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Abstract 

Grass pollen is a globally prevalent allergen, known to trigger allergic reactions such as hay fever and 

asthma. Australia, in particular, exhibits one of the highest rates of asthma and hay fever prevalence 

and morbidity. Accurate mapping of grass pollen sources is crucial for enhancing the capabilities of 

grass pollen forecast systems. This is especially important in urban landscapes, where the allergenicity 

associated with urban grass spaces has recently garnered increased attention. However, the spatial 

distribution of grass in urban landscapes is not well represented in existing coarse-resolution land 

cover maps. In this study, we evaluated the uncertainties inherent in coarser land cover maps, i.e., 

Dynamic Land Cover Dataset (DLCD) and Australian Land Use and Management Classification 

(ALUM) land maps, by comparing them with a 10-m grass map generated from Sentinel-2 data. 

Subsequently, we characterized the seasonal and inter-annual variations in grass pollen sources 

surrounding a pollen trap in Sydney, Australia, based on the correlations between the Enhanced 

Vegetation Index (EVI) of grass and grass pollen concentrations. Our results show that (1) the 10-m 

Sentinel-2 grass map effectively excludes non-grass features, thereby improving correlation with in-

situ grass phenology observations; (2) the correlations between grass EVI, filtered by Sentinel-2 grass 

map, and grass pollen concentrations varied across different land plots with varied grass fractions, but 

the grass fraction was not the primary controlling factor; (3) The pollen trap station exhibited 

significant seasonal and inter-annual variability in grass pollen sources, necessitating further 

investigation into the meteorological influences on grass phenology and pollen emissions. This study 

demonstrates the promising performance of Sentinel-2 data in identifying the spatial distribution of 

grasses, improving the characterization of grass greenness, and mapping grass pollen sources with 

finer spatial resolution. These findings provide robust data support to enhance our understanding of 

grass pollen aerobiology in urban areas.  
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1.  Introduction 

Grass pollen is a major source of airborne allergens, capable of triggering allergic symptoms such as 

hay fever and asthma (Brennan et al., 2019; Darrow et al., 2012; Devadas et al., 2018; Erbas et al., 

2015; Kmenta et al., 2016). In Australia, the prevalence and impact of hay fever and asthma are 

among the highest globally (Asher et al., 2007), leading to a substantial public health burden 

associated with allergic respiratory diseases (Davies et al., 2015) and significant government 

healthcare costs (Beggs et al., 2015). Therefore, it is crucial to enhance the prediction of grass pollen 

in the environment, particularly in urban regions where the increasing allergenicity is associated with 

urban green spaces (Cariñanos et al., 2002; De Linares et al., 2010; Rojo et al., 2022). 

Satellite-based remote sensing has proven effective in enhancing predictive models of grass pollen 

aerobiology. It provides valuable information on phenological timing of grass (Descals et al., 2020; 

Gómez-Giráldez et al., 2020; Vrieling et al., 2018) and enables the mapping of grass spatial 

distributions (Khwarahm et al., 2016; McInnes et al., 2017; Rapinel et al., 2019; Verstraeten et al., 

2021). This technology plays a crucial role in mitigating the health and socioeconomic impact of 

allergic diseases caused by grass pollen sensitivity.  

Maps showing the locations of allergenic vegetation taxa have been adopted in various application 

scenarios, including combining with weather data to improve pollen forecasting (Zink et al., 2011); 

combining with health data to inform exposure of aeroallergens (Newson et al., 2014); improving 

pollen emission models (Zink et al., 2013); and enhancing individuals’ self-management of allergy or 

asthma (McInnes et al., 2017). Vegetation mapping of plants with allergenic pollen requires land 

cover maps as the reference (i.e., base maps). For example, using the Corine Land Cover 2000 

(CLC2000) (100 m) as a base map, Khwarahm et al. (2016) mapped the birch and grass pollen 

seasons in the UK. Similarly, finer resolution satellite data (Quickbird satellite images) was combined 

with the CLC2000 land cover map to derive grass pollen sources across the city of Aarhus, Denmark 

(Skjøth et al. 2013). Another land cover map with a 25m spatial resolution (Centre for Ecology and 

Hydrology (CEH) Land Cover Map 2007) was used to generate a grass map in the UK (McInnes et 

al., 2017). In contrast to the northern hemisphere, studies of allergenic grass pollen sources in 

Australia have remained reliant on coarse spatial resolution land cover maps, such as the International 

Geosphere-Biosphere Programme (IGBP, 500m) land classification system (Devadas et al., 2018) or 

Australian Land Use and Management Classification (ALUM, 50m) (Emmerson et al., 2019). 

Although the Dynamic Land Cover Dataset (DLCD, 250m) provided nationally consistent land cover 

information for Australia, its spatial resolutions cannot meet the requirement for mapping precise 

grass pollen sources, especially considering the intensive spatial heterogeneity around capital cities 

and the existence of urban ‘green spaces’, which play a significant role in grass pollen exposure 

(Skjøth et al., 2013). 



Besides geospatial landscape information on allergenic plants, satellite data can contribute to the 

retrieval of key phenology timing of allergenic vegetation to better inform pollen aerobiology 

dynamics and map pollen sources. Utilizing time series of satellite data, previous studies adopted the 

onset of flowering as the phenological proxy to map allergenic birch pollen sources (Karlsen et al., 

2009; Khwarahm et al., 2016). The underlying logic behind using flowering phenophase to interpret 

pollen seasonal dynamics is the good correlations between timings of birch male flowering and leaf 

budburst, with only 1.1 day intervals between each other (Linkosalo 1999, 2000). Furthermore, the 

timing of these two phenophases appears to be closely synchronized with pollen release (Newnham et 

al., 2013). However, this approach is not suitable for mapping grass pollen sources. Compared to 

birch (regarded as the major allergenic pollen source in Europe), the flowering time of grass is hard to 

detect from satellite images due to their tiny flowers. Additionally, Devadas et al. (2018) reported that 

Australian grass pollinating periods are less synchronous with satellite greenness measures compared 

with French sites, partly due to the more heterogeneous landscapes and complex species diversity in 

Australian grasslands (e.g., the co-existence of exotic and native species; see Watson et al., 2019). 

