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Abstract 
This paper presents a vibration analysis using the substructure elimination and binding method for vibration 
systems governed by a one-dimensional wave equation. Coupled vibration analysis has been developed, and the 
component mode synthesis method is commonly used for dynamic analysis. In the component mode synthesis 
method, each substructure is formulated, and then coupling between substructures is considered. The component 
mode synthesis method is a type of modal analysis, and the coupled vibration between vibration systems with 
different governing equations can be easily formulated. The component mode synthesis method has the problem 
of increasing the degrees of freedom when the entire structure is complicated and needs to be divided into many 
substructures. Therefore, the first author proposed methods to analyze the entire vibration system without 
dividing it into substructures, for example, when a structure is installed inside an acoustic field or when acoustic 
fields with different media are in contact. These methods have the advantage that only the eigenmodes of the 
entire acoustic field are used. However, the calculation accuracy has been found to deteriorate because of the 
discontinuities or non-smooth points in sound pressure and particle displacement at the interface between air and 
a structure or between two acoustic fields. This study proposed a method to set a virtual elimination region at 
the interface and then bind the two ends of the virtual elimination region to solve this problem. The analytical 
model for this method was presented, and a wave equation was derived in this study. Modal analysis was applied 
to the wave equation. The simulations revealed that the density and bulk modulus of the virtual elimination 
region should be zero and that its length should be set at 2.5–3.5 times the wavelength of the highest eigenmode 
of the entire vibration system. To investigate the advantage of low DOFs, the simulation results obtained using 
the proposed method were compared with those obtained using the component mode synthesis method based on 
the exact solutions.  

Keywords : Wave equation, Modal analysis, Coupled vibration, Continuum vibration, Acoustic field, Simulation 

 
1. Introduction 

 
Numerical analysis methods are indispensable for vibration analysis. Coupled vibration analysis methods between 

multiple structures and between acoustic fields and structures have been developed. The development of coupled 
vibration analysis cannot be explained without using the substructure synthesis method (Hale and Meirovitch, 1980; 
Ookuma and Nagamatsu, 1985, 1986; Shabana, 1985). In the substructure synthesis method, the entire structure is divided 
into several substructures. For dynamic analysis, the component mode synthesis method (CMSM) is used among the 
various methods classified as substructure synthesis methods. The vibration of each substructure is expressed by the 
superposition of the eigenmodes of each substructure in the CMSM. In this method, each substructure is formulated, and 
the coupling between the substructures is considered. The CMSM can easily formulate coupled vibrations between 
vibration systems with different governing equations, such as coupled vibrations between acoustic fields and structures. 
CMSM is a type of modal analysis, and the ease of analyzing coupled vibrations is a feature of modal analysis (Benaroya 
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and Nagurka, 2009; Meirovitch, 1967, 1990, 2001; Nagamatsu, 1985; Rao, 2007; Reismann, 1988; Shabana, 1991; 
Yamada and Utsuno, 2015, 2020). In the simulations conducted in this study, the results of the proposed method were 
compared with those of a method that used boundary conditions to obtain exact solutions (Bishop and Johnson, 1960; 
Tanaka et al., 2012). Because an analysis method that uses boundary conditions to obtain exact solutions does not use 
modal analysis, many coupled vibrations cannot be formulated using this method. For example, the coupled vibration 
when an elastic plate is installed on the sidewall of a one-dimensional acoustic tube cannot be formulated using this 
method. A CMSM is versatile, and various types of coupled vibrations can be formulated using this method. However, 
the CMSM has the problem of increasing the degrees of freedom (DOFs) when the entire structure is complicated and 
must be divided into many substructures. Therefore, the first author presented a method for analyzing the vibration of an 
acoustic field with acoustic absorption materials installed in a part of the acoustic field or a structure installed inside the 
acoustic field without dividing the entire structure into substructures (Yamada, 2017, 2018, 2020). This method expresses 
the vibration of the entire structure by the superposition of the eigenmodes of the entire structure without acoustic 
absorption materials or the installed structure. The superposition of the eigenmodes of the entire structure is essentially 
a series, and the vibration can be expressed by this series when acoustic absorption materials and structures are installed 
inside the entire structure. Because this method uses only the superposition of the eigenmodes of the entire structure, in 
which nothing is installed, the DOFs do not increase even if the entire structure is complicated. However, the calculation 
accuracy of this method has been found to deteriorate because of the discontinuities or non-smooth points in sound 
pressure and particle displacement at the interface between air and acoustic absorption material or structure. Although 
coupled vibrations involving the acoustic field were described as representative here, the essence is the same for the 
longitudinal vibration of thin rods, the transverse vibration of strings, and the bending vibration of beams, etc. Because 
the governing equation of a beam differs significantly from those of others, a beam is not described in this study. In this 
study, vibration systems whose governing equations are expressed by the wave equation are described, and the acoustic 
field is used as the representative analysis object. In addition, only one-dimensional vibration systems have been 
described to obtain basic knowledge.  

The authors also proposed a substructure elimination method (SEM), which uses only the superposition of 
eigenmodes of the entire structure (Yamada, 2017, 2018; Yamada and Ji, 2023a, 2023b). When SEM was applied to a 
one-dimensional acoustic field, elimination regions with zero density and zero bulk modulus were first set at both ends 
of the acoustic field. Arbitrary boundary conditions were then applied to the new boundaries using the constraint 
conditions. This method uses the superposition of eigenmodes before setting elimination regions at both ends. If a 1-DOF 
vibration system is installed at the new boundary, the coupled vibration between the acoustic field and the structure can 
be analyzed. This coupled vibration can also be analyzed without setting elimination regions by a method, which is 
classified as CMSM. By comparing the simulation results of these two methods, it was found that SEM provided 
simulation results with sufficient precision and fewer DOFs. This is because the eigenfunctions exhibited phase variations 
at the new boundaries in SEM. Conversely, in the CMSM, the eigenfunctions have only two types of phases at the 
boundaries: in-phase and anti-phase. SEM can tune the amplitude and phase at new boundaries with the superposition of 
fewer eigenmodes because of phase variation.  

Inspired by SEM, this study proposes a method to set a virtual elimination region at the interface and then bind the 
two ends of the virtual elimination region to solve the problem of deterioration of the simulation precision caused by 
discontinuities or non-smooth points in the sound pressure and particle displacement at the interfaces. Although this 
virtual elimination region does not exist, it is set in the analytical model. Within this virtual elimination region, the sound 
pressure is zero because the density and bulk modulus are set to zero. However, the particle displacement can assume 
any value. This allows the particle displacement to be connected continuously and smoothly. The two ends of the virtual 
elimination region are bound using constraint conditions. External forces are applied to the two ends of the virtual 
elimination region to satisfy the constraint conditions. Owing to these external forces, a discontinuity in the sound 
pressure at the interface can be appropriately expressed. In this study, this method is referred to as the substructure 
elimination and binding method (SEBM). First, an analytical model of this method is presented. Second, the wave 
equation for this method is derived, and modal analysis is applied to the wave equation to obtain the equations of motion 
using modal displacements. Third, the appropriate properties of the virtual elimination region and the highest order of 
eigenmode are determined through simulations. In this study, the effectiveness of SEBM is verified by comparing the 
simulation results obtained using SEBM with the exact solutions using boundary conditions. The simulations in this study 
are performed for vibration systems in which exact solutions can be obtained using boundary conditions. To investigate 

2



2
© 2024 The Japan Society of Mechanical Engineers

Yamada and Ji, Mechanical Engineering Journal, Vol.11, No.2 (2024)

[DOI: 10.1299/mej.23-00411]

the advantage of low DOFs, the simulation results obtained using the SEBM are compared with the simulation results 
obtained without using the SEBM and the simulation results obtained using the CMSM.  

 
2. Theoretical analysis 

 
In this study, a one-dimensional acoustic field is used as a representative vibration system governed by a one-

dimensional wave equation. A case in which the medium is different in a part of the acoustic field and a case in which a 
1-DOF vibration system is installed at one point in the acoustic field are considered. In the case of acoustic tubes, the 
former corresponds to the case in which an acoustic absorption material is installed in a part of the acoustic field, and the 
latter corresponds to the case in which a plate or a membrane is installed inside the acoustic field. Because a 1-DOF 
vibration system is used in this study, it corresponds to an analytical model in which only a single vibration mode of the 
plate or membrane is considered. In the case of strings, the former corresponds to the case in which the line density of a 
part is different, and the latter corresponds to the case in which a discrete system, such as a mass point, is installed in the 
string. The former and latter are expressed in a single analytical model. In the analytical model, a virtual elimination 
region is set at the interface. In this study, SEM is applied, and elimination regions are set at both ends of the acoustic 
field (Yamada, 2017, 2018; Yamada and Ji, 2023a, 2023b). Assuming that the proposed method is used in the middle of 
the acoustic field, even if the boundary conditions at both ends of the acoustic field are displacement excitation or closed 
ends, applying the SEM provides sufficient precision with fewer DOFs than not applying it. This is because it is 
advantageous to apply SEM to both ends of the acoustic field to express the changes in the eigenfunctions owing to the 
coupling with fewer DOFs. Both SEBM and SEM set the elimination regions, and these methods should be used in 
combination as standards to provide sufficient precision with fewer DOFs. First, we present an analytical model of the 
proposed method. Second, the wave equation of the analytical model is derived, and the constraint equations are 
formulated. Third, modal analysis is conducted to derive the equations of motion using modal displacements.  

