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Abstract 

This report delves into the complex nature of bushfire fuels, encompassing both living and dead 

vegetation, and their profound influence on fire dynamics. Examining critical attributes such as 

vegetation type, moisture content, fuel shape and size, fuel load, chemical composition, and 

arrangement (whether horizontal or vertically oriented), we explore their collective impact on fire 

behavior. In the subsequent sections, we present a concise overview of these primary fuel 

attributes, comprehensively detailing each aspect and exploring their ramifications on fire danger 

through the lens of remote sensing techniques. The study aims to unravel the intricate relationships 

between these fuel characteristics and the overarching danger posed by bushfires. Additionally, 

the conclusion offers a summary of diverse remote sensing methods employed for mapping various 

fuel attributes in the unique Australian context. Utilizing advanced remote sensing techniques 

enhances our understanding of spatial and temporal dynamics, contributing to a holistic approach 

in fire management and mitigation. The diverse range of remote sensing methods highlighted in 

the report underscores their significance in mapping and monitoring various fuel attributes, 

offering valuable insights for predicting, managing, and responding to bushfires. 
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1. Fuel moisture content (FMC) 

The moisture content within the fuel, known as Fuel Moisture Content (FMC), stands out as a 

pivotal factor significantly influencing both the initiation and propagation of bushfires (Yebra et 

al., 2013). FMC, expressed as a percentage, represents the water content within a given fuel. Forest 

fuels are broadly categorized as live and dead fuels, leading to the division of FMC into Live FMC 

(LFMC) and Dead FMC (DFMC). Both LFMC and DFMC play crucial roles in shaping the 

occurrence and behavior of forest fires. However, obtaining precise and frequent estimates of FMC 

across spatial and temporal scales poses challenges. Local accuracy is achievable through field 

sampling and gravimetric methods, albeit at a high cost. However, extrapolating such 

measurements to broader landscape, regional, or global scales proves impractical. Alternatively, 

meteorological data has been explored for FMC estimation, presenting two primary challenges. 

Firstly, the spatial extent of meteorological data is limited, and secondly, the distribution of 

meteorological stations may be inadequate for FMC predictions, particularly in urban areas. 

Consequently, calculating FMC relies on interpolation methods, often leading to significant errors. 

To overcome these hurdles, remote sensing (RS) data emerges as a valuable tool for assessing 

FMC across extensive areas, offering fine spatial and temporal resolutions. However, it is crucial 

to note that the utilization of RS data for FMC assessment requires careful calibration and 

validation, as highlighted in this review (Yebra et al., 2013). Below, we present some of the prior 

studies focused on FMC estimation using remote sensing data. Subsequently, we compile a 

summary outlining the strengths and limitations of each remote sensing technique employed for 

this specific task in Table 1. 

 1.1. LFMC estimation using satellite products 

The prevalent options for estimating LFMC from remote sensing (RS) data often involve globally 

accessible coarse spatial resolution datasets, such as Advanced Very High-Resolution Radiometer 

(AVHRR) or Moderate Resolution Imaging Spectrometer (MODIS) data. These datasets offer a 

combination of high temporal resolution, making them particularly suitable for operational 

applications. The extended time series and cost-effectiveness of AVHRR images position it as a 

favorable choice for operational applications, given its ability to provide valuable data with high 

temporal frequency. For example, García et al. (2008) conducted LFMC estimation for two 

vegetation types, grasslands and shrublands, in Cabañeros National Park, Spain, utilizing 

Advanced Very High-Resolution Radiometer (AVHRR) data along with meteorological 



information. However, AVHRR data presents significant limitations for Fuel Moisture Content 

(FMC) calculations due to the absence of Shortwave Infrared (SWIR) bands, low radiometric 

stability, and suboptimal spatial resolution. The deficiency in SWIR bands is particularly notable 

as they directly contribute to plant water absorption, offering a more direct means of estimating 

FMC. In a different approach, Yebra et al. (2018) employed a physically-based retrieval model to 

estimate LFMC from MODIS reflectance data for continental Australia. This methodology sought 

to enhance the accuracy of LFMC estimation by incorporating a model grounded in physical 

principles.  

LFMC has also been estimated using medium-spatial-resolution products such as Landsat sensors. 

For example, Chuvieco et al. (2002) applied the Landsat Thematic Mapper (TM) sensor to estimate 

LFMC in Mediterranean grassland and shrubland. Their study also involved predicting fire danger 

using defined indices and reflectance measurements. Despite the slightly higher correlations 

observed with Landsat TM data, the combination of cloud cover and a temporal resolution of every 

16 days might pose limitations for LFMC monitoring applications. These factors can potentially 

restrict the use of this type of data, even though it offers valuable insights into LFMC estimation 

and fire danger prediction. 

WorldView-2, IKONOS, QuickBird, and GeoEye-1 represent high spatial resolution sensors that, 

to date, haven't been extensively utilized for Live Fuel Moisture Content (LFMC) estimation. 

While simple Vegetation Indices (VI) based on visible and near-infrared reflectance may offer 

some utility, the limited spectral range of these sensors (typically 4–8 bands covering the visible 

and near-infrared) hinders a comprehensive assessment of spectral characteristics, including liquid 

water absorption. For more effective high-resolution LFMC analysis, the upcoming WorldView-

3 mission is cited as a potentially more valuable resource. This mission incorporates a 3.7 m spatial 

resolution Shortwave Infrared (SWIR) band, providing enhanced capabilities for LFMC 

estimation by offering a broader spectral range and improved sensitivity to water absorption 

characteristics. 

The use of active microwave data is advantageous for studying Live Fuel Moisture Content 

(LFMC) in regions with persistent cloud cover. The wavelengths associated with active microwave 

data are not impeded by cloud cover, enabling researchers to gather information on LFMC even 

in areas where traditional optical sensors may be hindered by cloudiness. This capability makes 

active microwave data a valuable tool for LFMC investigations in regions prone to frequent cloud 

cover. In the study conducted by Fan et al. (2018), monitoring of LFMC was carried out using 

microwave remote sensing data. The findings of the study suggest that optical remote sensing 

indices are highly effective for LFMC monitoring. Looking ahead, future research is expected to 

explore data-fusion approaches or the integration of satellite-derived indices from both optical and 

microwave data to enhance global LFMC monitoring capabilities. This approach aims to leverage 

the strengths of different remote sensing modalities for a more comprehensive and accurate 

assessment of LFMC on a global scale. 

The utilization of airborne hyperspectral products for estimating LFMC has demonstrated notable 

benefits when compared to satellite observations. This approach, involving high-resolution 

hyperspectral data collected from airborne platforms, enhances the precision and detail of LFMC 



estimation. The increased spatial and spectral resolution afforded by airborne hyperspectral 

products contributes to a more refined and accurate assessment of LFMC, showcasing the 

advantages of this method over satellite-based observations. For instance, in a semi-natural upland 

region dominated by Calluna vulgaris in the United Kingdom, Al-Moustafa et al. (2012) 

investigated the use of airborne hyperspectral data for predicting Live Fuel Moisture Content 

(LFMC). The study indicated that while airborne data may lack the required temporal resolution 

for direct LFMC estimation, it can be acquired on demand. The Hyperspectral Infrared Imager 

(HyspIRI) mission, designed for space-borne imaging spectroscopy, is slated to have a 19-day 

repeat coverage, which may be insufficient for real-time LFMC tracking. Nevertheless, this data 

could prove valuable for calibrating and validating LFMC estimates derived from sensors with 

higher temporal resolution. The combination of coarse and fine spatial resolution sensors is 

proposed as a strategy to provide complementary spatial information for practical LFMC 

assessment. 

