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Abstract
Decoding linguistic information from non-invasive brain signals
using EEG has gained increasing research attention due to its vast
applicational potential. Recently, a number of works have adopted
a generative-based framework to decode electroencephalogram
signals into sentences by utilizing the power generative capacity
of pretrained large language models. However, this approach has
several drawbacks that hinder the further development of linguistic
applications for brain-computer interfaces. Specifically, the ability
of the EEG encoder to learn semantic information from EEG data
remains questionable, and the LLM decoder’s tendency to generate
sentences based on its training memory can be hard to avoid. These
issues necessitate a novel approach for converting EEG signals into
sentences. In this paper, we propose a novel two-step pipeline that
addresses these limitations and enhances the validity of linguistic
EEG decoding research. We first confirm that word-level semantic
information can be learned from EEG data recorded during natural
reading by training a Conformer encoder via a masked contrastive
objective for word-level classification. To achieve sentence decod-
ing results, we employ a training-free retrieval method to retrieve
sentences based on the predictions from the EEG encoder. Our
evaluation results demonstrate that our EEG encoder achieves up
to 55.15% top-20 classification accuracy with visualization results
validating its ability to learn from unspoken EEG recordings. Sub-
sequently, using the predicted classification results, our retrieval
method attains a recall@5 of up to 55.55% for sentence-level eval-
uation. Despite the exploratory nature of this work, these results
suggest that our method holds promise for providing more reliable
solutions for converting EEG signals into text.
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1 Introduction
Decoding linguistic information from brain signals has traditionally
relied on intracranial approaches, which offer promising prospects
for restoring communication abilities in individuals with paralysis
or spinal cord injuries [29, 31, 46]. In contrast, the use of non-
invasive brain signals such as EEG in linguistic decoding has only
recently begun to attract research attention, due to their superior
temporal resolution, portability, and safety [2, 3, 19, 52].

For its ability to measure surface neural activity with high tempo-
ral resolution and detect a diverse range of rhythmic patterns, EEG
signals can capture electrical activity in the sensorimotor cortex,
which is known to produce 𝜇 rhythms rich in information during
speech production [39]. This inherent connection between EEG sig-
nals and speech has led to various successful approaches in decod-
ing EEG into linguistic units such as syllables [4], phonemes [10, 11],
and words [20, 30], despite limitations due to the scale of available
datasets and subject variability.

On the other hand, decoding sentences from EEG signals during
unspoken reading tasks presents several unique challenges. Firstly,
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unspoken speech elicits less discriminative brain activity compared
to spoken speech, making it harder to distinguish between dif-
ferent neural responses [34]. Second, there exists significant data
sparsity, as the number of semantic categories is large while the
dataset size remains relatively small [32]. Third, the noisiness of
thought during reading further complicates the decoding task. For
instance, participants may not focus on every word equally, often
paying less attention to grammatical words and more to words that
contain crucial or interesting information from the sentence [15].
Existing methodologies for decoding reading sentences from EEG
signals have predominantly relied on a framework that pairs an
EEG encoder with a pretrained large language model (LLM) de-
coder, training, and decoding sentences by the machine translation
approach [18, 44]. However, recent analyses suggest that when
training the EEG encoder with an LLM using a machine transla-
tion objective, the encoder’s ability to genuinely learn to capture
semantic EEG patterns remains unclear. Instead, the overpowered
LLM decoder may generate sentences simply based on its training
memory regardless of the EEG input [23]. These empirical findings
underscore the necessity to validate the efficacy of learning EEG
encoders from EEG reading tasks and highlight the limitations of
using overly powerful pretrained LLMs for converting EEG signals
into sentences.

To overcome the aforementioned limitations, we aim to develop
a novel approach for EEG-to-sentence conversion, which seeks
to eliminate the bias introduced by the training memory of an
overpowered LLM while enabling the assessment of the semantic
information an EEG encoder learns from text-reading EEG data.
To achieve this, we propose EEG-to-Text Retrieval (ETER), which
consists of an EEG encoder and an unbiased sentence retrieval
method. In particular, We first train our Conformer-based EEG
encoder using a masked contrastive learning loss to learn seman-
tic EEG representations. Then we combine our EEG encoder with
a classification head to predict a semantic keyword set (SK) for
each input EEG signal. In the next stage, we employ a beam search
retriever (BSR) to find the most relevant sentences based on the
SK sets generated by our EEG encoder. Our two-step EEG-to-text
retrieval method introduces two key features: it allows for a trans-
parent evaluation of the EEG learning efficacy through word-level
classification outputs and provides a training-free method to lever-
age these word-level results for sentence-level outputs. Extensive
experiments and ablation analyses reveal that our EEG encoder
effectively learns semantic EEG representations, achieving high
accuracy in word-level classification. Additionally, results from
the retriever demonstrate that the predictions from the first stage
enable the retrieval of the correct ground-truth sentences. These
findings underscore the feasibility of using a retrieval-based method
for converting EEG signals into coherent sentences.

