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Abstract: The choice between the Schrödinger and Heisenberg pictures can significantly impact the
computational resources needed to solve a problem, even though they are equivalent formulations of
quantum mechanics. Here, we present a method for analysing Bosonic quantum circuits based on the
Heisenberg picture which allows, under certain conditions, a useful factoring of the evolution into
signal and noise contributions, similar way to what can be achieved with classical communication
systems. We provide examples which suggest that this approach may be particularly useful in
analysing quantum computing systems based on the Gottesman–Kitaev–Preskill (GKP) qubits.

Keywords: quantum computing; cat states Bosonic codes

1. Introduction

A useful technique for analysing quantum optical experiments based on Gaussian
operations and measurements is the quantum noise transfer approach [1], which is charac-
terised by a displacement vector and a covariance matrix [2]. Working in the Heisenberg
picture, the signals (the displacements) and the quantum noise (the covariances) can be
tracked separately, in much the same way that signals and noise are tracked, for example,
in classical communication systems. A key step in such an analysis is the definition of
quadrature fluctuation operators:

δq̂ = q̂ − q, δ p̂ = p̂ − p, (1)

where q = ⟨q̂⟩ and p = ⟨ p̂⟩ are real numbers representing the average values of the position
and momentum quadrature displacements, respectively. Also, q̂ and p̂ are the position
and momentum operators for the mode in question, respectively. We use the convention
that the annihilation operator for the mode is given by â = 1/2(q̂ + i p̂), which can then be
expanded as follows:

â = 1/2(q + δq̂ + i(p + δ p̂)), (2)

and the classical signals (displacements) and the quantum noise operators can be indepen-
dently tracked in the Heisenberg picture through various interactions and measurements
in an intuitive way. In an experimental setting, the noise properties of the input states can
be measured directly by subtracting the known signal and evaluating the variance of the
quantum fluctuations. For example, the position quadrature variance is

Vq ≡ ⟨δq̂2⟩ = ⟨(q̂ − q)2⟩ = ⟨q̂2⟩ − q2 (3)

The aim of this paper is to develop an analogous approach which can describe the
evolution of non-Gaussian states, such as cat states [3] or Gottesman–Kitaev–Preskill (GKP)
states [4], in a similar way. Such states are formed from a superposition of differently
displaced states, and hence the signal is multi-valued.
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In the next section, we will introduce our new decomposition into signal and fluctua-
tion operators and show how noise properties can be analysed independent of the signal
value, provided certain conditions are met. We illustrate this with cat state and GKP state
examples. In Section 3, we consider the Heisenberg picture evolution of our operators, with
loss and feedforward as examples. In Section 4, we apply our formalism to GKP states
and analyse a teleportation channel which includes the GKP error correction protocol. The
goal is to evaluate the noise transfer properties of the circuits based on the first and second
moments of the resource states (and the properties of the feedforward measurements),
thus providing an alternative method for analysing quantum computing circuits based
on GKP qubits. Current approaches to GKP circuit evaluation are based on Schrödinger
picture analysis. Noise can be added to ideal GKP states [5], and the logical states can be
tracked through a modular sub-system decomposition [6], which can be generalised to
finite-energy GKP states [7,8]. Exact numerical models incorporating noisy elements have
also been explored [9]. In contrast, the method presented here differs by describing a way
to empirically quantify the noise and signals independently and then track them through
circuits via their Heisenberg evolution, offering potential advantages in the intuitive nature
of the approach and the tractability of the calculations in the presence of multiple noise
sources. We discuss our results and conclude this work in Section 5.

2. Signal and Fluctuation Operators

We start by defining the operators δq̂ and δ p̂ in a way analogous to Equation (1)
as follows:

δq̂ = q̂ − q̂c, δ p̂ = p̂ − p̂c. (4)

Because the displacements are multi-valued, they must be represented by operators, specif-
ically q̂c and p̂c. We characterise q̂c and p̂c by their moments over restricted domains
around their expected displacement values in the position and momentum quadratures,
respectively. Specifically, given that qn = ⟨q̂⟩n is the expectation value for q values falling
in the nth position domain, we require that ⟨q̂c⟩n = qn. We further require that ⟨q̂2

c ⟩n = q2
n,

meaning that q̂c has zero variance in each domain. This implies that ⟨q̂q̂c⟩n = q2
n. Similarly,

we require ⟨ p̂c⟩n = pn, where pn = ⟨ p̂⟩n is the expectation value for p values falling in the
nth momentum domain, ⟨ p̂2

c ⟩n = p2
n, and hence ⟨ p̂ p̂c⟩n = p2

n. Assuming that we have Nq
position domains and Np momentum domains, the full expectation values are given by

