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Abstract
Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the asso-
ciation of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted 
a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to 
identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA 
samples from cases compared to DNA samples from controls (p = 4.4 ×  10–63). Under three models of putative CNV impact 
(deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated 
(p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in 
the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 
0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy 
number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 
candidate risk gene(s) that warrant further analysis to better understand their role in human disease.

Introduction

Endometrial cancer is it the most commonly diagnosed 
gynaecological cancer in developed countries (Rodríguez-
Palacios et al. 2022). The incidence of endometrial cancer 
has been increasing, and a key contributor to this trend is 
the rising prevalence of obesity, a major risk factor for this 
disease. Other risk factors include reproductive risk factors 
such as early menarche, late menopause and nulliparity, 
exogenous oestrogen use, and a family history of endome-
trial or colorectal cancer (Lortet-Tieulent et al. 2018). While 
much progress has been made to understand the biology of 

endometrial cancer, the genetic risk factors underlying this 
disease have not been fully elucidated.

Genetic risk factors for endometrial cancer include inher-
ited pathogenic variants DNA mismatch repair (MMR) 
genes associated with Lynch Syndrome (MLH1, MSH2, 
MSH6 and PMS2) and the tumour suppressor PTEN. 
Genome-wide technologies, such as single nucleotide poly-
morphisms (SNP)-arrays have identified common risk loci 
associated with endometrial cancer that confer levels of risk 
(odds ratio [OR] < 2), and in aggregate explain less than a 
third of the estimated familial relative risk for endometrial 
cancer (Chen et al. 2016; O’Mara et al. 2018; Wang et al. 
2022).

Copy number variants (CNVs) are a form of structural 
variation that are pervasive in the human genome and can 
disrupt gene function by altering gene dosage, coding 
sequence or regulation. The de novo mutation rate of CNVs 
is several orders of magnitude higher than the mutation 
rate of single nucleotide variants (Zhang et al. 2009). How-
ever, CNVs are typically rare which is consistent with the 
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hypothesis that CNVs can be pathogenic and therefore often 
under negative selection. A recent study of CNVs in 100,000 
individuals with European ancestry showed that > 98.5% 
CNV variants had a minor allele frequency < 0.01 (Li et al. 
2020).

Rare pathogenic CNVs have previously been identified 
in cancer susceptibility genes, including known endome-
trial cancer syndrome genes (Truty et al. 2019). In a MSH2-
associated Lynch syndrome cohort (n = 83), 11% of path-
ogenic variants identified in MSH2 were CNVs (Romero 
et al. 2013). Similarly, single to multi-exon deletions make 
up 22% of pathogenic variants in PMS2, 21% of pathogenic 
variants in MSH2 and MLH1 and 4% of pathogenic variants 
in MSH6 (Lagerstedt-Robinson et al. 2016). In a genome-
wide analysis of 1209 endometrial cancer cases and 528 
cancer-unaffected female controls, we previously reported 
that rare deletions of likely functional genomic regions (e.g. 
exons and CpG islands) were more frequent in cases com-
pared to controls (Moir-Meyer et al. 2015). These results 
implicated rare germline deletions of functional and regula-
tory genomic regions as mechanisms for conferring risk of 
endometrial cancer.

To identify endometrial cancer CNV risk loci, we per-
formed a gene-centric genome-wide association study 
(GWAS) using the OncoArray single nucleotide polymor-
phism (SNP) array on a large cohort (n = 21,933) of endo-
metrial cancer cases and healthy controls with European 
ancestry. Additionally, we conducted analysis of global CNV 
burden in endometrial cancer cases compared to controls.

Methods

Study cohort and genotyping

The study cohort was comprised of female individuals from 
28 studies, with cases sourced via the Endometrial Cancer 
Association Consortium (ECAC) and healthy female con-
trols from the Breast Cancer Association Consortium (Sup-
plementary Table S1). The characteristics of the cohorts 
have been previously described (O’Mara et al. 2018). DNA 
samples derived from whole blood were genotyped on the 
Infinium OncoArray-500K Beadchip (Illumina) across five 
genotyping facilities, all participants were of European 
descent. The OncoArray consists of 533,631 probes, half of 
which were selected from the HumanCore (Illumina) back-
bone and the other half placed in regions previously associ-
ated with cancer risk (Amos et al. 2017).

