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Abstract
This paper presents a pioneering exploration into the integration
of fine-grained human supervision within the autonomous driving
domain to enhance system performance. The current advances in
End-to-End autonomous driving normally are data-driven and rely
on given expert trials. However, this reliance limits the systems’ gen-
eralizability and their ability to earn human trust. Addressing this
gap, our research introduces a novel approach by synchronously
collecting data from human and machine drivers under identical
driving scenarios, focusing on eye-tracking and brainwave data
to guide machine perception and decision-making processes. This
paper utilizes the Carla simulation to evaluate the impact brought
by human behavior guidance. Experimental results show that using
human attention to guide machine attention could bring a signifi-
cant improvement in driving performance. However, guidance by
human intention still remains a challenge. This paper pioneers a
promising direction and potential for utilizing human behavior
guidance to enhance autonomous systems.

CCS Concepts
•Human-centered computing→Computer supported cooperative
work; • Computing methodologies→ Control methods; Vision
for robotics.
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1 Introduction
This position paper aims to pioneer the exploration of integrat-
ing granular human supervision into the burgeoning field of au-
tonomous driving to enhance its performance. Presently, the ma-
jority of autonomous driving approaches, whether end-to-end or
pipeline-based, rely heavily on expert trials. Such reliance is inade-
quate for considerations such as generalizability and earning human
trust. This paper collects synchronous data from both human and
machine driving scenarios to investigate this aspect.

The current trend in autonomous driving systems could be cat-
egorized into pipeline formations [14, 17, 28, 35] and End-to-End
(E2E) approaches [10, 23, 31, 40]. These systems primarily transform
raw sensory inputs into machine-readable representations using a
variety of feature fusion techniques, such as BEV or range view. The
goal is to develop autonomous driving models that can complete
predetermined routes while safely navigating dynamic environ-
ments and complying with traffic rules, all through observational
data-driven policies.

These approaches mentioned above are predominantly data-
driven, relying heavily on models learning from expert examples.
However, the pure data-driven formation also brings strong reli-
ability to the data distribution. We suggest an augmentation of
this methodology by incorporating fine-grained, immediate human
labels as fine-tuning feedback to further enhance the robustness
of the driving process. Our proposal involves a novel approach
where humans and machines share the same driving scenarios.
During these shared experiences, we aim to gather data from both
human and machine drivers concurrently. This dual-data collection
focuses on eye-gazing markers and brainwave data, offering a com-
prehensive view of the driving environment and decision-making
processes. Incorporating human-guided data into the autonomous
system is intuitively right as humans still perform better ability
while dealing with a lot of scenarios. The utilization of human
guidance could leverage human superior intelligence in complex
scenarios (eg. correct attention in complex scenarios) intuitively
benefiting from expert guidance in the learning process.

Introducing human guidance into the learning loop is a feasible
and effective strategy, as evidenced by previous studies [5, 22, 29,
39]. However, this area has very limited research. Following the
autonomous driving scenarios mentioned above, we propose the
driving framework where the overall structure of our exploration is
illustrated in Fig 1. It delineates the research into two main aspects
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Figure 1: Visual schema of human enhanced autonomous driving. This model subjects both the machine and the human to
identical driving scenarios along the same route. Throughout this process, we collect synchronous data on human behavior,
including eye-tracking metrics, brainwave patterns, and brake signaling, capturing these elements in unison.

of exploring how human guidance could enhance the autonomous
driving system: 1) eye tracking attention during human driving and
2) human cognition data generated through the driving procedure.

We initially explore the concept of “observing like a human"
in Section 3.5.1. This involves analyzing eye movements during
driving to uncover deeper insights into the cognitive processes and
attentional focus of human drivers. Leveraging human attention
as guidance, this approach seeks to address overlooked aspects by
machines. It allows for the correction of instances where objects
of potential significance are ignored by automated systems. This
human-guided attention is instrumental in highlighting objects that
align with human empirical skills but may not be represented in
expert training datasets. Such guidance is invaluable for machines,
as it aids in recognizing and responding to critical elements in
various driving scenarios, including sudden hazards or intricate
traffic situations. By integrating these human-centric insights, we
can significantly enhance the machine’s perceptual and decision-
making abilities in dynamic driving environments.