⟨q̂c⟩ =
Nq

∑
n

qnPnq, (5)

⟨ p̂c⟩ =
Np

∑
n

pnPnp

with Pnq being the probability of finding a q value in the nth domain and Pnp being the
probability of finding a p value in the nth domain.

Our mode operators are now of the form

â = 1/2(q̂c + δq̂ + i( p̂c + δ p̂)), (6)

The noise properties of the input states can be measured directly by subtracting the
closest expected displacement, evaluating the variance of the quantum fluctuations around
this expected value, and taking the weighted average over all expected values. These
quantities can then be related to δq̂ and δ p̂ in the following way. We can write the average
position quadrature variance described above as
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Vq ≡
Nq

∑
n
(⟨q̂2⟩n − q2

n)Pnq (7)

= ⟨q̂2⟩ −
Nq

∑
n

q2
nPnq

= ⟨q̂2⟩ −
Nq

∑
n
(2⟨q̂q̂c⟩n − ⟨q̂2

c ⟩n)Pnq

= ⟨(q̂ − q̂c)
2⟩

= ⟨δq̂2⟩.

This can be evaluated via

Vq =
∫

dq q2|Ψ(q)|2 −
N

∑
n

(
∫

n dq q|Ψ(q)|2)2

(
∫

n dq|Ψ(q)|2)
, (8)

where we have used

qn =

∫
n dq q|Ψ(q)|2∫

n dq|Ψ(q)|2
; (9)

Pnq =
∫

n
dq|Ψ(q)|2,

and the integral
∫

n dq is taken over the corresponding nth domain, whilst Ψ(q) = ⟨q|ψ⟩ is
the position wavefunction of the state |ψ⟩. Similarly, the momentum quadrature variance
can be written as

Vp ≡ ⟨δ p̂2⟩ = ⟨( p̂ − p̂c)
2⟩ (10)

= ⟨ p̂2⟩ − ⟨ p̂2
c ⟩

= ⟨ p̂2⟩ −
Np

∑
n

p2
nPnp.

This can be evaluated via

Vp =
∫

dq p2|Ψ(p)|2 − ∑
n

(
∫

n dp p|Ψ(p)|2)2

(
∫

n dp|Ψ(p)|2)
. (11)

where the integral
∫

n dp is taken over the corresponding nth domain whilst Ψ(p) = ⟨p|ψ⟩
is the momentum wavefunction of the state |ψ⟩.

If the signal peaks are localised well in their expected domains, then Equations (8) and (11)
will well represent the average spread of the signal peaks. By assuming Gaussian statistics,
we can then estimate the probability that a quadrature measurement will find a result in
their expected domain via

Pj = Er f [
D

2
√

2Vj
], (12)

where D is the width of the domains and j = q, p.
The interpretation becomes more subtle if the variances approach the width of the

domains. If this happens, then the probability distribution within the domain will be
“clipped” and changed relative to its “unclipped” value. We will observe this effect in the
following examples.

The next two subsections will examine the examples of cat states and GKP states. “Cat
state” usually refers to a superposition of differently displaced Gaussian states. The case
we consider here is a symmetric superposition of two coherent states around the origin.
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The GKP state is a particular superposition of multiple displaced Gaussian states which has
the feature that if qubit values of zero or one are encoded by the displacement values in the
q quadrature, then the p quadrature encodes the “+” and “−” diagonal states, respectively.
This nice feature means that a logical Hadamard gate can be enacted on the encoded states
with a simple phase rotation. The specific GKP state construction we use here is a multiple,
weighted superposition of squeezed states displaced (and squeezed) in the q direction.
Example q quadrature probability distributions for the cat and GKP states are shown in
Figures 1–3.
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Figure 1. Example q quadrature probability distribution for the cat state in Equation (13) with α = 2.
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Figure 2. Example q quadrature probability distribution for the GKP state in Equation (20) with µ = 1
and ∆2 = 0.1.
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Figure 3. Example q quadrature probability distribution for the GKP state in Equation (20) with µ = 1
and ∆2 = 0.1 but rotated through a quadrature angle of π/2. This is equal to the “−” GKP state or,
equivalently, the p quadrature probability distribution of the “1” state.