 
2.1 Analytical model 

The original analytical model is shown in Fig. 1(a). Here, the left and right regions are referred to as regions A and 
B, respectively. The air density, bulk modulus, and length of region A are Aρ , Aκ , and Al , respectively, and those of 
region B are Bρ , Bκ , and Bl , respectively. The left ends of regions A and B are set to the origins of the Ax - and Bx -
coordinates, respectively, and the right-hand direction is the positive direction of these coordinates. The acoustic field is 
excited by a piston at the left-hand end of region A, and a 1-DOF vibration system is installed at the interface between 
regions A and B. This original analytical model is not used in the SEBM. However, this model is used in Section 3 to 
derive the exact solutions using the boundary conditions and to formulate the equations of motion using the CMSM 
(Yamada and Utsuno, 2015). In Fig. 1(a), the x′ -coordinate is also shown. The left end of region A is set to the origin of 
this coordinate, and the right-hand direction is its positive direction. The x′ -coordinate is only used in the figures of the 
simulation results presented in Section 3. The analytical model used in the SEBM is shown in Fig. 1(b). Here, the regions 
at both ends shown in Fig. 1(b) are the elimination regions of the SEM, the region at the center is the elimination region 
of the SEBM, and the regions between the left and right elimination regions and central elimination region are regions A 
and B, respectively. Three elimination regions are installed virtually. For example, there is no length between regions A 
and B in the actual acoustic field as shown in Fig. 1(a). The cross-sectional area of the acoustic field is uniform and is S;  

 

 
Fig. 1  Analytical models of a one-dimensional acoustic field with a 1-DOF vibration system: (a) original analytical model, 

(b) analytical model of the acoustic field used in the SEBM with the SEM, and (c) analytical model of a 1-DOF 
vibration system used in the SEBM with the SEM.  
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the lengths of the central elimination region and elimination regions at both ends are Cl  and El , respectively; their air 
densities are Cρ  and Eρ , respectively; their bulk moduli are Cκ  and Eκ , respectively; the left end of the acoustic 
field shown in Fig. 1(b) is set to the origin of the x-coordinate; the right-hand direction is the positive direction of the x-
coordinate. The x-coordinates of the new left and right boundaries are ( )1 Ex l=   and ( )4 A B C Ex l l l l= + + +  , 
respectively, and the x-coordinates of the left and right ends of the central elimination region are ( )2 A Ex l l= +  and 

( )3 A C Ex l l l= + + , respectively. The overall length of the acoustic field is ( )A B C E2l l l l l= + + + . The external forces 1f , 
2f , 3f , and 4f  are applied at 1x x= , 2x , 3x , and 4x , respectively, in the right-hand direction. These are determined 

by the constraint conditions. As with SEM, eliminating a region implies that the air density and bulk modulus of the 
region are set to zero or sufficiently small values such that the sound pressure is zero or almost zero in that region. When 
the air density and bulk modulus are zero or sufficiently small, the sound pressure is zero or almost zero for all particle 
displacement values. Therefore, the particle displacement can adopt any value in the central elimination region, and the 
particle displacement between regions A and B can be smoothly connected.  

An analytical model of the 1-DOF vibration system for the SEBM is shown in Fig. 1(c). This 1-DOF vibration system 
corresponds to a structure installed inside an acoustic field at the interface between regions A and B. The mass, spring 
constant, viscous damping coefficient, and displacement of the 1-DOF vibration system are Cm , Ck , Cd , and Cw , 
respectively. The positive direction of the displacement Cw  is the right-hand direction. Both 2f  and 3f  are applied 
to the mass point in the left-hand direction because of the action and reaction relationship, and because the central 
elimination region does not exist. If the 1-DOF vibration system is not installed in the acoustic field, Cm , Ck , and Cd  
should be set to zero. The analytical model shown in Figs. 1(b) and (c) can be used to analyze the cases in which the 
medium of a part of the acoustic field is different and the case in which a 1-DOF vibration system is installed inside the 
acoustic field as a structure.  

As shown in the analytical model, SEM is applied to both ends of the acoustic field. However, because the subject 
of this study is SEBM, the SEM is not described in detail. In this study, displacement excitation and a closed end are set 
as the new left and right boundaries at 1x x=  and 4x , respectively.  

 
2.2 Wave equation and equations derived by constraint conditions 

The wave equation for the analytical model shown in Fig. 1(a) can be derived in a fashion similar to the SEM 
(Yamada and Ji, 2023). The equation of motion of the minute fraction is expressed as  

( ) ( ) ( ) ( ) ( )
2

31 2 4
1 2 3 42

ff f fw pρ x δ x x δ x x δ x x δ x x
x S S S St

∂ ∂= − + − + − + − + −
∂∂

, (1) 

( ) ( ) ( ) ( ) ( )A E-A 1 C-A 2 B-C 3 E-B 4ρ x ρ ρ H x x ρ H x x ρ H x x ρ H x x= + − + − + − + − ,  (2) 

E-A E Aρ ρ ρ= − , C-A C Aρ ρ ρ= − , B-C B Cρ ρ ρ= − , E-B E Bρ ρ ρ= − ,  (3) 

where ( )ρ x  is the density at the coordinate x; w is the particle displacement; t is the time; p is the sound pressure; δ  
is the Dirac delta function; and H is the Heaviside step function. Multiplying both sides of Eq. (1) by the cross-sectional 
area of the acoustic field and the length of the minute fraction dx, the term of the left-hand side is the inertial force of the 
minute fraction, and the first term on the right-hand side is the force due to the differential pressure on both surfaces of 
the minute fraction. The second through fifth terms on the right-hand side of Eq. (1) are the external force terms. Because 
the sound pressure is proportional to the bulk strain, it can be expressed as  

( ) ( ), wp x t κ x
x

∂= −
∂

,  (4) 

( ) ( ) ( ) ( ) ( )A E-A 1 C-A 2 B-C 3 E-B 4κ x κ κ H x x κ H x x κ H x x κ H x x= + − + − + − + − ,  (5) 

E-A E Aκ κ κ= − , C-A C Aκ κ κ= − , B-C B Cκ κ κ= − , E-B E Bκ κ κ= − ,  (6) 

where ( )κ x  is the bulk modulus at the coordinate x. Equations (2) and (5) involve the Heaviside step functions. For 
example, the value of ( )1H x x−  at 1x x=  should be determined as follows. When considering the left elimination 
region and region A, 1 0x x= −   and 1 0x x= +   should be used, respectively. The values of ( )1H x x−   in the left 
elimination region and region A are 1 and 0, respectively. Using the displacement potential ψ , the particle displacement 
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w can be expressed as 

( ), ψw x t
x

∂= −
∂

.  (7) 

Substituting Eqs. (4) and (7) into Eq. (1) and integrating both sides with respect to x, the following wave equation using 
the displacement potential ψ  is obtained:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 2 3 4

2 2 2 2 2

E-A 1 C-A 2 B-C 3 E-B 42 2 2 2 2

2
31 2 4

1 2 3 42

x x x x x x x x

ψ ψ ψ ψ ψρ x ρ H x x ρ H x x ρ H x x ρ H x x
t t t t t

ff f fψκ x H x x H x x H x x H x x
S S S Sx

= = = =

∂ ∂ ∂ ∂ ∂− − − − − − − −
∂ ∂ ∂ ∂ ∂

∂= + − + − − − − −
∂

. (8) 

The partial differentiation of both sides of the wave equation (8) with respect to x yields the dimensions of the equation 
of motion given by Eq. (1). For example, the second term on the right-hand side of Eq. (8) can be replaced by 

( )1 1f H x x S− −  because ( )1 1f H x x S−  and ( )1 1f H x x S− −  provide identical expressions when they are partially 
differentiated with respect to x. Any terms could be used in Eq. (8) if these are equal in the dimensions of Eq. (1). The 
external force terms in Eq. (8) were determined such that the sound pressures in regions A and B could be formulated 
using simple expressions.  

