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Abstract: We leverage telematics data on driving behavior variables to assess driver risk and predict
future insurance claims in a case study utilising a representative telematics sample. In the study, we
aim to categorise drivers according to their driving habits and establish premiums that accurately
reflect their driving risk. To accomplish our goal, we employ the two-stage Poisson model, the Poisson
mixture model, and the Zero-Inflated Poisson model to analyse the telematics data. These models are
further enhanced by incorporating regularisation techniques such as lasso, adaptive lasso, elastic net,
and adaptive elastic net. Our empirical findings demonstrate that the Poisson mixture model with
the adaptive lasso regularisation outperforms other models. Based on predicted claim frequencies
and drivers’ risk groups, we introduce a novel usage-based experience rating premium pricing
method. This method enables more frequent premium updates based on recent driving behaviour,
providing instant rewards and incentivising responsible driving practices. Consequently, it helps to
alleviate cross-subsidization among risky drivers and improves the accuracy of loss reserving for
auto insurance companies.

Keywords: usage-based insurance pricing; lasso regression; Poisson mixture model; ROC curve;
experience rating auto insurance premium

1. Introduction
Traditional auto insurance premiums have been based on driver-related risk (demo-

graphic) factors such as age, gender, marital status, claim history, credit risk and living
district, and vehicle-related risk factors such as vehicle year/make/model, which represent
the residual value of an insured vehicle. Although these traditional variables or factors
indicate claim frequency and size, they do not reflect true driving risk and often lead to
cross-subsidising higher-risk drivers by lower-risk drivers to balance the claim cost. These
premiums have been criticised for being inefficient and socially unfair because they do
not punish aggressive driving nor encourage prudent driving. Chassagnon and Chiappori
(1997) reported that the accident risk depends not only on demographic variables but also
on driver behaviour that reflects how drivers drive cautiously to reduce accident risk.

Usage-based insurance (UBI) relies on telematic data, often augmented by global
positioning systems (GPSs), to gather vehicle information. UBI encompasses two primary
models: Pay As You Drive (PAYD) and Pay How You Drive (PHYD). PAYD operates on a
drive-less-pay-less principle, taking into account driving habits and travel details such as
route choices, travel time, and mileage. This model represents a significant advancement
over traditional auto insurance approaches. For instance, Ayuso et al. (2019) utilised a Pois-
son regression model to analyse a combination of seven traditional and six travel-related
variables. However, Kantor and Stárek (2014) highlighted limitations in PAYD policies,
notably their sole focus on kilometres driven, neglecting crucial driver behaviour aspects.
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By integrating a telematics device into the vehicle, PHYD extends the principles of
PAYD to encompass the monitoring of driving behaviour profiles over a specified policy
period. Driving behaviour, encompassing operational choices such as speeding, harsh
braking, hard acceleration, or sharp cornering in varying road types, traffic conditions,
and weather, serves as a defining aspect of drivers’ styles (Tselentis et al. 2016; Winlaw
et al. 2019). These collected driving data offer valuable insights into assessing true driving
risks, enabling the calculation of the subsequent UBI experience rating premium. This
advancement over traditional premiums incorporates both historical claim experiences and
current driving risks. The UBI premium can undergo regular updates to provide feedback
to drivers, incentivising improvements in driving skills through premium reductions.
Research by Soleymanian et al. (2019) indicated that individuals drive less and safer
when incentivised by UBI premiums. Moreover, Bolderdijk et al. (2011) demonstrated
that monitoring driving behaviours can effectively reduce speeding and accidents by
promoting drivers’ awareness and behavioural changes. Wouters and Bos (2000) showed
that monitoring of driving resulted in a 20% reduction in accidents. The monitoring
system enables early intervention for risky drivers, potentially saving lives (Hurley et al.
2015). Finally, Ellison et al. (2015) concluded that personalised feedback coupled with
financial incentives yields the most significant changes in driving behaviour, emphasising
the importance of a multifaceted approach to risk reduction.