2.1. Cat States

Let us us begin with perhaps the simplest non-trivial example: a superposition of two
displacements of the vacuum. In particular, let us consider the cat state given by

|ψc⟩ = ℵ(|α⟩+ | − α⟩), (13)

where ℵ = (2 + 2e−2α2
)−1/2 is a normalisation constant and | ± α⟩ are coherent states with

real displacements ±α. Consider the position quadrature variance. The wave function is

Ψq = ℵ(2π)−1/4(e−(q−2α)2/4 + e−(q+2α)2/4). (14)

We can take the domain for n = 1 as −∞ → 0, and that for n = 2 is 0 → ∞, leading to
the two corresponding values for qn being

q1 =

∫ 0
−∞ dq q|Ψ(q)|2∫ 0
−∞ dq |Ψ(q)|2

≈ −2α (15)

q2 =

∫ ∞
0 dq q|Ψ(q)|2∫ ∞
0 dq |Ψ(q)|2

≈ 2α,

where the approximate equalities are satisfied for |α| > 1. The probabilities are given by

P1q =
∫ 0

−∞
dq |Ψ(q)|2 = 1/2, (16)

P2q =
∫ ∞

0
dq |Ψ(q)|2 = 1/2.

By substituting these results into our expressions for Vq, we find that provided |α| > 1,
then Vq ≈ 1. This corresponds to our intuitive picture of the cat state comprising two peaks
at ±α with widths of one unit of quantum noise. However, if |α| falls significantly below
one, then the distributions in the two domains are only weakly peaked (if at all) and highly
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skewed and clipped, and thus the decomposition into a discrete superposition is no longer
useful. This is illustrated in Figure 4.

α

0 1 2 3

V
q

0.2

0.4

0.6

0.8

1

1.2

Figure 4. Average position quadrature variance Vq as a function of the parameter α for the cat
state defined in Equation (13). Notably, Vq < 1 for small values of α, which can be attributed to
clipping effects.

Even though the superposition of displacements is only explicit in the position quadra-
ture, interference effects also lead to distinct peaks in the momentum quadrature, around
which we can define domains. The momentum wave function is

Ψp = (1 + e−8α2
)−1/2(π/2)−1/4e−p2/4 cos 2pα, (17)

and thus we can define the expected value in the nth domain as

pn =

∫ dn,+
dn,−

dp p|Ψ(p)|2∫ dn,+
dn,−

dp |Ψ(p)|2
≈ nπ

2α
, (18)

with a corresponding probability

Pnp =
∫ dn,+

dn,−
dp |Ψ(p)|2 (19)

where dn,± = (n ± 1/2)π/(2α). When substituting these results into our expressions for
Vp, we find that the variances scale inversely with |α|. This is unsurprising given that the
size of the domains are inversely proportional to |α|. In particular, the ratio of the domain
size (equivalently peak separation) to the standard deviation ( nπ

2α /
√

Vp) is roughly constant
(≈5.7) for |α| > 1.

2.2. GKP States

We now consider the case of GKP states. A physical GKP “zero” state has q quadrature
outcome probabilities with peaks around the values 2n

√
2π, where n is any integer and the

peaks are weighted by a suitable envelope function. The corresponding GKP “one” state
has q quadrature outcome probabilities peaked around the values 2(n + 1/2)

√
2π, which

are similarly weighted. The p quadrature outcome probabilities for these computational
states have peaks at both the “zero” and “one” positions. (i.e., at values n

√
2π). This is

consistent with the observation that a logical Hadamard gate should be implemented by a
π
2 delay, which takes q̂ → p̂ and p̂ → −q̂. Thus, the logical values of the p quadrature for
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the “zero” and “one” computational basis states correspond to the “+” and “−” dual basis
states, respectively.

