 2022). In the 2021 stock assessment, 
catch rates were likely underestimated due to survey methods and 
the inclusion of few estuarine locations (Chick, 2021). If fishing mor-
tality is depleting populations of T. australiensis, particularly in any 
source locations, then additional restrictions may be needed despite 
gene flow. Future studies should evaluate if current fishing mortality 
is sustainable for the panmictic population that stretches over our 
250- km study area.

Our study provides the necessary baseline data for designing 
future population genetic studies. Further, it is evident that stud-
ies involving species with similar life history and dispersal patterns 
as these shrimp require a holistic approach towards management 
assessments. It is empirically hard to study dispersal patterns and 
population connectivity of such species, largely due to the adult and 
larval size, behaviour and habitat complexity (Kozuka, 2008).	As	a	
way forward, combining genetic, biological and habitat- related in-
fluences (e.g. oceanic currents and tidal fluctuations) can be used to 
tease apart the complexities of both local and global scale impacts 

TA B L E  1 Pairwise	FST values (upper cells) and p- values (lower 
cells) of the burrowing mud shrimp Trypaea australiensis among 
three	sampling	sites	along	the	East	Coast	of	New	South	Wales,	
Australia	between	September	2018	and	August	2019.

Port hacking 
(N = 50)

Shoalhaven 
heads 
(N = 25)

Moruya 
(N = 49)

Port Hacking 0.85 ± 0.039 0.91 ± 0.025

Shoalhaven Heads −0.00336 0.36 ± 0.041

Moruya −0.00292 −0.00125
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on marine species management (i.e. “seascape genetics”) (von der 
Heyden, 2009). The lack of distinct populations within the spatial 
scale of this study (~250 km),	which	was	based	on	previous	research	
on related species (Kozuka, 2008; McMillen- Jackson & Bert, 2004), 
suggests that similar studies should encompass the geographic 
range of the species, and future studies for T. austaliensis should ex-
tend	from	northern	Queensland	and	Victoria	and	South	Australia.	In	
addition, investigating the impacts of oceanic and tidal currents on 
larval dispersal and migration would increase understanding of en-
vironmental factors that influence larval dispersal and migration of 
this species. While we recommend further study to shed light on the 
dynamics of the species as a whole, we have found that T. austaliensis 
can be managed as a single stock within a large portion of their range 
along	the	NSW	coast.
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F I G U R E  2 Results	of	the	Bayesian	
clustering algorithm STRUCTURE v2.3.4 
(Pritchard et al., 2000) for 2–4 genetic 
groups of the burrowing mud shrimp 
Trypaea australiensis at three sampling 
sites	along	the	East	Coast	of	New	South	
Wales,	Australia	between	September	
2018	and	August	2019.

F I G U R E  3 Linear	discriminant	
function 1 versus 2 for the burrowing 
mud shrimp Trypaea australiensis at three 
sampling locations along the East Coast 
of	New	South	Wales,	Australia	between	
September	2018	and	August	2019.	
Colours represent sampling locations 
at Port Hacking (light grey), Shoalhaven 
Heads (dark grey) and Moruya (black).
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