CNV calling

CNVs were called using CamCNV, a method designed to 
confidently call rare (MAF < 3%) CNVs with fewer probes 

and higher confidence (Dennis et al. 2021). Quality con-
trol was performed for samples and CNVs (Supplemen-
tary Table S2). Briefly, for each sample a derivative log 
ratio spread (DLRS) figure was calculated as the average 
variance in Log R Ratio (LRR) intensities of neighbour-
ing probes by genome position over the whole genomes 
(Cooper et al. 2015). Samples with a DLRS Fig. 3.5 SD 
above the DLRS study mean (DLRS = 0.2) were removed. 
Principle component adjustment (PCA) of the LRR 
intensities at each probe was then performed to reduce 
batch effects in probe intensity and adjust for variation 
in hybridisation intensity (genomic waves) (Diskin et al. 
2008). Following PCA, a second DLRS sample exclusion 
was applied, again removing samples with a DLRS 3.5 
SD above post PCA-adjusted sample mean of DLRS = 0.1. 
Samples with excessive heterogeneity (4.89 SD from the 
study mean), or those with sex chromosome abnormali-
ties were also excluded from study (Michailidou et al. 
2017). Prior to CNV calling, probes with data that failed 
to be clustered by Illumina Gentrain algorithm (< 0.15), 
low intensity probes (mean intensity < 0.2) or any with 
high LRR variance (two SD above the mean variance of 
all probes) were removed. Additionally, CNVs predicted 
within immune-related loci (Immunoglobin heavy chain, 
T-cell receptor and major histocompatibility complex) or 
near centromeres and telomeres were also excluded. Only 
CNVs called using 3–200 probes were retained. Previous 
published thresholds of excess germline CNV count in 
human blood ranged between 30 and 200 CNVs (Aguirre 
et al. 2019; Macé et al. 2016). We adopted a lower thresh-
old and excluded samples predicted to carry n ≥ 50 (Sup-
plementary Table S2). The final analysis dataset included 
data for 4,115 endometrial cancer cases (371 removed) and 
17,818 controls (1,073 removed).

CNV annotation

CNVs were annotated for overlap with protein coding genes 
and exons sourced using biomaRt and EnsDB (Hsapiens.
v75) R packages, with the largest Ensembl transcript used to 
define gene boundaries (Durinck et al. 2009; Rainer 2017). 
All genomic features were restricted to chromosomes 1–23/
X, and any elements mapping to alternative chromosomes 
(i.e., sequence scaffolds or mitochondrial chromosomes) 
were excluded from analysis. Genomic coordinates were 
based on the GRCh37/hg19 genome build. In situations 
where genomic data was in an alternative genome build, the 
UCSC LiftOver tool was used for conversion to GRCH37/
hg19 (https:// genome. ucsc. edu/ cgi- bin/ hgLif tOver). All 
CNVs were assessed for overlap (≥ 1 bp) with regions of 
interest in R using the GenomicRanges package (V1.4) 
(Lawrence et al. 2013).

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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CNV burden

CNV burden was estimated between endometrial cancer 
cases and controls for: total number of CNVs, the number 
of genic CNVs, the number of exonic CNVs and number 
of intergenic CNVs, respectively. Each burden analysis 
was repeated for CNV deletions, CNV duplications and all 
CNVs. Statistical significance of differences in CNV burden 
between cases and controls were determined by a two-sided 
Student’s t-test, p-values < 0.05 were considered statistically 
significant.

Copy number variation (CNV)‑GWAS

Associations between CNVs and endometrial cancer were 
assessed by performing a gene-specific test using gene 
boundaries to define regions of interest. Case and control 
CNV overlap frequency was determined for each gene region 
and association was tested by fitting a binomial logistic 
regression model. Given the varying modes of effects from 
copy number gain and copy number loss, deletions and 
duplications were tested independently. Additionally, mod-
els were estimated on putative loss of function. A CNV was 
included in the loss of function GWAS if it was either pre-
dicted as a deletion or a duplication that partially overlapped 
a gene region. A genome-wide significance threshold was 
calculated for each GWAS conducted: this was represented 
as 0.05/6014, 0.05/8377 and 0.05/8613 for deletion-only, 
duplication-only and loss of function respectively.

Additionally, to explicitly model the level of evidence for 
genes already associated with endometrial cancer, the Bayes-
ian false discovery probability (BFDP) approach was applied 
(Wakefield 2008) with the prior probabilities assigned at 0.5, 
for the genes associated with Lynch syndrome, 0.2 for genes 
with previous associations and 0.05 for genes with little to 
no prior evidence (Supplementary Tables S5-S7). An upper 
bound of 8.0 was applied on the odds ratio for any associa-
tion, all parameters were chosen to reflect the rare nature 
and large effect of the tested CNV. Lastly, associations at 
p < 0.01 were considered as candidate associations.

Overlap with previously identified risk SNPs

SNPs associated with disease risk were directly down-
loaded from the NHGRI-EBI GWAS Catalog (accessed 
Jan 2024) for the following traits; endometrial can-
cer (MONDO_0011962, n = 84), Type 2 Diabetes 
(MONDO_0005148, n = 3516) and Obesity (EFO_0001073, 
n = 297). SNP associated with these traits were expanded to 
include any variant in linkage disequilibrium (LD,  R2 > 0.8) 
in the ‘EUR’ population from 1000 genomes. Germline 

CNVs overlapping candidate endometrial cancer risk genes 
were first assessed for direct overlap with SNP, and the can-
didate gene list was compared to GWAS mapped gene(s).