1.2. Estimation of DFMC from satellite data 

For operational estimations of Dead Fuel Moisture Content (DFMC), remote sensing (RS) data 

emerges as a viable option. Unlike meteorological observations, RS data provides geographically 

comprehensive products across various scales, both spatially and temporally, depending on the 

sensor used. To date, the majority of studies utilizing remotely sensed data for Fuel Moisture 

Content (FMC) calculations have primarily focused on Live Fuel Moisture Content (LFMC), with 

relatively fewer studies dedicated to DFMC. Among the remotely sensed data, MODIS (Moderate 

Resolution Imaging Spectroradiometer) and MSG-SEVIRI (Meteosat Second Generation - 

Spinning Enhanced Visible and Infrared Imager) data are the most commonly employed for DFMC 

retrieval. MSG-SEVIRI data offers high temporal resolution, while MODIS data provides varying 

levels of spatial resolution. This dual utilization caters to different aspects of DFMC monitoring, 

considering both temporal dynamics and spatial granularity. 

In a study conducted by Zormpas et al. (2017) within a complex Mediterranean ecosystem, the 

objective was to evaluate Landsat 8's capability to retrieve Dead Fuel Moisture Content (DFMC). 

The study correlated the 10-hour fuel moisture content and surface temperature reported by 

Remote Automatic Weather Stations (RAWS) with the Normalized Difference Vegetation Index 

(NDVI) and top-of-atmospheric brightness temperature. Training data were collected for the year 

2015, and validation data were applied for the year 2016. Initially, DFMC was associated with the 

NDVI/LST ratio, but the results were deemed unsatisfactory, showing low R2 coefficients. 

However, enhanced models based on DFMC and brightness temperature (BT) were developed, 

yielding satisfactory R2 values. The validation using new data suggested that top-of-atmosphere 

brightness temperature derived from Landsat 8 could be employed to predict the spatial 

distribution of DFMC. Beyond Landsat 8, the study also acknowledged the potential of new 

sensors with high spatial, spectral, and temporal resolutions, such as Sentinel-2, for deriving water 

content-sensitive indices. Additionally, commonly used indices like the Normalized Difference 

Infrared Index (NDII) and the Normalized Difference Water Index (NDWI) were highlighted for 

measuring the Equivalent Water Thickness (EWT) of leaves and canopies remotely. These 

findings emphasize the importance of exploring a range of sensors and indices to enhance the 

accuracy of DFMC predictions in diverse ecosystems. 



 

 

 

Table 1. Different remote sensing data are applied to fuel moisture content mapping (FMC). 

Sensor Country/Scale Advantages Disadvantages Reference 

AVHRR Spain/Regional 

• Provide high 

enough temporal 

resolution 

• Low cost 

• Low 

radiometric 

stability 

• Poor spatial 

resolution  

• Lack of SWIR 

bands 

(García et al., 

2008) 

Modis Australia/National 

• Time series 

imagery is 

available  

• Low cost 

• Global coverage 

• Limited to 

canopy 

• Poor spatial 

resolution 

(Yebra et al., 

2018) 

Landsat Thematic 

Mapper 
Spain/Regional 

• Low cost 

• Easy access 

• Low spatial 

resolution 

• Limited to 

canopy 

• Cloud cover 

may limit the 

use of this type 

of data 

 

(Chuvieco et al., 

2002) 

Microwave Images France/Regional 

• Not interfered by 

cloud cover 

• Penetrate into the 

canopy 

• Can capture 

vegetation water 

dynamics better 

than lower 

wavelength optical 

metrics (sensitive 

to dielectric 

properties) 

• Spatial 

resolution varies 

and is usually 

low, except for 

TerraSAR-X 

• Restricted 

access to data (a 

certain number 

of the scene; 

also, some data 

not sharable 

with certain 

developing 

countries) 

(Fan et al., 2018) 

Airborne 

Hyperspectral Data 
UK/Regional 

• Provide detailed 

information 

• Have a fine 

spectral resolution 

• They are 

unlikely to have 

the temporal 

resolution 

• Costly and 

complex 

(Al-Moustafa et 

al., 2012) 

 

 

 



2. Fuel types classification 

A fuel type has been defined as ‘‘an identifiable association of fuel elements of distinctive species, 

form, size arrangement, and continuity that will exhibit characteristic fire behavior under defined 

burning conditions’’(Merrill and Alexander, 1987).  

Identifying and mapping fuel types presents a considerable challenge, underscoring the importance 

of selecting an appropriate mapping method. Traditional approaches, such as field surveys, have 

been conventionally employed for this purpose. The primary advantage of field measurements lies 

in the direct interaction with the fuel, allowing for mapping based on genuine ground conditions. 

Consequently, field observations remain indispensable for accurately mapping fuel types. 

However, the significant time and financial investments required for field surveys pose challenges, 

making their implementation impractical for many land managers. Moreover, the necessity for 

regular updates to fuel type maps further compounds the difficulty of maintaining accuracy 

through this method. As a result, the quest for alternative and more efficient mapping approaches 

is imperative in order to address the limitations associated with traditional field surveys (Falkowski 

et al., 2005). In response to the limitations of field surveys, alternative approaches for operational 

fuel type mapping have emerged, with remote sensing technologies playing a key role. These 

technologies leverage images to discern and classify fuel types, offering solutions to the cost and 

spatial coverage constraints associated with traditional field surveys. Remote sensing provides a 

valuable tool for efficiently mapping fuel types over large areas, allowing for broader coverage 

and cost-effective data collection. This shift towards remote sensing addresses the challenges 

posed by the traditional field survey method and contributes to more effective and scalable fuel 

type mapping for land management purposes. 

2.1. Fuel types mapping using remote sensing techniques  

Remote sensing offers a versatile array of sensors and techniques to facilitate fuel type mapping. 

In this section, the techniques employed for fuel type mapping through remote sensing are 

categorized based on the type of sensor used. Table 2 succinctly outlines the advantages and 

limitations of each approach, providing a comprehensive overview of the diverse methods 

available for effective fuel type mapping (Abdollahi and Yebra, 2023). 