Secondly, we explore how the human cognition or behavior data
could help guide the autonomous driving model in Section 3.5.2.
We explore the human cognition data to train an additional reward
criticizer to provide additional feedback for additional imitation
learning. To realize this goal, we first train a simple EEG wave clas-
sifier to recognize whether humans will decide to emergency break
according to the current situation. Then, we feed the simultaneously
collected EEG waves while human driving to this classifier and use
the break signal as the additional feedback to the reinforcement
fine-tuning of the driving model.

Experimental results are conducted in Section 4, where we re-
spectively explore how eye-tracking guidance and human cogni-
tion data guidance in Section 3.5.1. The results suggest leveraging
human eye-tracking data as an auxiliary feedback mechanism in
imitation learning has yielded positive improvements in driving

performance. Specifically, this approach enhanced the driving score
on the Carla Long-Set 6 dataset from 50.63 to 51.29. Conversely, the
integration of cognition data did not result in a significant direct
enhancement of the machine’s driving score. At the position paper
stage, we think this issue is reasonable because of two issues: 1)
The recognition accuracy of the human brain data is still limited.
This limited the guidance accuracy of human intention for driv-
ing. 2) The data quality is still relatively low, where the human
driver’s reaction speeds vary, and their decision-making capability
varies when facing dangerous situations. This outcome suggests
that the effective application of cognition data in autonomous driv-
ing remains an area ripe for further investigation. However, the
effectiveness of human-observing data still outlines future research
integrating human guidance in a collaborative human-machine
driving context. The contribution of this paper could be categorized
into four folds.

• This position paper pioneers enhancing machine driving by
two aspects 1) observing like human drivers, and 2) making
decisions like human drivers.

• This paper collects the parallel human cognition and behav-
ior data of simultaneous machine and human driving.

• Experimental results suggest effectiveness of introducing
human-guidance into autonomous driving.

2 Related Works
End-to-End Autonomous Driving. Although rapidly developing,

autonomous driving (AD) technology [24], it faces challenges in
generalization and safety. To remedy this issue, a number of works
have explored imitation learning (IL) and reinforcement learning
methods to leverage human guidance for enhancing training effi-
ciency and the safety of the learned of driving policy [5, 8, 9, 25, 30].
Current methodologies for integrating human guidance into au-
tonomous driving (AD) systems primarily categorize based on their
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impact on the AD system into two distinct approaches: 1) leveraging
human expert knowledge to train reliable driving policies, and 2) in-
corporating human oversight during model execution. Techniques
such as Conditional Imitation Learning (CIL) [4], and Generative
Adversarial Imitation Learning (GAIL) [13] rely on human expert
trajectories for training the driving policy model. However, these
methods face significant challenges, including the inefficiency of
data collection and distribution shifts. Alternatively, a different set
of approaches focuses on interpreting human biosignals during the
evaluation phase, enabling the model to maneuver the car more
safely under human guidance or feedback [11]. Subsequent research
has proposed strategies for employing real-time human guidance
to enhance the safety and performance of the human-AI co-driving
system [12, 15, 36, 37]. These strategies involve dynamic control
transfer between human drivers and AI agents to facilitate timely
intervention, thereby improving the co-driving experience. This
evolution in approach underscores the importance of human-AI col-
laboration in enhancing the effectiveness and safety of autonomous
driving systems. To combine the merits of the above methods, our
proposed methods also make use of human biosignals to improve
the training efficiency of AI models while also being used in driving
interventions.