The popularity of PHYD policies has surged in recent years, driven by the promise of
lower premiums for safe driving behaviour. QBE Australia (Q for Queensland Insurance, B
for Bankers’ and Traders’ and E for The Equitable Probate and General Insurance Company),
renowned for its innovative approaches, introduced a product called the Insurance Box, a
PHYD policy featuring in-vehicle telematics. This product not only offers lower premiums
to good drivers but also delivers risk scores as actionable feedback on driving performance.
These risk scores directly influence the calculation of insurance premiums. In essence,
PHYD policies epitomise personalised insurance (Barry and Charpentier 2020), nurturing a
culture of traffic safety while concurrently reducing congestion and environmental impact
by curbing oil demand and pollutant emissions.

To assess UBI premiums, extensive driving data are initially gathered via telematics
technology. Subsequently, a comprehensive set of driving behaviour variables, termed
driving variables (DVs), is generated. These variables encompass four main categories:
driver-related, vehicle-related, driving habits, and driving behaviours. These DVs are then
analysed through regression against insurance claims data to unveil correlations between
driving habits and associated risks, which is a process commonly referred to as knowledge
discovery (Murphy 2012). Stipancic et al. (2018) determined drivers’ risk by analysing the
correlations of accident frequency and accident severity with specific driving behaviours
such as hard braking and acceleration.

To forecast and model accident frequencies, Guillen et al. (2021) proposed utilising
Poisson regression models applied to both traditional variables (related to drivers, vehi-
cles, and driving habits) and critical incidents, which encompass risky driving behaviours.
Through this approach, the study delineates insurance premiums into a baseline compo-
nent and supplemental charges tailored to near-miss events— defined as critical incidents
like abrupt braking, acceleration, and smartphone usage while driving—which have the
potential to precipitate accidents. Building on this, Guillen et al. (2020) employed negative
binomial (NB) regression, regressing seven traditional variables, five travel-related factors,
and three DVs to the frequency of near-miss events attributable to acceleration, braking,
and cornering. Notably, the study suggests that these supplementary charges stemming
from near-miss events could be dynamically updated on a weekly basis.

To comprehensively assess the potential nonlinear impacts of DVs on claim frequencies,
Verbelen et al. (2018) utilised Poisson and negative binomial regression models within
generalised additive models (GAMs). They focused on traditional variables, as well as
telematic risk exposure DVs, such as total distance driven, yearly distance, number of
trips, distance per trip, distance segmented by road type (urban, other, motorways, and
abroad), time slot, and weekday/weekend. While these exposure-centric DVs can serve
as offsets in regression models, they fail to capture the subtle details of actual driving
behaviour. To attain a deeper understanding of driving behaviour, it becomes essential to
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extract a broader array of DVs that can discern between safe and risky driving practices
while also delineating claim risk. For instance, rather than merely registering a braking
event, a more comprehensive approach involves constructing a detailed ’braking story’
that accounts for various factors such as road characteristics (location, lanes, angles, etc.),
braking style (abrupt, continuous, repeated, intensity, etc.), braking time (time of day,
day of the week, etc.), road type (speed limit, normative speed, etc.), weather conditions,
preceding actions (turning, lane changing, etc.), and more. Furthermore, the inclusion of
additional environmental and traffic variables obtained through GPS enhances the richness
of available information, facilitating a more thorough analysis of driving behaviour and
associated risk factors.

As the number of variables describing driving behaviour increases, the data can
become voluminous, volatile, and noisy. Managing this influx of variables is crucial to
mitigate computational costs and address the issue of multicollinearity among them. Multi-
collinearity arises due to significant overlap in the predictive power of certain variables.
For instance, a driver residing in an area with numerous traffic lights might engage in
more forceful braking, or an elderly driver might tend to drive more frequently during
midday rather than during typical rush hours or late nights. Consequently, it is possible for
confusion to arise between factors such as location and aggressive braking or age and pre-
ferred driving times. Multicollinearity can lead to overfitting and instability in predictive
models, diminishing their effectiveness. Thus, streamlining the variables to a manageable
number is not only essential for computational efficiency but also critical for addressing
multicollinearity and enhancing the reliability of predictive models.