From Eqs. (4), (7), and (8), the sound pressure can be expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

2 2 2 2
32

C-A 2 B-C 3 2 32 2 2 2, 
x x x x

ffψ ψ ψ ψp x t κ x ρ x ρ H x x ρ H x x H x x H x x
S Sx t t t= =

∂ ∂ ∂ ∂= = − − − − − − + −
∂ ∂ ∂ ∂ . (9) 

On the right-hand side of Eq. (9), the terms only for the elimination regions at both ends were omitted. The sound pressure 
can be obtained from either the middle or right-hand side of Eq. (9). The right-hand side of Eq. (9) is typically more 
precise because it can express discontinuities using Heaviside step functions. Therefore, the sound pressure was obtained 
using the right-hand side of Eq. (9) for the simulations conducted in this study.  

When the longitudinal vibration of thin rods is analyzed, Young's modulus should be used rather than the bulk 
modulus in Eq. (8). When the transverse vibration of strings is analyzed, the line density and tension should be used 
rather than the air density and bulk modulus. The displacement potential can be used in both cases, when the boundary 
conditions of the original thin rods and strings are assumed to be rigid walls. Equation (7) can be used to derive the 
displacement of the thin rods and deflection of the strings in each case.  

In the wave equation (8), 1f , 2f , 3f , and 4f  are unknown variables. These are determined by the constraint 
conditions. Because the displacement excitation and closed end are set as 1x x=  and 4x , respectively, the following 
constraint equations can be derived:  

( ) ( )
1

1 L, 
x x

ψw x t w t
x =

∂= − =
∂ , ( )

4

4 , 0
x x

ψw x t
x =

∂= − =
∂ ,  (10) 

where Lw  is the displacement imposed by the piston at the new left boundary, although the piston is shown only in 
Fig. 1(a). Because the particle displacements at 2x x=  and 3x  and the displacement of the mass point should be equal, 
the following constraint equations are obtained:  

( ) ( )2 3 C, , w x t w x t w= = . (11) 

Because the displacement Cw  is also an unknown variable, another equation must be obtained. This is given by the 
equation of motion for a 1-DOF vibration system, as follows:  
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C C C C C C 2 3m w d w k w f f+ + = − −  . (12) 

Eliminating Cw  using Eqs. (11) and (12) leaves only 1f , 2f , 3f , and 4f  as unknown variables. Eliminating Cw  
means that a 1-DOF vibration system does not have one independent DOF in this method. Equation (12) includes 2f  
and 3f , whereas Eqs. (10) and (11) do not. To determine the unknown variables, these particle displacements should be 
expressed using external forces. Integrating both sides of wave equation (8) from 0x =  to x, where 1 2x x x≤ ≤ , we 
obtain the following equation for the particle displacement in region A:  

( ) 1

11

2 2 2
A E-A E-A E-A 1

1 1 22 2 20 0
A A A A A A

, d d
x x

x xx x

ρ ρ ρ κ xψ ψ ψ ψ ψ xw x t x x x f f
x κ κ κ κ x κ S κ St t t ==

∂ ∂ ∂ ∂ ∂= − = − − + + + +
∂ ∂∂ ∂ ∂  ,  (13) 

Integrating both sides of wave equation (8) from x x=  to l , where 3 4x x x≤ ≤ , we obtain the following equation for 
the particle displacement in region B:  

( ) ( ) ( )

( )

4
2 3

44

2 2 2 2
C-A B-CB E-B

2 2 2 2
B B B B

2
E-B E-B 4

4 3 42
B B B B

, d d
l l

x x
x x x x

x xx x

ρ ρρ ρψ ψ ψ ψ ψw x t x x l x l x
x κ κ κ κt t t t

ρ κ l xψ ψ l xl x f f
κ κ x κ S κ St

= =

==

∂ ∂ ∂ ∂ ∂= − = + − − − −
∂ ∂ ∂ ∂ ∂

−∂ ∂ −− − + + +
∂∂

 
, (14) 

Using Eqs. (10)–(14), 1f , 2f , 3f , and 4f  can be determined.  
The particle displacements in regions A and B can also be calculated using the right-hand sides of Eqs. (13) and (14), 

rather than the displacement potential gradient. However, if SEM and SEBM were used, the difference would be marginal. 
This is because the Gibbs phenomenon does not occur in the particle displacement by providing elimination regions. In 
the simulations in this study, the particle displacement was obtained using the displacement potential gradient.  

 
2.3 Modal analysis 

In this section, modal analysis is applied to wave equation (8). The constraint equations are then expressed using the 
modal displacements.  

In the proposed method, the displacement potential ψ  is expressed by the superposition of the eigenmodes of the 
acoustic field, where the elimination regions are not eliminated, and a 1-DOF vibration system is not installed. That is, 
using the eigenmodes when the density and bulk modulus of the entire acoustic field are Aρ  and Aκ , respectively, and 
no 1-DOF vibration system is installed, ψ  is expressed as  

( ) ( ) ( )
0

, 
n

h h
h

ψ x t Ψ x ξ t
=

= , ( ) cosh h hΨ x A k x= , 
π

h
hk
l

= , (15) 

where hΨ  is the eigenfunction of the displacement potential, hξ  is the modal displacement, subscript h denotes the 
hth-order eigenmode, n is the highest order of the eigenmode, hA  is an arbitrary constant, and hk  is the wavenumber. 
Equation (15) represents a Fourier cosine series. From Eqs. (7) and (15), the particle displacement obtained using the 
displacement potential gradient is a Fourier sine series. In this study, the case in which the density and bulk modulus of 
the entire acoustic field are Aρ  and Aκ , respectively, is considered. However, the case where they are Bρ  and Bκ  
can be considered alternatively. Substituting Eq. (15) into wave equation (8), multiplying both sides by AiΨ ρ , and 
integrating over the entire range of the acoustic field, the following equations of motion using modal displacements are 
obtained 
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( )( ) ( )( )
( )( ) ( )( )

1 1

2 2

3 3 4 4

1

C-AE-A
1 20 0

0 0A A

B-C E-B
3 4

0 0A A

2 C-AE-A
0

1A

d d d d

d d d d

d

n nx x l l

i i h i h i h h i h i hx x
h h

n nl l l l

h i h i h h i h i hx x x x
h h

n x

i i h h i h
h

ρρM ξ Ψ Ψ x Ψ x Ψ x ξ Ψ Ψ x Ψ x Ψ x ξ
ρ ρ
ρ ρΨ Ψ x Ψ x Ψ x ξ Ψ Ψ x Ψ x Ψ x ξ
ρ ρ

κκK ξ k Ψ Ψ xξ
ρ ρ

= =

= =

=

+ − + −

+ − + −

+ + +

    

    

 

  

 

2 3 4

1 2

3 4

2 2 2B-C E-B

1 1 1A A A

31 2 4
0 0

A A A A

d d d

d d d d 0

n n nl l l

h h i h h h i h h h i hx x x
h h h

x x l l

i i i ix x

κ κk Ψ Ψ xξ k Ψ Ψ xξ k Ψ Ψ xξ
ρ ρ

ff f fΨ x Ψ x Ψ x Ψ x
ρ S ρ S ρ S ρ S

= = =

+ +

− − + + =

    

   

, (16) 

2

0
d 1

l

i iM Ψ x= = , 
2

2 2
A 20

d d
d

l i
i i i

Ψ
K c Ψ x ω

x
= − = , A

A
A

κc
ρ

= , Aπ
i

i cω
l

= , 
( )
( )

1 0

2 1, 2, 
i

l i
A

l i

 == 
= 

,  (17) 

where iM   and iK   are the modal mass and modal stiffness, respectively, of the original acoustic field without 
elimination and installing the 1-DOF vibration system; Ac  is the sound speed in region A; and iω  is the natural angular 
frequency of the ith-order eigenmode of the original acoustic field. Wavenumber ik  and natural angular frequency iω  
have the relationship Ai ik ω c= . The arbitrary constant iA  of the eigenfunction was normalized such that 1iM =  in 
this study. The equation of motion using matrices is expressed as follows:  

[ ]{ } [ ]{ } [ ]{ } { }0M ξ K ξ Q f+ + = , { } { }T
0 1 nξ ξ ξ ξ=  , { } { }T

1 2 3 4f f f f f= ,  (18) 

where [ ]M  and [ ]K  are the mass and stiffness matrices, respectively, which are square matrices of size 1n + ; [ ]Q  
is the external force influence matrix, which is an ( )1n + -by-4 matrix; { }ξ  is the modal displacement vector; { }f  is 
the external force vector; and superscript T denotes the transpose of the matrix. Each element of the matrices [ ]M , [ ]K , 
and [ ]Q  can be obtained using Eq. (16). Although there are several terms on the left-hand side of Eq. (16), the terms 
related to elimination regions are similar. Therefore, subroutines are useful when the matrices are created using a 
simulation program.  