The main contributions of this paper are summarized as follows:

• We propose a novel retrieval-based approach for EEG-to-text
conversion tasks. The ETER method leverages the output
of a word-level EEG classifier to retrieve the most relevant
sentence, thus eliminating the over-reliance on generative
LLM decoders.

• We demonstrate the learning of effective semantic EEG rep-
resentations using a Conformer-based EEG encoder trained

with a masked contrastive objective. Visualization of the top
prediction candidates further proves its capability to predict
EEG signals as semantically related words.

• We designed a beam search retrieval method to efficiently
retrieve relevant sentences from the prediction results of our
Conformer-based EEG encoder. Despite the imperfect pre-
diction from the EEG encoder, our retrieval method remains
a viable solution for finding the correct sentence.

• We conduct extensive experiments to thoroughly validate the
performance of the proposed ETER approach. Additionally,
ablation studies confirm the vocabulary scalability of the
method and validate our design choices, presenting a novel
avenue for developing a linguistic BCI system.

2 Related Works
Linguistic unit or word decoding from brain signals Due to
EEG’s capacity to capture neural activities associated with speech
production, pioneering words on linguistic decoding using EEG
mainly focus on the decoding of linguistic units such as syllables
or phenomes [11, 17, 42]. For instance, [7] proposed to extract
autoregressive coefficients as features for imagined syllable classifi-
cation with a k-nearest neighbor (KNN) classifier. [13] leveraged
the Hilbert spectrum to extract features and classify the syllables
using a Bayesian classifier.

To decode higher-level semantics, numerous studies have dedi-
cated efforts to word-level classification using EEG signals [5, 20,
33, 33, 43, 49, 51]. However, most of these studies have trained and
evaluated their models on a very limited dataset, typically compris-
ing only 4 to 10 words or a narrow set of directional words. As a
result, recent research has sought to expand the output vocabulary
scope to a more practical scale, either at the word level [28] or the
pre-word level [47]. [16] used a large-scale word-level EEG dataset
collected during listening, they enhance word-level classification
accuracy through contrastive learning to align E/MEG signals with
speech.

End-to-end Decoding from EEG to sentence The recent trend
in EEG-based sentence decoding on the other hand predominantly
employs end-to-end machine translation approaches. For instance,
EEG-to-Text [44] pioneered open-vocabulary decoding of EEG sig-
nals into sentences, establishing an initial performance benchmark.
In their work a Transformer-based EEG encoder is used to trans-
form EEG signals into EEG representations while a pre-trained
LLM model takes these EEG representations as input and gener-
ates sentences. Building upon this, DeWave [15] advanced decod-
ing performance by introducing discrete codex and achieved text
decoding directly from raw EEG waves. Subsequent innovations
such as BELT [9, 50] and Curriculum Contrastive [18] introduced
contrastive learning to enhance encoding quality. Additionally,
NuSpeech [48] leveraged the end-to-end speech decoding model
Whisper [36] to achieve commendable performance.

However, these end-to-end methods are prone to issues where
a newly initialized EEG encoder combined with a powerful pre-
trained language decoder leads to the decoder merely memorizing
and generating the training text without truly utilizing information
from the EEG modality. Consequently, this may result in the EEG
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encoder failing to learn to capture EEG patterns. Diverging from
these LLM-based approaches, our work first develops an effective
EEG encoder for word-level classification and explores the feasibil-
ity of using a training-free, unbiased retrieval method to achieve
sentence-level output. This approach eliminates potential limita-
tions such as implicit teacher forcing evaluation or test sentence
leakage.

3 EEG-to-Text Retrieval

Figure 1: The overall structure of the EEG-to-text retrieval
approach. Our two-step approach consists of a word-level
EEG encoder that encodes and prediction word-level results
fromEEG signals. Subsequently, a retrievalmethod is applied
to find the most relevant sentence utilizing the word-level
results.

