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Sound field reconstruction using a compact acoustics-informed
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1Center for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Sydney Technology, Ultimo,
New South Wales 2007, Australia
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ABSTRACT:
Sound field reconstruction (SFR) augments the information of a sound field captured by a microphone array. Using

basis function decomposition, conventional SFR methods are straightforward and computationally efficient but may

require more microphones than needed to measure the sound field. Recent studies show that pure data-driven and

learning-based methods are promising in some SFR tasks, but they are usually computationally heavy and may fail

to reconstruct a physically valid sound field. This paper proposes a compact acoustics-informed neural network

(AINN) method for SFR, whereby the Helmholtz equation is exploited to regularize the neural network. As opposed

to pure data-driven approaches that solely rely on measured sound pressures, the integration of the Helmholtz equa-

tion improves robustness of the neural network against variations during the measurement processes and prompts the

generation of physically valid reconstructions. The AINN is designed to be compact and able to predict not only the

sound pressures but also sound pressure gradients within a spatial region of interest based on measured sound pres-

sures along the boundary. Experiments with acoustic transfer functions measured in different environments demon-

strate the superiority of the AINN method over the traditional cylindrical harmonics and singular value

decomposition methods. VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0029022

(Received 6 February 2024; revised 5 September 2024; accepted 6 September 2024; published online 26 September 2024)

[Editor: Efren Fernandez-Grande] Pages: 2009–2021

I. INTRODUCTION

Microphone arrays are commonly used to measure a

sound field and maximize the information about the source

(Benesty et al., 2008). A large-aperture array with densely

spaced microphones is preferred for sound field measurements;

however, this is not always possible because of practical con-

siderations such as cost and microphone arrangement

(Rafaely, 2015). This necessitates sound field reconstruction

(SFR; Fernandez-Grande, 2016; Williams, 1999; Zhang et al.,
2008), a task that aims to reconstruct a sound field apart from

the limited (sparse) measurement locations.

Existing SFR methods can be broadly classified into

two categories: conventional methods based on basis func-

tion decomposition and recent learning-based methods. The

conventional methods decompose measured sound fields

into some basis functions, such as cylindrical harmonics

(CHs) (Williams, 1999), spherical harmonics (Chen et al.,
2015; Tang et al., 2022; Verburg and Fernandez-Grande,

2018; Wabnitz et al., 2011; Williams, 1999), prolate sphe-

roidal wave functions (Zhang et al., 2023), and plane waves

(Antonello et al., 2017; Fernandez-Grande, 2016; Schmid

et al., 2021; Williams, 1999). The basis functions are solu-

tions of the Helmholtz equation (Skudrzyk, 2012; Williams,

1999), the governing partial differential equation (PDE) of

time-harmonic wave propagation, and are continuous spatial

functions that can be evaluated at arbitrary positions. These

two factors make the conventional methods easy to compute

and generate a physically valid reconstruction of the sound

field away from the measurement positions. However, the

basis functions are designed with respect to some coordinate

systems (Williams, 1999) without considering the statistical

characteristics of sound fields. Thus, conventional methods

may require more than the necessary number of measure-

ments (spatial sampling points) to determine the basis func-

tion weights to reconstruct a sound field. The reality is that

the statistical characteristics of a sound field can be used to

reduce the number of sampling points based on singular

value decomposition (SVD; Zhu et al., 2020, 2021), com-

pressive sensing (Verburg and Fernandez-Grande, 2018;

Wabnitz et al., 2011), statistical learning (Hahmann et al.,
2021), or Bayesian inference (Schmid et al., 2021).

In contrast to conventional methods, recent learning-

based techniques do not rely on predesigned basis functions.

Instead, they exploit the learned statistical characteristics of

sound fields for SFR. Lluis et al. (2020) and Kristoffersen

et al. (2021) developed U-net-like neural networks, which

were trained with simulated or measured room impulse

responses (RIRs). The U-net-like neural networks achieved

superior SFR performance over some of the conventional

methods in the low frequency range (<300 Hz). Hahmann

et al. (2021) proposed to learn basis functions in local sub-

domains that are subsequently generalized across different

rooms and frequencies, which showed potential for modelinga)Electronic mail: Sipei.Zhao@uts.edu.au
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complex sound fields according to their local (spatial) or statis-

tical characteristics. By further enforcing self-similarity

between adjacent local subdomains (Hahmann and Fernandez-

Grande, 2022), the method attained better SFR performance

when few measurements were available. Most recently,

Fernandez-Grande et al. (2023) proposed to use the generative

adversarial networks for SFR to recover some of the sound

field energy at high frequencies that would otherwise be lost

due to under-sampling, demonstrating the promise of using

statistical learning methods to overcome the sampling limita-

tions. Although the learning-based methods outperformed the

conventional methods in some SFR tasks, their computations

are time-consuming. Furthermore, they are purely data-driven

and, thus, do not necessarily reconstruct physically valid sound

fields (Fernandez-Grande et al., 2023).

Recently, physical laws have been integrated into neu-

ral networks for various acoustic studies, such as the

Kirchhoff–Helmholtz-based convolutional neural network

(CNN) for nearfield acoustic holography (Olivieri et al.,
2021), the physics-informed convolutional neural network

(PI-CNN) for sound field estimation (Shigemi et al., 2022),

the physics-informed neural network (PINN) for RIR recon-

struction (Karakonstantis et al., 2024; Pezzoli et al., 2023),

the PINN for acoustic boundary admittance estimation

(Schmid et al., 2024), the DeepONet-based method for

sound propagation simulations with moving sources

(Borrel-Jensen et al., 2024), and the Fourier neural network-

based method for estimating the sound field due to a source

whose position is unknown (Middleton et al., 2023). Most

of these studies (Karakonstantis et al., 2024; Olivieri et al.,
2021; Pezzoli et al., 2023; Shigemi et al., 2022) attempted

to reconstruct the sound field within a region of interest

(ROI) with a few measurements inside the ROI.