From Eqs. (10)–(15), the constraint equations can be expressed as  

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }a v d Lf wC f C ξ C ξ C ξ C w  = + + + 
  .  (19) 

Each element of matrices fC    , [ ]aC  , [ ]vC  , [ ]dC   and [ ]wC   can be determined using Eqs. (10)–(15), and the 
displacement excitation vector { }Lw  contains only Lw  as its element. From Eq. (19), the external force vector { }f  
is derived as follows:  

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }1 1 1 1

a v d Lf f f f wf C C ξ C C ξ C C ξ C C w
− − − −

       = + + +       
  ,  (20) 

From Eqs. (18) and (20), the equation of motion using the matrices are expressed as follows:  

[ ] [ ] [ ]( ){ } [ ] [ ]{ } [ ] [ ] [ ]( ){ } [ ] [ ]{ }1 1 1 1

a v d Lf f f f wM Q C C ξ Q C C ξ K Q C C ξ Q C C w
− − − −

       + + + + = −       
  .  (21) 

When [ ] [ ]1

vfQ C C
−

     is a zero vector or is expressed as a linear sum of [ ] [ ] [ ]1

afM Q C C
−

 +     and 
[ ] [ ] [ ]1

dfK Q C C
−

 +   , that is, when [ ] [ ]1

vfQ C C
−

    is Rayleigh damping, an eigenvalue analysis can be performed 
using Eq. (21). When [ ] [ ]1

vfQ C C
−

    does not involve Rayleigh damping, eigenvalue analysis should be performed 
after deriving the equation of state from Eq. (21) for the state-space representation. The uncoupled equations can be 
derived using the newly obtained eigenvectors from the eigenvalue analysis.  

In the simulations conducted in this study, the sound pressures in regions A and B were obtained using the right-hand 
side of Eq. (9). The right-hand side of Eq. (9) contains the terms for the external forces. The external forces can be 
obtained using the external force vector { }f  expressed by Eq. (20). Then, by applying Eq. (20) to Eq. (9), the sound 
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pressure can be obtained by superposition of the eigenmodes of the original acoustic field. Particle displacement can also 
be obtained using Eqs. (7) and (15).  

 
3. Verifications through simulation 

 
In this section, the criteria for determining the length, density, and bulk modulus of the central elimination region are 

established through simulations. A long central elimination region is disadvantageous because the natural frequency of 
the highest-order eigenmode of the acoustic field is lowered. Preferably, the density and bulk modulus in the central 
elimination region are zero, because the particle displacement in this region can adopt any value. The case in which the 
density and bulk modulus of the central elimination region were zero, and only the length of the central elimination region 
was varied, was considered. Subsequently, the cases in which the density and bulk modulus had small values were 
considered. In addition, to obtain the criterion for determining the highest order n of the eigenmode of the original 
acoustic field, the precision of the natural frequencies obtained by the eigenvalue analysis was investigated. As these 
criteria were also constructed in the study of the SEM (Yamada and Ji, 2023a, 2023b), they were followed in this study. 
To verify that SEBM with SEM requires fewer DOFs, the simulation results obtained using SEBM with SEM were 
compared with those obtained using the CMSM (Yamada and Utsuno, 2015). To verify the effectiveness of the central 
elimination region, the simulation results obtained without setting the central elimination region were also compared. 
This is referred to as SEM without SEBM. Furthermore, to verify the effectiveness of SEM with SEBM, simulation 
results obtained using SEBM without SEM were compared. As the exact solutions derived using the boundary conditions 
were used as the criteria for correctness, the derivation of the exact solutions is briefly described. In addition, the 
derivation of the equations of motion using the CMSM is briefly described briefly.  

 
3.1 Verification on the length of the central virtual elimination region 

The material properties used in the simulations are listed in Table 1. The boundary conditions at 1x x=  and 4x  
were closed ends. Although the boundary condition at 1x x=  was displacement excitation in this study, there is no 
essential difference between the displacement excitation and the closed end in the eigenvalue analysis. As can be seen 
from Table 1, both ends of the central elimination region were simply bound. Therefore, the actual acoustic field was 
essentially a 0.85 m acoustic tube, and the exact natural frequencies were integer multiples of 200 Hz. In these 
simulations, the relationship between the length of the central elimination region and the precision of the natural 
frequencies was evaluated. In the simulations, the root mean square (RMS) of the error rates of the natural frequencies 
obtained using SEBM with SEM was evaluated as the precision of the natural frequencies. Simulations were performed 
for four cases: 22n =  , 32, 52, and 92. The 1st–8th-order eigenmodes for 22n =  , 1st–16th-order eigenmodes for 

32n = , 1st–32th-order eigenmodes for 52n = , 1st–64th-order eigenmodes for 92n =  were used to calculate the RMS 
of the error rates of the natural frequencies. Although the frequency range in which the precise natural frequencies can 
be obtained is described in Section 3.3, these eigenmodes were used because their natural frequencies can be obtained 
precisely. E 0.255l =  , 0.1275, 0.06375, and 0.031875 [m] were used for 22n =  , 32, 52, and 92, respectively. The 
simulation results are presented in Fig. 2(a). The simulation results of the error rate of the first-order natural frequency 
are shown in Fig. 2(b). The error rate shown in Fig. 2(b) is the magnitude of the error rate when the logarithmic axis is 
used. The number of wavelengths CλA  on the horizontal axis is defined as follows:  

C
Cλ

n

l
A

λ
= , 

2
n

lλ
n

= , (22) 

where nλ  is the wavelength of the highest nth-order eigenmode of the original acoustic field. Similarly, the number of 
wavelengths of the elimination regions for SEM is defined as  

 
Table 1  Material properties used in the simulations for the verification on the length of the central elimination region. 

A Bρ ρ=  1.2 3kg m  C Eρ ρ=  0 3kg m  Cm  0 kg  

A Bκ κ=  138720 Pa  C Eκ κ=  0 Pa  Cd  0 Ns m  

Al  0.5 m  Bl  0.35 m  Ck  0 N m  
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Fig. 2  Simulation results of the error rates of the natural frequencies obtained using the SEBM with the SEM and different 

values of n: (a) RMS of the error rates of the multiple natural frequencies and (b) magnitude of the error rate of the 
first-order natural frequency. 

 

E
Eλ

n

lA
λ

= . (23) 

The natural frequency of the highest nth-order eigenmode of the original acoustic field varies with n, Cl , and El . The 
length El  was determined such that E 1.5λA =  when C 3λA = . Therefore, both the natural frequency of the highest nth-
order eigenmode and EλA  varied with CλA  in these simulations. E1.5 2λA≤ ≤  was recommended in the study of the 
SEM (Yamada and Ji, 2023), and C0.5 3λA≤ ≤  satisfied this requirement for all n. In addition, when C 3λA = , the 
natural frequencies of the highest nth-order eigenmodes for 22n = , 32, 52, and 92, were 2 kHz, 4 kHz, 8 kHz, and 
16 kHz, respectively.  

From the simulation results presented in Fig. 2, if CλA  is used for the criterion, the tendency of the precision of the 
natural frequencies does not depend on n. As CλA  increased, the precision of the natural frequencies increased. However, 
when C 2.7λA >  was used, the precision decreased. As the lines were not smooth when CλA  was relatively large, the 
condition number of the matrix in the eigenvalue analysis deteriorated. The decrease in precision because of the matrix 
condition number depends on the software and functions used for the eigenvalue analysis. In the simulations of this study, 
the eigs function of MATLAB was used, and the inverse of the mass matrix was multiplied by the left side of the stiffness 
matrix to perform an eigenvalue analysis as a standard eigenvalue problem. Although the tendencies are slightly different 
between Figs. 2(a) and (b), the range of high precision is almost the same in both cases. Because the horizontal axes were 

CλA  in Fig. 2, the precision is almost independent of n. If Cl  is used on the horizontal axes rather than CλA , the larger 
n is more precise than the smaller n. 

The simulation results of the RMS of the error rates of the natural frequencies obtained using E 0λA = , 1, 1.25, 1.5, 
1.75, and 2 are shown in Fig. 3. The material properties listed in Table 1 were used in the simulations. The length El  
was determined such that E 0λA =  , 1, 1.25, 1.5, 1.75, and 2 when C 3λA =   in each case. In all the cases, n was 
determined such that the natural frequency of the highest nth-order eigenmodes was 16 kHz when C 3λA = . Therefore, 

86n =  , 90, 91, 92, 93, and 94 were used for E 0λA =  , 1, 1.25, 1.5, 1.75, and 2, respectively. The 1st–64th-order 
eigenmodes were used to calculate the RMS of the error rates of the natural frequencies. C2.5 3.5λA≤ ≤  performed the 
best in all cases, independent of EλA . As EλA  increases, the problem of matrix condition number is more likely to occur.  

