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Towards Robust Perception for Assistive Robotics: An
RGB-Event-LiDAR Dataset and Multi-Modal Detection Pipeline

Adam Scicluna, Cedric Le Gentil, Sheila Sutjipto and Gavin Paul

Abstract— The increasing adoption of human-robot interac-
tion presents opportunities for technology to positively impact
lives, particularly those with visual impairments, through appli-
cations such as guide-dog-like assistive robotics. We present a
pipeline exploring the perception and “intelligent disobedience”
required by such a system. A dataset of two people moving in
and out of view has been prepared to compare RGB-based
and event-based multi-modal dynamic object detection using
LiDAR data for 3D position localisation. Our analysis highlights
challenges in accurate 3D localisation using 2D image-LiDAR
fusion, indicating the need for further refinement. Compared
to the performance of the frame-based detection algorithm
utilised (YOLOv4), current cutting-edge event-based detection
models appear limited to contextual scenarios, such as for
automotive platforms. This is highlighted by weak precision
and recall over varying confidence and Intersection over Union
(IoU) thresholds when using frame-based detections as a ground
truth. Therefore, we have publicly released this dataset to the
community, containing RGB, event, point cloud and Inertial
Measurement Unit (IMU) data along with ground truth poses
for the two people in the scene to fill a gap in the current
landscape of publicly available datasets and provide a means
to assist in the development of safer and more robust algorithms
in the future: https://uts-ri.github.io/revel/.

I. INTRODUCTION

Training guide dogs requires significant time and financial
resources [1], with only about half of the dogs successfully
completing the programs [2]. This creates a gap between the
availability of guide dogs and the needs of visually impaired
individuals. Thus, there is growing interest in cost-effective
robotic alternatives [3]. These robotic substitutes must repli-
cate the “intelligent disobedience” of guide dogs, where the
robot refuses unsafe commands based on its understanding of
an environment. Therefore, reliable perception and decision-
making algorithms are necessary to ensure user safety.

Perception and scene understanding are essential capa-
bilities for robotic systems to be integrated into daily life.
Such systems must robustly comprehend their surroundings
in real-time for subsequent decision-making and actions
toward safe operations. In the context of guide-dog-like
assistive robotics, this translates into the accurate detection
and identification of both static and dynamic objects such
as cars, bicycles, pedestrians, etc, and the ability to estimate
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(a) Sensor suite

(b) Vision data sample

(c) Geometric data sample

Fig. 1: (a) Sensor suite featuring a DAVIS 346 frame-event camera and a
Cube1 LiDAR for dataset collection. (b) DAVIS camera data sample: events
(polarity-coloured in red or blue) overlaid on the RGB frame. (c) LiDAR
scan sample with object motion-captured ground truth poses (frames).

their 3D pose and dynamics. This would enable the robot to
navigate and avoid hazards, enhancing safety and usability.

Recent machine learning advances and GPU availability
have enabled efficient context and scene recognition from
RGB images using neural networks [4], [5]. Yet, controlling
movement or manipulation demands 3D pose knowledge.
Although RGBD and stereo cameras provide accurate depth
information, their low dynamic range and susceptibility to
motion blur, along with RGBD cameras’ poor outdoor per-
formance due to sunlight’s infrared radiation, pose challenges
in safety-critical, dynamic or brightly lit environments [6].
To address this, LiDAR-camera multi-modal sensor suites are
used, though LiDAR’s sparsity, noise, and slow acquisition
rate complicate detection. Thus, RGB-LiDAR systems still
struggle with standard cameras’ limitations in scenarios
under high dynamic range or low light conditions.

Event-based cameras [7] offer a solution to the limita-
tions of traditional frame-based vision by capturing pixel-
level changes in illumination independently. However, ob-
ject detection methods for event cameras are still in their
early stages compared to those for RGB data [8], [5]. To
fully exploit the benefits of event cameras, developing new
algorithms tailored to their unique data output is crucial.