In an alternative approach, this paper proposes an

acoustics-informed neural network (AINN) to reconstruct

the sound field within the ROI based on the sound pressures

measured on its boundary (Cuomo et al., 2022; Raissi et al.,
2019). The AINN is designed to approximate the sound field

at the measurement positions and guided by the Helmholtz

equation to generate physically valid reconstructions away

from the measurement positions. The AINN is designed in

the frequency domain and its size, i.e., the number of neu-

rons in the hidden layers, is determined based on the physi-

cal principle. The AINN is compact and lightweight,

making it easier to train than large neural networks. In addi-

tion, owing to the automatic-differentiation of deep-learning

libraries (Pezzoli et al., 2023), the AINN is able to recon-

struct not only sound pressures but also their gradients

within the ROI. Experiments with transfer functions mea-

sured with two microphone arrays in three different rooms

(Zhao et al., 2022) are conducted to compare the proposed

method with the conventional CH (Williams, 1999) and

SVD (Zhu et al., 2021) methods. Experimental results dem-

onstrate the superiority of the proposed AINN method over

the CH and SVD methods.

The remainder of this paper is organized as follows.

The problem is formulated in Sec. II. The CH and SVD

methods are reviewed in Sec. III, followed by the proposed

AINN method. Numerical experiments are presented in Sec.

IV to validate the performance of the proposed AINN

method in comparison to the CH and the SVD methods.

Section V concludes this work.

II. PROBLEM FORMULATION

The problem of interest is illustrated in Fig. 1, where (x,y)

and ðr;/Þ denote the Cartesian and polar coordinates with

respect to the coordinate origin O, respectively. The stars

denote sound sources that generate a sound field in the ROI,

which is depicted as the gray area. An array of microphones

on the boundary of the ROI, displayed as the dots in Fig. 1,

measure the sound pressures at fxq; yqgQ
q¼1 (or frq;/qg

Q
q¼1) as

Pðx; xq; yqÞQq¼1 [or equivalently Pðx; rq;/qÞQq¼1], where Q is

the number of measurement points, and x ¼ 2pf is the angu-

lar frequency, where f is the frequency. The objective is to esti-

mate the sound pressures and their gradients inside the ROI

based on the measured sound pressures on the boundary.

Hereafter, the symbol x is omitted in some quantities for nota-

tional simplicity.

It is assumed that there is no sound source inside the

ROI, hence, the sound field within the ROI is governed by

the homogeneous Helmholtz equation (Williams, 1999), i.e.,

Pþ 1

ðx=cÞ2
r2P ¼ 0; (1)

where c¼ 340 m/s is the speed of sound in air at room tem-

perature, and r2 denotes the Laplacian operator. In

Cartesian coordinates, the Laplacian operator is given by

(Williams, 1999)

r2 ¼ @

@x2
þ @

@y2
; (2)

and in polar coordinates, it is given by

FIG. 1. (Color online) Illustration of problem formulation. A number of

sound sources (?) generate a sound field within a ROI, and the objective is

to estimate the sound pressures and their gradients within the ROI based on

the sound pressures measured by microphones (•) placed along the ROI

boundary. (a) cAINN, single coupled network and (b) dAINN, two

decoupled networks, are shown.
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r2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2

@2

@h2
: (3)

In this paper, we build a compact neural network

informed by the Helmholtz equation [Eq. (1)] to reconstruct

the sound field within the ROI based on the microphone

measurements.

III. METHODOLOGY

This section first reviews the CH method (Williams,

1999) and SVD method (Zhu et al., 2021) for SFR, and sub-

sequently proposes the AINN method.

A. The CHs method

Acoustic quantities are expressed in polar coordinates

for the ease of computing the CHs. Sound pressures can be

decomposed into CHs as (Williams, 1999)

PM ¼ JA; (4)

where PM ¼ ½Pðr1;/1Þ;Pðr2;/2Þ;…;PðrQ;/QÞ�> denote

the measured sound pressures at frq;/qg
Q
q¼1, ð�Þ> is the

transpose operation, A ¼ ½A�N ;A�Nþ1;…;AN�> denote the

CH weights, and

J ¼

J�N
x
c

r1

� �
eiN/1 � � � JN

x
c

r1

� �
e�iN/1

J�N
x
c

r2

� �
eiN/2 � � � JN

x
c

r2

� �
e�iN/2

..

. ..
. ..

.

J�N
x
c

rQ

� �
eiN/Q � � � JN

x
c

rQ

� �
e�iN/Q

2
66666666666664

3
77777777777775

(5)

is a Q� ð2N þ 1Þ matrix whose entry Jnððx=cÞrqÞe�in/q is

the nth-order CH (Williams, 1999) evaluated at ðrq;/qÞ, i is

the imaginary unit, and Jnð�Þ is the Bessel function of order

n (Williams, 1999). In Eqs. (4) and (5), N is the dimension-

ality of the sound field under CH decomposition and nor-

mally chosen as (Kennedy et al., 2007)

N ¼ d2pfr=ce; (6)

where d�e is the ceiling operation.