Pathway analysis

Over-representation analysis was performed in R v3.14 
using the gProfiler2 package by applying a hypergeometric 
test to assess enrichment, all results presented are Bonfer-
roni corrected (Kolberg et al. 2020). To allow for variation 
among candidate endometrial cancer risk genes (p < 0.01) 
derived from different GWAS, top hits from each GWAS 
were assessed independently. Additionally, FUMA-GWAS 
was used to test if candidate genes were enriched for genes 
reported in the GWAS (Watanabe et al. 2017).

Expression in endometrial tissue and dosage 
sensitivity

Expression of candidate genes was assessed in normal and 
tumour tissue using publicly available data. The R pack-
ages hpar and ExperimentHub were used to retrieve RNA 
levels (Transcripts per million (TPM)) directly from the 
Human Protein Atlas repository (L and Martin 2022; Mor-
gan and Shepherd 2022). Genes were grouped into expres-
sion categories using thresholds defined by Expression Atlas 
(Papatheodorou et al. 2018). Dosage sensitivities of candi-
date genes were assessed using mRNA expression data and 
putative copy number of genes from The Cancer Genome 
Atlas- Uterine Corpus Endometrial Carcinoma (TCGA-
UCEC) dataset using the cBioPortalData package from R 
(Bonneville et al. 2017; Ramos et al. 2020). Candidate risk 
genes were deemed dosage sensitive if there was a positive, 
significant (P < 0.0001) relationship between copy number 
and expression.

CNV validation

Accessible whole-blood DNA samples from the study cohort 
were used to validate 17 putative CNV regions. CNV valida-
tion was carried out using NanoString nCounter (NanoString 
Technologies, Inc) following the manufacturer’s protocol. 
Custom Nanostring probes for CNV regions are listed in 
Supplementary Table S3. Where possible, three independent 
probe pairs were designed for each CNV unless the region 
was too small to accommodate, in which case two probes 
were used. nSolver 4.0 analysis software was used to per-
form quality control on raw counts and normalised to a set 
of invariant control probe pairs. CNVs were partitioned by 
carrier status and count ratios were calculated to call CNV 
status.
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Results

Identification of CNVs in the study cohort

A total of 63,349 rare deletions and 48,555 rare dupli-
cations were identified across the 21,933 study partici-
pants, of which 46,234 were unique (25,047 deletions and 
21,187 duplications). On average, duplications were 2.4 
times larger than deletions (mean length 99 kilobases (kb) 
for duplications vs 41 kb for deletions). In total, 10,637 
unique protein coding genes were predicted to be encom-
pased by 24,390 unique CNVs, with 40.7% of deletions 
and 52.7% of duplications predicted to overlap at least 
one gene region (Supplementary Table S4). On average, 
we identified 5.10 CNVs per sample (range = 0–47) and 
2.34 genic CNVs per sample (range = 0–47), with 96.3% 
of samples estimated to carry at least one CNV. The high-
est minor allele frequency for CNVs called with CamCNV 
was 2.2%. The majority of CNVs (79% of deletions and 
81% of duplications) identified were only identified in a 
single sample (allele frequency = 0.0045%) highlighting 
the uniqueness of these events.

Explicitly modelling prior knowledge lifted MSH6 
to significance however none of the 41 genes with prior 
probability 0.2 were significant in either frequentist or 
Bayesian analysis. Bayesian analysis showed significant 
evidence for 2 additional genes, VWA1 and ATAD3C at 
a BFDP of 0.0074 however, these both had an adjusted 
P value of 0.079. Given the convergence of the Bayesian 

and frequentist analysis, subsequent analysis proceeded 
with the genes identified in the frequentist analysis; further 
details are available in Supplementary Tables 5–7.

Comparison of global CNV burden 
between endometrial cancer cases and controls

The impact of an individual’s CNV burden on endometrial 
cancer risk was estimated for all CNVs, deletions-only and 
duplications-only. On average, the total number of CNVs in 
endometrial cancer cases was 1.22-fold greater than con-
trols (p = 4.4 ×  10–63) and was consistent for CNVs predicted 
as deletions (fold change [FC] = 1.16, p = 1.2 ×  10–25) and 
duplications (Table 1, FC = 1.31, p = 1.5 ×  10–50). We further 
investigated the genomic location of CNVs and estimated 
the burden of CNVs overlapping genes and exons or in inter-
genic regions (Table 1). Compared to the burden analysis 
of total CNVs, the estimated burden was greater for CNVs 
overlapping genes (FC = 1.30, p = 2.1 ×  10–50) and exons 
(FC = 1.31, p = 7.1 ×  10–48). In contrast, intergenic CNVs 
(FC = 1.16, p = 1.9 ×  10–32) displayed reduced burden com-
pared to total CNVs (Table 1).