Early RGB-based object detection used handcrafted fea-
tures and classic machine learning but struggled with vari-
ability and extensive parameter tuning. CNNs revolutionised
the field with superior performance in managing data
variation [4], greatly aided by extensively labelled public
datasets [9], [10], [11], [12], where millions of images across
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thousands of categories provide a crucial benchmark for
performance evaluation. Tailored datasets like KITTI [13]
for autonomous driving have also been pivotal in advancing
algorithm development. Prominent approaches include R-
CNN and its iterations [14], [5], where selective searches
generate regions classified by a CNN. Recent efforts have
focused on improving efficiency evident with YOLO [15] and
single shot detectors [16], [17]. Works have also combined
object detection with semantic segmentation to enhance
scene awareness and object analysis [18], [19].

Frame-based algorithms do not translate well for use with
event camera data. Consequently, efforts have been made to
reconstruct dense greyscale images from sparse event data
to feed to a CNN, introducing an intermediate step that in-
creases the computational burden and latency. Alternatively,
CNNs [20], spiking neural networks [21], and graph neural
networks [22] have demonstrated object detection in the
event space. Recently, transformers like RVTs have achieved
state-of-the-art performance on the Gen1 and 1-Mpx [23]
datasets [24], [23], [25]. While promising, these methods
lack the accessibility of algorithms like YOLO [8]. Further-
more, event camera-based techniques struggle to generalise
to other scenes due to the limited variety in existing datasets.

Leveraging the complementary nature of LiDAR point
clouds and RGB images enables a more comprehensive scene
understanding [26]. For object detection, strategies include
using RGB-trained networks on image-like data generated
from LiDAR data [27], constructing pseudo-LiDAR data
from RGB images [28], using 2D detectors to propose
3D search spaces [29], and employing RVTs [30]. Fusing
LiDAR and camera data has proven effective for semantic
segmentation, using methods like mapping LiDAR points
to the output of an image-based semantic segmentation
network and inputting the data into a LiDAR detector [31],
and addressing sparsity with cylindrical partitioning and
asymmetrical 3D CNNs [32].

To our knowledge, no publicly available dataset contains
data from an event camera, an RGB camera, a LiDAR, and an
IMU, while providing ground truth poses of the sensor suite
and dynamic objects. In this paper, we introduce a labelled
dataset and propose a multi-modal perception pipeline for 3D
object detection and spatial pose estimation that combines a
2D detection step (based on RGB or event vision) and a
depth estimation step using LiDAR data. Fig. 1 shows our
sensor and some data samples. We evaluate the performance
using the event and RGB camera, highlighting the potential
and challenges for future robotic guide-dog systems.

II. DATASET

A. Sensor suite and data collection

The dataset introduced in this paper is collected indoors
with a handheld sensor suite moving in the field of view
of a Vicon motion-capture system. Two people, also tracked
by the motion-capture system, are moving in and out of the
sensor suite field of view. The sensor suite consists of:

• Inivation DAVIS346 event camera: Stream of event data
(up to 1MHz) with each event being a tuple of x and y
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Fig. 2: Frames and geometric transformations in the dataset.

positions in the image space, t the timestamp, and p the
polarity of the corresponding illumination change; RGB
images at 23Hz; 6-DoF IMU at 1kHz (3-axis gyroscope
and 3-axis accelerometer).

• Blickfeld Cube1 LiDAR: 3D point clouds at 7.9Hz with
point-wise timestamps.

All the sensor’s measurements and the output of the
motion-capture system are recorded with ROS. We use the
rpg dvs ros driver for the DVS camera and the Blickfeld
ROS driver for the LiDAR. As illustrated in Fig. 1, the
sensor suite is equipped with a set of reflective markers
tracked by the Vicon system. Similarly, the people moving
in the surroundings wear helmets with reflective markers.
Subsequently, the Vicon system provides the 6-DoF pose of
the 2 persons and sensor suite in an arbitrarily fixed reference
frame. Overall, the dataset spans 14 minutes over four
ROSBags, containing approximately 774 million events1,
22000 RGB images, 6700 point clouds, and 70000 ground
truth poses each for two persons in the scene. For the exper-
imentation performed, the ROSBag entitled “dynamic.bag”
was used. For convenience and utility, the dataset is labelled
with the class identifier corresponding to the colour helmet
worn by the person.