The CH method estimates the weights Â ¼ ½Â�N;
Â�Nþ1;…; ÂN �> through

Â ¼ J†PM; (7)

where ð�Þ† denotes the pseudo-inverse operation. The sound

pressure and radial gradient for an arbitrary position ðre;/eÞ
can be reconstructed as (Williams, 1999)

P̂CHðre;/eÞ �
XN

n¼�N

ÂnJn
x
c

re

� �
e�in/e ; (8)

and

@P̂CHðre;/eÞ
@re

� x
c

XN

n¼�N

ÂnJ0n
x
c

re

� �
e�in/e ; (9)

where J0nð�Þ denotes the derivative of the Bessel function

with respect to the argument. The pressure gradients along

the x axis and y axis at (xe,ye) can be reconstructed as

@P̂CHðxe; yeÞ
@xe

¼ P̂CHðre;/eÞ
@re

cosð/eÞ; (10)

@P̂CHðxe; yeÞ
@ye

¼ P̂CHðre;/eÞ
@re

sinð/eÞ: (11)

B. The SVD method

The SVD method (Zhu et al., 2020, 2021) regards a

source at (xs,ys) as a cluster of virtual point sources whose

positions are fxs;j; ys;jgJ
j¼1 and constructs two matrices with

respect to the virtual point sources. The first is a matrix of

transfer functions between the virtual point sources and

microphones such that

HSM ¼
Hðx1; y1; xs;1; ys;1Þ � � � Hðx1; y1; xs;J; ys;JÞ

..

. ..
. ..

.

HðxQ; yQ; xs;1; ys;1Þ � � � HðxQ; yQ; xs;J; ys;JÞ

2
664

3
775;

(12)

where the qth row and jth column entry, Hðxq; yq; xs;j; ys;jÞ, is

the free-field transfer function (Williams, 1999) between the

virtual point source located at ðxs;j; ys;jÞ and the microphone

located at ðxq; yqÞ, i.e. (Williams, 1999),

Hðxv; yv; xs;j; ys;jÞ ¼
1

4p
expð�ixrv;j=cÞ

rv;j
; (13)

where rv;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxv � xs;jÞ2 þ ðyv � ys;jÞ2

q
. The second is a

matrix of transfer functions between the virtual point sour-

ces and pressure estimation points, namely,

HSV ¼
Hðx1; y1; xs;1; ys;1Þ � � � Hðx1; y1; xs;J; ys;JÞ

..

. ..
. ..

.

HðxV ; yV ; xs;1; ys;1Þ � � � HðxV ; yV ; xs;J; ys;JÞ

2
64

3
75;

(14)

where the vth row and jth column entry, Hðxv; yv; xs;j; ys;jÞ, is

the free-space transfer function between the virtual point

source located at ðxs;j; ys;jÞ and the pressure estimation point

located at ðxv; yvÞ, which is defined similarly as in Eq. (13).

The two matrices are decomposed as (Zhu et al., 2021)

HSM ¼ USMRSMV�SM (15)

and

HSV ¼ USVRSVV�SV; (16)

where ð�Þ� denotes the complex conjugate operation, USM

and USV are unitary matrices whose columns represent the

J. Acoust. Soc. Am. 156 (3), September 2024 Ma et al. 2011
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basis functions of the receiver space, VSM and VSV are uni-

tary matrices whose columns represent the basis functions

of the source space, and RSM and RSV are diagonal matrices

whose elements represent the capability of a source space

basis function to excite a receiver space basis function.

The dimensions of USM, RSM, VSM, USV, RSV, and VSV

are Q� Q; Q� J; J � J, V � V; V � J, and J � J,

respectively.

The SVD method (Zhu et al., 2021) reconstructs the sound

pressure P̂V ¼ ½P̂ðx1; y1Þ;…; P̂ðxv; yvÞ;…; P̂ðxV ; yVÞ�> as

P̂V ¼ USVRSVV�SVVSMR�1
SMU�SVPM; (17)

where ð�Þ�1
denotes the matrix inversion operation. To

reconstruct the pressure gradient, the SVD method first

reconstructs the pressure at two closely spaced positions

ðxv 6 dx; yv 6 dyÞ, and then approximates the pressure gradi-

ent by

@P̂SVDðxv; yvÞ
@xv

� P̂ðxv þ dx; yvÞ � P̂ðxv � dx; yvÞ
2dx

; (18)

@P̂SVDðxv; yvÞ
@yv

� P̂ðxv; yv þ dyÞ � P̂ðxv; yv � dyÞ
2dy

: (19)

The radial gradient can be reconstructed as

@P̂SVDðre;/eÞ
@re

¼ @P̂SVDðxe; yeÞ
@xe

cosð/eÞ

þ @P̂SVDðxe; yeÞ
@ye

sinð/eÞ: (20)

C. The AINN

This section proposes an AINN method for SFR. Two

designs of the AINN, depending on whether the real and imagi-

nary parts of the sound pressure are modeled separately or col-

laboratively, are investigated in this paper. In the first design,

the real and imaginary parts of the sound pressure are modeled

with a single network and a single loss function, as shown in

Fig. 2(a). In the second design, by contrast, the real and imagi-

nary parts of the sound pressure are modeled separately with

two small networks with individual loss functions, as illustrated

in Fig. 2(b). Hereinafter, the two designs are referred to as the

coupled acoustics-informed neural network (cAINN) and

decoupled acoustics-informed neural network (dAINN).