In this section, we present our ETER approach, a two-step EEG-
to-text retrieval method that identifies the most relevant sentence
a participant reads based on word-level EEG classification results.
The general pipeline of our approach is depicted in Figure 1. To
achieve word-level decoding, we developed a Conformer-based
EEG encoder. To learn semantic EEG representation, we guide the
EEG representation space using word representations extracted
from a large language model and train the encoder with a masked
contrastive objective. It is important to note that the language
model is used solely to provide word representations for guiding
the distribution of the learned EEG representation and is not utilized
during testing. Subsequently, a classification head is added to the
EEG encoder to fine-tune it for word-level prediction. Finally, we
designed a beam search retrieval method to find relevant sentences
based on the prediction results of the EEG encoder. Figure 2 gives
an overview of the proposed method.

3.1 Preprocessing
To perform word-level EEG representation learning and classifi-
cation, we first preprocess the dataset’s vocabulary. Grammatical
words such as "the," "a," "an," and "is" constitute a significant portion
(40-60%) of English text in general [24, 26]. From a sample balance
perspective, these grammatical words dominate the training and
testing samples, potentially leading the EEG encoder or classifier
to overemphasize on these words, which do not contain critical
information about the sentence. Furthermore, previous neurobio-
logical studies in reading comprehension have identified that “se-
mantic strong” words elicit higher and more distinguishable neural
patterns compared to “semantic moderate” words [25]. Therefore,
during preprocessing, we remove EEG-word pairs containing these
grammatical words from the dataset.

Additionally, we perform word lemmatization on the remaining
vocabulary. The lemmatization step serves two purposes. First, we
hypothesize that during reading comprehension, different forms
of the same word will elicit similar neural patterns, as they convey
the same meaning. So the EEG signals for these similar words can

be seen as the same category. Second, this lemmatization process
also increases the sample size for each word in the vocabulary and
reduces the sparsity of the word-level training dataset.

For preprocessing the EEG signals, they are first transformed
into word-level EEG embeddings using frequency-domain trans-
formation following the same preprocessing pipeline in previous
works [22, 45]. In the remainder of this paper, we denote the word-
level EEG embedding as e. For the corresponding word of the
EEG embedding, we use the embedding layer of a distilled BERT
model [14] to convert it into word representation, denoted by w
for brevity. To enhance word-level EEG representation learning
and classification performance, we apply standard normalization
to the word-level EEG embeddings. Specifically, we compute the
mean and standard deviation of e for each subject and use these
values for applying standard normalization. Empirically, we found
that this normalization stabilizes the training process and improves
performance, likely by suppressing noise and reducing inter-subject
variations to some extent.

3.2 EEG Encoder
We train an EEG encoder for encoding and classifying EEG signals.
We first tokenize e into frequency tokens and then feed them to
a Conformer encoder. The Conformer encoder outputs the same
number of tokens as input, we use a global pooling layer to aggre-
gate the information across all frequency bands into the final EEG
representation h.

3.2.1 Frequency-wise EEG tokenization. After preprocessing, the
word-level EEG embedding has the shape of e ∈ R𝑁×𝐷 . Here, 𝑁
denotes the number of channels, and 𝐷 is the number of frequency
bands (in our case 𝐷 = 8). To tokenzie the EEG, we split e into
non-overlapping frequency bands across all channels {e(𝑖 ) }𝑖=1,· · · ,𝐷 .
Since these EEG channels are distributed spatially on a participant’s
head so we employ spatial operations here to capture and aggregate
frequency responses in a specific scalp area. As depicted in Figure
3, we use a spatial encoder to transform e(𝑖 ) into EEG token. The
spatial encoder consist of a lightweight convoutional network. The
spatial encoder comprises a lightweight convolutional network and
a positional embedding layer. The convolutional network processes
the channel dimension to produce embeddings that consolidate
spatial information from specific frequency bands. Concurrently,
the positional embedding layer is used to encode the positional
information of the frequency bands, indicating which frequency
range is contained within the input e(𝑖 ) .

3.2.2 Conformer for EEG encoding. The detailed architecture of
our EEG encoder is depicted in Figure 3. We use the Conformer
blocks [21] to build our EEG encoder for capturing both spectrum
dependencies across EEG frequency bands and spatial relationships
among channels [41, 50]. To aggregate the encoded EEG representa-
tions across all frequency bands, we used a global adaptive pooling
layer to the output of the last Conformer block and outputs h as
the final EEG representation for each word.