Machine learning, employing statistical algorithms, holds remarkable potential in
mitigating overfitting and bolstering the stability and predictability of various predictive
models. These algorithms are typically categorised as supervised or unsupervised. In the
realm of unsupervised learning, Osafune et al. (2017) conducted an analysis wherein they
developed classifiers to distinguish between safe and risky drivers based on acceleration,
deceleration, and left-acceleration frequencies gleaned from smartphone-equipped sensor
data from over 800 drivers. By labelling drivers with at least 20 years of driving experience
and no accident records as safe and those with more than two accident records as risky, they
achieved a validation accuracy of 70%. Wüthrich (2017) introduced pattern recognition
techniques utilising two-dimensional velocity and acceleration (VA) heat maps via K-means
clustering. However, it is worth noting that neither study offers predictions related to
insurance claims.

With claim risk information such as claim making, claim frequency, and claim size,
supervised machine learning models embedded within generalised linear models (GLMs)
can be constructed to unfold the hidden patterns in big data and predict future claims for
premium pricing. Various machine learning techniques are widely utilised in predictive
modelling, including clustering, decision trees, random forests, gradient boosting, and
neural networks. Gao et al. (2019) investigated the effectiveness of Poisson GAMs, integrat-
ing two-dimensional speed–acceleration heat maps alongside traditional risk factors for
predicting claim frequencies. They employed feature extraction methods outlined in their
previous work (Gao and Wüthrich 2018), such as K-medoids clustering to group drivers
with similar heatmaps and principal component analysis (PCA) to reduce the dimensional-
ity of the design matrix, thereby enhancing computational efficiency. Furthermore, Gao
et al. (2019) conducted an extensive analysis focusing on the predictive power of additional
driving style and habit covariates using Poisson GAMs. In a similar vein, Makov and Weiss
(2016) integrated decision trees into Poisson predictive models, expanding the repertoire of
predictive algorithms in insurance claim forecasting.

In assessing various machine learning techniques, Paefgen et al. (2013) discovered
that neural networks outperformed logistic regression and decision tree classifiers when
analysing claim events using 15 travel-related variables. Ma et al. (2018) employed logistic
regression to explore accident probabilities based on four traditional variables and 13 DVs,
linking these probabilities to insurance premium ratings. Weerasinghe and Wijegunasekara
(2016) categorised claim frequencies as low, fair, and high and compared neural networks,
decision trees, and multinomial logistic regression models. Their findings indicated that
neural networks achieved the best predictive performance, although logistic regression was
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recommended for its interpretability. Additionally, Huang and Meng (2019) utilised logistic
regression for claim probability and Poisson regression for claim frequency, incorporating
support vector machine, random forest, advanced gradient boosting, and neural networks.
They examined seven traditional variables and 30 DVs grouped by travel habits, driving
behaviour, and critical incidents, employing stepwise feature selection and providing an
overview of UBI pricing models integrated with machine learning techniques.

However, machine learning techniques often encounter challenges with overfitting.
One strategy to address both multicollinearity and overfitting is to regularise the loss
function by penalising the likelihood based on the number of predictors. While ridge
regression primarily offers shrinkage properties, it does not inherently select an optimal set
of predictors to capture the best driving behaviours. Tibshirani (1996) introduced the Least
Absolute Shrinkage and Selection Operator (lasso) regression, incorporating an L1 penalty
for the predictors. Subsequently, the lasso regression framework underwent enhancements
to improve model fitting and variable selection processes. For instance, Zou and Hastie
(2005) proposed the elastic net, which combines the L1 and L2 penalties of lasso and ridge
methods linearly. Zou (2006) introduced the adaptive lasso, employing adaptive weights to
penalise different predictor coefficients in the L1 penalty. Moreover, Park and Casella (2008)
presented the Bayesian implementation of lasso regression, wherein lasso estimates can be
interpreted as Bayesian posterior mode estimates under the assumption of independent
double-exponential (Laplace) distributions as priors on the regression parameters. This
approach allows for the derivation of Bayesian credible intervals of parameters to guide
variable selection. Jeong and Valdez (2018) expanded upon the Bayesian lasso framework
proposed by Park and Casella (2008) by introducing conjugate hyperprior distributional
assumptions. This extension led to the development of a new penalty function known as
log-adjusted absolute deviation, enabling variable selection while ensuring the consistency
of the estimator. While the Bayesian approach is appliable, the running of MCMC is
often time-consuming.