Rare CNV association analysis

To identify specific CNVs associated with endometrial can-
cer risk, we conducted GWASs for three different associa-
tion models: a deletion-only, a duplication-only and a loss 
of function models (all genic deletions and any partial gene 
duplications) (Supplementary Tables S5-7). We performed 

Table 1  Global burden 
association analysis of rare 
CNVs

a Student's two-sample t test

Mean frequency

Genomic feature Cases (n = 4115) Controls 
(n = 17,818)

Mean difference 95% CI p-valuea Fold change

CNVs
 All 5.99 4.90 1.10 0.97–1.22 4.3 ×  10–63 1.22
 Deletions 3.26 2.80 0.45 0.37–0.54 1.1 ×  10–25 1.16
 Duplications 2.74 2.09 0.64 0.56–0.73 1.4 ×  10–50 1.31

Genic CNVs
 All 2.89 2.22 0.67 0.59–0.76 2.1 ×  10–50 1.3
 Deletions 1.40 1.12 0.28 0.22–0.33 2.2 ×  10–20 1.25
 Duplications 1.49 1.09 0.4 0.34–0.46 2.1 ×  10–38 1.36

Exonic CNVs
 All 2.51 1.92 0.59 0.51–0.67 7.1 ×  10–48 1.31
 Deletions 1.19 0.94 0.25 0.2–0.31 7.0 ×  10–21 1.27
 Duplications 1.32 0.98 0.34 0.28–0.39 4.1 ×  10–34 1.34

Intergenic CNVs
 All 3.10 2.68 0.42 0.35–0.49 1.9 ×  10–32 1.16
 Deletions 1.86 1.68 0.18 0.13–0.23 7.0 ×  10–12 1.11
 Duplications 1.25 1.00 0.25 0.2–0.29 2.6 ×  10–28 1.25
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gene-centric tests under the assumption that non-overlap-
ping CNVs impacting the same gene locus may have similar 
effects. The deletion-only model identified a total of 59 gene 
loci associated (p < 0.01) with endometrial cancer, includ-
ing two loci (SLCO1B3 and SALL3) that met the Bonferroni 

genome-wide threshold of significance (Fig. 1; Supplemen-
tary Table S5). The analysis of duplication variants identi-
fied a total of 58 risk-associated loci (p < 0.01), including 
three loci (SLC6A3, ANTXRL and KIF25) that met genome-
wide significance (Fig. 1; Supplementary Table S6). The 

Fig. 1  Manhattan plots for CNV-GWAS of 4,115 endometrial cancer 
cases and 17,818 controls. Genome-wide p-values for deletion-only 
(top), duplication-only (middle) and loss of function CNVs (bottom). 

Dashed line indicates Bonferroni derived genome-wide significance 
thresholds at 8.31 ×  10–6 for deletion-only, 5.97 ×  10–6 for duplication-
only and 5.81 ×  10–6 for loss of function
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analysis of loss-of-function variants identified a total of 116 
endometrial cancer risk loci (p < 0.01), including seven loci 
(SLC6A3, ANTXRL, TERT, SLCO1B3, SALL3, LPCAT1 and 
MSH2) that met genome-wide significance (Fig. 1; Supple-
mentary Table S7). Candidate genes (p < 0.01) identified by 
the loss of function model, which includes all deletion vari-
ants, captured 93% (55/59) and 64% (37/58) of the candidate 
genes identified in the deletion-only and duplication-only 
models, respectively (Supplementary Fig. 1). Additionally, 
28 candidate genes were exclusively identified by the loss-
of-function model. Only four genes (LPCAT1, TERT, MSH2 
and SLC6A3) were identified as candidate risk loci across 
all three genome-wide association analyses (Supplementary 
Fig. 1). For each of the genes, all duplications partially over-
lapped the respective gene boundaries suggesting a shared 
loss-of-function mechanism with deletions. In total 141 can-
didate genes (1,525 unique CNVs, p < 0.01) were identified 
across the three association models, including 5 genes (190 
unique CNVs) that met genome-wide significance.

Associations of candidate CNV risk loci 
at established risk associated SNPs

We next sought to assess if any of the 1,525 risk-associated 
candidate CNVs had direct overlap with previously iden-
tified GWAS risk SNPs (n = 84) for endometrial cancer 
risk (Type 2 diabetes [n = 3,516] and obesity [n = 297]). 
Seven cases and three controls had CNVs that colocalised 
with two endometrial cancer risk SNPs (rs11263763 and 
rs11651052) located in intron 1 of HNF1B (Fig. 2). Fur-
thermore, CNVs overlapping HNF1B were more than six 
times as frequent in endometrial cancer cases compared to 
controls (OR = 7.59, 95% CI = 2.29–28.99, p = 0.001, Sup-
plementary Table S8). For the traits associated with endo-
metrial cancer risk, 33 Type 2 diabetes-associated and no 

obesity-associated SNPs were overlapped by at least one 
candidate endometrial cancer CNV, respectively. Of the 
141 candidate gene regions assessed, 50 had at least one 
CNV overlapping a previously identified risk-SNP. This 
was driven by a large, multigenic deletion that mapped to 
the proximal 16p11.2 recurrent breakpoints (BP) 4 and 5 
(Supplementary Fig. 2A) that overlaps two Type 2 diabetes 
risk SNPs (rs8054556 and rs11642340) and 25 risk-asso-
ciated candidate genes. An additional six lead SNPs had 
at least one variant in LD  (R2 > 0.8) that overlapped a risk-
associated candidate CNVs. This included three lead SNPs 
associated with endometrial cancer (rs11263761, rs2278868 
and rs882380) and three associated with Type 2 diabetes 
(rs11651755, rs4430796 and rs8010382). No SNPs associ-
ated with obesity (EFO_0001073) from the GWAS Catalog 
(MacArthur et al. 2017) were found to map to the CNV risk 
loci.