In a Conformer block, two feed-forward networks (𝐹𝐹𝑁 1 and
𝐹𝐹𝑁 2), a multi-head self-attention (MHSA) module, a convolution
(CN) module are stacked together using residual connections. We
applied a 1/2weigh for the two 𝐹𝐹𝑁 layers. The convolution module
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Figure 2: After segmenting and tokenizing EEG signals at the word level, an EEG encoder comprising two Conformer blocks
learns semantic patterns from the EEG signals. We implement masked contrastive learning, leveraging a frozen language
model to provide language supervision to the EEG representations. The EEG encoder predicts a keyword set independently
for each input EEG segment. Finally, a sentence retriever utilizes these predicted keyword sets to identify the most pertinent
sentence from the dataset corpus.

Figure 3: The architecture of the proposed EEG encoder. We
first tokenize the low-level representations of EEG segments
using a spatial encoder on the channel dimension and add
positional embedding to indicate the frequency range of the
token. Then we use 2 conformer blocks to further process
these tokens. The Conformer block encodes input tokens
using a MHSA and a convolution module. For classification,
we use an adaptive max pooling layer to aggregate the output
of all EEG tokens into the final EEG representation h for each
word. For classification, a fully-connected layer will be used
for the classification distribution of the input EEG signal.

is depicted in Fig. 4, which is in turn comprised of two pointwise
convolution layers and a depthwise convolution layer. The first
pointwise convolution layer of the convolution module uses the
gated linear unit (GLU) as the activation function. A batch normal-
ization layer and a swish activation function were also used after
the depthwise convolution layer. Overall, the Comformer blocks
take the EEG embeddings e as input and output the continuous
EEG representation h.

3.2.3 Masked contrastive training. To train the EEG encoder, we
employ the masked contrastive learning objective, as depicted in
Figure 5. This self-supervised approach aligns EEG representa-
tions h with word representations w, enabling the EEG encoder
to extract semantic information from EEG signals. This alignment

ensures that EEG representations are not only closely related to its
groundtruth word category but also to words with similar mean-
ings. To further enhance the robustness of the EEG representations,
we apply random masking to the input EEG tokens with a masking
ratio 𝜂. Notably, we do not apply masking to the word embeddings
to avoid introducing unnecessary noise into the learning process.
The masked contrastive training loss function is defined by L𝑐𝑡 as
follows:

Figure 4: The detailed structure of the convolution module
used in the Conformer blocks.

L𝑐𝑡 = − 1
𝑀

𝑀∑︁
𝑖=1

log
exp sim(hi,w)i/𝜏∑𝑀
𝑗=1 exp sim(hi,wj)/𝜏

(1)

, where𝑀 is the training sample size of the dataset, 𝜏 is the temper-
ature parameter that scales the logits, and sim(·, ·) denotes the dot
product similarity measure. We employ a frozen, pretrained BERT
model [14] as the text encoder to generate word representations and
guide the learning of EEG representations. In our experiments, we
empirically determined that a mask ratio of 𝜂 = 0.1 and a tempera-
ture parameter of 𝜏 = 0.3 yield optimal classification performance.

3.3 Sentence Retrieval Method
3.3.1 Word-level classification. While training an EEG encoder
with a self-supervised objective provides a robust foundation for
learning semantic representations, it alone is insufficient for effec-
tive EEG classification. To address this limitation, we introduce a
supervised learning phase that augments the self-supervised train-
ing with an additional classification head. We use a fully-connected
layer with softmax activation function as the classification head us-
ing the EEG representation h. This layer maps the language-aligned
EEG representations to specific word categories, leveraging super-
vised loss L𝑠𝑢𝑝 (Equation 2) to refine the encoder’s predictions.

L𝑠𝑢𝑝 = − 1
𝑀

𝑀∑︁
𝑖=1

𝑦𝑖 log(𝑝 (𝑦𝑖 |h𝑖 )) (2)
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Figure 5: Our masked contrastive training scheme. Following
CLIP [35] and FLIP [27], we perform contrastive learning on
pairs of EEG segments and words. We randomly mask out
EEG tokens with a small masking ratio and encode only the
visible EEG tokens. Here, the slash-shadowed blocks mean
the EEG token ismasked and is not visible to the EEG encoder.
We do not mask word tokens in our paper.

,𝑀 denotes the number of training samples, 𝑦𝑖 represents the one-
hot encoded target word for the 𝑖-th sample, ℎ𝑎𝑡𝑦𝑖 is the predicted
word. In addition to the fully-connected layer classifier, we apply
regularization techniques such as dropout and weight decay to
prevent overfitting and ensure that the model generalizes well to
unseen EEG samples.