B. Calibration

To use our dataset effectively, we must first perform the
intrinsic calibration of the camera and extrinsic calibration
between the various sensors and the set of reflective markers.
Fig. 2 shows the set of geometric transformations Tb

a esti-
mated during calibration (TL

C , TMS

C , and TI
C) or given by

the Vicon system (TMS

W , TM1

W , and TM2

W ). Note that as the
RGB and event data are being collected by the same cells
in the DAVIS346, the reference frame of the event and RGB
camera are collocated (labelled “Camera” in Fig. 2). Thus,
the intrinsic calibration parameters obtained with the RGB
camera apply to the event camera as both data types share
the same optical path. Calibration sequences and parameter
estimates are included with the main dataset. Table I details
the estimation process for each transformation 2.

III. MULTI-MODAL SCENE UNDERSTANDING

To enable downstream applications such as guide-dog-like
assistive robots, we explore fusing vision and LiDAR data for

1The DVS driver cuts the event stream into variable-length event-array
messages; thus, the dataset contains 25000 event-array messages.

2The camera’s intrinsics are obtained with Matlab’s calibration toolbox
https://au.mathworks.com/help/vision/ref/cameracalibrator-app.html



TABLE I: Insight into the extrinsic calibration procedure of the sensor suite
used to collect the proposed dataset.

Trans. Details

T
MS
C

Camera position from checkerboard detection, then
eye-in-hand calibration with Vicon poses of FMS

TL
C

Checkerboard plane equation from camera and point-to-plane
minimisation with LiDAR points on the checkerboard

TI
C

Kalibr3: Checkerboard for camera position and
continuous-time batch state estimation

Camera
(RGB or event)

Object detection
RGB: YOLOv4 / Event: RVT

Bounding box tracking
Simple Online Real-time Tracking (SORT)

LiDAR fusion
Bounding box cropping and filtering

3D tracking
Constant Velocity Kalman Filter (CVKF)

3D LiDAR
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Raw vision data (RGB
images or event stream)
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3D points

3D
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Fig. 3: Block diagram overview of the proposed vision-LiDAR object
detection and tracking.

the 3D localisation of pedestrians and vehicles. The method-
ology can also be applied to static objects such as trees,
buildings and roads. While a complete system should include
these necessities, the motivation of this work is to focus on
dynamic objects due to the further requirement of tracking
relative motion. Fig. 3 presents an overview of the proposed
pipeline. The main steps are, first, the vision-based detection
of objects in the image space (2D), followed by the tracking
of the resulting bounding boxes with the Simple Online
and Real-time Tracking (SORT) algorithm [33]. Then, the
bounding boxes are used to crop and filter the LiDAR scans
before performing state estimation in the 3D space using
a Constant-Velocity Kalman Filter (CVKF). Note that this
pipeline can be used with an event camera or a standard RGB
camera if the detection algorithm provides bounding boxes
around the detected objects. The rest of this section provides
details about the components of the proposed pipeline.

A. 2D object detection and tracking

1) RGB-based detection: When the proposed framework
is used with an RGB camera, we use YOLOv4 [15] for the
task of object detection. YOLOv4 is a CNN-based algorithm
renowned for its real-time capabilities and accuracy. It is
trained on the MS-COCO dataset [10] and can classify 80
different types of objects, including pedestrians and vehicles.
Its one-shot detection approach surpasses traditional two-shot
detectors like Faster R-CNN in terms of inference speed.
The RGB images from the DAVIS346 are undistorted using
the camera’s intrinsic parameters before being passed to

YOLOv4. The output consists of 2D bounding boxes.
2) Event-based detection: For event-based vision, our

pipeline relies on RVT [25]. The choice of RVT is mo-
tivated by its proficiency in detecting both vehicle and
pedestrian data, coupled with its fast inference time relative
to alternative event-based models. RVT relies on recurrent
transformers to leverage the spatiotemporal nature of event
data. Accordingly, the stream of events is preprocessed into
a succession of 4-dimensional tensors of size (2, T, h, w),
with h and w the resolution of the camera, by binning the
events into T temporal slices (10 slices within a 50 ms
window in the publicly available model). The first dimension
of the tensor represents the two polarities of the events, thus
storing the events triggered by positive and negative changes
separately. The authors of RVT have released pre-trained
models Gen1 and 1-Mpx that are trained with the Gen1 [24]
and 1-Mpx [23] automotive datasets, respectively. To infer
objects’ bounding boxes using the DAVIS346 data, we crop
or pad the event tensors to fit the required input size of the
models (h,w).