Recently, Sentinel-2 satellite data at 10 m resolution has shown potential for generating more precise 

and updated land cover maps (Chen et al., 2015). The Sentinel-2 satellite was launched when many 

advanced classification methods based on machine learning approaches were already developed (Phiri 

et al., 2020). Advanced machine learning techniques such as Random Forests (RF) (Clark 2017; 

Fragoso-Campón et al., 2018), Support Vector Machines (SVM) (Denize et al., 2018; Nguyen et al., 

2020) and Convolutional Neural Network (CNN) (Längkvist et al., 2016; Qiu et al., 2020) have been 

applied for land cover classification — including crop (Mazzia et al., 2020), forest (Miranda et al., 

2019) and grassland (Pelletier et al., 2019; Dewi and Chen 2019) — based on Sentinel-2 data. For 

example, Segal-Rozenhaimer et al. (2020) applied CNN to classify land cover and obtained a 91% 

classification accuracy. Based on Sentinel-2 images, scientists adopted three widely used machine 

learning approaches (RF, Recurrent Neural Network (RNN) and Temporal Convolutional Neural 

Networks (TempCNN)) to classify the land cover in Victoria, Australia, and achieved high overall 

accuracies of 94.0%, 90.8% and 94.5%, respectively (Charlotte et al., 2019). Despite the superior 10 

m resolution offered by Sentinel-2 imagery-based land cover maps compared to traditional land cover 

products, there is a notable absence of applications that have employed these maps as a fundamental 

information for mapping grass pollen sources.  

In this study, we employed Sentinel-2 data to gather geospatial and phenological information on grass 

in urban landscapes, aiming to understand the spatial distributions and temporal variations of grass 

pollen sources. By examining the correlations between grass pollen concentrations and grass 

greenness (quantified by the Enhanced Vegetation Index, EVI), we characterized the seasonal and 

inter-annual spatial variations in potential grass pollen sources surrounding a pollen trap station in 

Sydney, Australia. The study focused on three primary objectives: (1) quantifying the discrepancies in 



filtering grass distributions between the 10-m Sentinel-2 grass map and coarser grass maps within 

urban landscapes; (2) investigating the consistency and variations in the temporal relationships 

between grass greenness and grass pollen concentrations at different distances and orientations 

surrounding the pollen trap station; and (3) characterizing the seasonal and inter-annual variations in 

the spatial distribution of potential grass pollen sources around the pollen trap station.  

2. Methods 

2.1 Site description 

This study was conducted at two sites near Sydney and Brisbane (Fig. 1). The Campbelltown pollen 

station (34.0666 S, 150.7956 E) is located on the TAFE New South Wales campus near Campbelltown 

City, situated 53 km southwest of Sydney’s central business district. According to the latest census of 

population, there were 169,572 people in the Campbelltown suburb and Local Government Area 

(https://www.abs.gov.au/census). At this site, a phenocam and a pollen trap are collocated to record 

grass growth and grass pollen information. To compare the performance of filtering grass information 

across multiresolution grass maps, we conducted this analysis at another phenocam site with urban 

landscapes, the Rocklea phenocam site (27.5358 S, 152.9934 E), located approximately 9 km south of 

Brisbane, Queensland.  

 

https://www.abs.gov.au/census


Fig. 1. Locations of Campbelltown and Rocklea sites in Sydney and Brisbane. Red circular and 

yellow squares denote regions where conducted analyses in this study. Google Earth Pro provides the 

base map.   

2.2 Multi-resolution grass maps 

The Dynamic Land Cover Dataset Version 2 (DLCDv2.1) (http://www.ga.gov.au/scientific-

topics/earth-obs/accessing-satellite-imagery/landcover) with a spatial resolution of 250 meters was 

utilized to extract grass greenness information from the landscape in this study. The latest version 

(updated until the end of 2015) consists of 14 maps, each based on two years of MODIS (Moderate 

Resolution Imaging Spectrometer) EVI time-series data. These 14 maps cover the period from 

January 2001 to December 2015. For this study, we specifically used the land cover map for the 

period of January 2014 to December 2015. Subsequently, we generated a grass map referred to as the 

DLCD grass map by compositing six original land cover types related to grass/ pasture, including 

Rain-fed pasture, Closed Tussock Grassland, Open Tussock Grassland, Open Hummock Grassland, 

Scattered Shrubs, and Grass and Irrigated pasture. 

Additionally, we employed the Australian Land Use and Management (ALUM) Classification version 

8 (https://www.agriculture.gov.au/abares/aclump/land-use/alum-classification) to generate another 

grass map referred to as the ALUM grass map. The ALUM Classification system offers a nationally 

consistent method for collecting and presenting land use information at a 50-meter resolution. The 

current version of this map was developed by the ALUM Classification Technical Working Group in 

2016. In our study, the ALUM grass map was generated by combining original land use classes 

related to grass/ pasture, including Native/exotic pasture mosaic, Grazing irrigated modified pasture & 

Grazing modified pastures, Pasture legume, and Pasture legume/grass mixtures. Note that other 

original classes also include grass; for example, Recreation and culture, Services, and Public Services 

classes typically encompass public green space and grass lawns to varying extents in urban area. We 

included the Recreation and culture class in the ALUM grass map, as it exhibited the highest grass 

proportion among these three classes upon visual inspection. 