In this section, we introduce the retrieval method designed to
achieve EEG-to-text conversion based on the results from our word-
level classification model. Our word-level EEG encoding and classi-
fication approach, as introduced previously, provides a solid and
transparent measure of how well the encoder captures linguistic
patterns from EEG data by allowing direct evaluation using accu-
racy metrics. However, achieving high top-1 accuracy in linguistic
EEG classifications remains a significant challenge under a large
vocabulary as reported in previous works [6, 12, 38].

To address this limitation, we leverage a characteristic that
emerged from our masked contrastive learning approach. After
training, our model can generate top-𝑘 word predictions with simi-
lar meanings from the input EEG signals. This capability is crucial
as it mitigates the challenges of achieving precise top-1 classifica-
tion by aggregating semantically related words. This aggregation
enhances the robustness and accuracy of our retrieval method, al-
lowing for more reliable decoding of EEG signals into meaningful
sentences. We denote the group of top-𝑘 prediction words as a
keyword set (KS), denoted by S𝑘 . Here, 𝑘 denotes the number of
top prediction words. Building upon this, we design our retrieval
method to leverage the S𝑘 from each “EEG word” to identify the
most relevant sentence from the reading corpus. We denot the se-
quance of KSs in a sentence as S = {S𝑘

𝑖
}𝑖=1,· · · ,𝐿 , where 𝐿 denotes

the number of KS predicted for the sentence.

3.3.2 Beam search retrieval method. We depict the proposed beam
search retrieval method (BSR) in Figure 6. The BSR method is de-
signed to leverage a large search space that considers all 𝑘 candi-
dates in S𝑘 , while reducing exponential memory consumption. BSR
begins by constructing keyword combination queries from the first
𝑛 KSs. Each query contains one candidate from a S𝑘 , and will be
scored according to its relevance to sentences in the dataset corpus.
The scoring method will be explained in Section 3.3.3. The score
for each query measures the relevance of this query to the dataset

corpus. After scoring, we apply re-ranking to the queries and only
keep the best𝑚 combination queries for the next evaluation round.
In the next round, the (𝑛 + 1)𝑡ℎ KS will be added to the queries to
produce further combination queries. This iterative method ensures
that at each step, we maintain the most promising combinations,
incrementally building up to the final sentence retrieval. Mathe-
matically, this iterative beam search process can be described as
follows:

q0 B {∅}

q𝑙 = argmax
q′ ⊆B𝑙
|q′ |=𝑚

𝐻 (q′, C) (3)

, here q0 denotes the initial combination query set before the inter-
active search. It is an empty set as there is no relevant query is kept
at the start. q𝑙 denotes the retained combination queries after the
𝑙𝑡ℎ iteration. We use B𝑙 to denote the new combinations obtained
when adding the 𝑙𝑡ℎ KS (S𝑘

𝑙
) in this iteration. 𝐻 (q′, C) denotes a

scoring method between the combinations q′ and sentences from
the dataset corpus C. We set |q′ | =𝑚 to limits the beam width of
the searching. We calculate the candidate query set at 𝑙 > 0 by:

B𝑙 = {𝑞 ◦ 𝑦 |𝑞 ⊆ q𝑙−1, 𝑦 ∈ 𝐾𝑆𝑘
𝑙
} (4)

, where ◦ denotes the concatenation operation. We borrow the pro-
cess depicted in Figure 6 as an illustrative example. Assume we
have a total of 𝐿 = 3 KS in the sentence. Figure 6(a) shows all KSs
from stage 1. In this example, none of the KS predicted the ground
truth word as its top-1 prediction. However, the correct word can
be found within the top-𝑘 prediction set. Figure 6(b) illustrates the
ground truth words and ground truth reading sentence for refer-
ence. The BSR method, as shown in Figure Figure 6(c), compares
a number of combinations to the dataset corpus, distinguishing
relevant combinations from irrelevant ones. In our example, the
relevant combinations are [may, become, star], [during, time, work],
and [during, time, much]. Using these relevant combinations, our
model is able to identify the closest sentences from the dataset, in-
cluding the ground truth sentence "During this time, he worked..."
and returns this as the retrieval result.

3.3.3 Scoring Method. We use the Aho-Corasick algorithm [1] as
the training-free scoring method. In particular, the Aho-Corasick
algorithm efficciently finds all occurences of the combination query
within a sentence from the corpus by constructing a finite state
machine. Thus, we denote the calculation of 𝐻 (q, C) by:

𝐻 (q, C) =
∑︁

𝑡𝑜𝑝−𝑚
max |𝑞 ∩ 𝑐 |, 𝑐 ∈ C, 𝑞 ∈ q, (5)

, where |𝑞∩𝑐 | denotes the number of occurrences of a query within
a sentence 𝑐 . We score a query using its average occurrence match
with the sentence to allow the tolerance of “wrong keywords” in
the query.