Validation of putative rare CNVs

We attempted to validate 17 CNVs (localised to 12 genes), 
selected from a range of allele frequencies (0.005%-1.49%), 
in 11 samples using NanoString technology. In total, 12 risk-
associated candidate genes were assessed with eight (80%, 
8/10) deletions and one (50%, 1/2) duplication validated 
(Table 2). These data support the reported predictive accu-
racy of the CamCNV tool (Dennis et al. 2021). This included, 
validation of three deletions overlapping the known endo-
metrial cancer risk genes (MSH2 and PMS2) in three cases. 
These three validated CNVs (chr2:47,637,511–47,673,515, 
chr2:47,639,553–47,639,699, chr7:6,029,431–6029586) 
overlapped CNVs predicted in a further 26 samples (20 
cases, 6 controls). In total, there were 73 CNVs (46 deletions 
and 27 duplications) overlapping MLH1, MSH2, MSH6 and 
PMS2 in 86 samples (1.28% of cases and 0.19% of controls). 

Fig. 2  Overlap of putative endometrial cancer risk copy number variants with previously identified endometrial cancer risk and type II diabetes 
risk variants. Copy number deletions (red) and duplications (blue) in the region of HNF1B 



1487Human Genetics (2024) 143:1481–1498 

A 600 kb deletion at 16p11.2 was validated in one sample 
(Table 2) using two NanoString probes targeting two dif-
ferent sequences located at chr16:29,653,084–29653175 
a n d  ch r 1 6 : 2 9 , 8 7 5 , 7 1 1 – 2 9 , 8 7 5 , 7 8 1 .  A  t h i rd 
probe (16p11_2_389916_32171.1:87) located at 
chr16:30,125,121–30125192 within the predicted deletion 
region had insufficient counts (< 100 average counts, Sup-
plementary Table S9). Additionally, two risk-associated 
deletions overlapping NPL  (ORDEL = 1.8, p = 0.001; Sup-
plementary Table S5) and SKAP1  (ORDEL = 3.1, p = 0.003; 
Supplementary Table S5) were confirmed in two samples 
and one sample, respectively.

Pathway analysis of candidate endometrial cancer 
risk genes

Due to high degree of overlap between loss of function 
and deletion-only models (Supplementary Fig. 1), pathway 
analysis was independently performed on candidate endo-
metrial cancer risk genes for duplication-only and loss-of-
function CNV-GWASs (Fig. 3, Supplementary Table S10). 
The most significantly enriched pathway for loss-of-function 
CNV-GWAS is 16p11.2 proximal deletion syndrome (MIM: 
611,913; p = 6.3 ×  10–39), driven by the recurrent 600 kb long 
deletion (chr16:29,595,483-30,159,693) identified in six 
endometrial cancer cases and four controls (0.15% vs 0.02% 
respectively). This recurrent deletion encompasses 25 genes 
entirely with 24/25 genes solely impacted by this deletion. 
The one exception, MAP3K, had a single small deletion (28 
kb) in one other case sample.

Moreover, when GWAS-SNP gene sets were tested for 
enrichment, many of the traits over-represented were driven 
by those overlapped by this CNV (Fig. 4; Supplementary 
Table S11). Interestingly, these traits included the enrichment 
of genes previously linked to body fat distribution (arm fat 
ratio) (p = 1.2 ×  10–9).

The gene expression data Human Protein Atlas and The 
Cancer Genome Atlas (TCGA) were used to assess the expres-
sion in the endometrium of the genes within the 16p11.2 
deletion (n = 25). Additionally, TCGA-UCEC data was used 
to correlate the expression of each gene with the number of 
DNA copies (dosage sensitivity, Supplementary Table S12, 
Supplementary Fig. 3). In normal endometrial tissue, one 
gene had no detectable expression (C16orf92), eight genes 
had low expression (0.5 < Transcripts per million [TPM] < 10; 
ZG16, ASPHD1, TBX6, DOC2A, C16orf54, SPN, KCTD13, 
GDPD3) and the remaining 16 exhibited high levels of expres-
sion (10 < TPM < 1000). Of the eight ‘low’ expression genes, 
only the expression levels of TBX6 and KCTD13 positively 
correlated with gene dosage. In contrast, of the more highly 
expressed genes in normal tissue, all except TMEM219 and 
PRRT2 had a gene dosage effect in endometrial tumour tissue 
(p < 0.0001). Overall, expression levels correlated positively 
with gene dosage (p < 0.0001) for 16/25 genes in endometrial 
tumour tissue, supporting the possibility that CNV-related 
impact on function results in gene expression changes and a 
potentially abnormal phenotype (Supplementary Table S12; 
Supplementary Figs. 2b).