Real-Time Human Guidance for Autonomous systems. Current
methods for introducing real-time human guidance in autonomous
driving scenarios predominantly rely on head movement [20] and
eye-tracking signals [1, 41]. However, these approaches, focus pri-
marily on external indicators of attention and intent without con-
sidering the critical role of cognitive processes in driving. There are
only limited works exploring the real-time monitoring of the cogni-
tive process in the context of driving safety [2, 3, 26, 34], however,
they did not consider using the cognitive brain signal as guidance
to the AD system. To address this gap, we propose an innovative re-
search direction that integrates human cognitive signals alongside
eye-tracking data to provide a more comprehensive understanding
of driver intentions. By combining these sources of information, we
aim to achieve a more seamless integration of the driver’s objectives
and safety considerations with the performance of the autonomous
driving (AD) system. This holistic approach promises to enhance
the symbiosis between human drivers and AD technologies, paving
the way for advancements in driving safety and efficiency.

3 Methodology
3.1 Overview
Problem Setup:We follow the previous widely accepted setting of
E2E driving ([10, 32, 40]) that the goal is to complete a given route
while safely reacting to other dynamic agents, traffic rules, and
environmental conditions. Thus, the goal is to learn a policy 𝜋 given
observation. We choose the Imitation Learning (IL) approach
to learn the policy. The goal is to obtain policy 𝜋 by imitating the
behavior of an expert 𝜋∗. Given an expert, the learning datasetD =

{(X𝑖 ,W𝑖 )} could be collected by letting the expert perform similar
routes, where X𝑖 = {(x𝑖

𝑖𝑚
, x𝑖
𝐿𝑖
)𝑡 }𝑇𝑡=1 denotes image and LiDAR

sensory observations of the current state, and W = {(𝑥𝑡 , 𝑦𝑡 )}𝑇𝑡=1
denotes the expert trajectory of waypoints. Here, 𝑥𝑡 , 𝑦𝑡 denotes
the 2D coordinates in ego-vehicle (BEV) space. Thus, the learning

target could be defined as in Eq. 1.

argmin
𝜋

E(X,W)∼D
[
L𝑤𝑝 (W, 𝜋 (X))

]
(1)

where L𝑤𝑝 is the waypoint loss defined in Eq. 4, and 𝜋 (X) is the
predicted waypoints given observation X through policy 𝜋 to be
learned.

Formation: In this paper, the policy 𝜋 (X) is realized by the
combination of a hybrid fusion network (Sec. 3.2) and the decision
transformer (Sec. 3.3), where the fusion network transfer multi-
modality sensory inputs X into semantic tokens F𝑠 , and decision
transformer predicts future goal points W given F𝑠 . The human
guidance is injected by Then a PID Controller is applied on the
waypointsW decision and decomposed into practical control, ie.,
steer, throttle, and brake.

3.2 Hybrid Fusion Transformer Encoder
For basic sensor fusion we utilize MaskFuser [8] as our main ourk.
MaskFuser proposed a hybrid network shown in the lower part of
Fig. 2 that combines the advantages of early fusion and late fusion.
The network consists of two stages.

Early Fusion: At the first stage, we apply two separate CNN
branches to extract shallow features respectively from monotonic
image and LiDAR inputs. For the image branch, MaskFuser con-
catenates three front view camera inputs each with 60 Fov into a
monotonic view and reshaped into shape 3 × 160 × 704. For the
LiDAR branch, MaskFuser reprocesses the raw LiDAR input with
PointPillar [16] into BEV feature with shape 33×256×256. Since the
lower-level features still retain strong geometric relations, the sep-
arated encoder could extract tight local feature representation with
fewer distractions. A novel monotonic-to-BEV translation (MBT)
attention is applied to enrich each modality with cross-modality
assistance. MBT attention translates both images and LiDAR fea-
tures into BEV feature space and performs a more precise spatial
feature alignment compared to previous element-wise approaches.