In addition, we utilized a Sentinel-2 grass map with 10-m resolution to enhance our understanding of 

grass cover in the heterogeneous landscape surrounding the Campbelltown and Rocklea sites. At the 

Campbelltown site, the Sentinel-2 grass map was generated using a deep learning-based algorithm 

(the LeNet model) applied to Sentinel-2 images (Abdollahi et al., 2022). The LeNet classification 

model was trained with 8929 grass samples (i.e., 8929 Sentinel-2 grass pixels) to create a grass map 

for a 20 × 20 km2 area centered on the Campbelltown site. To ensure the accuracy of the grass map, 

all Sentinel-2 grass pixels were selected through visual inspection from Google Earth imagery. As a 

result, the LeNet model achieved a precision rate of 85.27% for grass classification. Specific details 

regarding the classification process and results can be found in Abdollahi et al. (2022). Meanwhile, at 

http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
https://www.agriculture.gov.au/abares/aclump/land-use/alum-classification


the Rocklea site, we manually identified grass pixels from Sentinel-2 imagery based on visual 

inspection of Google Earth imagery to generate another Sentinel-2 grass map.  

2.3 Grass greenness proxy and grass pollen concentration data  

Enhanced Vegetation Index (EVI) of grass cover was extracted from Sentinel-2 L2A (Level-2A) 

surface reflectance images, which were masked by multi-resolution grass maps to serve as the proxy 

for grass greenness for further quantify analyses. The spatial and temporal changes in grass growth 

during different seasons were determined using Sentinel-2 EVI images. Specifically, all cloud-free 

Sentinle-2A/B L1C (Level-1C) product over research areas from January 2018 to June 2020 were 

downloaded. These products were atmospherically corrected from Top-of-Atmosphere (TOA) L1C 

product to generate L2A surface reflectance product using the Sen2Cor processor (Louis et al., 2016). 

The L2A outputs were then resampled to a spatial resolution of 10 meters for all bands. Subsequently, 

EVI was calculated as follows: 𝐸𝑉𝐼 = 2.5 × (𝑁𝐼𝑅−𝑅𝑒𝑑)(𝑁𝐼𝑅+6×𝑅𝑒𝑑−7.5×𝐵𝑙𝑢𝑒+1)                                                                                                  (1) 

where NIR, Red and Blue represent near-infrared, red and blue bands in terms of the L2A surface 

reflectance product. The EVI is characterised by an improved sensitivity in high biomass regions and 

enhanced vegetation monitoring ability through correcting for atmospheric influence and de-coupling 

of the canopy background signal (Huete et al., 2002). 

Two digitial time-lapse cameras, known as phenocam, were set up at the Campbelltown and Rocklea 

sites. They collected digital photos with a time intervial of 15 minutes to record variations in the 

greenness of local grass patches. To quantitatively describe the changes in grass greenness, the green 

chromatic coordinate (GCC) was derived from phenocam images. Specifically, the region of interest 

(ROI) was selected from phenocam imagery for each site (Fig. 2); and then RGB DNs (digital number 

of red, green, and blue channels) for each pixels within the ROI were extracted and converted to GCC 

by Eq. (2); the GCC value for each pixel was averaged across the ROI to quantify the changes in 

greenness.  𝐺𝐶𝐶 = 𝐺𝑅+𝐺+𝐵                                                                                                                                       (2) 

where R, G and B represent red, green and blue pixel digital numbers. 

A grass pollen trap is co-located with the phenocam at the Campbelltown site. Daily (24-hour period) 

atmospheric grass pollen concentration (grains/m3) was collected from January 2018 to June 2020 

using Hirst-type volumetric pollen and spore traps (Burkard Scientific Ltd, Uxbridge, UK). Further 

details on this collection method can be found in Haberle et al. (2014).  



 

Fig 2. Footprint of phenocam ROI (region of interest) in Google Earth images and phenocam sample 

images in Campbelltown (a) and Rocklea (b) sites. The red grids in Google Earth images are Sentinel-

2 pixels with 10 m resolution. The red points are the locations of phenocams and pollen trap. The 3 × 

3 Sentinel-2 pixels (yellow squares) depicted the footprint of phenocam ROI, which highlighted by 

red rectangles in sample phenocam images.  

2.4 Analysis strategies 

First, we conducted qualitative and quantitative analyses to examine the disparities in grass 

classification among different grass maps. Specifically, we compared the spatial distribution of grass 

covers that were identified by Sentinel-2 grass map, ALUM, and DLCD within the 3 × 3 km2 research 

area surrounding Campbelltown and Rocklea sites (yellow squares in Fig. 1). Additionally, we 

compared the number of grass pixels filtered by each grass map. Furthermore, we analyzed the 

temporal profiles. We also study the correlations between the phenocam GCC and the average grass 

Sentinel-2 EVI across the entire research area. 

Second, we divided the 20 × 20 km2 circular region surrounding Campbelltown pollen station into 40 

land plots (red circle in Fig. 1). These land plots were categorized based on five distance ranges (2 km 

– 10 km, with intervals of 2 km) and eight orientations (every 45˚ from 0˚ – 360˚). The Sentinel-2 

grass EVI (hereinafter: grass EVI), filtered by Sentinel-2 grass map, were averaged from each land 

plot. To temporally align grass pollen data with grass EVI, we correlated five-day mean grass pollen 

concentrations (i.e., mean value for ± 2 days of the date for the given Sentinel-2 EVI) with grass EVI 

in each land plot. Note that the correlation analysis was conducted by least-squares linear regression 

analyses with quadratic parameter to determine the coefficients of determination (R2), since simple 



linear regression cannot adequately fit the curvilinear relationship between grass pollen concentrations 

and grass EVI. Furthermore, we explored the impact of grass fractions on the correlations between 

grass EVI and grass pollen concentrations (hereinafter: grass EVI – pollen correlations). 