Table 2  Validation results for 
predicted CNVs

MAF minor allele frequency, OR odds ratio, CI confidence intervals (95%)
a Frequencies based on array data
b Odds ratios and p-value were calculated using logistic regression

Gene/Loci MAFa Probes OR (CI)b p-value Nanostring Validation

Deletions
 16p11.2 0.05% 47 6.05 (1.83–23.05) 3.74E–03 100% (1/1)
 CTNNA3 2.58% 17 1.07 (0.87–1.32) 5.13E–01 100% (1/1)
 MSH2 0.05% 2–18 6.07 (1.93–19.13) 2.08E–03 100% (2/2)
 MUTYH 0.02% 7 17.34 (1.93–155.14) 1.07E–02 100% (1/1)
 NPL 0.65% 3 1.83 (1.27–2.62) 1.10E–03 100% (2/2)
 PMS2 0.07% 2 4.95 (1.78–13.68) 1.99E–03 100% (1/1)
 FTO 0.10% 25 2.67 (1.11–6.44) 2.91E–02 100% (1/1)
 SKAP1 0.13% 13 3.06 (1.46–6.42) 3.02E–03 100% (1/1)
 SALL3 0.09% 15–19 16.29 (5.40–49.12) 7.16E–07 0% (0/2)
 XRCC1 0.01% 2–3 8.66 (0.78–95.57) 7.70E–02 0% (0/5)

Duplications
 KIF25 2.01% 37 1.64 (1.33–2.03) 4.77E–06 100% (2/2)
 SLC6A3 0.49% 9–15 8.57 (5.23–14.02) 1.34E-17 0% (0/3)
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Discussion

While a proportion of endometrial cancer cases that are not 
currently explained by known genetic risk factors will be 
explained by epistatic and gene-environment interaction, it is 
likely that some risk loci have yet to be identified. The objec-
tive of this study was to identify rare, germline CNVs that 
may be associated with endometrial cancer predisposition. 
We have utilised a large SNP array dataset from the Endo-
metrial Cancer Association and Breast Cancer Association 
Consortium to conduct a CNV-based GWAS of endometrial 
cancer. A small proportion (~ 3%) of the cases cohort are 
likely to be attributed to Lynch Syndrome, however these 
data were not available within the study cohort (Ryan et al. 
2019).

The number of rare CNVs we predicted per individual 
(5.1 CNVs per individual) is consistent with other case–con-
trol studies in breast (5.4 CNVs per individual) and ovarian 
(5.3 CNVs per individual) cancer cohorts using the same 
CNV calling methods (Dennis et al. 2022; DeVries et al. 
2022). (DE) In our study, endometrial cancer cases had a 
1.2-fold greater number of CNVs compared to controls. 
This is consistent with our previous analyses of a cohort 
of endometrial cancer cases and controls, that reported an 
increased burden of rare deletions involving genes and other 
likely functional regions (Moir-Meyer et al. 2015). However, 
the increased CNV burden is not observed between ovarian 
cancer cases and controls (DeVries et al. 2022). The cause of 
the discrepancy in CNV burden between studies is unclear.

Analysing rare variants is often more challenging than 
common variants due to the larger sample sizes needed to 
reach statistical significance (W. Chen et al. 2022). How-
ever, the chosen CNV calling method, CamCNV was spe-
cifically designed to detect rare variants from genotyping 
array data while reducing false positives (Dennis et  al. 
2021). The estimated false discovery rate (FDR) for CNVs 
called using CamCNV reduces with increasing probe cov-
erage, with the FDR for deletions called by five probes or 
more estimated at 5.8% and dropping to 1.2% with 10 or 
more probes. Approximately 53% of deletions were called 
with ≥ five probes, and 27% of deletions with ≥ 10 probes, 
increasing our confidence in these findings. Consistent with 
the estimated FDR for CamCNV, 83% of candidate deletions 
were validated by Nanostring in deletions called with 2–47 
probes. Interestingly, 67% of CNVs called with 2 probes 
were validated, including two deletions in the Lynch syn-
drome genes MSH2 and PMS2. CamCNV is less reliable 
for duplication with a FDR for ≥ 3 probes calls estimated at 
62.4% (Dennis et al. 2021). However, approximately 48% of 
duplications were called using ten or more probes where the 
FDR is estimated at 8.5%. In this study, we validated three 
singletons CNVs using NanoString, further increasing our 
confidence in CamCNVs ability to detect rare, true events.