To model the real and imaginary parts of the sound

pressure, one network design, cAINN, should have more

expressive power and, hence, more hidden layers or more

neurons in each hidden layer (Goodfellow et al., 2016). As

shown in Figs. 2(a) and 2(b), more neuron connections

between the two hidden layers make the cAINN more com-

plicated than the dAINN. If, in Fig. 2(a), the N neurons in

the upper half network are disconnected from the other N
neurons in the lower half network, the cAINN will be the

same as the simpler dAINN when two losses are used to

train the network separately. Although in theory, cAINN is

capable of exploiting the real and imaginary parts of the

sound pressure for the training process and, therefore, may

achieve better SFR performance, its training is complicated

but may not attain the desired performance in practice.

As depicted in Fig. 2, for cAINN and dAINN, the inputs

are the Cartesian coordinates (x,y) and the outputs are the real

and imaginary parts of the reconstructed sound pressure,

denoted as N<ðx; yÞ and N=ðx; yÞ, respectively. Similar to

the conventional data-driven methods, a data loss is used to

minimize the differences between the reconstructed and mea-

sured sound pressures at the measurement locations. The data

loss for the real parts of the sound pressures L<d is given by

L<d ¼
1

Q

XQ

q¼1

ðP<ðxq; yqÞ � N<ðxq; yqÞ Þ2; (21)

where P<ðxq; yqÞ and N<ðxq; yqÞ denote the real parts of the

measured and reconstructed sound pressure at fxq; yqgQ
q¼1,

respectively.

FIG. 2. (Color online) (a) The single coupled network (cAINN) and (b) the two decoupled network (dAINN) are displayed.
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To incorporate acoustic information into the design of the

neural network, the Helmholtz Eq. (1) is used to calculate an

extra PDE loss. It is noted that, unlike from the data loss that is

calculated only for the measured locations, the PDE loss is cal-

culated for both of the measurement locations on the ROI

boundary and multiple spatially sampled points within the ROI.

By uniformly sampling D positions within the ROI at

fxd; ydgD
d¼1 and referring to Eqs. (1) and (2), the PDE loss for

the real part of the sound pressure L<p is given by

L<p ¼
1

D

XD

d¼1

N<ðxd; ydÞ þ
1

ðw=cÞ2

 

� @2N<ðxd; ydÞ
@x2

d

þ @
2N<ðxd; ydÞ

@y2
d

" #!2

; (22)

where N<ðxd; ydÞ denotes the real part of the reconstructed

sound pressure at fxd; ydg. The number D should be chosen to

be sufficiently large such that the distance between two PDE

loss calculation points is no more than one-tenth of the wave-

length of interest. The data loss and PDE loss are combined to

calculate the total loss. The definitions of the imaginary-part

data loss L=d and PDE loss L=p are similar to Eqs. (21) and (22),

respectively, and are not shown here for brevity.

For the cAINN in Fig. 2(a), a single network is used to

model the real and imaginary parts of the sound pressure,

and there are 2N neurons in each hidden layer. The trainable

parameters of the network are updated to minimize a single

total loss function, i.e.,

L ¼ L<d þ L<p þ L=d þ L=p : (23)

For the dAINN in Fig. 2(b), two independent networks

are used to model the real and imaginary parts of the sound

pressure independently with N neurons in each hidden layer.

The trainable parameters of two networks are updated to

minimize the real-part total loss,

L< ¼ L<d þ L<p ; (24)

and the imaginary-part total loss,

L= ¼ L=d þ L=p : (25)

Once trained, the AINN method can reconstruct the

sound pressure at an arbitrary position (xe,ye) as

N eðxe; yÞ ¼ N<ðxe; yeÞ þ iN=ðxe; yeÞ. The sound pressure

gradient at that position can be reconstructed as

@Nðxe; yeÞ=@xe along the x direction and as @Nðxe; yeÞ=@ye

along the y direction through differentiation on the network

output. The pressure gradient along the radial direction can

be reconstructed as

@Nðre;/eÞ
@re

¼ @Nðxe; yeÞ
@xe

cosð/eÞ þ
@Nðxe; yeÞ

@ye
sinð/eÞ:

(26)

Here, are some comments on the proposed AINN

method and recommended configurations.

1. Using tanh as the activation function

We use tanh as the activation function for two reasons.

First, the tanh function is a smooth function, whose second-

order gradient can be computed. This is necessary for the

Laplacian operators in Eqs. (2) and (3). Second, the tanh func-

tion outputs positive or negative values according to the input.

This makes it easier to model sound pressure, whose value can

be either positive or negative. Sinusoidal functions also meet

these two criteria and, thus, may also be used as the activation

function. However, our trial results indicated that using tanh as

the activation function shows better results than using the sin

function. Therefore, we choose tanh over sin in this paper.

2. Cartesian coordinates vs polar coordinates

For the AINN method, we express sound pressures in

Cartesian coordinates instead of polar coordinates for two

reasons. First, the presence of the 1=r term can make the

polar-coordinate Laplacian operator in Eq. (3) numerically

unstable. Second, when a circular microphone array is used,

no information about the sound field variation along the

radial direction can be measured. In this case, the AINN

method is unable to accurately estimate the first- and

second-order radial gradients needed for calculating the

Laplacian operator in polar coordinates [Eq. (3)].