2.1.1. Passive sensors 

Multispectral remote sensing data, including sources like Modis, Landsat, SPOT, ASTER, 

Sentinel-2, and high-resolution data such as QuickBird and IKONOS, have been effectively 

utilized for mapping fuel types. However, a notable constraint of these optical data sources is their 

limited ability to penetrate forest canopies. This limitation becomes particularly pronounced in 

areas with multiple canopy layers, where these sensors may struggle to identify surface fuels 

effectively. Additionally, in regions with open-crowned stands where sensors can observe the 

ground, conventional image processing methods encounter challenges in distinguishing between 

surface fuel sizes and groups. Furthermore, the reflectance captured by these sensors is not directly 

linked to vegetation height, a crucial factor in determining fuel types. Despite their advantages, the 

mentioned optical data sources exhibit limitations in scenarios involving complex vegetation 

structures, emphasizing the need for complementary approaches and alternative sensors for 

comprehensive fuel type mapping (Lasaponara and Lanorte, 2006).  



Hyperspectral remote sensing technologies leverage numerous continuous spectral bands to 

measure reflected electromagnetic radiation. This wealth of spectral information has proven to be 

highly beneficial for both spatial and spectral differentiation of various fire-related vegetation 

properties. Hyperspectral data facilitates the assessment of factors such as the distribution of bare 

ground, the ratio of dead-to-living plant material, vegetation moisture content, and green canopy 

closure. The detailed and extensive spectral bands provided by hyperspectral sensors enhance the 

capacity to discern and characterize diverse vegetation features related to fire behavior and fuel 

properties (Jia et al., 2006). The primary limitation of airborne hyperspectral images, such as those 

from sensors like MIVIS and AVIRIS, is their restricted spatial coverage. In contrast, satellite-

based hyperspectral sensors present a more promising alternative due to their broader coverage, 

greater constancy, and cost-effectiveness in monitoring. Notably, sensors like Hyperion have 

demonstrated effective applications in mapping forest types and assessing fire risk. The utilization 

of satellite-based hyperspectral data offers the advantage of consistent and widespread monitoring, 

making it a valuable resource for large-scale assessments and long-term monitoring of vegetation 

properties related to fire behavior and fuel types (Keramitsoglou et al., 2008). The key aspects of 

the hyperspectral sensors are presented in Table 2.  

2.1.2. Active sensors 

LiDAR (Light Detection and Ranging) is emerging as a viable alternative to address the primary 

challenges posed by passive optical data in mapping fuel types. It proves particularly useful when 

the forest canopy obstructs the observation of surface fuels, as LiDAR can penetrate the canopy 

and provide valuable information about these fuels. Moreover, LiDAR can be employed to 

determine fuel heights, a critical factor for distinguishing between various fuel types and assessing 

fuel loads accurately. Beyond surface fuel mapping, LiDAR data can be leveraged to obtain 

additional metrics crucial for fire behavior modeling. These metrics include crown bulk density 

and canopy-based height, demonstrating the versatility of LiDAR in capturing detailed information 

about vegetation structure and characteristics relevant to fire dynamics and fuel properties 

(Chuvieco and Kasischke, 2007). 

Active sensors, such as RADAR data, offer valuable supplementation to optically detected fuel 

type properties. Various experiments have been conducted to determine critical forest properties 

for fuel type mapping, including canopy closure, tree height, tree volume, and foliar biomass, using 

satellite RADAR data (Garestier et al., 2007; Smith-Jonforsen et al., 2007). Despite the satisfactory 

outcomes and expectations from these investigations, relatively few studies delve into the 

utilization of satellite RADAR data specifically for fuel type mapping. Nonetheless, RADAR data 

can serve as an ideal complement to LiDAR measurements. It allows for the analysis of broader 

areas and is generally less expensive to acquire. The combination of active sensors, such as 

RADAR, with other remote sensing techniques presents a comprehensive approach to effectively 

capture a wide range of vegetation properties relevant to fuel type mapping. 

2.2. Integrated methods for fuel types mapping 

In the realm of remote sensing, employing a combination of multiple fuel mapping methods and/or 

data sources represents a promising and innovative strategy. This approach holds potential not only 

for fuel mapping but also for a variety of diverse applications. One avenue involves integrating 



remote sensing technology with conventional techniques, proposing an inclusive methodology that 

combines extensive field sampling, biophysical gradient modeling, and categorization of 

vegetation characteristics. This integrated approach capitalizes on the strengths of each method, 

leveraging the spatial and spectral capabilities of remote sensing alongside the detailed insights 

provided by conventional techniques. By synergizing these methodologies, researchers and land 

managers can attain a more comprehensive and accurate understanding of fuel types and related 

vegetation properties. This strategy exemplifies the growing trend in remote sensing towards 

holistic and synergistic approaches for a wide range of environmental applications (Falkowski et 

al., 2005). 

Relying solely on remote sensing technology, the integration of multiple sensors has proven to be 

a highly effective strategy. Particularly, the combination of spectrum data, often derived from Very 

High-Resolution (VHR) or hyperspectral sensors, with LiDAR has demonstrated significant 

effectiveness. This synergistic approach serves as a viable alternative for addressing the intricate 

nature of fuels. By merging spectrum data and LiDAR information, researchers gain the advantage 

of both detailed spectral information and accurate three-dimensional structural data. This 

combined dataset enhances the ability to discern and classify different fuel types and provides a 

more comprehensive understanding of vegetation structure relevant to fire behavior. The 

integration of diverse remote sensing technologies underscores the capacity to exploit the 

complementary strengths of various sensors for more robust and accurate fuel type mapping 

(Mutlu et al., 2008).  

In Australia, particularly outlined in studies by Cruz et al. (2018) and Hollis et al. (2015), the 

Australian Fire Danger Rating System (AFDRS) has developed a static fuel classification and map 

based on the National Vegetation Information System (NVIS) and Australian Land Use 

Management Classification (ALUM). While this provides a foundational understanding, dynamic 

maps can significantly enhance the accuracy and utility of fuel classifications. Dynamic maps, 

facilitated by various temporal remote sensing (RS) data, involve observing and analyzing fuel 

types at different times. This approach allows for the identification of changes in the state of fuel 

types over time, providing valuable insights for bushfire modeling and aiding policymakers in 

informed decision-making processes. The dynamic mapping approach offers a more nuanced and 

up-to-date perspective on fuel conditions, contributing to a better understanding of the evolving 

fire risk landscape (Matthews S, 2019). 

Table 2. The benefits and limitations of various remote sensing data applied to fuel types mapping. 