Third, pixel-wise grass source maps for each grass pollen season were generated by examining the 

correlations between time series of grass EVI and grass pollen concentrations. Specifically, grass 

pollen seasons were defined based on the time series of grass pollen concentrations and average grass 

EVI in the 20 × 20 km2 region. Using the R2 values of correlations between time series of grass EVI 

and five-day mean grass pollen concentration for each pixel, we mapped pixel-wise grass pollen 

sources for each growth season and year. Our hypothesis is that higher correlations indicate a greater 

possibility of being the pollen sources for a given pollen season. 

3. Results 

3.1 Comparison of filtering grass greenness among multi-resolution grass maps 

Fig. 3 displays grass cover areas filtered by the Sentinel-2 grass map (b and f), ALUM (c and g) and 

DLCD (d and h) around the Campbelltown and Rocklea sites. Fig. 4 shows quantified comparison in 

the number of grass pixels filtered by each grass map, as well as temporal profiles and correlations 

between phenocam GCC and filtered grass EVI.  

At the Campbelltown site, both the DLCD and ALUM grass map exhibited misclassifications, with 

certain buildings and roads erroneously labeled as grass. For instance, the ALUM grass map included 

a substantial portion of a building located southwest of the pollen trap (the red point in Fig. 3). The 

DLCD grass map misclassified buildings and roads, located north of the pollen trap, as grass covers 

(Fig. 3d). Conversely, the Sentinel-2 grass map accurately identified these areas as non-grass features, 

correctly delineating grass areas such as those situated west of the interchange in the Campbelltown 

site (Fig. 3b), which were missed by the ALUM and DLCD maps. Likewise, at the Rocklea site, the 

ALUM grass map incorrectly classified all trees within the golf course, situated east of the Rocklea 

site, as grasses (Fig. 3g). The DLCD map failed to identify a large grass area located southwest of the 

Rocklea site (Fig. 3h).  

 



 

Fig. 3. Landscapes and grass areas identified by the Sentinel-2 grass map, ALUM, and DLCD grass 

maps within the 3 × 3 km2 study areas centered on the Campbelltown (a to d) and Rocklea (e to h) 

sites. The background images of the landscapes were provided by Google Earth Pro. 

The statistical analyses aligned with the visual inspection — the DLCD and ALUM maps identified a 

significantly higher number of grass pixels compared to the Sentinel-2 grass map at both sites (Fig. 4 

a – f). Furthermore, when comparing average values, the grass EVI filtered by the Sentinel-2 grass 

map was closest to the EVI values obtained from the phenocam footprint (0.77 at the Campbelltown 

site and 0.67 at the Rocklea site, representing the actual grass greenness around the sites), with values 

of 0.5 and 0.6 for the Campbelltown and Rocklea sites, respectively (Fig. 4a and 4d).  

The time series and correlations between Sentinel-2 EVI (both unfiltered and filtered by grass maps) 

and phenocam GCC demonstrated that the Sentinel-2 grass map produced optimal grass classification 

at both sites (Fig. 4 g – l). Specifically, although all grass EVI time series were consistent with the 

temporal profiles of phenocam GCC, grass EVI filtered by the Sentinel-2 grass map exhibited the 

largest magnitude due to the exclusion of misclassified grass pixels. Moreover, the Sentinel-2 grass 

map-filtered grass EVI showed the strongest correlations with phenocam GCC, with R2 of 0.80 for 

Campbelltown and 0.41 for Rocklea site (Fig. 4 i and l). Their R2 and slopes values were closest to the 

reference values (i.e., correlations between phenocam GCC and Sentinel-2 EVI extracted from the 

phenocam footprint) at both sites (Fig. 4i and 4l).  



 

Fig. 4. Histogram of pixel numbers from grass map-unfiltered and -filtered Sentinel-2 EVI images (3 

× 3 km2) on the greenest day within research period for Campbelltown site (December 26, 2018) and 

Rocklea site (June 2, 2018) (a – f). The red thick solid line denotes the average Sentinel-2 EVI values 

extracted from the phenocam ROI footprint (3 × 3 Sentinel-2 pixels in Fig. 2). It represents the actual 

grass greenness around each site. Panels g, h, j, and k show the time series and correlations between 

phenocam GCC and grass EVI filtered by grass maps in Campbelltown and Rocklea sites. Panel i and 

l summarized the R2 and slopes of correlations shown in panel h and k, respectively. ‘FP’ represents 

phenocam ROI footprint, and ‘S2’ represents Sentinel-2 grass map. 

3.2 Grass greenness dynamics and relationships with grass pollen concentrations around pollen trap 

station 



3.2.1 Grass cover fractions filtered by Sentinel-2 grass map at different orientations with extended 

distances 

We used the Sentinel-2 grass map in subsequent analyses due to its superior performance in filtering 

grass information from heterogeneous landscapes.  

Generally, grasses surrounding the Campbelltown pollen trap were predominantly concentrated in the 

NE1 (northeast 1, 0°–45°), SW1 (southwest 1, 180°–225°), SW2 (southwest 2, 225°–270°), NW1 

(northwest 1, 270°–315°), and NW2 (northwest 2, 315°–360°) orientations (Fig. 5a). The grass 

fractions varied considerably across these different orientations (Fig. 5 b - f). The NW2 orientation 

exhibited the greatest changes, with grass fractions ranging from 68.39% (within a 2 km radius) to 

32.82% (within a 10 km radius). In contrast, the NE2 (northeast 2, 45°–90°) orientation showed the 

least variation in grass fractions, with grasses uniformly distributed from 2 km (10.64%) to 10 km 

(10.28%). Among all orientations, the SE1 (southeast 1, 90°–135°) and SW1 directions had the lowest 

and highest grass fractions within the 10 km radius (3.88% and 50.98%, respectively) (Fig. 5f). 