Late Fusion: At the second stage, the network respectively tok-
enizes [6] feature maps from Image and LiDAR stream into semantic
tokens, respectively denoted by green and blue in lower part of
Fig. 2. The late fusion is performed by directly applying a shared
transformer encoder over the concatenated token representation.
The shared encoder with position embedding could force the tokens
from various modalities aligned into a unified semantic space. Also,
by treating multi-sensory observation as semantic tokens, we could
further introduce masked auto-encoder training mentioned below.

3.2.1 Monotonic-to-BEV Translation (MBT). MBT attention per-
forms cross-modality attention more precisely by introducing hu-
man prior knowledge (BEV transformation). Inspired byMonotonic-
Translation [21], wemodel the translation as a sequence-to-sequence
process with a camera intrinsic matrix. The detailed structure of
MBT attentions is shown in Fig. 3, where the feature map from
image stream with shape F𝑖𝑚 ∈ R𝑁×𝐶×𝐻×𝑊 is reshaped along
width dimension𝑊 into image columns F𝑐 ∈ R𝑁𝑊 ×{𝐻×𝐶 } . The
column vectors are projected into a set of mediate encoding {h𝑖 ∈
R𝐻×𝐶 }𝑁𝑊

𝑖=1 through a transformer layerwithmulti-head self-attention.
We treat mediate encoding of monotonic view h𝑖 which projects
the key and value representing the range view information to be
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Figure 3: The structure of the MBT attention module, where
the features from monotonic view are projected into BEV
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translated.

𝐾 (h𝑖 ) = h𝑖𝑊𝐾 , 𝑉 (h𝑖 ) = h𝑖𝑊𝑉 (2)

A grid matrix is generated indicating the desired shape of the target
BEV space. We generate position encoding {𝑔𝑖 ∈ R𝑟×𝐶 }𝑁𝑊

𝑖=1 along
side each radius direction inside the grid with depth 𝑟 . The grid
position𝑔𝑖 is tokenized into query embedding and query the h𝑖 with
radius directions 1 as defined in Eq. 3 and generate the translated

1The radius coordinates are calculated by given camera intrinsic matrix, FOV, and
prefixed depth length.

feature map F𝑚𝑏𝑡 .

s(gi, hj) =
𝑄 (g𝑖 )𝐾 (h𝑗 )𝑇√

𝐷
, 𝑄 (g𝑖 ) = g𝑖𝑊𝑄

F𝑚𝑖𝑑 =
∑︁
𝑖

exp(s(gi, hj))∑
𝑗 exp(s(gi, hj))

𝑉 (h𝑖 )
(3)

where s(gi, hj) is the scaled dot product [33] regularized by dimen-
sion 𝐷 . Yet, since the monotonic view only suggests information
inside certain FOV (Field of view), we apply a sampling process
F𝑚𝑏𝑡 = P(Fmid) to sample points inside FOV decided by camera
intrinsic matrix into BEV feature map F𝑚𝑏𝑡 . The translated feature
map F𝑚𝑏𝑡 and feature map from LiDar F𝐿𝑖 is reshaped by flatten
along width𝑊 and depth 𝑟 into vectors and concatenate into se-
quence F𝑖𝑛 = cat(Fmbt, FLi). The transformer layer is applied on
F𝑖𝑛 ∈ R𝑁

★×𝐶 to perform self multi-head attention ([33]) between
each token in 𝑁★ dimension.

3.3 Decision Transformer
Inspired by the previous work InterFuser [23], we use a similar
transformer decoder as the decision layer. The decoder follows
the standard transformer architecture, transforming some query
embeddings of size 𝑑 using 𝐾 layers of multi-headed self-attention
mechanisms. Five types of input are designed: {𝑤𝑖 }𝑡𝑖=1 previous
waypoints query, 𝑅2 density map queries (to query current vehi-
cle status), human attention query, one traffic rule query, and one
human intention query. These queries are concatenated into a se-
quence of tokens with shape q ∈ R𝑑×𝑁 which with the same shape
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with z. To indicate the query order we add a standard positional
embedding into the query q when doing the concatenation. In each
decoder layer, we employ these queries to inquire about the de-
sired information from the multi-modal multi-view features via
the attention mechanism. More specifically, in each transformer
layer, we treat perception state z as key K and value V, and we
treat the mentioned queries q as the query Q. This structure al-
lows the decision transformer query perception state accordingly
with different queries inside the sequence, resulting in the output
independently decoded into waypoints, one density map, human
attention prediction, traffic status, and the human intention by the
following prediction headers.