We will consider a physical example of such a GKP state to see what the noise proper-
ties are for such a state. One such example is the squeezed state superpositions [7]

|ψµ⟩ = N
∞

∑
n=−∞

e−
π
2 ∆2(2n+µ)2

D̂
(√

π

2
(2n + µ)

√
1 − ∆4

)
|∆⟩, (20)

where N is a normalisation factor and |∆⟩ is a squeezed state with a squeezed variance
∆2 < 1. The value of µ determines the logical state (i.e., |ψ0⟩ is the logical “zero” state and
|ψ1⟩ is the logical “one” state). We can evaluate the noise properties of these initial states
using Equation (8) and by defining the domains via (n + 1/2)

√
2π < q < (n + 3/2)

√
2π

and similarly for p.
In Figure 5, we plot Vq as a function of ∆2 for the computational states and the diagonal

states. We find that provided ∆2 ≲ 1
10 , then to an excellent approximation

Vq = Vp = ∆2. (21)

This is true for all logical states. This indicates that, provided the squeezing is sufficiently
strong, these states behave as hoped with the superposed “spikes” giving the logical value,
modulated by Gaussian noise with a variance equal to the squeezing, in both quadratures.
Alternatively, given that this is an expected result for GKP states [4], one can take this
as indicating that our Heisenberg approach can successfully factor the operators into
signal and noise parts in a consistent way for such states. However, at lower levels of
squeezing (i.e., larger ∆), state-dependent effects are seen. For the computational states,
this mostly occurs due to “clipping” of the distribution by the domain boundary such
that the calculated Vq no longer aligns well with the actual variance around the spikes.
On the other hand, the deviation of the diagonal states from the expected behaviour is
predominantly due to our approximate GKP states no longer exhibiting the expected noise
symmetry between the spikes in different quadratures.

∆
2

0 0.1 0.2 0.3

V
q

0

0.1

0.2

0.3

0.4
|ψ0〉
|ψ1〉
|ψ+〉
|ψ

−
〉

∆2

Figure 5. Average position quadrature variance Vq as a function of the squeezing parameter ∆2 for
GKP logical states. The computational-basis states are defined in Equation (20), and the dual-basis
states are simply rotated versions of the computational-basis states. The dashed line represents ∆2.
Vq matches ∆2 for small values of ∆ but deviates in a state-dependent way for larger values. Plotting
Vp follows a similar approach, as the p quadrature is simply a rotation, with the computational and
dual-basis states switching roles.
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3. Operator Evolution and Feedforward

Recall that our mode operators can be written in the form of Equation (6). Using
operators of this kind to represent the various input modes that interact in an optical circuit,
we can proceed to evolve them through beamsplitters, squeezers, and other quadratic
unitaries (linear in the mode operators) in the usual way whilst keeping track of their noise
and signal properties. For example, suppose our initial mode, Equation (6), passes through
a loss such that only the fraction η is transmitted. Our output mode is

âl = 1/2(
√

η(q̂c + δq̂ + i( p̂c + δ p̂)) +
√

1 − η(q̂v + i p̂v)), (22)

where q̂v and p̂v are the position and momentum quadrature operators of the vacuum
mode introduced by the loss, respectively. By inspection, we see that the expected signal
values (and hence corresponding domain boundaries) have been scaled by the factor

√
η.

On the other hand, the variances around these expected values are now

Vql = η⟨δq̂2⟩+ (1 − η)⟨δq̂2
v⟩ (23)

= ηVq + (1 − η),

and

Vpl = η⟨δ p̂2⟩+ (1 − η)⟨δ p̂2
v⟩ (24)

= ηVp + (1 − η),

where we make use of the vacuum noise being independent and having unit variance.
Considering our cat state example from the previous section, we see that there is no effect
on the position quadrature variance, as we still have Vql = 1. The detrimental effect of
loss on position only arises from the scaling down of the expected values closer to the
domain boundary at zero. On the other hand, given that for |α| > 1, Vp << 1, the effect
on the momentum quadrature is a significant broadening of the peaks for relatively small
amounts of loss. This, combined with the reduction in peak separation, rapidly washes out
the interference fringes entirely, especially for |α| >> 1. This illustrates the well-known
fragility of cat states in the face of a loss.