 

Fig. 5. Spatial distribution of Sentinel-2 grass map-filtered grass covers within a region of 10 km 

radius centered on the Campbelltown pollen trap (a). Grass fractions at different orientations with 

extended distances (b - f) (i.e., 2 km, 4 km, 6 km, 8 km, and 10 km).  

3.2.2 Grass EVI and grass pollen concentration time series across orientations and distances 

Fig. 6 depicts the time series of in-situ grass pollen concentrations and Sentinel-2 grass EVI averaged 

from land plots at six distances (0–2 km, 2–4 km, 4–6 km, 6–8 km and 8–10 km) and three selected 

orientations (NW2, SW1, and NE2). The corresponding grass fractions for each land plot are shown in 



the side plots (Fig. 6). Time series of grass EVI and pollen concentrations in other orientations were 

shown in Fig. A1. While all the grass EVI time series exhibited similar seasonal dynamics, the 

specific timing of EVI peaks and their magnitudes varied across the land plots.  

First, land plots with higher grass fractions did not consistently exhibit larger grass EVI2 values. 

Specifically, despite having higher grass fractions, the land plots within the 0–2 km and 2–4 km 

distance intervals in NW2 displayed lower grass EVI values compared to the 6–8 km and 8–10 km 

areas from January to June 2018 (Fig. 6a). In the SW1 orientation, land plots with lower grass 

fractions showed higher grass EVI values during the same period (Fig. 6b). Notably, in the NE2 

orientation, the grass EVI values from the 8–10 km area consistently remained higher than those from 

other land plots throughout the entire growing season, despite this area having lower grass fractions 

(Fig. 6c).  

Second, the grass EVI time series exhibited varied phenology timings (i.e., peak dates) across 

orientations and distances. In NW2 orientations (Fig. 6a), the grass EVI peak for the 6-8 km area 

occurred 15 days later than the other EVI peaks during the grass pollen season in October 2019. 

During the prolonged pollen season in 2020, the grass EVI time series in NW2 displayed peak values 

on three distinct dates: February 19, 2020, for the 0–2 km and 2–4 km area; March 19, 2020, for the 

8–10 km area; and April 14, 2020, for the 4–6 km and 6–8 km areas. In the same pollen season, the 

grass EVI time series for the 0–2 km and 2–4 km areas reached their peaks on April 19, 2020, in SW1, 

which was a two-month lag compared to their peaks in NW2 (Fig. 6a and 6b, green and yellow lines).  

The grass pollen concentrations were notably low in 2018 compared to the levels observed in 2019 

and 2020. This discrepancy could be attributed to the presence of moderate grass EVI magnitudes in 

2018. It is worth noting that the periods of active grass pollen release were not consistently aligned 

with the peaks of grass greenness. For example, the main active period of grass pollen in 2019, 

occurring from October to December, corresponded to secondary peaks of grass greenness rather than 

the major peaks observed in May 2019. Furthermore, the grass EVI profiles in 2020 displayed a 

plateau with higher values and several distinct peak dates across distances between February and May, 

coincided with the extended duration of the grass pollen season in that year. The prolonged presence 

of green grasses during this period indicates an extended reproductive phase for the grasses, 

potentially leading to increased grass pollen release.  



 

Fig. 6. Time series of in-situ grass pollen concentrations and Sentinel-2 grass cover EVI in (a) NW2 

(northwest 2, 315°–365°), (b) SW1 (southwest 1, 180°–225°), and (c) NE2 (northeast 2, 45°–90°) 

orientations across extended distances surrounding the Campbelltown site from January 2018 to June 

2020. 



3.2.3 Correlations between grass EVI and grass pollen concentrations across orientations and 

distances 

Fig. 7 displays the correlations between time series of five-day mean grass pollen concentrations and 

grass EVI across increasing distances surrounding the Campbelltown pollen trap. In 2018 (Fig. 7a–e) 

and 2020 (Fig. 7k–o), strong correlations were observed between grass pollen concentrations and 

grass EVI at all land plots, with R2 ranging from 0.60 (0–2 km) to 0.70 (0–10 km) in 2018, and from 

0.60 (0–10 km) to 0.67 (0–4 km) in 2020. However, no correlations were observed in 2019 (Fig. 7f–j). 

It is worth noting that the relationships were nonlinear, with the highest grass pollen concentrations 

corresponding to lower grass EVI values rather than the highest values (i.e., the greenest grasses). 

This could be attributed to time lags between the peaks of grass pollen concentrations and the peaks of 

grass EVI. For example, the grass EVI peak observed around October 2019 preceded the grass pollen 

peak in November 2019 (Fig. 6).  



 

Fig. 7. Correlations between five-day mean grass pollen concentrations and Sentinel-2 grass EVI in land plots with increasing distances (from 2 km to 10 km 

radius with 2 km interval) surrounding Campbelltown pollen trap in 2018 (a – e), 2019 (f – j), and 2020 (Jan - Jun) (k – o). n = the number of available 

images each year. Sectors 1 – 8 denote NE1, NE2, SE1, SE2, SW1, SW2, NW1 and NW2 orientations, respectively. *** denotes correlation significant at 

p = 0.0001. 