4 Experiment
4.1 Dataset
In this study, we utilize the Zurich Cognitive Language Processing
Corpus (ZuCo) dataset [22] for training and evaluating the proposed

23



BCIMM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Jinzhao Zhou et al.

Figure 6: Illustration of the BSR method for reteiving reading sentences using word-level classification results from previous
stage. (a) An example of the retriever’s input. Although stage-1 model fails to predict the correct word in its top-1 prediction, it
predicts correct words within the top-k KS. (b) Ground truth words reading sentence for reference. (c) The BSRmethod retrieves
the ground truth sentence using these KSs iteratively.

method. The ZuCo dataset contains EEG data recorded during un-
spoken reading tasks involving 12 participants. It includes data
from 105 EEG channels, with EEG waves denoised and filtered into
eight frequency bands after segmentation. For our experiments, we
use data from reading comprehension tasks, specifically Task 1 and
Task 3 to evaluate the performance of our ETER method. Task 1 fo-
cuses on sentiment comprehension from movie reviews [40], while
Task 3 involves understanding and extracting entities’ relationships
from Wikipedia biography articles. As discussed in Section 3.1, we
removed all EEG-word pairs containing grammatical words from
the dataset and performed lemmatization on the remaining words,
merging words with the same lemmatized root form. Additionally,
we observed a sharp decrease in sample numbers for words outside
the top-100 most frequently occurring words in the remaining EEG-
word pairs. As depicted in Figure 7, most long-tailed cases have
fewer than 30 samples in the entire dataset, with some extreme
cases having only one sample. This imbalance problem results in
significant sparsity in the training dataset. Making it impossible to
develop any effective word-level models on the full vocabulary of
the dataset. To address this issue, we selected only the 100 most
frequently appearing words from the dataset for training our EEG
encoder. Although this selection may limit the system’s ability
to scale, it provides relatively stable performance and serves as a
reliable solution for our current needs.

4.2 Mectrics
To ensure a thorough evaluation of our approach, we utilize a
range of evaluation metrics for both the EEG classifier and the
retrieval method. Firstly, we evaluate the effectiveness of the EEG
encoder through classification accuracy assessment. In the context
of sentence retrieval, we employ the retrieval mectics including
recall@5 and precision@5 metrics to evaluate the ability of our
system to retrieve relevant sentence based on the results from EEG
classification. Additionally, we calculate the BLEU metric [8] to
quantify the relevance between the retrieved sentences and the
target sentence.

Figure 7: Samples number of the lemmatized vocabulary of
the Zuco dataset. (top) sample number of words within the
top 100 most occurring words. (bottom) sample number of
words outside the top 100 most occurring words. A sharp
decrease in sample number can be observed (red curve).

Table 1:Word-level classification accuracy (%) on unseen EEG
segments

Method Top-1 Top-5 Top-10 Top-15 Top-20
Random model 1.08% 5.07% 9.57% 14.27% 19.19%
base model (Ours) 5.31% 16.36% 26.11% 32.72% 39.67%
+ bm. 6.48% 21.48% 31.24% 40.38% 47.53%
+ MCT 8.66% 24.90% 36.40% 46.28% 55.15%
1 bm. denotes baseline removal using standard normalization for
each participant.

2 MCT denotes masked contrastive training.

4.3 Word-level classification performance
We train and evaluate our EEG encoder and its ablative versions
using the ZuCo dataset to demonstrate its ability to learn seman-
tic representations from unspoken EEG signals. For the baseline,
we use a random model that predicts a uniform distribution over
the EEG segments. Our initial model is a Conformer EEG encoder
trained solely with the supervised learning loss L𝑠𝑢𝑝 , without
subject-baseline removal. We then assess the performance gains
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by incorporating subject-baseline removal (+bm.) and masked con-
trastive loss (+MCT). As shown in Table 1, our model predicts the
correct word from EEG with a top-20 accuracy of 55.15% and a
top-10 accuracy of 36.4%. This indicates that for more than half
of the unseen EEG samples across different subjects, the ground
truth words rank significantly higher than others within a 100-word
vocabulary. Compared to the random baseline, our model achieves
nearly three times higher accuracy. Furthermore, we observe that
the addition of baseline removal and masked contrastive training
improves the top-20 accuracy by 7.86% and 7.62%, respectively.
These results highlight the incremental improvement provided by
these methods in learning linguistic EEG patterns during reading.