3. Loss function

The loss functions in Eqs. (23)–(25) consist of the data

loss and PDE loss. The data loss prompts the network output

to approximate the measured sound pressure at positions

fxq; yqgQ
q¼1, which are on the boundary of the ROI as shown

in Fig. 1. The PDE loss, on the other hand, regularizes the

network output to conform with the Helmholtz equation at

positions fxd; ydgD
d¼1 on the boundary of and within the

ROI. D should be chosen to be sufficiently large and, thus,

the distance between adjacent positions is at most half (ide-

ally, one-tenth) of the wavelength for the frequency of inter-

est. It is noted that when calculating the PDF loss in Eq.

(22), the Helmholtz equation was divided by the term

ðx=cÞ2 such that the output error has a consistent physical

dimension with sound pressure. Therefore, theoretically,

there is no need to further balance the data loss and PDE

loss with an extra weighting factor.

4. Neuron number

As displayed in Eq. (8), the sound pressure can be

expressed as a linear combination of 2N þ 1 CHs

fJnðkrÞe�in/gN
n¼�N , which are solutions of the Helmholtz

equation [Eq. (1)]. As depicted in Figs. 2(a) and 2(b), the

very same sound pressure can also be expressed as a linear

combination of the output of a number of neurons. This fact

inspires us to set the number of neurons in hidden layers

according to the CH decomposition of the sound pressure.
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Specifically, for the cAINN, the single network design, the

neuron number is set to be 2N, and for the dAINN, the two

network design, the neuron number is set to be N, where N
can be calculated from Eq. (6). Based on Eq. (6), for a sound

field within a circular ROI with a r¼ 0.1 m radius, the num-

ber of trainable parameters N of the dAINN method are

listed in Table I when the number of hidden layers is L¼ 2.

As shown in Table I, a dAINN with no more than 200 train-

able parameters is sufficient for modeling a r¼ 0.1 m radius

sound field up to 4 kHz, considering the real and imaginary

parts of the complex sound pressure. To model a sound field

of a different size and at other frequencies, we can design

the cAINN and dAINN based on Eq. (6) accordingly. The

AINN is compact in comparison to other learning-based

methods, thus, is easier and faster to train. For example,

Karakonstantis et al. (2024) employed a network with 5 hid-

den layers, each with 512 neurons. It is worth noting that

unlike the time domain approach in Karakonstantis et al.
(2024), our proposed AINN works in the frequency domain.

To reconstruct the time-domain sound field, multiple compact

AINNs, each for a frequency bin, can be trained in parallel. It

is also noted that this paper designed the AINN architecture

and parameters based on the CH expansion order, aiming to

make it more explainable. Hyperparameter optimization of

the AINN may lead to better performance but is not covered

in this paper and will be investigated in the future.

IV. EXPERIMENTS

Experiments were conducted to validate the perfor-

mance of the proposed AINN method and compare it with

the CH and SVD methods.

A. Data processing

The SFR methods were evaluated using the University of

Technology Sydney (UTS) multi-zone sound field reproduction

dataset (Zhao et al., 2022). The measurement setup is shown in

Figs. 3 and 4. The RIRs between a loudspeaker array [Fig. 3(a)]

and two microphone arrays [Figs. 3(b) and 3(c)] were measured

in an anechoic chamber [Fig. 4(a)], a medium meeting room

[Fig. 4(b)], and a small meeting room [Fig. 4(c)]. The micro-

phone arrays were placed at the center of the circular array of

60 loudspeakers. The radius of the loudspeaker array is 1.5 m.

The loudspeaker array consisted of 60 Genelec 8010A

Studio Monitors (Iisalmi, Finland; Zhao et al., 2022), as shown

in Fig. 3(a), and was placed approximately at the center of each

room as shown in Fig. 4. The loudspeaker positions are

xl ¼ �R sinðð2l� 1Þp=60Þm; (27)

yl ¼ R cosðð2l� 1Þp=60Þm; (28)

where R¼ 1.5 m and l ¼ 1; 2;…; 60.

Two microphone arrays were constructed using the

DPA 4060 Series Miniature Omnidirectional microphones

(Kokkedal, Denmark; Zhao et al., 2022), which were cali-

brated at 1 kHz. The first array is a planar 64-microphone

square array with a side length of 0.28 m, as shown in Fig.

3(b). The microphone positions are

xm ¼ �0:14þ 0:04�modðm� 1; 8Þm; (29)

ym ¼ 0:14� 0:04� bðm� 1Þ=8cm; (30)

where b�c is the floor operation, and m ¼ 1; 2;…; 64. The

second array is a dual-circular array with 30 microphones

uniformly placed on each circle, as displayed in Fig. 3(c).

The microphone positions are

hm ¼ 2pðm� 1Þ=30; (31)

xm ¼ �r � sinðhmÞm; (32)

ym ¼ r � cosðhmÞm; (33)

where m ¼ 1; 2;…; 30, and r1 ¼ 0:12 m for the exterior cir-

cle and r2 ¼ 0:1 m for the interior circle.

TABLE I. Trainable parameter number of the dAINN method as a function

of frequency for reconstructing a 0.1 m radius sound field.

Frequency

Number of

layers, L
Number of

neurons, N
Number of trainable

parameters

f¼ 1 kHz 2 2 11

f¼ 2 kHz 2 4 29

f¼ 3 kHz 2 6 57

f¼ 4 kHz 2 8 99

FIG. 3. (Color online) Experimental setup shows (a) the 60-loudspeaker array with a microphone array in the center, (b) the 64-microphone planar array with 28

boundary microphones (?) and 36 interior microphones, and (c) the dual-circular microphone array with 30 exterior microphones (?) and 30 interior microphones.