As well as optical unitary evolution, many quantum circuits involve quadrature
measurements followed by a feedforward to other modes in the circuit. In particular,
this can occur in teleportation scenarios arising in error correction [10], cluster state [11]
protocols, or both [5]. A feedforward of quadrature measurements can be represented in
the usual way [1] by feeding forward some function of the measurement operator. Thus, a
typical output mode âo after a teleportation-type circuit might be written formally as

âo = 1/2(q̂co + δq̂o + i( p̂co + δ p̂o)) + G1(q̂1) + iG2( p̂2), (25)

where a feedforward from an earlier position measurement (q̂1) and another from an earlier
momentum measurement (p̂2), have been incorporated. In standard teleportation, the “G”
functions would be linear functions of the measurement operators (i.e., G1(q̂1) = g1q̂1 and
G2( p̂2) = g2 p̂2). However, in a situation where we can usefully write our measurement
operators as q̂1 = q̂c1 + δq̂1 and p̂2 = p̂c2 + δ p̂2, we can perform error correction by shifting
to the nearest “ideal” result in each domain, represented by q̂c1 or p̂c2. Hence, we now have
the highly nonlinear feedforward functions G1(q̂1) = g1q̂c1 and G2( p̂2) = g2 p̂c2, and our
output mode is now written formally as

âo = 1/2(q̂co + δq̂o + i( p̂co + δ p̂o)) + g1q̂c1 + ig2 p̂c2. (26)

To illustrate a feedforward with error correction, we will consider a simple GKP circuit.
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4. GKP Error Correction

Another useful feature of GKP states is that small displacements of the state, as will
naturally arise in the presence of loss or thermal noise, can be corrected by a straightforward
circuit. This process is often referred to as GKP error correction. In the following, we will
analyse such a GKP error correction circuit.

The circuit we will consider is shown in Figure 6. It is an example of a continuous-
variable teleportation circuit with error correction, where we assume both resource states
are approximate GKP states and we neglect loss. We will label the approximate GKP input
and two resource states with the subscripts “1, 2, 3”, respectively. The resource states in
modes “2” and “3” are prepared in the logical “+” state, whilst the input in mode “1” is in
an arbitrary GKP logical state.

Figure 6. Simple teleportation circuit with CZ gates to interact with the modes and feedforward
of momentum measurements of mode 1 as imaginary displacements of mode 3 and momentum
measurements of mode 2 as real displacements of mode 3. The measurement of mode 1 is represented
by the operator p̂1o, but if error correction is being implemented, then it is p̂c1o, which is fed forward.
Similarly, the measurement of mode 2 is represented by the operator p̂2o, but if error correction is
being implemented, then it is p̂c2o, which is fed forward.

4.1. Ideal Case

The action of a continuous variable CZ gate is to displace the value of the p̂ quadrature
of one mode by the value of the q̂ quadrature of the other mode whilst leaving the q̂
quadratures unchanged [11]. Hence, for the circuit in Figure 6, the p̂ quadratures will evolve
such that p̂1 → p̂1 + q̂2, p̂2 → p̂2 + q̂1 + q̂3 and p̂3 → p̂3 + q̂2. Using these expressions
and the error correction feedforward relations previously introduced, we can write the
expression for the output mode as follows:

â3o =
1
2
(q̂c3 + δq̂3 + i( p̂c3 + δ p̂3)) +

i
2
(q̂c2 + δq̂2)−

i
2

pc1o −
1
2

pc2o, (27)

where we have

p̂1o = p̂c1 + δ p̂1 + q̂c2 + δq̂2,

p̂2o = p̂c2 + δ p̂2 + q̂c1 + δq̂1 + q̂c3 + δq̂3, (28)

and therefore

G( p̂1o) = p̂c1o,

G( p̂2o) = p̂c2o. (29)

If we assume that the noise terms are sufficiently small that it is unlikely that the noise
causes measured values to leave their nominal domains, then we can approximate the
feedforward terms as follows:
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p̂c1o ≈ p̂c1 + q̂c2,

p̂c2o ≈ p̂c2 + q̂c1 + q̂c3. (30)

and hence

â3o =
1
2
(δq̂3 + iδ p̂3 + iδq̂2 + p̂c2)−

1
2
(q̂c1 + i p̂c1). (31)

The logical state of the output matches that of the input as seen from the output signal
terms q̂c1 + i p̂c1. Notice that because the resource states are prepared in the “+” state, the
term in the output signal p̂c2 has a known logical “zero” value, and thus its addition to
the output does not change the overall logical value. Three noise terms are also added to
the output.