When modelling claim frequencies, a common issue arises from an abundance of zero
claims, which Poisson or negative binomial regression models may not effectively capture.
These zero claims do not necessarily signify an absence of accidents during policy terms
but rather indicate that some policyholders, particularly those pursuing no-claim discounts,
may refrain from reporting accidents. To identify factors influencing zero and nonzero
claims, Winlaw et al. (2019) employed logistic regression with lasso regularisation on a
case–control study, assessing the impact of 24 DVs on acceleration, braking, speeding, and
cornering. Their findings highlighted speeding as the most significant driver behaviour
linked to accident risk. In a different approach, Guillen et al. (2019) and Deng et al. (2024)
utilised zero-inflated Poisson (ZIP) regression models to model claim frequencies directly
and Tang et al. (2014) further integrated the model with the EM algorithm and adaptive
lasso penalty. However, Tang et al. (2014) observed suboptimal variable selection results
for the zero-inflation component, suggesting a lower signal-to-noise ratio compared to the
Poisson component. Banerjee et al. (2018) proposed a multicollinearity-adjusted adaptive
lasso approach employing ZIP regression. They explored two data-adaptive weighting
schemes: inverse of maximum likelihood estimates and inverse estimates divided by their
standard errors. For a comprehensive overview of various modelling approaches in UBI,
refer to Table A1 in Eling and Kraft (2020).

Numerous studies in UBI have employed a limited number of DVs to characterise a
broad spectrum of driver behaviours. For instance, Jeong (2022) analysed synthetic telem-
atic data sourced from So et al. (2021), encompassing 10 traditional variables and 39 DVs,
including metrics like sudden acceleration and abrupt braking. While Jeong (2022) utilised
PCA to reduce dimensionality and enhance predictive model stability, the interpretabil-
ity of the principal components derived from PCA remains constrained. Regularisation
provides a promising alternative for dimension reduction while addressing the challenge
of overfitting. The literature on UBI predictive models employing GLMs with machine
learning techniques, such as lasso regularisation to mitigate overfitting, is still relatively
sparse, particularly concerning forecasting claim frequencies and addressing challenges like
excessive zero claims and overdispersion arising from heterogeneous driving behaviours.
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Our main objective is to propose predictive models to capture the impact of driving
behaviours (safe or risky) on claim frequencies, aiming to enhance prediction accuracy, identify
relevant DVs, and classify drivers based on their driving behaviours. This segmentation will
enable the application of differential UBI premiums for safe and risky drivers. More
importantly, we advocate for the regular updating of these UBI premiums to provide
ongoing feedback to drivers through the relevant DVs and encourage safer driving habits.

We demonstrate the applicability of the proposed predictive models through a case
study using a representative telematics dataset comprising 65 DVs. The proposed predic-
tive models includes two-stage threshold Poisson (TP), Poisson mixture (PM), and ZIP
regression models with lasso regularisation. We extend the regularisation technique to
include adaptive lasso and elastic net, facilitating the identification of distinct sets of DVs
that differentiate safe and risky behaviours. In the initial stage of regularised TP models,
drivers are classified into risky (safe) group if their annual predicted claim frequencies,
estimated by a single-component Poisson model, exceed (not exceed) predefined thresholds.
Subsequently, in stage two, regularised Poisson regression models are refitted to each driver
subgroup (exceeding thresholds or not) using different sets of selected DVs in each group.
Alternatively, PM models simultaneously estimate parameters and classify drivers. Our
findings reveal that PM models offer greater efficiency compared to TP models, providing
added flexibility and capturing overdispersion akin to NB distributions.

In ZIP models, we observe that the structural zero component may not necessarily
indicate safe drivers, as safe drivers may claim less frequently but not necessarily abstain
from claims altogether, while risky drivers may avoid claims due to luck or incentives like
bonus rewards. So et al. (2021) investigated the cost-sensitive multiclass adaptive boosting
method, defining classes based on zero claims, one claim, and two or more claims, differing
from our proposed safe and risky driver classes. We argue that the level of accident risk
may not solely correlate with the number of claims but rather with driving behaviours.
Hence, the regularised PM model proves more efficient in tracking the impact of DVs
on claim frequencies, allowing for divergent effects between safe and risky drivers. This
proposed PM model constitutes the primary contribution of this paper, addressing a critical
research gap in telematics data analysis.