Data Benefits Limitations 

Multispectral Data • Reasonable cost 

• Easy accessibility 

• Provide good spectral 

information 

• Mapping of physical components 

• Restricted spatial resolution 

• Restricted to canopy 

• Cloud cover may limit the use 

of this type of data 

 

VHR Data • Detailed information 

• High spatial resolution 

• Mapping of physical components 

 

• Computing demanding 

• Restricted spectral 

information 



• Cloud cover may limit the use 

of this type of data 

Hyperspectral Data • Rich in spectral information 

• Mapping of biophysical 

components 

• Adapted to fuel properties 

• High dimensionality  

• Restricted area coverage 

• Complex data processing 

• Cloud cover may limit the use 

of this type of data 

LIDAR 

• Canopy and Subcanopy structure 

information 

• Direct measurements of height 

and other structural properties of 

fuel 

• Reasonable cost than manual 

inventory for small areas 

• Costly 

• Covering a limited area 

 

3. Fuel load estimation 

Fuel load, defined as the amount of combustible material in a defined space and fuel layer, is a 

critical parameter in forest ecosystems, influencing fire behavior, flame length, fireline intensity, 

and the rate of spread (Keane, 2012). Improved predictions of fire behavior, risk assessments, and 

control strategies can be achieved by regularly obtaining accurate fuel load distributions across 

various vegetation types and scales. Two primary approaches are typically employed to obtain fuel 

load data. The first method involves using site-specific fuel characteristics calculated for the 

landscape to simulate wildfires (Elia et al., 2015). The second method adopts standard fuel 

parameters, such as fuel models and associated studies (Keane, 2012; Wu et al., 2011). While 

estimating fuel characteristics for a specific area has been identified as the optimal strategy for 

accurate site-specific fire simulation, field surveys pose challenges due to their high cost and time 

commitment, limiting their replication across diverse locations and on a regular basis (Hermosilla 

et al., 2013). Although the second technique is considered more cost-effective and time-efficient 

for obtaining fuel characteristics, it is recognized that fire simulations may be influenced by 

various biases when using non-site-specific input data. Striking a balance between accuracy and 

practicality remains a challenge in the quest for robust fuel load data for effective fire management 

strategies. 

Indeed, the need for regularly estimating fuel parameters across various vegetation types and scales 

has prompted the development of novel techniques. The growing availability of advanced sensors 

and remote sensing technology has played a crucial role in addressing this need by providing data 

for modeling fuel load estimates (Abdollahi and Yebra, 2023). Researchers have actively explored 

a variety of remote sensing techniques to assess vegetation fuel loads, acknowledging the 

limitations and challenges associated with traditional methods discussed earlier. These efforts 

contribute to the advancement of more efficient and scalable approaches for regularly monitoring 

fuel parameters, ultimately enhancing our understanding of fire behavior and supporting effective 

fire management strategies.  



For instance, in the USA, researchers have utilized various remote sensing technologies to estimate 

fuel loads. For example, in New Mexico, aerial photographs were employed to develop fuel load 

snapshots for specific areas (Scott et al., 2002). Similarly, Landsat imagery was utilized in South 

Dakota to create fuel load models (Reich et al., 2004), while multifrequency polarimetric synthetic 

aperture radar was employed in Yellowstone National Park (Saatchi et al., 2007). The first two 

studies noted that although the high spatial resolution fuel load models were generally good, they 

exhibited high errors in one of the study areas and some degree of skewed distribution. In the third 

study, it was found that estimates of three key fuel load characteristics provided over 70% accuracy 

when compared to plot measurements. However, the use of these fuel load models was limited to 

regions with similar climates, terrain, and soil conditions. In China, a recent study utilized a high-

resolution satellite image from QuickBird and Landsat imagery to construct a fuel load model for 

a region in the northeast of the country. The researchers found that both QuickBird and Landsat 

models better estimated fine fuel loads but were less accurate for coarse fuel loads (Jin and Chen, 

2012). In northeastern Spain, Arellano-Pérez et al. (2018) employed two machine learning 

algorithms (Random Forest and Multivariate Adaptive Regression Splines) and Sentinel-2 data to 

estimate the surface fuel load of pinewood. However, the model's performance was poor, possibly 

due to the authors' reliance solely on Sentinel-2A products as remote sensing parameters, 

neglecting the potential benefits of incorporating multi-source data. 

D’Este et al. (2021) used multi-source remote sensing products such as Light Detection and 

Ranging (LIDAR), optical (Sentinel-2), and Synthetic Aperture Radar (SAR, Sentinel-1) data 

along with machine learning techniques for fine dead fuel load estimation for the Apulia region 

(southern Italy). The LIDAR factors were shown to have a higher predictive ability than the NDVI 

and vertical transmit/horizontal receive (VH) polarization. The most essential variables for fuel 

load estimation are the canopy height model (CHM), followed by canopy and vegetation cover. It 

is most probably linked to the fact that if the canopy's degree of height and coverage increases, the 

biomass of small branches, twigs, and leaves will also increase. These findings are consistent with 

those of (Chen et al., 2017), who used airborne/terrestrial LIDAR and multiple regression analysis 

for surface fuel load estimation in Australia's open eucalyptus forests. When canopy layers are 

stratified and dense, NDVI is unable to identify the undergrowth. Furthermore, NDVI does not 

provide information on vegetation structure, unlike LIDAR variables. The findings also indicate 

that VH polarization played a lesser role in fuel estimation. A more reasonable reason, derived 

from the findings of similar research, is that the Sentinel-1 satellite data have a short wavelength, 

resulting in minimal canopy penetration (Patel et al., 2006). For instance, Kumar et al. (2019) 

discovered that VH polarization acquired by Sentinel-1A and above-ground biomass assessed in 

the field had a negligible association. In contrast, the researchers showed a link between VH 

polarization collected by ALOS PALSAR and biomass. This is because the L-Band is more 

sensitive to backscatter values and has a higher canopy penetration as opposed to Sentinel 1-A's 

C-band.  

In a study conducted by D’Este et al. (2021) in the Apulia region of southern Italy, multi-source 

remote sensing products, including Light Detection and Ranging (LiDAR), optical data from 

Sentinel-2, and Synthetic Aperture Radar (SAR) data from Sentinel-1, were employed in 

conjunction with machine learning techniques for fine dead fuel load estimation. The research 



found that LiDAR factors exhibited higher predictive ability compared to the Normalized 

Difference Vegetation Index (NDVI) and vertical transmit/horizontal receive (VH) polarization 

from Sentinel-1. The most crucial variables for fuel load estimation were identified as the canopy 

height model (CHM), followed by canopy and vegetation cover. This association is likely 

attributed to the fact that an increase in canopy height and coverage corresponds to an increase in 

biomass of small branches, twigs, and leaves. These results align with the findings of Chen et al. 

(2017), who used airborne/terrestrial LiDAR and multiple regression analysis for surface fuel load 

estimation in Australia's open eucalyptus forests. In dense and stratified canopy layers, NDVI 

struggles to identify undergrowth, and it does not offer information on vegetation structure as 

effectively as LiDAR variables. The study also indicated that VH polarization played a lesser role 

in fuel estimation. This observation is consistent with similar research, suggesting that Sentinel-

1's short-wavelength data leads to minimal canopy penetration. For example, Patel et al. (2006) 

found that VH polarization acquired by Sentinel-1A had a negligible association with above-

ground biomass assessed in the field. In contrast, research by Kumar et al. (2019) demonstrated a 

link between VH polarization collected by ALOS PALSAR (L-Band) and biomass, emphasizing 

the importance of wavelength sensitivity and canopy penetration in remote sensing applications 

for fuel load estimation. 