One way to overcome difficulties associated with rare 
variant analysis is to perform region-based aggregation 
tests of multiple variants (Lee et al. 2014). In contrast to 
SNPs, the impact on a gene by different overlapping CNVs 
are assumed allowing the aggregation of these CNVs. This 

Fig. 3  Significantly over-represented pathways for candidate genes 
derived from duplication-only (DUP) and loss of function (LOF) 
CNV_GWAS. Significantly enriched pathways are ordered by 
adjusted p-value (most-to-least significant) of 58 and 116 can-
didate genes derived from duplication-only and loss of function 
GWAS. Reactome (REAC) (Fabregat et  al., 2018), KEGG (Kane-
hisa et  al., 2019), WikiPathways (WP) (Slenter et  al., 2018), Gene 
Ontology (GO) (Ashburner et  al., 2011), Human Phenotype Ontol-
ogy (HP) (Köhler et  al., 2019) were selected as annotation data-
bases. Heatmap on left depicts which CNV-GWAS candidate genes 

were overrepresented. Gene sets on right side of figure encompass 
multiple genes: 16p11.2A = SPN, QRPT, C16orf54, ZG16, MAZ, 
MVP, CDIPT, SEZ6L2, ASPHD1, KCTD13, TMEM219, HIRIP3, 
DOC2A, C16orf92, ALDOA, TBX6, GDPD. Stress = CYP1B1, 
FGF12, PPARA, BCLAF1, POLQ, FANCM, ERCC2, GML. Mem-
brane = SLC6A3, SLCO1B3, DLG2, TMEM231, SLC19A1, SLC4A7. 
Genes denoted with * denote additional gene loci identified via recur-
rent 16p deletion identified in LOF CNV-GWAS but were also repre-
sented in other enriched pathways
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approach allowed us to identify genes overlapping with rare 
CNVs that were associated with endometrial cancer risk, 
including genes previously implicated in risk by SNP-based 
association studies. Rare CNVs are over 800 times more 
likely to be deleterious when compared with single nucleo-
tide variants of the same frequency (Abel et al. 2020). A 
strength of this study was the loss of function CNV-GWAS 
in which we tested CNVs based on their likely impact of 
gene regions. A total of 28 gene regions were found to be 
significantly associated with endometrial cancer in the 
loss of function CNV-GWAS. LPCAT1, TERT, MSH2 and 
SLC6A3 were consistently associated with endometrial can-
cer risk across the three models (deletions-only, duplica-
tions-only and loss of function), suggesting a shared loss 
of function mechanism across CNV type. It is unclear how 
the loss of function of LPCAT1, TERT or SLC6A3 might 
contribute to endometrial cancer risk. LPCAT1 is involved 
in lipid metabolism (Nakanishi et al. 2006) a cellular pro-
cess which when disrupted may be associated with increased 
endometrial cancer risk (Rosato et al. 2011). TERT has mul-
tiple functions including maintenance of telomere ends, and 
its activity can have oncogenic effects, such as promoting 
cell growth and proliferation of cancer cells (Yuan et al. 
2019). SLC6A3 functions as a dopamine transporter, as can 
be found overexpressed in cancers, including renal cell car-
cinoma and gastric cancer (Hansson et al. 2017).

Our loss of function GWAS recapitulated risk associa-
tions identified in endometrial cancer SNP-studies, includ-
ing variants involving SKAP1 (O’Mara et al. 2018; Painter 
et al. 2018). A corresponding transcriptome wide associa-
tion study (TWAS) demonstrated that decreased expression 
of SKAP1 in blood was associated with an increased risk 
of endometrial cancer (Kho et al. 2021a, b). In this study 
we report a risk association between loss-of-function vari-
ants involving SKAP1 (OR: 2.4, p = 0.008) and endometrial 

cancer risk, which is consistent with these findings. A novel 
finding from this study is the association between dele-
tions involving NPL and endometrial cancer risk (OR: 1.8, 
p = 0.001). NPL regulates intracellular levels of sialic acid, 
with functional studies demonstrating genetic disruption of 
NPL leads to sialic acid accumulation (Wen et al. 2018). 
Increased sialic acid levels, or hypersialyation is commonly 
seen in tumour tissues and leads to accelerated cancer pro-
gression (Büll et al. 2014; Dobie & Skropeta 2021; Sun et al. 
2020). Moreover, high levels of sialyation in endometrial 
cells has been shown to promote endometriosis outbreaks 
via TGF- β1 (Choi et al. 2018). Given the shared biological 
aetiology between endometrial cancer and non-cancerous 
gynaecological diseases such as endometriosis (Kho et al. 
2021a, b; Painter et al. 2018), the association identified 
between deletions involving NPL and endometrial cancer 
risk warrants further investigation.