The circuit can be iterated by taking â3o as mode 1 of the next circuit and introducing
new resource states at mode 2 and mode 3. The output mode and variances separate
conveniently into deterministic displacement terms and noise terms (the “δ” terms). The
error correction feature of the circuit can be seen from the fact that none of the noise terms
in the output depend on the input; that is, even though there is still noise in the output, the
noise does not “build up” as we iterate but rather is “refreshed” from new resource states
used at each round.

4.2. Loss Tolerance

We now consider the situation depicted in Figure 7, in which loss affects the input
state, the resource states, and all of the elements in the error correction circuit. We use
our Heisenberg approach to demonstrate that the error correction properties of the circuit
are loss-tolerant, provided we add an additional loss element and a linear amplifier in
appropriate positions on the third rail.

Figure 7. The simple teleportation error correction circuit of Figure 3 but with loss errors included for
all components. The loss is modelled with beamsplitters, where the transmission of the beamsplitters
represents the efficiency of the corresponding components. Additional components (loss and linear
amplification of mode 3) are indicated in blue. These components, along with tailored feedforward
gains, allow the circuit to still implement error correction. The measurement of mode 1 is represented
by the operator p̂1o, but if error correction is being implemented, then it is p̂c1o which is fed forward.
Similarly, the measurement of mode 2 is represented by the operator p̂2o, but if error correction is
being implemented, then it is p̂c2o which is fed forward.

As shown in Figure 7, loss was added to the input and resource states. For simplicity,
we used the same beamsplitter transmission value, η, for all of the modes. We modelled
the loss in the CZ gates by placing beamsplitters with transmission ηg after each gate.
Similarly, we modelled detection inefficiency by placing beamsplitters with transmission
ηm before the detectors and loss in the displacement operations by placing a beamsplitter
of transmission ηd before the displacements. In order to balance the loss, the experimenter
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should purposely add an additional beamsplitter with transmission ηg to the third mode
before the CZ gate. Finally, to ensure the output is balanced and centred in the domains, a
linear amplifier of gain g was applied to the third rail after the CZ gate.

To see how this works, we first write the evolved operators describing the outcomes
at the first and second momentum measurements as

p̂1o =
√

η
√

ηg
√

ηm

(
p̂c1 + δ p̂1 + q̂c2 + δq̂2

)
+
√

ηm

√
1 − ηgη (δq̂v2 + δ p̂v1) +

√
1 − ηmδ p̂m1 (32)

p̂2o = ηg
√

η
√

ηm

(
p̂c2 + δ p̂2 + q̂c1 + δq̂1 + q̂c3 + δq̂3

)
+
√

ηm

√
1 − η2

gη (δq̂v1 + δq̂v3 + δ p̂v2)

+
√

1 − ηmδ p̂m2. (33)

Here, δ p̂vi and δq̂vi are vacuum operators for the momenta and position, respectively,
arising from the input mode and gate loss, while δ p̂mi represents the vacuum operators for
the momenta arising from detector inefficiency.

Consider the first momentum measurement. Using the error correction strategy and a
feedforward gain of g1 = − 1√

ηηgηm
, we find the feedforward operators to be approximately

p̂c1o ≈ p̂c1 + q̂c2 (34)

This assumes that the variance of the feedforward operators

V1 = 2∆2 + 2(
1

ηηg
− 1) +

1
ηηg

(
1

ηm
− 1), (35)

is sufficiently small.
Now, we consider the second momentum measurement. Using the error correction

strategy and a feedforward gain of g2 = − 1√
ηη2

gηm
, we find the feedforward operators to be

approximately

p̂c2o ≈
(

p̂c2 + q̂c1 + q̂c3

)
. (36)

This now assumes that the variance of the feedforward operators

V2 = 3∆2 + 3(
1

ηη2
g
− 1) +

1
ηη2

g
(

1
ηm

− 1), (37)

is sufficiently small.
Finally, we can consider the third mode. Its momentum operator directly after the CZ

gate is given by

p̂′3 =
√

η
√

η2
g

(
p̂c3 + δ p̂3 + q̂c2 + δq̂2

)
+

√
1 − η2

gη (δq̂v2 + δ p̂v3). (38)

After linear amplification with g = 1√
ηη2

gηd
, passing through the displacement loss,

and the subsequent displacement by p̂c1o and p̂c2o, the output momentum operator of the
third mode is given by
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p̂′′3 = − p̂c1 + p̂c3 + δ p̂3 + δq̂2