Fig. 8 (a – c) shows the heat map of R2 from correlations between time series of five-day mean grass 

pollen concentrations and grass EVI in 40 land plots surrounding the Campbelltown pollen trap. In 

general, the grass EVI – pollen relationships varied across distances and orientations and exhibited 

distinct interannual variations. Specifically, stronger relationships were found in the SW1, SW2, NW1, 

and NW2 directions for both 2018 and 2020. In 2018, as the areas in these directions moved farther apart, 

the correlations increased, with R2 values ranging from 0.48 (0-2 km, NW2) to 0.79 (8-10 km SW2). This 

implied that grass pollen was potentially released by grasses located in more distance regions, explained 

the R2 increasing as distance extended shown in Fig. 7 (a – e). In 2020, the correlation remained uniform 

across distances in these orientations, with R2 ranging from 0.46 (4-6 km, NW1) to 0.70 (0-2 km, SW2). 

However, strong agreements between grass greenness and pollen concentrations were found in the SE2 

orientation in 2018 with an average R2 of 0.58, but not in 2020, with an average R2 of 0.31 (Fig. 8 a and 

c). Compared to these two years, grass greenness was not associated with grass pollen concentrations in 

any land plots in 2019 (Fig. 8b).  



 

Fig. 8.  Heat map of coefficient of determination (R2) for correlations between five-day mean grass pollen 

concentrations and grass EVI at each land plot in (a) 2018, (b) 2019, and (c) 2020 (Jan - Jun). Panel (d) 

shows the heat map of the grass fraction in each plot surrounding Campbelltown pollen trap. 

Fig. 8d and Fig. 9 display grass fractions and their correlations with the R2 between grass pollen and grass 

EVI across 40 land plots (shown in Fig. 8a–c). Upon initial visual inspection (Fig. 8), land plots with 

lower grass fractions in NE2, SE1, and SE2 (4–10 km) corresponded to weaker grass pollen – EVI 

correlations in 2020 (Fig. 8c). However, this pattern was not observed in 2018 (Fig. 8a). For example, the 

grass pollen – EVI R2 value in land plot (8-10 km, SE2) was as high as 0.77 in 2018, despite a grass 

fraction of only 8.28%. Furthermore, higher grass fractions were not consistently correlated with 

significant grass pollen – EVI correlations, e.g., land plot in 0-2 km, NW2. The quantitative analysis 

shown in Fig. 9 aligned with visual inspection findings. In 2018, grass fraction showed a weak 

relationship with the grass pollen – EVI R2 values (Fig. 9a), indicating that a higher grass presence in a 



given area did not necessarily correspond to a greater likelihood of being a pollen source. Conversely, in 

2020, although the grass fraction positively correlated with grass pollen – EVI relationships, the 

agreements between grass pollen and EVI did not increase after the grass fraction reached approximately 

30% (Fig. 9b). Our results suggest that grass fraction is not the primary factor in understanding grass 

pollen dynamics.  

 

Fig. 9. Relationships between grass fractions (Fig. 8d) and coefficients of determination (R2) of grass 

pollen against grass EVI (Fig. 8 a – c) in 40 land plots surrounding the Campbelltown site for (a) 2018 

and (b) 2020 (Jan – Jun). 

3.3 Intra- and inter-annual variations in spatial distributions of grass pollen sources 

Fig. 10 illustrates the variations in pixel-wise spatial distributions of R2 values of grass pollen – EVI 

correlations within a 20 × 20 km2 circular region surrounding the Campbelltown pollen trap station for the 

years 2018, 2019, and 2020. Due to multiple pollen seasons occurring within a single Julian year, we 

divided each year into several grass pollen seasons based on the time series of grass pollen concentrations 

and grass EVI. In 2018, there were two pollen seasons (30 January – 20 May 2018 and 7 September – 1 

December 2018), three in 2019 (1 December 2018 – 19 February 2019, 26 March – 9 July 2019, and 23 

August – 26 December 2019), and one in 2020 (19 February – 28 June 2020). These grass pollen seasons 

are highlighted by different colors in the time series of grass EVI and are denoted by S1 to S6 in Fig. 10. 

Generally, the greenness of the grass surrounding the pollen trap showed better agreements with in-situ 

grass pollen concentrations in 2018 (S1 and S2) than in 2019 (S3, S4, and S5) and 2020 (S6). The grass 

pollen trapped in 2018 was more likely to have originated from the entire research region compared to 

2019 and 2020. In 2018, almost all the grasses served as pollen sources in S2 (with uniformly high R2, 

Fig. 10c), whereas only a few orientations contributed grass pollen to S1 (Fig. 10b). For example, grass 

greenness in the SW2, NW1, and NW2 directions significantly correlated with pollen concentrations in 



S2 but not in S1. This might be attributed to the grass species in these three directions predominantly 

pollinating around October, not March. Also, this indicates that the grass pollen sources varied between 

different pollen seasons within the same year. Regarding the S3, S4, and S5 in 2019, only a few grass 

plots acted as gras pollen sources for S5. Furthermore, despite both S2 and S5 occurring from October to 

January (i.e., the Australian spring), there were significantly fewer pollen sources for S5 compared to S2. 

This indicates that the grass pollen sources varied between different years, even for similar grass pollen 

seasons. Similarly, in the autumn pollen season of 2020 (S6), grass plots in five directions were observed 

as potential grass pollen sources, in contrast to the autumn pollen seasons in 2019 (S3 and S4). Overall, 

the spatial distribution of grass pollen sources varied across pollen seasons and years.  