3.4 Basic Prediction Headers
The transformer decoder is followed by five parallel prediction
modules to predict the waypoints, the object density map, human
attention, traffic rule, and human intention respectively.

3.4.1 Waypoints Prediction. For the waypoints prediction, follow-
ing the mentioned waypoints prediction network defined [24], we
take a single layer GRU to auto-regressively predict a sequence of
three future waypoints {𝑤𝑡+𝑙 }3

𝑙=1. The GRU predicts the 𝑡+1-th way-
points by taking in the hidden state from the 𝑡-th decoded waypoint
embedding from the transformer decoder related to the waypoints
queries, and previous inputs from the recorded𝑤𝑡−2,𝑤𝑡−1,𝑤𝑡 . Also
to inform the waypoints GRU predictor of the ego vehicle’s goal
location, we concatenate the GPS coordinates of the goal location
at the beginning of the input sequence. More specifically, the loss
function is defined in Equation 4 as follows:

L𝑤𝑝 =

𝑇∑︁
𝑡=1

w𝑡 −w𝑔𝑡𝑡


1
(4)

where the w𝑔𝑡𝑡 is the ground truth from the expert route.

3.4.2 Density Map Status Prediction. The density map prediction
forces the model to learn to predict the current vehicle status on
a density map. We basically follow the original setting of Inter-
Fuser [23] as this is not our research target. Please refer to appen-
dix A for detailed definitions of loss L𝑚𝑎𝑝 .

3.4.3 Traffic Rule Prediction. For traffic rule prediction, the cor-
responding embedding from the transformer decoder is passed
through a single linear layer to predict the state of the traffic light
ahead, whether there is a stop sign ahead, and whether the ego
vehicle is at an intersection.When predicting the traffic information
Ltf, we expect to recognize the traffic light status L𝑙 , stop sign L𝑠 ,
and whether the vehicle is at a junction of roads L 𝑗 . All these three
statuses are represented as a one-hot 0-1 label acquired from the
CARLA simulator. These losses are simply calculated using cross
entropy between prediction and ground truth as below:

Ltf = 𝜆𝑙L𝑙 + 𝜆𝑠L𝑠 + 𝜆 𝑗L 𝑗 , (5)

where 𝜆 balances the loss terms, which are calculated by binary
cross-entropy loss.

3.5 Human-Guidance Headers
3.5.1 Human Eye-Tracking Attention Prediction. We design the eye
tracking attention queries with shape Qeye ∈ R

𝐻
16 ×

𝑊
16 ×𝑑 , where

the 𝐻
16 × 𝑊

16 denotes the 16 times down-sampled range-view ratio
of the camera, which has the exactly same ratio with the human
attention ground truth map with ratio 𝐻 ×𝑊 . The query Eeye is
fed into the decision transformer by flattening 𝐻

16 × 𝑊
16 into a fixed

length and outputs the prediction embedding the same shape. Then
we use a transpose convolution to upsample the embedding from
shape 𝐻

16 × 𝑊
16 ×𝑑 into human attention prediction Eeye with shape

𝐻 ×𝑊 × 1. We define the eye tracking prediction loss Leye by
calculating reconstruction loss between prediction Eeye and ground
truth human attention Ēeye:

Leye = ∥Eeye − Ēeye∥2, (6)

where we use mean square error (MSE) loss to supervise the human
attention predictor head.