 

 
Fig. 3  Simulation results of the RMS of the error rates of the multiple natural frequencies obtained using the SEBM with the 

SEM and different values of EλA .  
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Although the simulation results were omitted, even if Al  varies while maintaining [ ]A B 0.85 ml l+ = , the tendency 
that C2.5 3.5λA≤ ≤  was the best was the same.  

The natural frequency of the highest nth-order eigenmode of the original acoustic field was reduced by providing 
elimination regions. This is the disadvantage of using both SEBM and SEM. Because the appropriate CλA  and EλA  are 

C2.5 3.5λA≤ ≤  and E1.5 2λA≤ ≤ , respectively, when the DOFs of the vibration systems are increased, the ratio of the 
elimination regions to the length of the original acoustic field is reduced. Therefore, the disadvantage of providing 
elimination regions is minimal for high-load simulations with many DOFs. CλA   and EλA   can be determined by 
referring to Figs. 2 and 3. This study used C 2.5λA =  and E 1.5λA =  in subsequent simulations because smaller CλA  
and EλA  are advantageous in terms of a wider frequency range.  

 
3.2 Verification on density and bulk modulus of the central virtual elimination region 

In the simulations described in Section 3.1, both the density and the bulk modulus of the central elimination region 
were zero. In this section, the simulation results are presented for small values of density and bulk modulus of the central 
elimination region. The condition number of a matrix was improved because of the small values. The central elimination 
region functions as a continuous body. This can reduce the precision of the natural frequencies.  

The material properties used in these simulations to verify the density and bulk modulus of the central elimination 
region were identical to those used in the simulations described in Section 3.1 for the case of 92n = , except for the 
density and bulk modulus of the central elimination region. The simulation results for the error rate magnitude of the 
first-order natural frequency are shown in Fig. 4. When the central elimination region had density and bulk modulus, new 
natural frequencies were generated due to them. Therefore, only the first-order natural frequency was used here. The 
density ratio ρA  and bulk modulus ratio κA  are defined as follows:  

C C

A B
ρ

ρ ρ
A

ρ ρ
= = , C C

A B
κ

κ κA
κ κ

= = . (24) 

ρ κA A=  was used in these simulations. Under the condition that ρ κA A= , the sound speeds in regions A and B and the 
central elimination region are equal, and the precision of the natural frequencies is higher than that when the sound speeds 
are different. However, the small values of density and bulk modulus in the central elimination regions reduced the 
precision of the natural frequencies, as shown in Fig. 4. When 61 10ρ κA A −= = ×   was used, the precision was high 
around C 1λA = . In this case, when C 1λA < , the natural frequencies obtained by the eigenvalue analysis were slightly 
higher than the exact natural frequencies, and when C 1λA >  , they were slightly lower than the exact frequencies. 
Therefore, they were almost equal to the exact ones around C 1λA = . When 41 10ρ κA A −= = × , 21 10−× , and 1 were used, 
the natural frequencies obtained by the eigenvalue analysis were slightly lower than the exact frequencies because the 
mass of the central elimination region affected the natural frequency. As can be seen from Fig. 4, the density and bulk 
modulus of the central elimination region need not have small values, at least in our simulation environment. When the 
condition number problem is more likely to occur compared with the authors’ simulation environment, ρA  and κA  
should have sufficiently small values to improve the condition number. In this case, the simulation results shown in Fig. 4 
can be used as a reference.  

 

 
Fig. 4  Simulation results of the magnitude of the error rate of the first-order natural frequency obtained using the SEBM with 

the SEM and different values of ρ κA A= .  
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3.3 Verification to determine the highest order of the eigenmode of the original acoustic field 
First, the case in which the sound speeds in regions A and B are equal is described in this section, followed by the 

case in which they differ. From a series perspective, waves with wavelengths shorter than the wavelength of the highest 
nth-order eigenmode of the original acoustic field cannot be represented by the superposition of eigenmodes. When the 
sound speed is a complex number, its imaginary part represents the damping characteristics, and its real part determines 
the wavelength. Therefore, in this case, the real part of the sound speed should be used to consider the upper limit of the 
frequency range. Because the imaginary part of the sound speed is not important when considering the upper limit of the 
frequency range, this section considers a case in which the sound speed is real.  

The frequency range in which the natural frequencies can be precisely obtained depends on the natural frequency of 
the highest nth-order eigenmode of the original acoustic field. Simulations were performed to investigate these frequency 
ranges. The material properties used in the simulations are listed in Table 2. The sound speeds in regions A and B were 
equal, and these material properties were also used in the simulations, the results of which are presented in Section 3.4. 
The cross-sectional area S affects only the results of the simulations performed for verification in Section 3.4, in which 
a 1-DOF vibration system was installed. As can be seen from Table 2, the actual acoustic field was essentially a 0.85 m 
acoustic tube, as in the previous simulations, and the exact natural frequencies were integer multiples of 200 Hz. The 
natural frequencies of the original acoustic fields are integer multiples of [ ]1200 17 70.6 Hz≈ . Therefore, the natural 
frequency of the highest 17th-order eigenmode of the original acoustic field was 1200 Hz in these simulations. The 1st- 
to 10th-order natural frequencies obtained using MATLAB’s eigenvalue analysis are listed in Table 3. The natural 
frequencies are listed in ten digits in Table 3, and the error rates in percentages are listed in three digits in Table 3. The 
precision of the natural frequencies varied significantly at 1200 Hz, which is equal to the natural frequency of the highest 
nth-order eigenmode of the original acoustic field. Therefore, the frequency range in which the natural frequencies can 
be precisely obtained is less than that of the highest nth-order eigenmode of the original acoustic field. The precision of 
the natural frequency at exactly 1200 Hz is slightly lower than that at natural frequencies below 1200 Hz. When the 
frequency range is limited to a higher precision, the upper limit of the frequency range should be lower than the natural 
frequency of the highest nth-order eigenmode of the original acoustic field. 

In a simulation using SEBM with SEM, Cl , El , and n should be determined. Because the natural frequency of the 
highest nth-order eigenmode depends on Cl , El , and n, the natural frequency of the highest nth-order eigenmode is 
tentatively defined as Tnf . Tnf , Cl , and El  can be expressed as  

A
T 2n

ncf
l

= , C CTλ nl A λ= , E ETλ nl A λ= ,  (25) 

 
Table 2  Material properties used in the simulations for the verification to determine the highest order of the eigenmode of the 

original acoustic field. 

A Bρ ρ=  1.2 3kg m  C Eρ ρ=  0 3kg m  Cm  0 kg  

A Bκ κ=  138720 Pa  C Eκ κ=  0 Pa  Cd  0 Ns m  

Al  0.5 m  El  ( )A B 2l l+  m  Ck  0 N m  

Bl  0.35 m  CλA  2.5  n  17  

Cl  ( )A B5 6l l+  m  EλA  1.5  S  15000 2mm  
 

Table 3  Natural frequencies obtained by MATLAB’s eigenvalue analysis and their error rates. The natural frequency of the 
highest nth-order eigenmode of the original acoustic field was 1200 Hz in these simulations.  