4.4 Sentence-level retrieval performance
We evaluate the performance of the second-stage retrieval method
using the sentiment movie review corpus from Task 1 and the
Wikipedia biography corpus from Task 3. For these evaluations,
we impose constraints on the number of available words within
the sentences, requiring at least 5 or 7 KSs, as shown in Table 2.
We compare the proposed BSR method using various scoring meth-
ods including the Aho-Corasick method, Levenshtein distance, and
Term Frequency-Inverse Document Frequency (TF-IDF). When us-
ing Levenshtein distance, we compute the edit distance between the
query and the compared sentences while for the TF-IDF method,
we calculate the cosine similarity between the bag-of-word repre-
sentations of the query and the comparison sentence retrieved from
the corpus. As presented in Table 2, our experiment demonstrates
the superior performance of using the Aho-Corasick-based scoring
with our BSR method to accurately retrieve relevant sentences from
the corpus based on input keyword sets. In the sentiment movie
review corpus, our method achieves a recall@5 metric of 37.5% for
sentences containing over 5 keyword sets. For sentences containing
over 7 keyword sets in both corpora, we achieve a recall@5 of over
50%. Moreover, our method demonstrates the highest performance
in retrieving relevant sentences, as evidenced by the BLEU metrics,
surpassing a BLEU-1 score of 40% on both reading corpora for sen-
tences with over 7 keyword sets. Since These results are achieved
without requiring any training in the retrieval method, it show-
case the plausibility of the proposed ETER method for EEG-to-text
conversion.

Aside from the quantitative results, Table 3 presents a qualitative
assessment of the proposed ETER method. For qualitative compar-
ison with a generative LLM decoder, we additionally fine-tuned
a T5 model [37] to generate ground truth sentences using lists of
keywords as input. We show that our approach effectively retrieved
top-ranking sentences in the first example case. In contrast, the T5
model produced sentences outside the training dataset, which is
largely based on its pre-training memory. In the last example, al-
though our model failed to find the correct sentence, it still managed
to successfully identify keywords like ’best’, enabling retrieval of
similar sentiment sentences from the corpus. This underscores the
efficacy of our retrieval-based method in transcribing EEG signals
into text given an imperfect word-level EEG classifier.

4.5 Visualization of word-level results
Figure 8 illustrates the top-10 keyword set predicted by the encoder
on unseen EEG samples from the test set. After training, our model
shows a strong capability of encoding EEG signals to similar con-
cepts. For example, when predicting ‘university’, our model also
considers ‘graduate’, ‘school’, and ‘college’ to be in the same key-
word group, indicating the model has assigned these concepts into
a close semantic representation space. We consider the clustering
of meaningful concepts to support that our encoder has learned
useful representation from the brain signal and has aligned these
linguistic representations with language modality in the subspace.

Figure 8: Visualization of top-10 prediction results from the
single-word prediction using our EEG encoder. Text color
indicates whether the predicted word is correct and text size
is proportional to the likelihood of the model’s predictions.

Figure 9: Ablation on different vocabulary size on different
encoder architectures.

4.6 Ablation of vocabulary size
The ablation results on vocabulary size is depicted in Figure 9. This
result highlights the scalability of our proposed method across
varying vocabulary sizes. Notably, our approach consistently out-
performs competing models, demonstrating robustness even with
smaller vocabulary sizes. However, as the vocabulary size increases
to include more than 200 words, we can observe a significant de-
cline in decoding performance. This decline is primarily due to the
inherent imbalance and increased scarcity in the dataset, where
words with lower frequencies lack sufficient training data. Despite

25



BCIMM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Jinzhao Zhou et al.