3.5.2 Human Intention Prediction. Given the synchronized col-
lected data human intention EEG data, we use a pre-trained classi-
fier [7, 42, 43] to determine whether the human has the intention to
break the car we respectively represent the EEG classified label as
I𝐸𝐸𝐺 . Meanwhile given the break behavior signal from the human
driver’s pedal as I𝑏𝑟𝑎𝑘𝑒 , we propose to let the transformer jointly
predict the human intention score. Similar to traffic rule prediction,
we utilize a combined binary cross-entropy loss to supervise the
decision transformer. The loss function is given below:

Lhb = 𝜆EEGLEEG + 𝜆bLbrake, (7)

where the human intention is supervised by calculating the binary
cross-entropy combination.

3.6 Training Loss Combination
The loss function is designed to simultaneously predict multiple
targets including, waypoints (L𝑝𝑡 ), object density map (L𝑚𝑎𝑝 ), hu-
man attention (L𝑒𝑦𝑒 ), traffic rule (L𝑡 𝑓 ), and human break intention
(Lℎ𝑏 ).

𝐿 = 𝜆ptLpt + 𝜆mapLmap + 𝜆mapLmap + 𝜆tfLtf + 𝜆hbLhb, (8)

where 𝜆 balances the three loss terms. Here, the waypoints (L𝑝𝑡 ),
object density map (L𝑚𝑎𝑝 ), and traffic rule (L𝑡 𝑓 ) consists of the
pure data driving supervision for autonomous driving similar Inter-
Fuser [23] and the two additional loss items human attention (L𝑒𝑦𝑒 )
and human break intention (Lℎ𝑏 ) indicates the human guidance.

4 Experiments
4.1 Data Collection
The data are collected by collecting data simultaneously from hu-
mans and machines driving under the same route and simultane-
ously collecting the human data including human eye-tracking,
human brain waves, and braking behaviors. The simultaneous hu-
man collection process is realized by letting human subjects drive
using the Logitech G920 driving force wheels, pedals, and driving
chair. The human visual attention is collected by letting humans
wear a HTC Vive Pro Eye virtual reality gear. We use the widely
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Figure 4: Visualization example of the collected combined
human eye-tracking attention data.

used CARLA simulator 2 version 0.9.13 as the driving simulator
The driving scenarios are projected into embodied perspective for
the human driver. Thanks to the previous work DReyeVR 3 [27],
we directly utilize the proposed modified CARLA simulator to com-
plete the data collection. To visualize the human eye’s attention, we
provide examples of collected eye-tracking data in Figure 4. Simul-
taneously, we collect the EEG data through a 64-channel collection
device, where excluding the ground, reference, CB1, and CB2, the
available count should be 60 out of 64. We collect 12 human sub-
jects using the default routes under Town 4 and Town 7 for human
guidance.

For the machine perception dataset, we employed a rule-based
expert agent that adheres to the methodologies outlined in Trans-
Fuser [10] and InterFuser [23]. This agent was deployed across a
diverse range of eight urban layouts and varying weather condi-
tions, operating at a frequency of 2 frames per second. Through
this process, we amassed an extensive expert dataset consisting of
3 million frames, which equates to approximately 410 hours of data.
This dataset served as the foundation for the initial pretraining
phase of our machine perception model.

The eye-tracking is projected into 2D positions while training.
For further illustration of the collected data distribution, we further
visualize the statistical distribution of the eye data in Figure 5.

4.2 Implementation Details
The model training is divided into two stages, where stage 1 follows
the normal autonomous model training, and stage 2 utilizes the
human-guided data to further finetune the decision model.