Exact natural 
frequencies [Hz] 

Calculated natural 
frequencies [Hz] Error rate [%] 

Exact natural 
frequencies [Hz] 

Calculated natural 
frequencies [Hz] Error rate [%] 

200 200.0000156 67.78 10−×  1200 1200.029097 32.42 10−×  
400 399.9999952 61.19 10−− ×  1400 1400.694712 24.96 10−×  
600 600.0000332 65.53 10−×  1600 1604.246974 12.65 10−×  
800 800.0000106 61.32 10−×  1800 1810.431581 15.80 10−×  

1000 1000.000002 72.35 10−×  2000 2125.900877 6.30  
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respectively, where CTλA   and ETλA   are the tentative numbers of wavelengths of the central elimination region and 
elimination regions for the SEM, respectively. Because Al  , Bl  , and Ac   are given and CTλA  , ETλA  , and Tnf   are 
arbitrarily determined by the user, from Eqs. (22) and (25), Cl  and El  can be derived as  

A
C CT

T
λ

n

cl A
f

= , A
E ET

T
λ

n

cl A
f

= .  (26) 

From Eqs. (25) and (26), n can be determined as follows:  

( )T A B
CT ET

A

2
2 4n

λ λ

f l l
n A A

c
+ 

= + + 
 

, (27) 

where the ceiling function was used to make n an integer. Because Cl  and El  are determined using Eq. (26), the true 
natural frequency of the highest nth-order eigenmode and true number of wavelengths are given by the following 
equations:  

( )
( )

T A B A CT ET
T

T A B A CT ET

2 2 4
2 2 4

n λ λ
n n

n λ λ

f l l c A A
f f

f l l c A A
+ + +  =
+ + +

,  (28) 

( )
( )

T A B A CT ET
C CT

T A B A CT ET

2 2 4
2 2 4

n λ λ
λ λ

n λ λ

f l l c A A
A A

f l l c A A
+ + +  =
+ + +

, 
( )
( )

T A B A CT ET
E ET

T A B A CT ET

2 2 4
2 2 4

n λ λ
λ λ

n λ λ

f l l c A A
A A

f l l c A A
+ + +  =
+ + +

. (29) 

Owing to the rounding off of n in Eq. (27), nf  , CλA  , and EλA   are marginally higher than Tnf  , CTλA  , and ETλA  , 
respectively. When Tnf  , CTλA  , and ETλA   are selected such that the ceiling function in Eq. (27) is an integer, the 
difference does not occur.  

When the density and bulk modulus of region B differ from those of region A, the frequency determined by nλ  and 
the sound speed in region B is important. This frequency is defined as follows:  

B
Bn

n

cf
λ

= , B
B

B

κc
ρ

= ,  (30) 

where Bc  is the sound speed in region B. At frequencies higher than Bnf , the precision cannot be maintained because 
the wavelength in region B is shorter than nλ . The smaller one of nf  and Bnf  is the upper limit of the frequency 
range. The 1st to 8th natural frequencies for the case where the density and bulk modulus of region B were changed to 

A5ρ  and A 5κ , respectively, and for the case where the density and bulk modulus of region B were changed to A 5ρ  
and A5κ , respectively, are listed in Table 4. The natural frequencies and error rates are presented as ten and three digits, 
respectively. Because the characteristic impedance of region B is equal to that of region A in both cases, the exact natural 
frequencies can be obtained. The impedances of the former and latter region B are equivalent to those of an acoustic field 
of length B5l  and B 5l , with air density Aρ  and bulk modulus Aκ , respectively. In the former and latter cases, the 
sound speed is 68 m/s and 1700 m/s, respectively, and Bnf  is 240 Hz and 6000 Hz, respectively. Therefore, the upper 
limit of the frequency range is 240 Hz in the former case, and 1200 Hz in the latter case. The precision of the natural 
frequencies listed in Table 4 is drastically changed before and after these frequencies. Therefore, considering the upper 
limit of the frequency range based on nf   and Bnf   is appropriate. When the upper limit of the frequency range is 
determined by Bnf , Tnf  in Eq. (25) should be multiplied by A Bc c .  
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Table 4  Natural frequencies obtained by MATLAB’s eigenvalue analysis and their error rates using B A5ρ ρ=   and 
B A 5κ κ= , and B A 5ρ ρ=  and B A5κ κ= . The upper limits of the frequency range for these cases were 240 and 

1200 Hz, respectively.  
Case where B A5ρ ρ=  and B A 5κ κ=  were used Case where B A 5ρ ρ=  and B A5κ κ=  were used 
Exact natural 

frequencies [Hz] 
Calculated natural 
frequencies [Hz] 

Error rate [%] Exact natural 
frequencies [Hz] 

Calculated natural 
frequencies [Hz] 

Error rate [%] 

75.55555556 75.55554897 68.71 10−− ×  298.2456140 298.2456499 51.20 10−×  
151.1111111 151.1111103 75.26 10−− ×  596.4912281 596.4912286 88.50 10−×  
226.6666667 226.6701244 31.53 10−×  894.7368421 894.7369597 51.31 10−×  
302.2222222 302.4003405 25.89 10−×  1192.982456 1192.997440 31.26 10−×  
377.7777778 381.5600406 1.00  1491.228070 1495.062880 12.57 10−×  
453.3333333 477.8425389 5.41  1789.473684 1805.005533 18.68 10−×  
528.8888889 603.2759744 14.1 2087.719298 2380.579642 14.0  
604.4444444 725.5655246 20.0  2385.964912 2821.423227 18.3  
 

3.4 Comparison with conventional methods using frequency response function 
In this section, the simulation results of the frequency response function obtained using SEBM with SEM and CMSM 

are compared. In addition, the simulation results obtained using SEBM without SEM and SEM without SEBM are 
presented and compared with the simulation results obtained using SEBM with SEM. In Fig. 1(b), the case in which all 
three elimination regions are used is SEBM with SEM, the case in which only the central elimination region is used is 
SEBM without SEM, and the case in which only the right and left elimination regions are used is SEM without SEBM. 
Simulations were conducted for cases where the material properties of regions A and B were identical and a 1-DOF 
vibration system was installed at the interface between regions A and B, and for cases where no 1-DOF vibration system 
was installed at the interface and the material properties of regions A and B were different. The accuracies of these 
methods were evaluated based on exact solutions derived using boundary conditions. Therefore, the derivations of the 
exact solutions and equations of motion based on the CMSM are also briefly described using the analytical model 
presented in Fig. 1(a).  

 
3.4.1 Derivation of the exact solution using boundary conditions 

The wave equations for regions A and B in the analytical models shown in Fig. 1(a) are expressed as  

2 2
A A

A A2 2
A

ψ ψρ κ
t x

∂ ∂
=

∂ ∂
, 

2 2
B B

B B2 2
B

ψ ψρ κ
t x

∂ ∂
=

∂ ∂
,  (31) 

respectively, where Aψ   and Bψ   are the displacement potentials of regions A and B, respectively. The equation of 
motion for the 1-DOF vibration system is derived as  

A A B

2 2
A B

C C C C C C A B2 2
0x l x

ψ ψm w d w k w Sρ Sρ
t t

= =

∂ ∂
+ + = −

∂ ∂
  .  (32) 

From Eq. (31), the displacement potentials are derived as  

( ) ( ) j
A A A A, e ωtψ x t Ψ x= , ( )A A 1A A A 2A A Acos sinΨ x C k x C k x= + , A

A

ωk
c

= ,  (33) 

( ) ( ) j
B B B B, e ωtψ x t Ψ x= , ( )B B 1B B B 2B B Bcos sinΨ x C k x C k x= + , B

B

ωk
c

= ,  (34) 

where ω  is the excitation angular frequency, Ak  and Bk  are the wavenumbers in regions A and B, respectively, and 
1AC , 2AC , 1BC , and 2BC  are constants determined by the boundary conditions. The boundary conditions at the left 
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and right ends of region A are the displacements j
L Le ωtw W=   and j

C Ce ωtw W=  , respectively. Here, LW   is the 
amplitude of Lw , and CW  is the complex amplitude of Cw . The boundary condition at the left end of region B is the 
displacement j

C Ce ωtw W= , and the boundary condition at the right end of region B is zero displacement. Using these 
four boundary conditions and Eq. (32), 1AC , 2AC , 1BC , 2BC , and Cw  can be determined. 

The sound pressure is obtained using the left-hand sides of Eq. (31). The particle displacements in regions A and B 
are expressed as A Aψ x−∂ ∂  and B Bψ x−∂ ∂ , respectively.  