Table 2: Sentence Retrieval Performance

Reading Scoring Recall@5 Precision@5 Recall@5 Precision@5 BLEU-1 BLEU-4 BLEU-1 BLEU-4
Corpus Method (𝑇 ≥ 5) (𝑇 ≥ 5) (𝑇 ≥ 7) (𝑇 ≥ 7) (𝑇 ≥ 5) (𝑇 ≥ 5) (𝑇 ≥ 7) (𝑇 ≥ 7)

(Task 1) Sentiment
TF-IDF 2.94% 0.73% 0.20% 0.06% 6.20% 0.00% 9.58% 0.00%
L.D. 18.75% 4.06% 50.00% 10.00% 14.60% 1.85% 18.03% 3.47%
A.C. 37.50% 22.90% 50.00% 19.64% 30.37% 20.68% 47.92% 41.81%

(Task 3) Wikipedia
TF-IDF 3.03% 1.51% 6.75% 2.98% 11.33% 3.80% 9.11% 5.96%
L.D. 7.69% 2.10% 15.00% 4.58% 16.21% 4.72% 21.35% 8.20%
A.C. 15.38% 5.55% 55.55% 20.37% 29.12% 14.08% 49.86% 36.27%

1 L.D. denotes Levenshtein distance.
2 A.C. denotes Aho–Corasick score.

Table 3: Visualization of the retrieved sentences

Groundtruth hepburn win an emmy award in 19xx for her lead role in love among the ruin and be nominate for four
other emmy and two tony award during the course of her more than 70 year act career

T5 Generation Among those attending the Kennebunkport, Maine wedding ceremony were Isabel Stillman Rockefeller
(daughter of Percy Rockefeller), Hope Lincoln, Mary Keck...

ETER Query [’award’, ’war’, ’her’]

ETER Retrieval hepburn win an emmy award in 19xx for her lead role in love among the ruin and be nominate for
four other emmy and two tony award during the course of her more than 70 year act career

Groundtruth Sentence henry ford july 30 19xx april 7 19xx be the founder of the henry ford motor company which
later become cadillac and ford motor company

T5 Generation During this period, McNamara helped to plan the 1945 bombing of Tokyo.
ETER Query [’found’, ’company’, ’later’, ’henry’, ’ford’, ’john’, ’become’, ’then’]

ETER Retrieval henry ford july 30 19xx april 7 19xx be the founder of the henry ford motor company which
later become cadillac and ford motor company

Groundtruth like the best of godard’s movie it be visually ravish penetrate impenetrable

T5 Generation He was a member of the Executive Committee of the United States Golf Association (USGA) from
1928-1935, serving successively as Secretary, Vice President and President.

ETER Query [’other’, ’best’, ’not’]

ETER Retrieval it’s the best film of the year so far the benchmark against which all other
best picture contender should be measure

Groundtruth adam receive one electoral vote in the presidential election of 19xx

T5 Generation During this time, he was prescribed Ritalin for hyperactivity; years later, his wife Annette had
been prescribed Ritalin for hyperactivity;

ETER Query [’adam’, ’january’, ’elect’]

ETER Retrieval although adam lose in both the popular and electoral vote in the presidential
election of 19xx . . .

these challenges, our proposed Conformer model maintains com-
petitive performance, achieving a top-10 accuracy of 28.4% with a
200-word vocabulary. This result compares favorably to recent clas-
sifications of listening EEG data, which reported a top-10 accuracy
of 31.4 ± 1.59% with a 203-word vocabulary size [12]. This com-
parison underscores the efficacy of our approach, particularly with
the exclusion of grammatical words from the vocabulary, which
enhances the focus on meaningful content words and improves
overall performance. However, it also suggests that with a more
balanced dataset, our proposed method has the potential to achieve
even higher word-wise performance. This improvement would, in
turn, enhance retrieval accuracy for sentence-based BCI systems
on a larger scale.

5 Conclusion
This paper demonstrates the potential of combining an EEG encoder
with a retrieval method to convert EEG signals into sentences, intro-
ducing a pioneering approach termed EEG-to-text reteival(ETER).
This novel method employs a transparent EEG encoder, to learn
semantic patterns from EEG data. By extracting keyword sets from

unseen EEG segments, ETER enables the sentence retriever to iden-
tify the most relevant sentences from a corpus. Both quantitative
and qualitative evaluations affirm the efficacy of our approach in
acquiring meaningful semantic representations and retrieving rel-
evant sentences. Our extensive experiments and ablation studies
validate the approach’s ability to learn patterns from unspoken EEG
recordings both quantitatively and qualitatively, demonstrating that
our method holds promise for providing more reliable solutions for
converting EEG signals into text. Despite the achieved results, we
recognize the substantial room for future improvement. Given the
exploratory nature of this research, we only employed a simple re-
trieval method and tested it on a limited vocabulary set. Our future
work will focus on exploring more diverse datasets to continuously
improve the EEG encoder design and enhance retrieval methods to
accommodate larger vocabularies, thereby improving sentence re-
trieval accuracy on a larger scale. Additionally, collecting more EEG
data at the word level will be pursued to further advance research
in linguistic EEG decoding.
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