Our second contribution is to bolster the robustness of our approach and mitigate
overfitting by incorporating resampling and cross-validation (CV) apart from lasso regular-
isation. These techniques help us attain more stable and reliable results. Additionally, we
utilise the area under curve (AUC) from the receiver operating characteristic (ROC) curve
as one of the performance metrics, which evaluates classification accuracy highlighting the
contribution of predictive models in classifying drivers.

Our third contribution involves introducing an innovative UBI experience rating
premium method. This method extends the traditional experience rating premium method
by integrating classified claim groups and predicted claim frequencies derived from the
best-trained model. This dynamic pricing approach also enables more frequent update of
premiums to incentivise safer and reduced driving. Moreover, averaged and individual
driving scores from the identified relevant DVs for each driver can inform their driving
behaviour possibly with warnings and encourage skill improvement. By leveraging these
advanced premium pricing models, we can improve loss reserving practices, and we can
even evaluate the legitimacy of reported accidents based on driving behaviours.

Lastly, we highlight a recent paper (Duval et al. 2023) with similar aims to this paper.
They applied logistic regression with elastic net regularisation to predict the probability
of claims, but this paper considers two-group PM regression instead of logistic regression
to predict claim frequency and allow different DVs to capture the distinct safe and risky
driving behaviours. For predictive variables, they used driving habits information (when,
where, and how much the insured drives) from telematics, as well as traditional risk factors
such as gender and vehicle age, whereas this paper focuses on driving behaviour/style
(how the insured drives). To avoid handcrafting of telematics information, they proposed
measures using the Mahalanobis method, Local Outlier Factor, and Isolation Forest to
summarise trip information into local/routine anomaly scores by trips and global/peculiar
anomaly scores by drivers, which were used as features. This is an innovative idea in the
literature. On the other hand, this paper uses common handcraft practices to summarise
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driving behaviour by drivers, using both driving habits (where and when) and driving
styles (how) information by defining driving events such as braking and turning consid-
ering time, location, and severity of events. Duval et al. (2023) demonstrated that the
improvement in classification using lower global/peculiar Mahalanobis anomaly scores
enables a more precise pure premium (product of claim probability from logistic regression
to insured amount) calculation. As stated above, this paper provides differential contribu-
tions by classifying drivers into safe and risky groups, predicting claims for drivers in their
groups using regularised PM models (among regularised TP and ZIP models), which is
pioneering in the UBI literature, and calculating premiums using the proposed innovative
UBI experience rating premium based on drivers’ classifications (safe/risky) and predicted
annual claims.

The paper is structured as follows: Section 2 outlines the GLMs, including Poisson,
PM, and ZIP regression models, alongside lasso regularisation and its extensions. Section 3
presents the telematics data and conducts an extensive empirical analysis of the two-stage
TP, PM, and ZIP models. Section 4 introduces the proposed UBI experience rating premium
method. Lastly, Section 5 offers concluding remarks and implementation guidelines and
explores potential avenues for future research.

2. Methodologies
We derive predictive models for the claim rate of any driver using GLMs with lasso

regularisation when the true model is assumed to have a sparse representation of 65 DVs.
This section also considers some model performance measures including AUC.

2.1. Regression Models
2.1.1. Poisson Regression Model

The Poisson regression model is commonly applied to count data, like claims. It is
defined as

Yi ∼ Poisson
(
µi(β)

)
, µi(β) = niai = ni exp(xi•β) = exp

(
xi•β + log(ni)

)
(1)

where Y = Y1:N , β = β0:J1 , and J are the number of selected DVs in the model;
ai = exp(xi•β) estimates the number of claim per year for driver i; and log(ni) is the
offset parameter in a regression model. Poisson regression assumes equidispersion and
is applied to the 2-stage TP model in Section 3.4. For overdispersed data, negative
binomial (NB) distribution, as in the Poisson–Gamma mixture, provides extra disper-
sion. With NB regression, the term “Poisson(µi)” in (1) is replaced with NB distribution
NB(ν, qi) = NB

(
ν, µi/(ν − µi)

)
—where ν is the shape parameter, and qi is the success

probability of each trial. NB distribution converges to Poisson distribution if ν tends
to infinity.