 
3.4.2 Conventional modal analysis using the component mode synthesis method 

When the CMSM is used (Yamada and Utsuno, 2015), the wave equations for regions A and B in the analytical 
models shown in Fig. 1(a) are expressed as  

( ) ( )
2 2

A A
A A A L A A C A A2 2

A

ψ ψρ κ κ w δ x κ w δ x l
t x

∂ ∂
= + − −

∂ ∂
, ( )

2 2
B B

B B B C B2 2
B

ψ ψρ κ κ w δ x
t x

∂ ∂
= +

∂ ∂
.  (35) 

These wave equations include terms for the sound pressure generated by the displacements at the boundaries. The 
equation of motion for a 1-DOF vibration system is expressed by Eq. (32). In the conventional modal analysis using the 
CMSM, the displacement potentials Aψ  and Bψ  are given as  

( ) ( ) ( )
A

A A A A A
0

, 
n

h h
h

ψ x t Ψ x ξ t
=

= , ( )A A A A Acosh h hΨ x A k x= , A
A

π
h

hk
l

= ,  (36) 

( ) ( ) ( )
B

B B B B B
0

, 
n

h h
h

ψ x t Ψ x ξ t
=

= , ( )B B B B Bcosh h hΨ x A k x= , B
B

π
h

hk
l

= ,  (37) 

respectively, where A hΨ   and BhΨ   are the eigenfunctions of the displacement potentials in regions A and B, 
respectively; An  and Bn  are the highest orders of the eigenmodes for regions A and B, respectively; Ahk  and Bhk  
are the wavenumbers in regions A and B, respectively; and A hA  and BhA  are arbitrary constants. Substituting Eqs. (36) 
and (37) into Eq. (35), multiplying both sides by A AiΨ ρ  and B BiΨ ρ , respectively, and integrating over the entire 
range of regions A and B, the following equations of motion using modal displacements are obtained: 

( ) ( )2 2
A A A A A A L A A A C0i i i i i iM ξ K ξ c Ψ w c Ψ l w+ = − , ( )2

B B B B B B C0i i i i iM ξ K ξ c Ψ w+ = , (38) 

( )A 2

A A A0
d 1

l

i iM Ψ x= = , A
2

A2 2
A A A A A20

A

d
d

d
l i

i i i

Ψ
K c Ψ x ω

x
= − = , A

A
A

π
i

i cω
l

= , 
( )
( )

A
A

A

1 0

2 1, 2, 
i

l i
A

l i

 == 
= 

,  (39) 

( )B 2

B B B0
d 1

l

i iM Ψ x= = , A
2

B2 2
B B B B B20

B

d
d

d
l i

i i i

Ψ
K c Ψ x ω

x
= − = , B

B
B

π
i

i cω
l

= , 
( )
( )

B
B

B

1 0

2 1, 2, 
i

l i
A

l i

 == 
= 

,  (40) 

where A iM  , A iK  , and A iω   are the modal mass, modal stiffness, and natural angular frequency of the ith-order 
eigenmode for region A, respectively; and BiM  , BiK  , and Biω   are the modal mass, modal stiffness, and natural 
angular frequency of the ith-order eigenmode for region B, respectively. The arbitrary constants A iA  and BiA  were 
normalized such that A 1iM =  and B 1iM = , respectively. The equation of motion of the 1-DOF vibration system is 
expressed as  

( ) ( )
A B

C C C C C C A A A A B B B
0 0

0
n n

h h h h
h h

m w d w k w Sρ Ψ l ξ Sρ Ψ ξ
= =

+ + = −    .  (41) 

The equations of motion using matrices can be obtained using Eqs. (36)–(38), and (41). The subsequent modal analysis 
is identical to that described in Section 2.3.  

The sound pressure is obtained using the left-hand sides of Eq. (35). The particle displacements in regions A and B 
are expressed as A Aψ x−∂ ∂  and B Bψ x−∂ ∂ , respectively. If A Aψ x−∂ ∂  and B Bψ x−∂ ∂  are derived by integrating 
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the wave equations over the ranges A A0 x x≤ ≤  and B B0 x x≤ ≤ , respectively, as shown in Eqs. (13) and (14); particle 
displacements without the Gibbs phenomenon can be obtained. However, this method was not used in the subsequent 
simulations. This demonstrates the cause of the error in the sound pressure. The Gibbs phenomenon in particle 
displacement causes errors in the sound pressure.  

 
3.4.3 Simulation results for the cases where a 1-DOF vibration system is installed 

The material properties of the acoustic field used in the subsequent simulations were identical to those listed in 
Table 2. 17n =   was used for simulations using SEBM with SEM, SEBM without SEM, and SEM without SEBM. 
Therefore, the natural frequencies of the highest nth-order eigenmodes for SEBM with SEM, SEBM without SEM, and 
SEM without SEBM were 1200 Hz, 2400 Hz, and 2200 Hz, respectively. A 10n =   and B 7n =   were used for the 
simulations using the CMSM, because the DOFs of the acoustic field were equal to those of the other methods if the 
zeroth-order eigenmodes were omitted. Because the 1-DOF vibration system has one independent DOF in the CMSM, 
the CMSM used two more DOFs than the other methods when the zeroth-order eigenmodes were included in the count. 
The natural frequencies of the highest An  th- and Bn  th-order eigenmodes in the CMSM were both 3400 Hz. The 
material properties of the 1-DOF vibration system used in the subsequent simulations are listed in Table 5, where Cζ  is 
the damping ratio, defined as ( )C C C2d m k . The mechanical impedance of the 1-DOF vibration system in Case (1) 
was 100 times larger than that in Case (2). Therefore, the 1-DOF vibration system in Case (1) had a smaller displacement 
than that in Case (2).  

The simulation results of the nondimensional sound pressure and particle displacement using the material properties 
of Cases (1) are shown in Fig. 5. Here, P  is the complex amplitude of the sound pressure p , W  is the complex 
amplitude of the particle displacement w , and 3 B0.05x x l= +  was used as the evaluation point. The coordinates in the 
acoustic field are expressed using x rather than Ax  and Bx  throughout Section 3.4. The simulation results using the 
SEBM without the SEM and the SEM without the SEBM did not agree with the exact solutions. However, the simulation 
result using the SEBM with the SEM agrees well with the exact solutions below 1200 Hz. By using both the SEBM and 
SEM, high precision can be maintained even for the coordinate near the interface between regions A and B. Because the 
mechanical impedance of the 1-DOF vibration system is relatively large in Case (1), the simulation results of the 
nondimensional sound pressure using the CMSM agree well with the exact solutions. However, a slight difference from 
the exact solution can be seen in the small amplitude region in the sound pressure. The simulation result of the 
nondimensional particle displacement using the CMSM does not agree well with the exact solution because of the Gibbs 
phenomenon. When the mechanical impedance of the 1-DOF vibration system is large, the CMSM is advantageous in 
principle. This is because the eigenmodes that do not have displacement at the coordinate of the 1-DOF vibration system 
are used in the CMSM. However, even in Case (1), the SEBM with the SEM is better than the CMSM.  

The simulation results of the nondimensional sound pressure and particle displacement using the material properties  
 

Table 5  Material properties of the 1-DOF vibration systems used in the simulations.  
 Case (1) Case (2) 
[ ]C  kgm  0.3 0.003 

[ ]C  N mk  61.5 10×  41.5 10×  

Cζ  0.05 0.05 
 

 
Fig. 5  Simulation results of the nondimensional sound pressure and particle displacement when the material properties of 

Cases (1), listed in Table 5, were used for the 1-DOF vibration system: (a) nondimensional sound pressure and (b) 
nondimensional particle displacement.  
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of Case (2) are shown in Fig. 6. The simulation results obtained using SEM without SEBM differed from the exact 
solutions at approximately 1100 Hz. The simulation results obtained using the SEBM with and without SEM agreed well 
with the exact solutions. Although the natural frequency of the highest nth-order eigenmode for SEBM with SEM was 
1200 Hz, no difference was observed between 1200 Hz and 1400 Hz. This is because methods that use only the 
eigenmodes of the entire acoustic field are advantageous in principle when the mechanical impedance of the 1-DOF 
vibration system is small. Because the eigenmodes have a displacement at the coordinate of the 1-DOF vibration system, 
the displacement at the 1-DOF vibration system can be easily expressed. However, the CMSM is disadvantageous in this 
case, because the eigenmodes do not exhibit displacement at the coordinate of the 1-DOF vibration system. Therefore, 
even the resonance peak frequencies differed from those of the exact solutions, as shown in Fig. 6. SEBM combined with 
SEM provides precise simulation results when the mechanical impedance of the 1-DOF vibration system is both large 
and small.  

The simulation results of the distribution of the nondimensional sound pressure and particle displacement in the 
acoustic field using the material properties of Case (2) are shown in Fig. 7. Here, the x′ -coordinate presented in Fig. 1(a) 
was used for the horizontal axis, the excitation frequency was 700 Hz, and only steady-state vibrations were considered. 
These simulation results are the vibration distributions in the acoustic field at the instant of phase when L Lw W= . The 
simulation results obtained using the SEBM and SEM agree well with the exact solutions. However, the simulation result 
of the sound pressure using SEBM without SEM differs from the exact solution near the left end. This difference was 
caused by the Gibbs phenomenon of particle displacement near the left end. Because the Gibbs phenomenon occurred at 
the left end and at the interface between regions A and B when the CMSM was used, the CMSM simulation results did 
not agree with the exact solutions. The simulation results of SEM without SEBM did not agree with the exact solutions 
because the Gibbs phenomenon occurred at the interface between regions A and B.  

The simulation results of the vibration distribution, including the elimination regions, are shown in Fig. 8. Here, the 
x-coordinate was used for the horizontal axis. The installation of the elimination regions smoothly connected the particle 
displacement and did not cause the Gibbs phenomenon in SEBM with SEM, as intended.  