2014 J. Acoust. Soc. Am. 156 (3), September 2024 Ma et al.

https://doi.org/10.1121/10.0029022

 09 January 2025 04:10:11

https://doi.org/10.1121/10.0029022


The loudspeaker and microphone arrays were connected

to a 64-input-64-output audio interface, which consists of

four Yamaha RIO1608-D2 and four Yamaha RIO8-D

(Shizuoka, Japan). The audio interface was commanded by a

MATLAB program (MathWorks, Natick, MA) through a Dante

virtual sound card (Sydney, Australia). A logarithmic sine

sweep signal of 3 s duration with a frequency range from

20 Hz to 20 kHz was produced through each loudspeaker.

The microphone recorded signals were processed to obtain

the RIRs, which are 43 680 taps long at a sampling rate of

48 kHz. The RIRs were transformed into frequency domain

transfer functions through the discrete Fourier transform

(Oppenheim et al., 1997), resulting in the complex sound

pressures used in the experiments here. For more details

about the measurement, please refer to Zhao et al. (2022).

B. Implementation

The CH method was implemented based on Eqs.

(4)–(11). According to Eq. (6), the dimensionalities of the

sound field within the planar array are N¼ 3, 6, 8 for f¼ 1,

2, 3 kHz, respectively, and the dimensionalities of the sound

field within the dual-circular array are N¼ 3, 5, 7 for f¼ 1,

2, 3 kHz, respectively.

The SVD method was implemented based on Eqs.

(12)–(20). For a source (loudspeaker) located at (xs,ys), the

virtual point sources are uniformly arranged around the

source in a 0.1 m� 0.1 m square, and the distance between

two virtual point sources is 0.01 m. This amounts to 120 vir-

tual point sources in total. The arrangement of the sources

for the SVD method is shown in Fig. 5. It is noted that in the

implementation of the CH and SVD methods according to

Eqs. (7) and (17), respectively, no regularization has been

employed. For the CH method, the condition numbers of the

matrix J in Eq. (7) for the current experimental setup are

less than ten, therefore, the regularization is not necessary.

For the SVD method, incorporating regularization does not

provide sensible improvement over current implementation.

To implement the proposed AINN method, we used the

TensorFlow library and initialized the trainable parameters

according to the Xavier initialization (Glorot and Bengio,

2010). The ADAM algorithm (Kingma and Ba, 2014), with

a learning rate of 0.001, was used as the optimizer. The neu-

ron number was set based on the dimensionality of the

sound field under CH decomposition. The hidden layer

number was set as one for f ¼ 1 kHz and as two for f¼ 2,

3 kHz based on a trial-and-error process.

The data loss was calculated with respect to the mea-

sured sound pressures PM at the corresponding coordinates

fxq; yqgQ
q¼1. The PDE loss was calculated with respect to

coordinates fxd; ydgD
d¼1 on the boundary of and within the

ROI, which were consistently sampled with a uniform inter-

val distance of 0.01 m between adjacent points, as depicted

in Fig. 6. The AINN method was trained for 105 epochs, and

no early stop strategy was implemented. At each epoch,

fPM; fxq; yqgQ
q¼1; fxd; ydgD

d¼1g were fed to the AINN all at

once (no batching). The specific values of Q and D depend

on the experimental setup. For the sound pressure recon-

struction experiments in Secs. IV D and IV E, Q¼ 28

because 28 measurement microphones are used and D¼ 841

for the uniformly sampled spatial points with an interval dis-

tance of 0.01 within the 0.28 m square (Fig. 6). For the pres-

sure gradient reconstruction experiments in Secs. IV F and

IV G, Q¼ 30 because 30 measurement microphones are

used and D¼ 625 for the uniformly sampled spatial points

with an interval distance of 0.01 within the 0.24 m square

around the circular microphone array. The AINN was

trained on a NVIDIA RTX 6000 graphics processing unit

(GPU) (NVIDIA, Santa Clara, CA) with a 24 G random

FIG. 4. (Color online) Photos for the experimental setups show (a) the Anechoic chamber, (b) the medium meeting room, and (c) the small meeting room.

FIG. 5. (Color online) Arrangement of the sources for the SVD method,

where ? denotes the speaker position and • denotes the virtual point source

positions, are shown.
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access memory (RAM), and the training of each AINN for a

frequency took about 3 min.

In Secs. IV C–IV G, the performance of the proposed

AINN method is compared to that of the CH and SVD meth-

ods when the same amount of data are available for all three

methods, which is a fair comparison. It would also be inter-

esting to compare the amount of training data required by

these methods to reconstruct a sound field with a certain

accuracy, which is supposed to depend on frequency and the

accuracy threshold. This will be investigated in future work.

C. Performance metrics

The performance of all methods was evaluated by the

relative reconstruction error,

n ¼ 10 log 10

XE

e¼1

kPðxe; yeÞ � P̂ðxe; yeÞk2
2

XE

e¼1

kPðxe; yeÞk2
2

; (34)

where jj � jj2 denotes the ‘2 norm, Pðxe; yeÞ and P̂ðxe; yeÞ are

the ground truth sound pressure and its reconstruction,

respectively, and fxe; yegE
e¼1 are coordinates of the sound

pressure reconstruction positions, where E is the total num-

ber of reconstruction positions. The pressure gradient recon-

struction error was defined similarly to Eq. (34). The

logarithmic error measure was chosen because it can repre-

sent a wide range of values compactly.