Obesity traits are well established risk factors for endo-
metrial cancer (Aune et al. 2015; Painter et al. 2016), at 
least partly due to the accumlation of unopposed oestrogen 
(Lukanova et al. 2004). In this study, pathway enrichment 
analyses of candidate endometrial cancer risk genes revealed 
a strong over-representation of genes involved in 16p11.2 
proximal deletion syndrome (MIM: 611,913), that is charac-
terised by clinical heterogeneity and incomplete penetrance 
(Fetit et al. 2020). Proximal 16p11.2 BP4-BP5 deletions are 
highly pleiotropic and have been associated with many neu-
rocognitive phenotypes, neurological tumours, morbid obe-
sity and epilepsy (Auwerx et al. 2024; Bijlsma et al. 2009; 
Egolf et al. 2019; Fetit et al. 2020; Jacquemont et al. 2011; 
Shinawi et al. 2010; Ventura et al. 2019). This is consistent 
with genetic correlation between obesity traits and endome-
trial cancer risk (O’Mara et al. 2018). Repetitive regions at 
16p11.2 result in recurrent structural changes, the most com-
mon of which being a proximal 16p11.2 BP4-BP5 deletion 

Fig. 4  Gene set enrichment analysis for candidate risk genes derived 
from duplication-only (DUP) and loss of function (LOF) CNV-
GWAS. FUMA gene set enrichment analysis results for candidate 
genes derived from DUP and LOF CNV-GWAS (n = 58 and n = 116, 
respectively). Adjusted p-values presented. Gene sets on right side 

encompass two sets of genes, all of which are at 16p11.2 and driven 
by recurrent deletion identified. 16p11.2.A = SEZ6L2, ASPHD1, 
KCTD13, TMEM219, TAOK2, HIRIP3, INO80E, DOC2A, ALDOA, 
PPP4C, TBX6, YPEL3, GDPD3. 16p11.2.B = TMEM219, TAOK2, 
HIRIP3, INO80E, DOC2A, ALDOA, PPP4C 
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at chr16: 29.6—30.2 Mb (Zufferey et al. 2012). We observed 
a risk-associated deletion among ten women at this locus, 
that is completely retained within this clinically defined 
region. Microdeletions at 16p11.2 result in a predisposition 
to obesity, with reciprocal deletions and duplications being 
respectively associated with obesity and being underweight, 
highlighting a gene dosage mechanism (Bochukova et al. 
2010; Jacquemont et al. 2011; Macé et al. 2017; Walters 
et al. 2010). Expression levels for some but not all genes 
within the proximal 16p11.2 BP4-BP5 have previously been 
shown to correlate with copy number in pluripotent stem 
cells, lymphoblastoid cell lines and adipose tissues (Jac-
quemont et al. 2011; Roth et al. 2020; Walters et al. 2010). 
To our knowledge, this is the first time the relationship 
between gene copy and expression of genes involved in this 
deletion have been assessed in endometrial tissue and our 
results suggest potential dosage effects for the majority of 
genes assessed. Interestingly, the transcription factor TBX6 
is expressed at low levels in normal endometrial tissue but 
a correlation between TBX6 gene dosage and expression 
was identified in endometrial tumour tissue. TBX6 has been 
implicated as a candidate gene for another associated clini-
cal manifestation of microdeletions at 16p11.2 which leads 
to a complete absence, or underdevelopment, of the female 
reproductive system (with Mayer-Rokitansky-Küster-Hauser 
syndrome [MRKH; MIM: 277000]). Studies have reported a 
significant association of 16p11.2 deletions among individu-
als with MRKH, potentially indicating that genes near this 
locus are involved in uterine development (Chen et al. 2021; 
Gatti et al. 2018). Results from this study support loss-of-
function at this region is associated with endometrial cancer 
risk, with possible risk mechanisms being linked to obesity 
and/or uterine development.

Despite this being the largest endometrial cancer CNV-
dataset analysed to date, the rarity of the CNVs identified 
results in limited power for detecting significant associa-
tions. We therefore used a nominal threshold of p < 0.01 to 
prioritise gene regions as candidate risk genes. Explicitly 
modelling prior associations with a generous prior did not 
materially alter our results providing some assurance that 
the genome wide adjustment used in our standard analysis 
is best practise, at least with our current knowledge of the 
genomic landscape of endometrial cancer. With this current 
study we aimed to identify a broad array of candidates, and 
thus all results reported on require further validation in inde-
pendent datasets. We acknowledge that this is a limitation 
of the study, however in silico assessment and prioritisa-
tion was employed as a way to compliment the empirical 
approach. Pathway analysis of candidate genes revealed an 
enrichment of obesity and cancer pathways and identified 
multiple genes/loci that warrant further investigation.

In summary, we have conducted the largest CNV-GWAS 
for endometrial cancer predisposition. We have shown a 

global burden of rare CNVs and support the association 
between increased genomic load of rare CNVs and endome-
trial cancer risk. Our prioritisation workflow led to the iden-
tification of 141 candidate endometrial cancer susceptibility 
genes, many of which have plausible biological mechanisms 
to suggest an involvement in endometrial cancer susceptibil-
ity. Clinical features previously associated with proximal 
16p11.2 BP4-BP5 deletions, including predisposition to obe-
sity and congenital reproductive tract development, make 
this a particularly intriguing risk association that warrants 
further study.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00439- 024- 02707-9.
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