Fig. 10. Pixel-wise spatial distribution of coefficient of determination (R2) between five-day mean grass 

pollen concentrations and Sentinel-2 grass EVI in a 20 × 20 km2 circular region surrounding 

Campbelltown pollen trap station. The panel (a) shows the time series of Sentinel-2 grass EVI along with 

daily grass pollen concentrations. Grass pollen seasons were highlighted by different colors. Panels (b) to 

(g) denote grass pollen seasons 1 to 6 (i.e., S1 – S6), respectively. Regions with white colors in panel (b) 

to (g) denote non-grass classes according to the Sentinel-2 grass map.  



4. Discussion 

4.1 Differences in grass fractions derived from grass maps with multi-resolutions 

Plant species used for ornamental and recreational purposes in urban landscapes, such as parks, gardens, 

tree alignments, and open green spaces, are a major cause of pollen allergies among the local population 

(Cariñanos et al., 2014). However, accurately describing the spatial distributions of grasses and 

monitoring the dynamics of grass greenness in urban areas remain challenged. This is mainly due to the 

use of land cover products with coarse resolutions (>10 m), which are commonly employed to extract 

grass information from urban landscapes. Although high-resolution images captured by commercial 

satellites (Dixon et al., 2021) and unmanned aerial vehicles (UAVs) (Guo et al., 2018) offer a promising 

opportunity to identify grass distributions in urban areas, they are not suitable for large-scale applications 

at national or continental levels.  

In this study, we compared the effectiveness of Sentinel-2 image-derived grass map (10 m) with 

commonly used land cover product, DLCD (250 m) and ALUM (50 m), in identifying grass distributions 

in an urban landscape. Our results demonstrated that the Sentinel-2 grass map exhibited promising 

potential in accurately delineating grass areas, thus enabling a more precise characterization of urban 

grass greenness. This advanced classification performance of the Sentinel-2 grass map proved valuable in 

informing the spatial distribution of grass pollen sources. Specifically, Fig. 3 illustrates that both the 

DLCD and ALUM products mistakenly identify non-grass features as grass due to their coarse 

resolutions. Consequently, the grass EVI filtered by DLCD and ALUM exhibited weaker correlations 

with grass phenocam GCC compared to those filtered by the Sentinel-2 grass map (Fig. 4). It is worth 

noting that, despite the ALUM grass map having a 50 m resolution, its performance was only comparable 

to that of the DLCD grass map (250 m). This could be attributed to ALUM being designed as a land use 

map, intended to depict how people utilize the landscape. Although some classes in ALUM include areas 

with grass cover, it is inevitable that non-grass features, such as trees surrounding golf courses and 

buildings near recreational lawns, may still be included in the ALUM grass map. In contrast, the Sentinel-

2 grass map outperforms coarse resolution maps by accurately delineating grass areas within 

heterogeneous urban landscapes. This notable performance gives us confidence in using the Sentinel-2 

grass map as the foundation (base map) for mapping potential grass pollen sources in the subsequent 

analyses.  

4.2 Variations in grass greenness time series and their relationships with grass pollen concentrations 

across distances and orientations  



Grass fractions distinctly varied across distances and orientations in 40 land plots surrounding the 

Campbelltown pollen trap station (Fig. 5). Despite this, grass EVI averaged from these land plots 

exhibited consistent temporal patterns throughout the entire study period, with only slight variations in the 

timing of EVI peaks (Fig. 6 and Fig. A1). On the other hand, the magnitude of grass EVI around peak 

timings varied significantly and was related to grass fractions, indicating that higher grass fractions 

corresponded to higher magnitudes of grass EVI. Interestingly, some land plots with larger grass fractions 

exhibited lower magnitudes of grass EVI from January to May 2018 (Fig. 6a and 6b). This observation 

might be attributed to the different responses to precipitation between C3 (cool-season grasses) and C4 

(subtropical or summer-flowering grasses) species. Previous studies have indicated that aridity can favor 

the persistence of C4 vegetation under temperature conditions that would otherwise lead to C3 dominance 

(Cabido et al., 2008). During the summer-autumn months of 2018 (January to May in Australia), 

precipitation levels were lower compared to those in 2019 and 2020, with monthly totals of 121.2 mm, 

225 mm, and 276.6 mm, respectively (Fig. 11). The aridity during this period suppressed the growth of 

C3 vegetation, which is likely to be predominant in land plots with high grass fractions (Fig. 6), resulting 

in reduced greenness magnitudes during these arid summer-autumn months in 2018. As precipitation 

increased in 2019 and 2020, C3 species began to dominate again, leading to an increase in their greenness 

magnitudes.  

The relationships between grass pollen concentrations and grass EVI significantly varied among land 

plots and years (Fig. 7 and Fig. 8). According to our hypothesis, land plots with higher grass fractions are 

often expected to have a greater likelihood of releasing grass pollen. Consequently, it is anticipated that 

the grass EVI in these land plots would show stronger agreements with grass pollen concentrations, as 

reflected by higher R2 values. However, our results did not align with this hypothesis. In 2020 (Fig. 9b), 

correlations between grass EVI and pollen concentrations did not continually increase beyond ~30% grass 

cover. Furthermore, in 2018 (Fig. 9a), grass EVI derived from some land plots with small grass fractions 

exhibited stronger correlations with grass pollen concentrations. These findings suggest that while grass 

fraction plays a role, it appears to act as a secondary control in the grass EVI – pollen correlations.  