D. Sound pressure reconstruction: Loudspeaker 7

Based on the sound pressures measured by the 28 exte-

rior microphones of the planar array [Fig. 3(b)], we recon-

structed the sound pressures at the 36 interior microphones

within the array. Figures 7–9 show the real parts of the

sound pressure due to loudspeaker 7 [the black loudspeaker

in Fig. 3(a)] at 1, 2, and 3 kHz in the anechoic chamber, the

medium room, and small room, respectively. Figures 7–9

also show the reconstructions by the CH method, SVD

method, AINN method, and corresponding (real and imagi-

nary parts) reconstruction errors n. The results for the imagi-

nary parts are similar and are not shown here for brevity.

As shown in Figs. 7–9, the dAINN, two network design,

outperforms the cAINN, single network design, at all frequen-

cies and in all room environments. Experiments for the cAINN

with more or less neurons on hidden layers, i.e., d3N=2e or 3N,

were also conducted, and the results were also inferior to those

for the dAINN, thus, they are not revealed for brevity.

Hereinafter, we focus only on the dAINN.

As shown in the second and third rows of Figs. 7–9, the

SVD method performs better than the CH method and in

most of the cases for f¼ 2, 3 kHz, with a reduction in the

overall reconstruction error by 1.0–2.6 dB at 2 kHz and

FIG. 6. (Color online) Arrangement of points (•) used for PDE loss calcula-

tion for the AINN method are displayed.

FIG. 7. (Color online) Comparison of measured and reconstructed sound

pressures within the planar array based on the measured sound pressures by

the boundary microphones (?) in the anechoic chamber. The pressure recon-

struction error n is calculated based on Eq. (34).
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1.2–4.1 dB at 3 kHz across the three rooms. This could be

attributed to the facts that prior information of the sound

source location was used in the SVD method (Zhu et al.,
2020, 2021) or the noncircular/cylindrical geometry of the

array does not allow the CH method to work effectively. In

contrast, the proposed dAINN outperforms the SVD method

in all of the tested rooms at f¼ 2, 3 kHz, although no prior

information about the sound source location was required by

the dAINN method. This could be attributed to the fact that

the CH and SVD methods relied on only the sound pressures

measured on the edge of the planar array for SFR. The mea-

sured pressures did not necessarily contain sufficient infor-

mation to fully determine the sound field within the planar

array. The dAINN, on the other hand, exploited the

Helmholtz equation for regularizing the SFR within the

array through the PDE loss and reconstructed the sound field

within the planar array more accurately.

As shown in the first column of Fig. 7, at 1 kHz, all

methods achieve lower than �10 dB reconstruction errors in

the anechoic chamber. However, Figs. 8(a1)–8(a4), 9(a11),

9(a12)–9(a41), and 9(a42) show that in the medium and

small rooms, the pressure reconstruction errors of all of the

methods are poor. Specifically, the SVD method, cAINN

method, and dAINN method achieve larger than 0 dB pres-

sure reconstruction errors in the medium room. This may be

attributed to the fact that in the medium [Fig. 8(a0)] and

small rooms [Fig. 9(a0)], under the particular loudspeaker-

microphone array setup, the interference between the direct

sound and room reflected sound makes the sound field

within the planar array show no viable wave front as in the

FIG. 8. (Color online) Comparison of measured and reconstructed sound

pressures within the planar array based on the measured sound pressures by

the boundary microphones (?) in the medium meeting room. The pressure

reconstruction error n is calculated based on Eq. (34).

FIG. 9. (Color online) Comparison of measured and reconstructed sound

pressures within the planar array based on the measured sound pressures by

the boundary microphones (?) in the small meeting room. The pressure

reconstruction error n is calculated based on Eq. (34).
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anechoic chamber [Fig. 7(a0)]. This causes the methods to

be unable to accurately reconstruct the sound field. An

extension of this work is to exploit knowledge of the sound

source(s) position to further improve the performance of the

AINN method, which will be investigated in the future.

Figure 10 further shows the difference, i.e., P<ðxe; yeÞ
� P̂

<ðxe; yeÞ, between the ground truth and the reconstruc-

tions by different methods in the small meeting room. It can

be observed that the difference is close to zero on the bound-

ary of the microphone array but is larger in the interior of

the microphone array. The results are expected as the pres-

sures on the boundary are known and used in the calcula-

tions or training. Larger errors are observed at 1 kHz than at

2 kHz and 3 kHz, which is consistent with Fig. 9.

Figure 11 depicts the learning curves for real/imagi-

nary-part data and PDE losses of the dAINN method in the

medium room at 2 kHz, which corresponds to Fig. 6(b4).

The learning curves of the dAINN method at other frequen-

cies and other room environments are similar to those in

Fig. 11 and, thus, are not shown here for brevity. As dis-

played in Fig. 11, the learning curves converge after 50 000

epochs of training. After convergence, the difference

between the data and PDE losses for the real part is

jL<d � L<p j � 4 dB, and the corresponding difference for the

imaginary part is jL=d � L=p j � 3 dB.

E. Sound pressure reconstruction: All loudspeakers

The SFR experiment was further conducted for other loud-

speakers with one loudspeaker working each time. For each

loudspeaker, we set the transfer functions between it and the

planar array as the sound pressure. We used the sound pressure

measured by the exterior 28 microphones to reconstruct the

sound pressure at the interior 36 microphones within the planar

array. Figure 12 compares the sound pressure reconstruction

errors of the CH, SVD, and dAINN methods in the three rooms

for all loudspeakers at 3 kHz.