2.1.2. Poisson Mixture Model
The finite mixture Poisson model is another popular model for modelling unob-

served heterogeneity. The model assumes G unobserved groups each with probability πg,
0 < πg < 1, g = 1, . . . , G, and ∑G

g=1 πg = 1. Focusing on classifying safe and risky drivers,
we model G = 2 groups. Assume that the claim frequency Yi for driver i in group g
follows a Poisson distribution with mean µig, that is, Yi ∼ Poisson(µig) at probability
πg, g = 1, . . . , G. The probability mass function (pmf) of the Poisson mixture model is

f
(
yi|π, µi1(β1), µi2(β2)

)
= π f1

(
yi|µi1(β1)

)
+ (1 − π) f2

(
yi|µi2(β2)

)
(2)

where π1 = π and π2 = 1 − π, βg = (β0:J,g)
⊤, θ = (β⊤

1 , . . . , β⊤
G , π1, . . . , πG−1)

⊤ is
the model parameter vector, and fg

(
yi|µig(θ)

)
is the Poisson pmf with mean function

µig(βg) = exp
(

xi•βg + log(ni)
)
.
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The expectation–maximisation (EM) algorithm is often used to estimate parameters θ.
In the E step, the posterior group membership for driver i is estimated by

zig =
πg fg

(
yi|µig(βg)

)
∑G

g′=1 πg′ fg′
(
yi|µig′(βg)

) . (3)

The marginal predicted claim is

ŷi = ẑi1µi1(β1) + (1 − ẑi1)µi2(β2). (4)

If there is a high proportion of zero claims, the ZIP model (Lambert 1992) may be
suitable to capture the excessive zeros. The model is a special case of a two-group mixture
model that combines a zero point mass in group 1 with a Poisson distribution in group 2.
The zeros may come from the point mass (structural zero) or the zero count (natural zero)
in a Poisson distribution. The model is given by

Pr(Yi = 0) = πi + (1 − πi) exp(−µi), and Pr(Yi = yi) = (1 − πi)
µ

yi
i exp(−µi)

yi!
, yi ≥ 1 (5)

where the two regression models (called zero and count) for the probability πi of structural
zero and the expected counts (including nonstructural zero) µi, respectively, are given by

πi(θ) =
exp

(
xi•ψ + log(ni)

)
1 + exp

(
xi•ψ + log(ni)

) , and µi(β) = exp
(
xi•β + log(ni)

)
, (6)

and the logistic regression parameters ψ = (ψ0, . . . , ψJψ
)⊤ define a vector of Jψ selected DVs

to estimate the probability of extra zero; the vector of model parameters is
θ = (ψ⊤, β⊤, π)⊤.

2.2. Regularisation Techniques
The stepwise procedure to search for a good subset of DVs often suffers from high

variability, a local optimum, and ignorance of uncertainty in the searching procedures (Fan
and Li 2001). Lasso (L) regularisation offers an alternative approach to select variables
for parsimonious models. It is further extended to adaptive lasso (A), elastic net (E), and
adaptive elastic net (N). These regularisations with L1 penalty provide a simple way to
enforce sparsity in variable selection by shrinking some coefficients β j to zero. This aligns
with our aim to select important DVs, that is, those with coefficients not shrunk to zero.

To implement these regularisation techniques, we consider the penalised log likelihood
(PLL) (Banerjee et al. 2018; Bhattacharya and McNicholas 2014). For the case of the most
general adaptive elastic net regularisation, coefficients βλ,w,α,N of Poisson regression in (1)
estimated by minimising the penalised log likelihood are given by

LOSSλ,α,w(β) = −
N

∑
i=1

log f
(
yi; µi(β)

)
+ λ

[1 − α

2

J

∑
j=1

wjβ j
2 + α

J

∑
j=1

wj|β j|
]

(7)

where the first term is the negative log likelihood (NLL), the second term is the penalty,
f
(
yi; µi(β)

)
is the pmf of Poisson model, and wj are the data-driven adaptive weights.

Equation (7) includes special cases: α = 1, wj = 1 for lasso, α = 1 for adaptive lasso, and
wj = 1 for elastic net.