3) 2D tracking: The 2D bounding boxes in the image
from the event and RGB object detectors are quite noisy
in regards to the position and amount of misdetection. The
proposed pipeline leverages the SORT algorithm for multi-
frame object association and position estimation to address
this issue. SORT employs the Hungarian Method in con-
junction with a Linear CVKF to track objects across frames
independently of other objects and camera motion. The state
vector in the CVKF is x = [u, v, s, r, u̇, v̇, ṡ]⊤, where u,
v, u̇ and v̇ represent the centre coordinates and velocity in
pixels/frame of the bounding box, s and ṡ represent the
bounding box area and change in area respectively, and
r represents the aspect ratio of the bounding box, which
is assumed to be constant. We apply small changes to
parameters outlined in Table II to better handle occlusions
and instances of missed subsequent associations to a tracker,
which are dangers for a guide-dog-like aid.

B. 3D fusion

1) LiDAR scan filtering: Given stable 2D bounding boxes
from the aforementioned vision-based detector-and-tracking
step, we first select the LiDAR points that fall into a
bounding box by projecting each point of a LiDAR scan into
the image using TL

C and the camera intrinsics as illustrated in
Fig. 4 Unfortunately, the points associated with a bounding
box do not only correspond to the detected object but also
to the foreground and background. Accordingly, we propose
a simple filtering method to only extract points belonging to
the detected object. Based on the assumption that the centre
of the detected object is roughly aligned with the centre of
the bounding box, only points present in a square around the
bounding box centre are considered. The ratio of the square’s
area to the bounding box’s area is scaled linearly with the
ratio of the bounding box’s area to the image resolution.
Therefore, as the bounding box gets smaller, the ratio of the
square to bounding box area increases, and vice-versa. For
the rest of the pipeline, the object position is represented
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Fig. 4: Bounding box point cloud segmentation and filtering examples via
vision-based (RGB and event) object detection.

with a single 3D point. Accordingly, we use the median of
the points inside the square to feed the tracker presented in
the following subsection.

2) 3D tracking: Provided with the point representation
from the LiDAR scan filtering and the bounding box tracking
ID from Section III-A.3, the proposed pipeline initialises and
maintains independent CVKF for each object track. Inspired
by the work in [34], the CVKF state vector consists of the
object position and velocity: x3D = [x, y, z, ẋ, ẏ, ż]⊤.

IV. EXPERIMENTS

A. Implementation

The quantitative results are obtained using the proposed
dataset collected with an Inivation DAVIS346 camera and
a Blickfeld Cube1 LiDAR. For the event-based detector,
we empirically chose the 1-Mpx model of RVT [25] after
testing Gen1 and 1-Mpx using our dataset. No significant
performance difference was found. Both RGB-based and
event-based object detectors were used without any retraining
or fine-tuning of the networks’ weights. Table II shows the
parameters of the SORT algorithm for vision-based tracking
(Section III-A.3). The RGB and event detectors have differ-
ent noise characteristics, so SORT tracker parameters differ
slightly. Experiments were conducted on a low-performance

TABLE II: The SORT algorithm parameters for image space object tracking.

Parameter RGB Event
Maximum age of unmatched tracker [no. of frames] 10 10

Maximum unmatched predictions [no. frames] 5 3
Min. number of associated detections for tracking 3 1

Min. number of previous associations for prediction 10 1
IoU threshold for association 0.3 0.3

laptop with Ubuntu 20.04.6 LTS, an NVIDIA GTX GeForce
1650 GPU, an AMD Ryzen 7 5700U CPU, and 16GB of
RAM. The proposed pipeline runs close to real-time with
both RGB-based and event-based detection.

B. Vision-based object detection

To evaluate the performance of the vision-based object
detectors in our pipeline for assistive robotics in dynamic

settings, we performed object detection with both YOLOv4
and RVT using the proposed dataset. We only consider
YOLOv4 detections above a confidence score of 0.5 while
varying the RVT confidence threshold across evaluations.