In Australia, a study conducted in Popran National Park, New South Wales, utilized observed data 

and Landsat imagery for fuel load estimation. Two methods were tested: the first employed 

classification techniques to derive current fuel loads from predicted vegetation types and fire 

history, while the second relied on litterfall estimation from biomass. The results indicated that the 

classification method tended to overestimate fuel loads, while the biomass method exhibited less 

uncertainty (Brandis and Jacobson, 2003). Another study focused on wildfire risk modeling in the 

Mojave Desert, Nevada, using lower spatial but higher temporal resolution satellite products. This 

research incorporated NDVI into the fuel load prediction model, along with other climate and 

topography parameters (Van Linn et al., 2013). Additionally, Chaivaranont (2018) concentrated 

on monitoring grassland degree of curing (DOC) and fuel load across Australia using satellite 

observations. New methods were developed for estimating grassland DOC and fuel load by 

leveraging recently developed microwave-based satellite data (VOD) and the Moderate Resolution 

Imaging Spectroradiometer (MODIS). Table 3 summarizes the advantages and limitations of 

different remote sensing data for fuel load mapping. According to the table, integrating multiple 

sources of remote sensors can enhance the success and effectiveness of fuel load estimation, 

representing a promising tool for such assessments. 

Table 3. Different remote sensing data are applied to fuel load mapping. 

Sensor Country/Scale Advantages Disadvantages Reference 

Aerial Photographs  

• Exhibited a high 

degree of relative 

accuracy 

• Limited to 

certain regions 

that have similar 

climate, terrain, 

and soil 

conditions 

• Restrictive area 

coverage 

(Scott et al., 

2002) 



Landsat Imagery 

 

 

 

USA/Regional 

• Easy access • Limited spatial 

resolution 

• Limited to 

canopy 

(Reich et al., 

2004) 

Multifrequency 

Polarimetric 

Synthetic Aperture 

Radar (SAR) 

Imagery 

 

• Have the potential 

to predict canopy 

fuel parameters 

with accuracy 

suitable for forest 

fire models 

• Able to penetrate 

through clouds 

and collect data at 

night  

• Longer 

wavelengths are 

able to penetrate 

the forest canopy. 

• Limited to 

certain regions 

that have similar 

climate, terrain, 

and soil 

conditions 

(Saatchi et al., 

2007) 

QuickBird and 

Landsat Imagery 
China/Regional 

• Estimates from the 

QuickBird data 

outperformed 

those from the 

Thermatic Mapper 

with a lower 

spatial resolution. 

• QuickBird images 

with the high 

spatial resolution 

are still useful for 

measuring fine 

fuels 

• Coarse fuel 

loads were not 

estimated as 

well using both 

satellite images 

• High-resolution 

images are 

expensive 

• Limited to 

canopy 

(Jin and Chen, 

2012) 

Sentinel-2  

• Add useful 

information 

regarding fuel 

variables on the 

surface and 

canopy 

• Does not give 

information on 

the structure of 

the vegetation 

• Unable to 

discern 

undergrowth 

(D’Este et al., 

2021) 

Synthetic Aperture 

Radar (SAR, 

Sentinel-1) 

 

 

 

 

 

 

Italy/Regional 

• Independence 

from cloud cover 

and solar 

illumination 

• Good 

spatial/temporal 

resolution 

• C-band images 

of Sentinel-1 are 

less sensitive to 

fine fuel load 

 

 

 

 

 

(D’Este et al., 

2021) 

LIDAR  

• LIDAR variables 

showed a higher 

predictive power 

than the NDVI 

and vertical 

transmit/horizontal 

receive (VH) 

polarization 

• Expensive to 

run 

• Not all areas are 

covered unless 

extensive field 

campaign 

efforts are 

deployed 

(D’Este et al., 

2021) 



Airborne and 

Terrestrial LIDAR 

 

 

 

 

 

 

 

 

 

 

 

Australia/ Regional 

• LiDAR-derived 

independent 

variables 

improved the 

efficiency and the 

accuracy in 

developing the 

predictive model 

of surface fuel 

load for eucalypt 

forests with high a 

spatial resolution 

• Surface fuel 

load estimations 

are limited to 

the open 

eucalyptus 

forests (Chen et al., 

2017) 

LANDSAT  

• Easy access 

• Freely available 

• The method 

overestimated 

fuel loads 

• Saturation of the 

optical signal at 

high biomass 

density and 

cloud cover 

(Brandis and 

Jacobson, 2003) 

Microwave-based 

Satellite Data 

(VOD) and 

MODIS 

Australia/National 

• Include greater 

repeat frequency 

• The availability of 

a suite of products 

• Global coverage 

• Limited to 

surface fuel load 

estimations  

• Limited to 

Grassland 

• Modis cannot 

observe the 

surface when 

cloud cover is 

present 

(Chaivaranont, 

2018) 

 

4. Fuel continuity 

Fuel continuity, concerning ladder and surface fuels, denotes the extent to which fuel particles are 

distributed in a fuel bed in an uninterrupted manner, influencing the fire's capacity for sustained 

spread and combustion (NWCG, 2018). Fuels are dispersed both horizontally and vertically, and 

fuel continuity encompasses the distribution of fuels in both dimensions. Continuous fuels are 

indispensable for the fire to propagate from the forest floor to the canopy or across the landscape 

(Keane et al., 2001). Horizontal fuel continuity elucidates how fuels are spatially interconnected 

across landscapes, occurring on various geographical scales, spanning from meters to kilometers. 

The potential for fire to move from one area of the landscape to another is largely dictated by the 

continuous connection of fuels on the ground, such as litter fuel beds or grass. Vertical fuel 

continuity delineates how effectively biomass fuels are linked from the soil/duff interface to the 

tree tops' needles. Ladder and aerial fuels are those connecting the forest floor (litter and duff) to 

the upper reaches of canopy trees, encompassing the lower branches of canopy trees, small trees, 

shrubs, and grasses. These continuous fuel ladders between the surface and canopy fuels facilitate 

the spread of fire into the canopy (Cooper, 1960). 

Instead of relying solely on field personnel, remote sensing techniques, particularly LiDAR, prove 

to be effective methods for obtaining precise forest structural data across diverse scales (Andersen 



et al., 2005). LiDAR data enables the provision of vertical and horizontal information with high 

accuracy and spatial resolutions (Lim et al., 2003). The literature contains studies exploring the 

utility of remote sensing data, specifically LiDAR, for characterizing forest structures (Andersen 

et al., 2006; Andresen et al., 2019). For instance, Aragoneses and Chuvieco (2021) implemented 

a methodology to map fuel types on a regional-continental scale (e.g., Balearic Islands, Spain) 

using Sentinel-3 images, horizontal vegetation continuity, biogeographic regions, and biomass 

data. In determining horizontal fuel continuity, they utilized the 2019 global MODIS vegetation 

continuous field collection 6 version 1 (Townshend et al., 2011), which provides the percentage 

of tree and non-tree vegetation cover (0–100%) at a resolution of 250 meters. However, the optical 

remote sensing data employed in this study was confined to a few species and tended to lack 

sensitivity to variations in forest structure. 