Machine State Pretraining: For the feature extractor part,
we follow the setting proposed in Section 4.2, the Hybrid Net-
work, which employs cameras and LiDAR as dual modalities. Cam-
era inputs are merged into a 120-degree FOV and reformatted to
(160, 704), while LiDAR data is transformed to a 256 × 256 BEV for-
mat [16]. For feature extraction, ImageNet-trained RegNet-32 [38] is
utilized on both image and BEV LiDAR data. Training includes angu-
lar augmentation by ±20 degrees on LiDAR, akin to Transfuser [10],

2https://github.com/carla-simulator/carla
3https://github.com/HARPLab/DReyeVR

Figure 5: Example of the statistical distribution of left and
right eye’s pupil position and diameter size change during
one episode.

with corresponding label adjustments. Inter-modal bridging trans-
formers (MBTs) integrate features post-initial convolutions, at res-
olutions (𝐶1, 40, 176) and (𝐶2, 20, 88), where 𝐶1 = 72 and 𝐶2 = 216.
The MBT comprises two transformer layers with 512 hidden di-
mensions and 4 heads. Following established polar ray grid sam-
pling [21], MBT attends to varying depth ranges, translating to a
real-world coverage of up to 30.5 meters. Post-MBT, feature maps
of 20 × 88 × 512 and 32 × 32 × 512 are sectioned into 4 × 4 patches,
combined into a token sequence for a unified ViT encoder with four
layers and 4 attention heads. This results in a semantic sequence of
174 tokens, maintaining the 512-dimensionality from early fusion.

For the decision transformer, the number of layers𝐾 in the trans-
former decoder and the transformer encoder is 6, and the feature
dimension 𝑑 is 256. The dimension of semantic token sequence
output from the HybridNetwork is projected into 256 and fed into
the decision transformer. We train our models using the AdamW
optimizer [19] with a cosine learning rate scheduler [18]. The ini-
tial learning rate is set to 5 × 10−4 × BatchSize

512 for the transformer
encoder & decoder, and 2 × 10−4 × BatchSize

512 for the encoders. The
weight decay for all models is 0.07. All the models are trained for a
maximum of 35 epochs with the first 5 epochs for warm-up [18].
For data augmentation, we used random scaling from 0.9 to 1.1 and
color jittering.

Human-Guided Finetune Upon completion of the pretraining
with the 3 million frames derived solely from machine-generated
data, we transitioned to a phase of targeted refinement. In this stage,
the perception model’s parameters were fixed, and we exclusively
fine-tuned the decision-making module of the transformer. For the
EEG wave classifier, we pre-train a “human intention to brake"
classifier based on the simultaneously collected EEG wave and the
human behavior to brake label. This refinement utilized a smaller,
yet highly nuanced dataset comprising 12,000 frames of human-
derived data. The objectivewas to integrate human decision-making
nuances into the machine perception model, thereby enhancing its
ability to interpret complex driving scenarios. When we conduct
the human-guided driving training, we use the initial learning rate
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Table 1: Driving Evaluation on LongSet6 with Human Guidance, where DT denotes decision transformer.

Human Guidance DT Network DS ↑ RC ↑ (%) IS↑
× × TransFuser 46.95±5.81 89.64±2.08 0.52±0.08
× × MaskFuser 49.05±6.02 92.85±0.82 × 0.56±0.07
× ✓ InterFuser 49.86±4.37 91.05±1.92 0.60±0.08
× ✓ MaskFuser + DT 50.63±5.98 92.89±0.80 0.62±0.08

Eye-Attention ✓ MaskFuser + DT 51.39±5.33 92.01±0.97 0.65±0.09
Intention ✓ MaskFuser + DT 50.06±5.81 90.97±1.80 0.63±0.09

Eye-Attention + Intention ✓ MaskFuser + DT 50.59±6.12 91.39±0.80 0.63±0.09
Eye-Attention + Fake Intention (GT) ✓ MaskFuser + DT 51.28±6.17 92.03±0.98 0.64±0.08

Expert 75.83±2.45 89.82±0.59 0.85±0.03

as 1 × 10−4 × BatchSize
512 for the decision transformer. The weight

decay is kept the same as 0.07.