Each RGB frame is associated with a 50 ms event
tensor/sequence required for RVT’s prediction. Table III
displays RVT’s precision and recall (confidence threshold of
0.3), with and without the tracking, using YOLOv4 as the
ground truth due to its proven accuracy [15]. The definitions
of true/false positive/negative for precision and recall are
based on IoU thresholds between the bounding boxes of
both methods. Table III displays results for varying IoU
thresholds, while Table IV shows results for a fixed IoU
threshold with varying RVT confidence thresholds.

The results show that YOLOv4 outperforms the RVT
model. The precision scores suggest a higher number of mis-
classifications with erroneous class attribution. Interestingly,
using SORT increased the recall but decreased the precision.
This suggests that when true positive detections occur in one
sequence of events but not in the ensuing sequences, the
SORT algorithm improves the detection rate due to its ability
to predict the subsequent positions of an object, reducing
the number of false negatives. However, when the tracker
incorrectly estimates the object dynamics or false positive
detections occur, the precision score decreases.

C. 3D object tracking

1) Quantitative: Using the proposed detection pipeline
and dataset, we evaluate the overall accuracy using the Mean
Absolute Error (MAE) and the Root Mean Square Error
(RMSE) between the predicted object 3D position in the
camera reference frame and the ground truth value from the
motion-capture system TM•

W , TMS

W , and the calibration TMS

C .
Table V shows the results from both detection methods. To

achieve an unbiased evaluation of the 3D estimation frame-
work, the event-based prediction uses a manually selected
one-minute portion of the “dynamic.bag” ROSBag where the
RVT detector performs well, while the RGB-based pipeline
uses the full ROSBag. The ground truth for people’s positions
is at head level, and the LiDAR filtering focuses on the hip
level. Metrics are separated by the individual axis and the
XZ plane. The Y-axis (gravity-aligned axis) error of just
under a metre reflects head-vs-hip tracking. Overall, both
modalities result in a range of approximately 0.8 to 1 m MAE
in the XZ plane, validating the proposed detection/tracking
pipeline. The larger Z-axis error (depth) compared to the
X-axis indicates that scan filtering does not fully isolate
the object from the foreground and background, as seen in
Figure 4 where the spread of 3D point cloud data contained
inside a 2D bounding box is broader along the depth axis.

Given that the RMSE weights heavily outlier errors, the
difference between MAE and RMSE suggests that a few
tracking results are highly inaccurate, while a majority
are accurate. Curiously, the CVKF does not enhance but
rather worsens the final estimates. Thanks to the vision-
based SORT tracking, the output of the LiDAR filtering
step is already smooth. Thus, the inherent delay of the final



TABLE III: Evaluation of event-based detection vs. YOLOv4: varying IoU thresholds @ confidence threshold = 0.3.

Event-Based Detection: IoU thresholds @ Confidence threshold = 0.3
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Pure Detection Precision 0.625 0.573 0.516 0.447 0.357 0.256 0.168 0.082 0.026
Recall 0.423 0.388 0.349 0.303 0.242 0.174 0.114 0.055 0.017

Tracked w/ SORT Precision 0.577 0.533 0.478 0.409 0.328 0.236 0.146 0.068 0.02
Recall 0.463 0.427 0.383 0.328 0.263 0.189 0.117 0.055 0.016

TABLE IV: Evaluation of event-based detection vs. YOLOv4: varying confidence thresholds @ IoU threshold = 0.5.

Event-Based Detection: Confidence thresholds @ IoU threshold = 0.5
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Pure Detection Precision 0.577 0.658 0.688 0.72 0.756 0.787 0.818 0.849 0.885 0.916 0.956 0.996 1.0
Recall 0.463 0.414 0.404 0.394 0.383 0.37 0.352 0.327 0.294 0.239 0.156 0.044 0.001

Tracked w/ SORT Precision 0.625 0.611 0.643 0.681 0.718 0.747 0.784 0.817 0.844 0.857 0.878 0.88 1.0
Recall 0.423 0.45 0.441 0.432 0.423 0.408 0.391 0.368 0.33 0.274 0.19 0.055 0.001

TABLE V: Accuracy analysis of 3D object position estimation.