Olszewski and Bailey (2022) employed LiDAR acquisitions captured before and after a substantial 

forest restoration project in the Malheur National Forest, located in eastern Oregon, USA. Their 

objective was to evaluate changes in vertical fuel continuity. Although the primary focus of their 

study centered on using LiDAR data to gauge vertical fuel continuity in a dry forest landscape, 

further research could lead to methodologies for assessing additional hazard fuel features through 

LiDAR data. Examples of such features include tree distribution by size class or horizontal fuel 

continuity. These approaches need not be limited to airborne LiDAR; terrestrial LiDAR stands as 

an alternative that could provide more accurate data on below-canopy conditions (Donager et al., 

2018). Additionally, the exploration of drone-acquired photogrammetry and structure-from-

motion is worth considering (Cunliffe et al., 2016). Skowronski et al. (2007) quantified forest 

structure and ladder fuels, defined as vertical fuel continuity between the understory and canopy, 

in the New Jersey Pinelands, USA. They utilized Forest Inventory and Analysis (FIA) data, 

intensive biometric measurements in plots, and a single-beam, first-return profiling LiDAR 

measurements of canopy height. However, when specific regions were examined independently, 

correlations for Oak/Pine and Pine/Scrub Oak stands were found to be low. Novo et al. (2020) 

introduced a technique for identifying vegetation continuity (both horizontal and vertical) within 

two distinct groups, such as shrubs and trees, using aerial LiDAR point clouds. They applied point 

cloud processing techniques in conjunction with LiDAR data to assess areas around roads in the 

northwest region of Spain. Their focus was specifically on the buffer distance between road 

vegetation, aligning with the fire regulations in Galicia. In a separate study, González-Ferreiro et 

al. (2017) utilized data from low-density airborne laser scanning (ALS) and the Spanish national 

forest inventory to construct a framework for modeling the vertical profile of accessible canopy 

fuel in pine stands, encompassing two species. The National Forest Inventory (NFI) in Spain 

currently stands as the sole source of information on canopy fuel complex properties at both 

national and regional scales. However, this inventory method can be time-consuming, taking 

several years to complete, and lacks complete spatial coverage (Boudreau et al., 2008). 

Recognizing ALS's ability to estimate the three-dimensional structure of vegetation and other 

forest features at various scales, it proves to be a valuable supplementary data source for defining 

the canopy fuel stratum. 

In Australia, the significance of fuel structural characteristics in influencing fire behavior and 

suppression ease was underscored by the Australian bushfire study, Project Vesta (Gould et al., 



2008). Fuel structure in this context is categorized into five layers based on their horizontal 

arrangement and vertical position within the forest profile, encompassing canopy fuels, shrubby 

elevated fuels, near-surface fuels, litter fuels (surface fuels), and bark fuels (Gould et al., 2008). 

Presently, guidelines for measuring fuel structure through visual assessment have been developed 

for south-eastern Australia and Western Australia, facilitated by the Overall Victorian Fuel Hazard 

Assessment Guide and Project Vesta, respectively. Visual assessments involve the rapid evaluation 

of fuel structural characteristics such as depth, height, percentage cover, horizontal continuity, and 

vertical arrangement at distinct fuel layers. While visual assessments are quick, they may be 

subjective, inconsistent, and constrained by the complexity of local terrain. Consequently, the 

development of an efficient and accurate method for assessing fuel structural characteristics holds 

significance in bushfire-related studies and forest fuel resource management (Andersen et al., 

2005). 

Due to its capability for highly accurate three-dimensional (3D) measurements, LiDAR proves 

invaluable in reconstructing the vertical layout of both the understory and overstory vegetation 

(Andersen et al., 2005). A notable example is the work of Chen et al. (2016), who developed a 

methodology utilizing a geographic information system and terrestrial LiDAR data to 

automatically assess forest fuel structural properties. This includes the vertical and horizontal 

arrangement of fuel strata. However, LiDAR encounters challenges when estimating bark fuels 

due to the complexity of describing texture and assessing the impact of bark on suppression 

challenges, requiring more sophisticated empirical knowledge. Various limitations, such as scale 

(both vertical and horizontal), scanning angle, and position, constrain the use of Terrestrial Laser 

Scanning (TLS) in estimating and monitoring forest fuels. A more comprehensive evaluation of 

forest fuel hazards, along with overcoming these limitations, can be achieved by combining 

terrestrial and airborne LiDAR measurements. Table 4 provides a summary of the advantages and 

drawbacks associated with different remote sensing data for mapping fuel continuity. 

Table 4. Pros-cons of different remote sensing data applied to fuel continuity mapping. 

Fuel 

Continuity 
Sensor Country/Scale Challenges Opportunities Reference 

Horizontal 

Landsat 

Thematic 

Mapper 

Modis 

Spain/ Regional • Restricted 

to a few 

species and 

small sites 

• Optical data 

tend to lose 

sensitivity 

to forest 

structure 

variation 

• Integration of 

multispectral/hyperspectral 

and LiDAR data 

(Aragoneses 

and 

Chuvieco, 

2021) 

Airborne 

LiDAR 

Spain/Regional • Only 

considered 

the buffer 

distance 

between 

road 

vegetation 

• Terrestrial LiDAR is an 

option and may be able to 

gather more accurate 

below-canopy data 

(Novo et al., 

2020) 



• Limited to 

two groups 

Terrestrial 

LiDAR 

Australia/Regional • Difficulty in 

assessing 

bark fuels 

• The 

application 

of TLS is 

restricted by 

scanning 

angle, scale 

(vertical 

and 

horizontal), 

and position 

• Terrestrial/airborne LiDAR 

and hyperspectral 

observations can be 

integrated to provide a 

more complete forest fuel 

hazard assessment 

(Chen et al., 

2016) 

Vertical 

Airborne 

LiDAR 

USA/Regional • Applied 

only across 

a dry forest 

landscape 

• Limited 

coverage 

• Don’t 

consider 

below-

canopy data 

• Terrestrial LiDAR and 

drone-acquired 

photogrammetry and 

structure-from-motion are 

options and may be able to 

gather more accurate 

below-canopy data  

(Olszewski 

and Bailey, 

2022) 

Forest 

Inventory 

data 

 

 

 

 

Low-

density 

airborne 

laser 

scanning 

(ALS) 

Spain/Regional • Costly/time-

consuming 

• Does not 

yield full 

spatial 

coverage 

 

• Less 

effective in 

denser areas 

• Limited to 

two species 

• Terrestrial LiDAR, drone-

acquired photogrammetry 

and ALS can be integrated 

to provide complete 

information 

(Novo et al., 

2020) 

 

 

 

 

 

(González-

Ferreiro et 

al., 2017) 

Terrestrial 

LiDAR 

Australia/Regional • Difficulty in 

assessing 

bark fuels 

• The 

application 

of TLS is 

restricted by 

scanning 

angle, scale 

(vertical 

and 

horizontal), 

and position 

• Terrestrial and airborne 

LiDAR observations can 

be integrated to provide a 

more complete forest fuel 

hazard assessment 

(Chen et al., 

2016) 

 

 



5. Fuel chemical content 

The heat yield of combustible volatiles and the ignition temperature of fuel are determined by the 

chemical composition of the fuel. Specific elements within the fuel's chemical content, such as 

volatile oils and waxes, contribute to the spread of fire even in the presence of high moisture 

content. On the other hand, elements like mineral content may diminish fire intensity when 

moisture content is low (Gale et al., 2021). Traditionally, these measurements have been conducted 

through time-consuming field data collection, providing information on a very limited scale. The 

integration of remote sensing with ecosystem models presents an alternative method for estimating 

forest ecosystem function on a regional scale. Fuel chemical composition stands out as a crucial 

forest characteristic, offering insights into ecosystem processes, and it can be remotely sensed 

(Wessman et al., 1988). Numerous studies have explored the relationships between canopy 

chemistry and remotely sensed data across various forest ecosystems (Johnson et al., 1994; 

Peterson et al., 1988). This approach provides a broader understanding of forest characteristics and 

contributes to the efficient estimation of forest ecosystem function at a regional level. 