17n =  was used in these simulations. Such a small value of n is relatively disadvantageous for SEBM with SEM 
because the ratio of the elimination regions is relatively large under this condition, as shown in Fig. 8. However, using a 
large n increases the number of resonance peaks in the frequency response functions, making it difficult to compare the 
graphs. Therefore, 17n =  was used in the simulations, knowing this disadvantage. As n, An , and Bn  increase, the  

 

 
Fig. 6  Simulation results of the nondimensional sound pressure and particle displacement when the material properties of 

Case (2), listed in Table 5, were used for the 1-DOF vibration system: (a) nondimensional sound pressure and (b) 
nondimensional particle displacement. 

 

 
Fig. 7  Simulation results of the distribution of the nondimensional sound pressure and particle displacement in the acoustic 

field when x′ -coordinate and the material properties of Case (2), listed in Table 5, were used. The excitation frequency 
was 700 Hz. (a) nondimensional sound pressure and (b) nondimensional particle displacement.  
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Fig. 8  Simulation results of the distribution of the nondimensional sound pressure and particle displacement in the acoustic 

field when x-coordinate and the material properties of Case (2), listed in Table 5, were used. The excitation frequency 
was 700 Hz. The distributions in the elimination regions were also shown. (a) nondimensional sound pressure and (b) 
nondimensional particle displacement.  

 
precision of the simulations for all methods increases. SEBM with SEM is the most advantageous of these methods when 
simulations are conducted with fewer DOFs.  

In Section 3.3, the way to determine the number of eigenmodes in SEBM with SEM was described. The same 
approach can be used for CMSM, SEBM without SEM, and SEM without SEBM to determine the number of eigenmodes. 
However, the Gibbs phenomenon reduces the precision of the simulations in these three methods. Therefore, the number 
of eigenmodes needs to be further increased in these three methods to reduce the deterioration of the simulation precision. 

 
3.4.4 Simulation results for the cases where the material properties of regions A and B are different 

The material properties of region A and the elimination regions used in the subsequent simulations were identical to 
those listed in Table 2, and a 1-DOF vibration system was not installed. However, [ ]8

C 1 10  kgm −= ×  was used as a 
sufficiently small value in the CMSM because the 1-DOF vibration system has one independent DOF in this method. 
The material properties of region B used in the simulations, and An  and Bn  used in the CMSM are listed in Table 6. 

17n =  was used for simulations using SEBM with SEM, SEBM without SEM, and SEM without SEBM. However, An  
and Bn   for the CMSM were determined such that the natural frequencies of the highest An  th- and Bn  th-order 
eigenmodes were equal and A Bn n+  was approximately 17. Case (a) shows the case in which the acoustic absorption 
material is installed in region B. The material properties in Cases (b) and (c) do not typically appear in the acoustic field. 
However, the longitudinal vibration of a rod can have an essentially similar situation. The material properties in Case (b) 
were used because the sound speed in region B was equal to that in region A. The material properties in Case (c) were 
used because the sound speed in region B was 1/5 times that of in region A. As discussed in Section 3.3, the upper limits 
of the frequency range were 712 Hz, 1200 Hz, and 240 Hz in Cases (a)–(c), respectively, when SEBM with SEM was 
used.  

The simulation results of the nondimensional sound pressure and particle displacement using the material properties 
of Case (a) are shown in Fig. 9. Here, 1 A0.95x x l= +   was used as the evaluation point for region A. The particle 
displacement at the interface between regions A and B was relatively large because a 1-DOF vibration system was not 
installed in these simulations. Therefore, the simulation results obtained using the CMSM do not agree with the exact 
solutions. The simulation results of the other three methods agree well with the exact solutions. This is because the 
evaluation point was 1 A0.95x x l= + . Although the simulation results were omitted, SEBM without SEM lost precision 
near the left end owing to the Gibbs phenomenon. SEM without SEBM and SEBM with SEM maintained their precision 
in this case. The upper limit of the frequency was 712 Hz in SEBM with SEM. However, precision was maintained even 
above this frequency, as shown in Fig. 9. This is because the ratio of the length of region B was not large, and the 
evaluation point was in region A. Although the simulation results were omitted, under the condition that the ratio of the 
length of region B was large and that the evaluation point was near the right end of region B, the simulation results of 
SEBM with SEM did not agree with the exact solutions from slightly above 712 Hz.  

 
Table 6  Material properties of region B used in the simulations, and An  and Bn  used in the CMSM.  

 Case (a) Case (b) Case (c) 
3

B  kg mρ     ( )2.5 1 0.5 j−  ( )A6 5ρ=  ( )A6 5ρ=  
[ ]B  Paκ  120000 ( )A693600 5κ=  ( )A27744 5κ=  
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Fig. 9  Simulation results of the nondimensional sound pressure and particle displacement when the material properties of 

Cases (a), listed in Table 6, were used for region B. The upper limit of the frequency range was 712 Hz when the SEBM 
with the SEM was used. (a) nondimensional sound pressure and (b) nondimensional particle displacement.  

 
The simulation results of the nondimensional sound pressure and particle displacement using the material properties 

of Case (b) are shown in Fig. 10. Here, 1 A0.95x x l= +  was used. The general tendency was the same as when using the 
material properties for Case (a). However, in this case, the precision of the SEM without SEBM decreased compared to 
the simulation using the material properties of Case (a). This is because the characteristic impedance ratio between 
regions A and B was larger in Case (b) than in Case (a). In this case, only SEBM with SEM maintained precision in all 
coordinates. In addition, the precision of the SEBM with SEM was maintained below 1200 Hz.  

The simulation results of the nondimensional sound pressure and particle displacement using the material properties 
of Case (c) are shown in Fig. 11. Here, 1 A0.95x x l= +  was used. Because the upper limit of the frequency was 240 Hz 
for SEBM with SEM in this case, the frequency response functions below 500 Hz are shown in Fig. 11. The general 
tendency was the same as when the material properties of Case (b) were used. As the upper limit of the frequency was 
240 Hz, the simulation results of SEBM with SEM did not agree well with the exact solutions above 350 Hz. Although 
omitted here, if the vibration distribution is shown, the difference between SEBM with SEM and the exact solutions can 
be observed at frequencies above 240 Hz.  

SEBM with SEM was better than CMSM when a 1-DOF vibration system was not installed at the interface between 
regions A and B. Among SEBM with SEM, SEBM without SEM, and SEM without SEBM, SEBM with SEM should be 
used because SEBM with SEM is no worse than the other two methods, even when 17n = .  

 

 
Fig. 10  Simulation results of the nondimensional sound pressure and particle displacement when the material properties of 

Cases (b), listed in Table 6, were used for region B. The upper limit of the frequency range was 1200 Hz when the 
SEBM with the SEM was used. (a) nondimensional sound pressure and (b) nondimensional particle displacement.  

 

 
Fig. 11  Simulation results of the nondimensional sound pressure and particle displacement when the material properties of 

Cases (c), listed in Table 6, were used for region B. The upper limit of the frequency range was 240 Hz when the 
SEBM with the SEM was used. (a) nondimensional sound pressure and (b) nondimensional particle displacement.  
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4. Conclusion 
 
SEBM for a continuous body governed by a one-dimensional wave equation was described using a one-dimensional 

acoustic field as a representative. An analytical model for SEBM with SEM was presented, and the wave equation for 
this analytical model was derived. Modal analysis was applied to the wave equation, and the external forces applied at 
the interfaces in the analytical model were formulated using constraint conditions. The simulations revealed that the 
density and bulk modulus of the virtual elimination region of SEBM should be zero if the deterioration of the matrix 
condition number is not problematic. The simulations also revealed that the length of the virtual elimination region of 
the SEBM should be set to 2.5–3.5 times the wavelength of the highest eigenmode when eigenvalue analysis is performed 
as a standard eigenvalue problem using an inverse matrix of the mass matrix in the simulations using MATLAB. The 
formulations for determining the order of the highest-order eigenmode and the length of the virtual elimination regions 
were derived based on the upper limit of the frequency range. The frequency response functions obtained using SEBM 
with and without SEM, SEM without SEBM, and CMSM were compared based on the exact solutions, and it was found 
that the precision of the CMSM decreased when the displacement at the interface between the different regions was 
relatively large, and the precision of SEBM without SEM and SEM without SEBM decreased when the displacement at 
the interface was relatively small. However, SEBM with SEM maintained precision in all cases. Because the wavelength 
of the highest-order eigenmode becomes shorter as the number of employed eigenmodes increases, the ratio of the lengths 
of the elimination regions to the overall lengths becomes smaller. Therefore, SEBM with SEM is more advantageous 
when the targeted continuous body requires more DOFs.  
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