RGB detection Event detection∗
MAE RMSE MAE RMSE

Filtering
only

X 0.283 0.513 0.232 0.41
Y 0.765 0.79 0.86 0.888
Z 0.724 1.397 0.929 1.613

XZ 0.828 1.488 0.983 1.665

Filtering
and

CVKF

X 0.281 0.484 0.243 0.434
Y 0.763 0.788 0.866 0.894
Z 0.727 1.712 0.98 1.663

XZ 0.831 1.779 1.033 1.719
∗ The event evaluation uses only one minute of the dataset

(a) Moving bus (b) Parked cars
Fig. 5: Detection samples and estimated dynamics in an urban environment.

CVKF’s estimate with respect to the true state value can only
result in lesser accuracy. Additionally, occlusions and missed
associated detections handled by the 2D SORT algorithm
lead to the wrong selection of points in the LiDAR scans
- leading to high geometric errors. This correlates with the
disparity between MAE and RMSE.

2) Qualitative: To test and demonstrate the ability of the
proposed pipeline to provide spatial awareness for assistive
robots such as guide-dog-like aid, a sensor suite consisting
of an Intel RealSense camera and Velodyne VLP-16 LiDAR
was utilised in an urban environment. This data was collected
to inspect the effectiveness of the RGB version of our
pipeline on longer-range detections and the ability to estimate
vehicle dynamics. While no ground truth is available for
quantitative evaluation, Fig.5 shows multiple detections of
pedestrians and vehicles and their estimated velocity. These
correspond to the expected velocities of the difference agents.

V. DISCUSSION

In the LiDAR filtering step, assuming the “central square”
cropping of 3D points aligns the object’s centre with the
bounding box centre is arbitrary and often untrue. The central

part of the bounding box may correspond to background
information. For instance, when a person extends an arm,
the bounding box expands, which shifts the centre away from
the torso, leading to an incorrect point selection. Similarly,
for vehicles, the bounding box centre may align with the
windshield, causing the LiDAR to observe the background.
Future work will explore using efficient per-pixel semantic
labels to better handle partial occlusions.

Our pipeline also assumes constant-velocity models in dif-
ferent trackers. While effective for wheel-based systems like
autonomous vehicles, these models fall short for handheld
devices, such as in our dataset, and platforms with jerky
motion, such as bipedal and quadrupedal robots. In scenarios
mimicking guide dogs, inaccurate vehicle tracking can have
severe consequences. Investigating varied motion models
and incorporating the robot’s movement commands might
enhance system robustness. Furthermore, employing trackers
like DeepSORT [35], which utilise metrics other than IoU,
can strengthen frame-to-frame association and tracking.

Expanding into 3D detection improves reliability by merg-
ing and cross-checking outputs from multiple modalities,
beyond using LiDAR for depth. However, LiDAR-only de-
tection faces limitations like vertical sparseness and motion
distortion. Sensor fusion is crucial for robust robotic auton-
omy. Future research should refine detection synchronisation,
moving beyond timestamp-based LiDAR scan matching.

Our findings indicate that event-based object detectors lack
adaptability and generalisation, while frame-based detectors
are ready for use without retraining, thanks to large, diverse
publicly available training datasets. The lack of diverse event
camera training data hinders adaptability, as event cameras
are more affected by camera motion. Our dataset will enable
the robotics community to investigate these issues, paving
the way for safer and more robust algorithms.

VI. CONCLUSION

This paper has presented a dataset for comparing event-
based and RGB-based multi-modal 3D object detection and
tracking with LiDAR data. The dataset includes RGB, event,
LiDAR, and inertial data, along with human ground-truth
positions determined by a motion-capture system, addressing
a gap in publicly available datasets for applications such as



guide-dog-like assistive robots. We proposed a pipeline for
dynamic object detection and tracking that performs vision-
based object detection followed by LiDAR-based 3D position
estimation. Our experiments show that frame-based detec-
tion algorithms generalise well to various scenes, while the
current state-of-the-art event models are limited to smaller,
automotive-oriented scenarios.

Future work will enrich our dataset with data from various
mobile platforms (wheeled, bipedal, and quadrupedal). This
is important due to the spatiotemporal nature of the event
data: regular movements lead to recurrent patterns in the
event stream. For the proposed pipeline, our efforts will focus
on refining 3D localisation and tracking to better adapt to
rapid dynamic changes and employing advanced machine
learning techniques for more accurate object isolation. Ulti-
mately, we will integrate the proposed perception framework
into an advanced assistive robot to help vision-impaired users
navigate challenging environments safely.
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