In these investigations, near-infrared (NIR) spectral data within the range of 1100–2500 nm have 

been correlated with field-measured foliar chemistry parameters, including cellulose, nitrogen, and 

lignin. The data for these studies were collected using the Airborne Imaging Spectrometer (AIS) 

and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). While these studies have 

showcased the potential utility of remote sensing in estimating foliar chemistry, the remote sensing 

of chemical attributes relevant to fuel heat content and flammability faces current limitations. The 

challenge lies in the difficulty of measuring such attributes in the field or laboratory (Varner et al., 

2015), coupled with ongoing debates about their significance in full-scale fire behavior and their 

exclusion from many fire behavior models (Fernandes and Cruz, 2012). Therefore, the fusion of 

airborne full-waveform systems, hyperspectral, and lidar techniques emerges as a promising 

approach to mitigate uncertainty in retrieving fuel chemical properties. This integrated 

methodology holds the potential to advance the remote sensing of chemical fuel attributes and 

contribute to a more comprehensive understanding of their role in fire behavior. 

6. Fuel shape 

Fuel shape plays a crucial role in determining the effectiveness of heat transfer to fuel molecules, 

the residence time of combustion, and the susceptibility of fuel elements to drying. The dimensions 

of flames, combustion sustainability, and the aerodynamics of firebrands are all influenced by the 

shape of the fuel. Fire propagation relies on the transfer of heat generated by reactions, such as 

pyrolysis reactions, to neighboring fuel. The importance of a specific heat transmission mechanism 

in fire spread is primarily dictated by the burning conditions (Albini, 1985). In the context of 

wildfires, the conductivity of fuel is typically low (Luke and McArthur, 1978). Consequently, heat 

transfer is most efficient for fuels with a large surface area relative to volume, such as leaves and 

small twigs. Fine fuel elements, often thinner than 4–6 mm, experience radiative pre-heating and 

maximal combustive heat release as a single phase (Barboni et al., 2017). Additionally, finer fuel 

elements exhibit higher sensitivity to short-term atmospheric moisture fluctuations, resulting in 

increased flammability during dry weather (Rothermel, 1986). Fuel shape influences fuel ignition 

time, combustion duration, and flame length by determining the surface area-to-volume ratio 



(Zylstra et al., 2016). Furthermore, fuel shape dictates fuel element aerodynamics, influencing 

firebrand behavior and spotting, which can be a major mechanism of fire spread under certain 

conditions (Cruz et al., 2012). Factors such as curvature, length-to-width ratio, and size of 

firebrands have been identified as key elements affecting their behavior (Almeida et al., 2011; 

Ellis, 2011). Understanding the intricate interplay between fuel shape and fire behavior is crucial 

for developing effective wildfire management strategies. 

However, in the literature on remote sensing studies, there is a notable lack of detailed presentation 

on fuel element size and shape, likely stemming from the inherent complexity of describing these 

features, particularly given the relatively coarse resolution of many existing remote sensing 

techniques. Despite this limitation, the importance of identifying fine fuel in forests is underscored 

by the emphasis placed on it in both the understanding and modeling of fire behavior. This focus 

is distinct from considerations of above-ground biomass, coarse woody debris, or total fuel load. 

The observed shortcomings in these studies may indicate a mismatch between the fuel attributes 

that significantly influence fire behavior and the current capabilities of remote sensing 

technologies and field sampling procedures (Gale et al., 2021). Bridging this gap is essential to 

enhance our understanding of fire behavior and improve the effectiveness of remote sensing 

applications in the context of fine fuel identification and assessment. 

After conducting a detailed review and explanation of the application of remote sensing techniques 

for individual fuel attributes, a concise overview of the various types of remote sensing data 

utilized for mapping different fuel attributes in Australia was provided in Table 5. The summary 

encapsulates the diverse methods employed to capture crucial information about fuel 

characteristics across the country. Additionally, opportunities and methods for addressing the 

challenges and limitations inherent in existing approaches for mapping fuel attributes were 

presented. This information aims to contribute to the improvement of methodologies, offering 

insights on how to overcome obstacles and enhance the accuracy and scalability of fuel attribute 

mapping across Australia. The goal is to facilitate the acquisition of up-to-date information on a 

large scale, thereby advancing the understanding of fuel dynamics in the context of fire 

management and ecology. 

Table 5. Challenges-opportunities of various remote sensing data used for different fuel attribute 

mapping for Australia.  

Fuel 

Attribute 

Remote Sensing 

Data 

Country/

Scale 
Limitations Opportunities Reference 

Fuel Moisture 

Content 

Optical data (e.g., 

Modis, Sentinel-2) 

Australia/ 

National 
• Limited to 

canopy 

• Cloud cover 

may limit 

the use of 

this data 

• Improve accuracy  

• Merge with different RS 

• Use active microwave 

images 

• Use airborne 

hyperspectral data for 

local/regional studies 

(Yebra et al., 

2018) 

Fuel Type 

Classification 

Doesn’t exist Australia/ 

National 
• Based on 

inventory 

data 

• Static map 

 

• Improve the map  

• Make dynamic map  

• Combine various 

temporal RS data 

(Matthews S, 

2019) 



• Spatial resolution can be 

improved 

•  

Fuel Quantity Microwave-based 

satellite data 

(VOD) and 

MODIS 

 

 

 

 

 

 

 

 

 

 

Airborne and 

terrestrial LIDAR 

Australia/ 

National 

 

 

 

 

 

 

 

 

 

 

 

 

Australia/ 

Regional 

• limited to 

Grassland 

• Cloud cover 

may limit 

the use of 

this data 

 

 

 

• Surface fuel 

load 

estimations 

are limited 

to the open 

eucalyptus 

forests 

• The integration of 

multiple sources of 

remote sensors can be 

more successful and 

represents a promising 

tool for estimating fuel 

loads 

 

 

 

 

 

 

 

• Extend to large-scale 

and various fuel types 

(Chaivaranon

t, 2018) 

 

 

 

 

 

 

 

 

 

 

 

 

(Chen et al., 

2017) 

Fuel 

arrangement 

(vertical and 

horizontal 

continuity) 

Optical data (e.g., 

Modis) 

 

 

 

 

 

 

 

 

Terrestrial LiDAR 

Australia/ 

Regional 

 