+

√
1

η2
gη

− 1 (δq̂v2 + δ p̂v3)

−√
ηd

√
1

η2
gηηd

− 1 δ p̂v4 +
√

1 − ηd δ p̂d. (39)

Similarly, we can write the final position operator for the third mode as follows:

q̂′′3 = −q̂c1 − p̂c2 + δq̂3

+

√
1

η2
gη

− 1 δq̂v3

−√
ηd

√
1

η2
gηηd

− 1 δq̂v4 +
√

1 − ηd δq̂d, (40)

and hence we can write

â3o =
1
2
(q̂′′3 + i p̂′′3 ). (41)

Although additional noise is added compared with Equation (31), the error correction
feature of the circuit can still be seen from the fact that none of the noise terms in the output
depend on the input. Again, even though there is still noise in the output, the noise does
not “build up” as we iterate but rather is “refreshed” from new resource states at each
round. Of course, the extra noise introduced will need to be small and may require stronger
squeezing of the source states.

4.3. Logical Errors

Thus far, we have assumed that the measurement and feedforward always correct to
the right ideal solution, such as in Equation (30). However, as we saw from Equation (12),
even if the peaks are localised well, there is a nonzero probability 1 − Pj that they will fall
outside their nominal domain. If this happens, then the wrong displacement will be fed
forward. For example, for GKP states, if we wrongly identify a q measurement falling on
the right side of a peak with the neighbouring domain, then the ideal “spikes” will be
shifted by

√
2π. Similarly, if we wrongly identify a q measurement falling on the left side

of a peak with the neighbouring domain, then the ideal “spikes” will be shifted by −
√

2π.
After being fed forward, this will lead to bit flip or phase flip errors in the output state.

Given this, a better approximation for the feedforward operators is

p̂c1o = p̂c1 + q̂c2 + p̂e1,

p̂c2o = p̂c2 + q̂c1 + q̂c3 + p̂e2, (42)

where p̂ei represents error operators with discrete outcomes n
√

2π. If n = 0, then there is
no error. This occurs with a probability P(0)

i = Er f [ D
2
√

2Vi
]. Errors happen when n ̸= 0, and

these occur with probabilities P(n)
i = (Er f [ (|n|+1)D

2
√

2Vi
]− Er f [ |n|D

2
√

2Vi
]). The variances Vi are the

total noises on the detected quadratures. For example, in the ideal case, from Equation (28)
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we have V1 = ⟨δq̂2
2⟩+ ⟨δ p̂2

1⟩ and V2 = ⟨δq̂2
1⟩+ ⟨δq̂2

3⟩+ ⟨δ p̂2
2⟩. The output operator can then

be written more accurately as

â3o =
1
2
(δq̂3 + iδ p̂3 + iδq̂2 + p̂c2)

− 1
2
(q̂c1 + p̂e2 + i p̂c1 + i p̂e1). (43)

Notice that these mistakes do not change the noise properties, but now we can also
track the signal errors as the system is iterated. A logical error encoding and correction
scheme is required in order to correct the signal errors [10]. We believe that such multi-
mode codes could also be tractable to analyse using our approach. However, the complexity
of the error tracking required may become more challenging.

5. Discussion and Conclusions

In this paper, we presented signal and noise analysis of both cat states and GKP states
to highlight the generality of our approach. In particular, the analysis of the preceeding
section demonstrates the power and relative simplicity of this approach while also high-
lighting the necessity for the total noise variances to be small. Given that we are grouping
noise from several sources together and associating it with arbitrary logical states, it is
important that we are in a regime where the noise affects different states in the same way.
Figure 5 shows that this is true for GKP states, provided the squeezing is 10 dB or higher, as
was observed previously. Whilst this may seem a bit restrictive, it should be remembered
that for large quantum circuits to perform faithfully, they inevitably need to operate in
this high-fidelity regime anyway [5,12]. This also applies to quantum communication
applications [13]. Hence, we expect our approach to prove useful in tracking the flow of
noise, signals, and errors in quantum computing circuits employing GKP and other Bosonic
qubits. Finally, we demonstrated the power these techniques can have to develop new
schemes with a loss-tolerant generalisation of the simple teleportation circuit considered,
allowing for general loss rates for each component.
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