The dAINN achieves the smallest average reconstruc-

tion errors of –12.5, –8, and –7.2 dB, in the anechoic cham-

ber, medium room, and small room, respectively. Similar

experiments were also conducted at 1 and 2 kHz. Except

that the reconstruction errors were larger for the medium

room and small room at 1 kHz, the results were similar to

those in Fig. 12 and, thus, are not shown here for brevity. It

is noted that Fig. 12 displays that the reconstruction errors

in the anechoic chamber are smaller than those in other two

rooms. That is because the boundaries and scatterers in the

other two rooms make the sound field complex or of high

frequency in the spatial domain, and the AINN has a hard

time to learn the high-frequency spatial feature (Xu

et al., 2022).

F. Pressure gradient reconstruction: Loudspeaker 7

The sound pressures measured by the 30 micro-

phones on the exterior circle of the dual-circular array

[Fig. 3(c)] were used to reconstruct the radial pressure

gradients between the two circles. The ground truth

radial pressure gradients could not be directly measured

by the setup shown in Figs. 3 and 4, thus, were approxi-

mated as

@Pðr; hmÞ
@r

� Pðr1; hmÞ � Pðr2; hmÞ
r1 � r2

; (35)

where m ¼ 1; 2;…; 30. The radial pressure gradients were

reconstructed by the CH method, SVD method, and dAINN

method through Eq. (9), Eq. (20), and Eq. (26), respectively.

FIG. 10. (Color online) Sound pressure reconstruction errors [P<ðxe; yeÞ
�P̂

<ðxe; yeÞ] within the planar array based on the measured pressures by

the boundary microphones (?) in the small meeting room.

FIG. 11. (Color online) The learning curves for the real/imaginary part data

and PDE losses of the dAINN method in the medium room at 2 kHz.
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To examine the effectiveness of the pressure gradient

approximation, we performed a simulation based on the

ideal free-field environment before experimenting with the

real-measured transfer functions in different rooms. The

transfer functions between loudspeaker 7 and the dual-

circular array were simulated using the free-field Green’s

function (Williams, 1999) with added white Gaussian noise

at a signal-to-noise ratio (SNR) of 20 dB to model disturban-

ces. The reconstruction errors are depicted in Fig. 13. As

shown in Figs. 13(a1), 13(b1), and 13(c1), the reconstruction

errors of three methods are relatively small, i.e., <�10 dB,

when using the simulated sound pressures for reconstruc-

tion, which demonstrate the effectiveness of the approach.

The experimental results for the real-measured transfer

functions in different rooms are shown in Figs. 13(a2)–13(c4).

It can be observed that the reconstruction errors of all three

methods show signs of degradation compared to the results

with simulated transfer functions. The CH and SVD methods

exhibit significant deviations from the ground truth in the

medium and small rooms. In contrast, by exploiting the data-

independent Helmholtz equation for regularization, the dAINN

method is less susceptible to the inherent disturbances of the

measurement processes. Thus, the dAINN method achieves the

least pressure gradient reconstruction errors in most cases.

FIG. 12. (Color online) Sound pressure reconstruction errors for all loud-

speakers at 3 kHz in three rooms. The label “small, CH” denotes the sound

pressure reconstruction error of the CH method in the small room, and other

labels are similarly defined.

FIG. 13. (Color online) Comparison of measured and reconstructed radial pressure gradients based on the measurement of 30 microphones along the exterior

circle of the dual-circular array for loudspeaker 7. The numbers in the legends denote the reconstruction errors by the SH, SVD, and dAINN methods.
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G. Pressure gradient reconstruction: All
loudspeakers

The pressure gradient reconstruction experiment was

repeated over all 60 loudspeakers. We set each loudspeaker

to the dual-circular array’s transfer function as the sound

pressure, approximated the radial pressure gradient accord-

ing to Eq. (35), and reconstructed the pressure gradient in

the same way as in Sec. IV F.

Figure 14 shows reconstruction errors for all loud-

speakers in the three rooms by the CH, SVD, and dAINN

methods at 3 kHz. The experimental results for 1 and 2 kHz

showed similar results as for that in Fig. 14 and, thus, are

not shown for brevity. Comparing Fig. 14 with Fig. 12, we

can see that the pressure gradient is more challenging to

reconstruct than the sound pressure. The dAINN achieves

the smallest average reconstruction errors of –11.5, –7.0,

and –5.5 dB in the anechoic chamber, medium room, and

small room, respectively. The average reconstruction errors

of the SVD method are about 2 dB higher than those of the

dAINN method. The reconstruction errors of the CH method

are the worst and exceed 0 dB in the small room.

It is noted that in this paper, the pressure gradient was

approximated by the finite difference [Eq. (35)]. This may

not be accurate in some circumstances and may contribute

to the relatively high reconstruction errors depicted in Figs.

13 and 14. The velocity sensor (De Bree, 2003) may be used

for measuring the pressure gradient and testing the perfor-

mance of the pressure gradient reconstruction in the future.

V. CONCLUSION

This paper proposed a compact AINN method for SFR.

A neural network was designed to approximate the mea-

sured sound pressure and obey the Helmholtz equation,

which regularized the network to generate physically valid

output at and beyond the measurement positions. The per-

formance of the AINN method was validated by sound pres-

sure and pressure gradient reconstruction experiments and

outperformed the CH and SVD methods. The design of the

AINN method, specifically its width and depth, is still

empirical. Further theoretical investigation is needed to

provide better guidance on the AINN design, which will be

one of our future research topics.
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