 

 

 

 

 

 

 

 

 

• Restricted to 

a few 

species and 

small sites 

• Optical data 

tend to lose 

sensitivity 

to forest 

structure 

variation 

 

• Difficulty in 

assessing 

bark fuels 

• The 

application 

of TLS is 

restricted by 

scanning 

angle, scale 

(vertical and 

horizontal), 

and position 

• Integration of 

multispectral/hyperspec

tral and LiDAR data 

 

 

 

 

 

 

 

 

• Terrestrial and airborne 

LiDAR observations 

can be integrated to 

provide a more 

complete forest fuel 

hazard assessment 

(Chen et al., 

2016) 

Fuel Shape ________ Local • The 

difficulty of 

characterizi

ng these 

attributes 

• Given the 

relatively 

coarser 

resolution of 

most current 

remote 

sensing 

systems 

• The recent development 

of airborne full-

waveform 

systems/Multispectral 

LiDAR/Hyperspectral 

techniques has resulted 

in the increased recent 

application of this 

technology for the 

estimation of fuel 

attributes 

_______ 



Fuel 

Chemical 

Content 

Airborne Imaging 

Spectrometer (AIS) 

and the Airborne 

Visible/Infrared 

Imaging 

Spectrometer 

(AVIRIS) 

Local • The remote 

sensing of 

this sub–

fuel element 

is currently 

limited 

• The 

difficulty of 

measuring 

such 

attributes in 

the field or 

laboratory 

• Fusion of airborne full-

waveform systems, 

hyperspectral and lidar 

techniques can reduce 

uncertainty in the 

retrieval of fuel 

chemical properties. 

(Johnson et 

al., 1994) 

 

7. Field measurements 

Obtaining spatially extensive and temporally frequent estimations of fuel characteristics poses 

significant challenges. Localized methods such as field sampling and gravimetric approaches are 

effective but come with high costs. Additionally, field sampling lacks the capacity to generalize 

measurements to regional or global scales. In contrast, remote sensing (RS) data offers the 

potential to estimate fuel properties with fine spatial and temporal resolution over large areas. 

However, this data must undergo calibration and validation processes, as highlighted in this 

review. For the effective calibration and validation of satellite-based techniques used to estimate 

various fuel attributes, field measurements are indispensable. Yet, creating these field 

measurements presents challenges, particularly in ensuring their spatial equivalence to RS data. 

The fundamental constraint lies in the spatial scale of sampling. Therefore, to enable a meaningful 

comparison with satellite-based measurements, field measurement of fuel attributes necessitates 

careful considerations (Yebra et al., 2013): 

(1) Maintaining detailed site metadata, including sampling locations and dates, is crucial for 

comprehensive data documentation. While the center coordinates of the sampling site are typically 

adequate, providing a polygon around the perimeter of the sampling site proves even more 

valuable. Consistently sampling the same site whenever possible is essential for establishing a 

long-term record of fuel properties at that location. This approach ensures continuity and facilitates 

meaningful time-series comparisons. It's important to note that even slight alterations in sampling 

due to different slopes or aspects can introduce variability, making it more challenging to compare 

time-series data. Therefore, efforts should be made to minimize such variations and maintain 

consistency in sampling procedures to enhance the reliability and comparability of the collected 

data over time. 

(2) To facilitate practical comparisons between fuel attributes and remote sensing (RS) data, it is 

essential to ensure that the area surrounding fuel sample locations is as homogeneous as possible 

in terms of vegetation and topography. This homogeneity reduces the potential for confounding 

factors that could introduce variability in the data and allows for more meaningful and accurate 

comparisons between ground-based measurements and remote sensing observations. A consistent 

and well-defined sampling environment enhances the reliability of the results and helps establish 

robust relationships between field data and RS-derived information. 



(3) When selecting sites for fuel attribute sampling, it is advisable to avoid mixed vegetation 

locations and, instead, prefer sites that are predominantly dominated by a single vegetation type. 

This approach helps ensure homogeneity in the sampled areas, reducing the complexity introduced 

by multiple vegetation types. Sites dominated by a single vegetation type provide a more focused 

and clear representation of the characteristics of that particular vegetation, enhancing the accuracy 

and reliability of the collected fuel attribute data. This targeted sampling strategy contributes to 

more effective comparisons with remote sensing data and improves the overall quality of the 

dataset. 

A comprehensive and standard sampling protocol should address several key aspects to ensure 

consistency and reliability in data collection (Yebra et al., 2013). These elements include: 

(i) Plot size: Clearly define the size of the sampling plot to ensure uniformity across measurements. 

(ii) Best time to collect samples: Specify the optimal time for collecting samples to minimize 

variations due to seasonal or diurnal changes. 

(iii) Handling rain: Provide guidelines on what to do if rain falls during the sampling process to 

mitigate potential impacts on the collected material. 

(iv) Type of material to harvest: Clearly outline the specific types of vegetation or fuel material 

to be harvested in line with the objectives of the study. 

(v) Quantity and number of samples: Define how much material and how many samples per 

plot should be collected to ensure representative and statistically meaningful data. 

(vi) Details on the weighting process: Specify the procedures for weighing collected material to 

maintain consistency and accuracy in measurements. 

(vii) Drying procedure: Provide information on the drying process, including duration and 

conditions, to standardize moisture content measurements. 

(viii) Material for sample transfer: Outline the material or method to seal the samples for transfer 

to the laboratory, ensuring their integrity during transportation. 

A well-defined sampling protocol ensures that data collected from different locations and times 

are comparable, contributing to the overall reliability and quality of the study. 

8. Implications and Future Directions 

This report presents a thorough overview of the identification of primary fuel attributes known to 

influence fire behavior modeling. Various remote sensing techniques have been employed in 

recent years to evaluate key fuel properties, including moisture content, fuel type, fuel load, fuel 

continuity, fuel chemical content, and fuel shape. The primary focus of the report is on elucidating 

the remote sensing technologies used to quantify diverse fuel attributes across distinct categories 

and layers, exploring their implications for understanding fire behavior processes. The report 

covers the predominant techniques employed in each study and provides examples of ongoing 

research. Limitations identified in the scrutinized studies largely stem from the inherent constraints 

of existing remote sensing technologies. Accurately estimating fuel properties, especially across 

different layers, presents challenges, and relying solely on a single remote sensing data source may 



not always provide a comprehensive approach to characterizing fuel attributes. The exploration of 

innovative approaches for fuel properties estimation, aligned with contemporary technology's 

capabilities and limitations, is conceivable with continuously advancing remote sensing 

techniques. As a result, significant strides in the utilization of remote sensing technology and 

anticipated advancements in sensor technology offer promising prospects for the evolution of fuels 

assessment. Future research endeavors are expected to enhance existing methodologies while 

integrating emerging technologies such as photogrammetry and unmanned aerial vehicles (UAVs) 

for precise fuels mapping at sub-meter scales. Furthermore, the integration of advanced machine 

learning algorithms is poised to play a crucial role in ensuring accurate analysis and prediction of 

fuel dynamics. 
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