4.3 Evaluation with Human Guidance
Evaluation Benchmark:We directly keep the experimental set-
tings the same as the pure machine driving evaluation on CARLA
LongSet 6 [10]. We conduct our detailed ablation and comparison
based on the Longeset6 Benchmark proposed by TransFuser [10],
which chooses the 6 longest routes per town from the officially
released routes from the CARLA Challenge 2019 and shares quite a
similarity with the official evaluation.
Quantative Evaluation For both online evaluation and offline eval-
uation, we follow the official evaluation metrics to calculate three
main metrics, Route Completion (RC), Infraction Score (IS),
andDriving Score (DS). The RC score is the percentage of route dis-
tance completed. Given 𝑅𝑖 as the completion by the agent in route 𝑖 ,
RC is calculated by averaging the completion rate 𝑅𝐶 = 1

𝑁

∑𝑁
𝑖 𝑅𝑖 .

The IS is calculated by accumulating the infractions 𝑃𝑖 incurred
by the agent during completing the routes. The driving score is
calculated by accumulating route completion 𝑅𝑖 with infraction
multiplier 𝑃𝑖 as 𝐷𝑆 = 1

𝑁

∑𝑁
𝑖 𝑅𝑖𝑃𝑖 . We also calculate the detailed in-

fraction statistical details according to the official codes. We report
the evaluation with the human-guided fine-tuning models on these
metrics in Table 1.

It is observed from Table 1 that the integration of human-guided
fine-tuning with the MaskFuser decision transformer (DT) leads
to a noticeable improvement in Driving Score (DS). The improve-
ment is mainly brought by human attention guidance, yet for the
human intention guidance, we didn’t observe a clear improvement.
Here, the Eye-Attention guidance combined with the decision trans-
former achieves the highest mean driving score of 51.39, indicating
the effectiveness of incorporating human attention to guide the
driving model. Furthermore, the addition of intention data slightly
reduces the driving score under both settings. This phenomenon
is still reasonable because of two reasons. 1) The human intention
recognition is not as accurate at this stage as the supervise label.
During our experiments, the human intention classifier has an accu-
racy between 60%− 70% which is still compared low at this stage. 2)
A long-existing problem appears that the simultaneously collected
data has small time shifts between the human timestamp and the
machine timestamp, this will lead to the wrong labels in rapidly

changing situations. However, the improvement brought by the
human attention guidance underscores the potential of leveraging
nuanced human behavioral cues to enhance autonomous driving
systems.

5 Limitation
In the experimental section, although using eye-tracking data has a
positive impact on autonomous driving performance, using human-
intention data does not. We attribute this issue to two main factors:
First, human intention relies on a pre-trained EEG recognition
model, which can only achieve a 60 − 70% accuracy rate in identi-
fying people’s danger or braking intentions, thereby introducing
noise. Second, compared to the abundant machine-generated au-
tonomous driving data, collecting driver intention data is relatively
costly. We utilized driving data from only 12 individuals, which
may not be sufficient to significantly influence the training of large
models. Moreover, intention data, compared to human attention,
provides sparser supervision, necessitating more supervised data
for training. This aspect warrants further discussion in future work.

6 Conclusion
In this paper, we delve into the utilization of human behavioral data
to improve autonomous driving performance. We explore harness-
ing insights from human drivers to enhance the driving system’s
capabilities by two aspects 1) observing like a human, and 2) deci-
sion like a human. To achieve this, we collected eye-tracking and
brake & cognition data from 12 human subjects by letting machines
and humans drive the same route. The experimental results indicate
that guiding machine attention with human attention can lead to
a clear improvement in performance. However, the experiments
did not demonstrate that human cognition data could significantly
enhance outcomes. Integrating granular human supervision into
machine driving merits further in-depth investigation. Such an
approach is beneficial for increasing the machine’s trustworthi-
ness to humans while making its decision-making processes more
anthropomorphic.
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