4.3 Seasonal and inter-annual variations in spatial distributions of grass pollen sources  

In this study, we mapped grass pollen sources using correlations between grass pollen and EVI with the 

Sentinel-2 grass map in a 20 × 20 km2 circular area around the Campbelltown pollen trap station in 

Sydney. The grass surrounding the pollen station exhibited six EVI peaks from January 2018 to June 

2020, corresponding to periods of grass pollen activities (Fig. 10a). These grass pollen seasons can be 

categorized into two groups: summer-autumn seasons (S1, S4, and S6) and spring-summer seasons (S2 

and S5), represented by red and blue colors in Fig. 11, respectively. The presence of both C3 and C4 



grasses in the Sydney region (Hattersley, 1983; Xie et al., 2022) offers a possible explanation for the 

occurrence of multiple peaks in grass EVI and pollen concentrations within a year, as well as their 

seasonal and inter-annual variations. We hypothesize that the summer-autumn seasons are associated with 

C4-dominated grasslands, while the spring-summer seasons are associated with C3-dominated grasslands. 

Regarding the summer-autumn pollen season (S1, S4, and S6) associated with C4 grasses (highlighted in 

red in Fig. 11), their grass pollen sources exhibited differences in spatial distribution and quantities. As 

previously discussed (section 4.2), lower precipitation favors the growth of C4 grasses while causing 

browning in C3 grasses. This suggests that C4-dominated grasslands near the pollen trap station (NW2 

within a 4 km radius; NE1, NE2, SE1, and SW1) primarily contribute pollen in S1. In contrast, SW2 and 

NW1 also contributed pollen in S6, possibly due to frequent and heavy precipitation during this season, 

which likely favored the growth of both C3 and C4 grasses, resulting in a significant increase in grass 

EVI (Fig. 11). Furthermore, to compensate for competitive disadvantages with C4 grasses, C3 grasses 

have been shown to flower earlier and have a longer reproductive period (Atkinson et al., 2016; Munson 

and Long, 2017). Therefore, it is possible that both C4- and C3-dminated grasslands contributed to pollen 

in S6, leading to an extended pollen season. In the case of the S4 (Fig. 10e), only a small amount of grass 

was associated with pollen activities compared to S1 and S6. This could be because during S4, although 

grass greenness increased, grass did not release pollen, resulting in low grass pollen concentrations 

captured by the pollen station. Another possibility is that grass did release pollen during S4, but it was not 

captured by the pollen trap due to meteorological variables, such as increased relative humidity, which 

typically hinders airborne pollen transport (Rojo et al., 2015). This assumption is supported by the heavy 

rainfall that occurred at the beginning of the S4 season (Fig. 11).  

Typically, C3 grasses in Australia reach their greenness peak in late October to early November. However, 

previous research has shown that high rainfall can lead to a C3 greenness peak occurring in January 

(Watson et al., 2019). This aligns with our findings, as we observed an EVI peak in January 2019 

following heavy precipitation in December 2018. Given this, the anomalous EVI peak in S3, driven by 

rainfall, might not have significant pollination ability. Consequently, grass pollen concentrations 

decreased while grass greenness increased, and only small portions of grass were associated with pollen 

dynamics in S3 (Fig. 10c). In the case of the other two spring pollen seasons (S2 and S5) associated with 

C3 grasses (highlighted in blue in Fig. 11), the smaller amounts of pollen sources and lower grass EVI in 

S5 can be partly attributed to lower precipitation compared to S2.  

Overall, the variations in the distribution of grass pollen sources among seasons are not solely associated 

with grass phenology (e.g., EVI peaks) but also with other factors such as precipitation and relative 

humidity. In further studies, it is worthwhile to delve into the effect of meteorological variables on pollen 



emission and dispersal when using satellite-based remote sensing to understand the aerobiology of grass 

pollen.  

 

Fig. 11. Time series of monthly precipitation total and mean grass Sentinel-2 EVI averaged from the 20 × 

20 km2 circular area around Campbelltown site from 2018 to 2020. Summer-autumn pollen seasons 

associated with C4 grasses are highlighted by red colors. Blue and green colors highlight spring-summer 

pollen seasons associated with C3 grasses. 

5. Conclusion 

In this study, we have demonstrated the potential of Sentinel-2 data with 10 m resolution to enhance the 

identification of grassland areas within heterogeneous urban landscapes and to inform the spatial 

distribution of grass pollen sources. By leveraging Sentinel-2 data’s capabilities in capturing both the 

timing of grass phenology and the geospatial distributions of grass, we have achieved promising results 

that open new possibilities for mapping grass pollen sources and understanding their seasonal patterns at 

regional and continental scales.  

Based on our findings and subsequent discussions, we have arrived at three key conclusions: 

(1) The 10 m Sentinel-2 grass map proved effective in excluding non-grass features misidentified as grass 

in coarse grass maps (ALUM and DLCD). Consequently, the grass EVI derived from the Sentinel-2 grass 

map demonstrated a better correlation with in-situ phenocam observations of grass phenology. This 

underscores the advanced capability of the Sentinel-2 grass map to filter out grass-related information 

from heterogeneous urban landscapes.  

(2) The temporal dynamics of grass EVI obtained from the Sentinel-2 grass map, and their relationships 

with grass pollen concentrations, significantly varied across different land plots with varied grass 



fractions. However, grass fraction was not the primary factor controlling the grass EVI – pollen 

correlations, contrary to our initial expectation.  

(3) The Campbelltown pollen station exhibited significant seasonal and inter-annual variability in grass 

pollen sources in terms of their spatial distributions and amounts. To accurately interpret these variations, 

further attention should be directed towards understanding the influence of meteorological factors on the 

phenology of C3 and C4 grass functional types, as well as on the emission and transport of pollen.  
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Appendix 

 

Fig. A1. Time series of grass pollen concentrations and Sentinel-2 grass EVI averaged from 40 land plots 

surrounding the Campbelltown pollen trap station, which showed in top-right panels, from January 2018 

to June 2020. The bottom-right panels show grass fractions in land plots. Sectors 1 to 8 respectively 

corresponded to areas of 0° - 45° to 315° - 365° in Fig. 5. 