The development of (7) starts with the basic lasso regularisation with α = 1 and wj = 1.
The parameter estimates condition on λ are given by

β̂ j,λ = β j,NLL max

(
0, 1 − Nλ

|β j,NLL|

)
(8)

where βNLL = (β1,NLL, . . . , β J,NLL) minimise the NLL when λ = 0. As λ increases, the
term 1 − Nλ

|β j,NLL|
becomes negative, and so β̂ j,λ will shrink to zero. Then, the penalty term
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λ
J

∑
j=1

|β̂ j,λ| will drop as more β̂ j,λ = 0, but NLL increases as βλ = (β̂1,λ, . . . , β̂ J,λ) get further

away from βNLL so that one can choose a λmin that minimises the PLL to obtain βλ,L.
Alternatively, one can perform a K-fold CV and choose λmin that provides the best overall
model fit for all K validated samples. Different criterion may suggest different optimal
λmin and hence the estimates βλmin . Details are provided points 1–2 in Appendix A.

However, Meinshausen and Bühlmann (2006) showed the conflict of optimal pre-
diction and consistent variable selection in lasso regression. Moreover, whether lasso
regression has an oracle procedure is debatable. An estimating procedure is an oracle
if it can identify the right subset of variables and has an optimal estimation rate so that
estimates are unbiased and asymptotically normal. Städler et al. (2010) also proclaimed
these issues and addressed some bias problems of the (one-stage) lasso, which may shrink
important variables too strongly. Zou (2006) introduced the two-stage adaptive lasso as a
modification of lasso in which each coefficient β j is given its own weight wj to control the
rate as each coefficient is shrunk towards 0.

Adaptive lasso deals with three issues, namely, inconsistent selection of coefficients,
lack of oracle property, and unstable parameter estimation when working with high di-
mensional data. As smaller coefficients β j,NLL in (8) will leave the model faster than larger
coefficients, Zou (2006) suggested the weights wj = |β̂ j,R|−γ in (7), where the tuning pa-
rameter γ > 0 is to ensure that the adaptive lasso has oracle properties and that β̂ j,R is an
initial estimate from ridge regression. The weights are rescaled so that their sum equals
to the number of DVs. Städler et al. (2010) suggested the tuning parameter γ = 1 for
low-claim threshold and γ = 2 for high-claim threshold. We adopted γ = 2 as the best
tuning parameter to estimate weights wj in the subsequent adaptive lasso models.

Zou and Zhang (2009) argued that L1 penalty can perform poorly when there are
multicollinearity problems, which is common in high-dimensional data. This severely
degrades the performance of lasso. They proposed elastic net, which takes a weighted
average of two penalties: ridge (α = 0) and lasso (α = 1). The mixing parameter α ∈ (0, 1)
in (7) balances the two penalties with α > 1/3, indicating a heavier lasso penalty.

When regularisation is applied to ZIP and PM models, the penalised log likelihood
in (7) is extended to

LOSSλ,α,w(β1, β2)=−
N

∑
i=1

log f
(
yi; π, µi1(β1), µi2(β2)

)
+ λ1

[1 − α

2

J

∑
j=1

β j1
2 + α

J

∑
j=1

wj1|β j1|
]

+λ2

[1 − α

2

J

∑
j=1

β j2
2 + α

J

∑
j=1

wj2|β j2|
]

(9)

where f
(
yi; π, µi1(β1), µi2(β2)

)
is given by (2).

The optimal α needs to be searched over to identify the best α with the lowest mean
square error (MSE), root MSE (RMSE), or R-squared. We searched for α in (7) and (9) for
different models summarised in Table 1. For example, model TPAL-2 refers to a stage 2
TP model when adaptive lasso regularisation is applied in stage 1 and lasso is applied in
stage 2. Different stage 1 TP, stage 2 (under TPL-1 and TPA-1) TP with threshold τ (to split
predicted annual claim ai = yi/ni into low and high groups), PM, and ZIP models were
considered. We ran each model over five α values (0.100, 0.325, 0.550, 0.775, 1.000) and
identified the best α, which gives the lowest RMSE with K = 10 folds CV. To ensure the
search is robust, results were repeated R = 100 times for each model based on R = 100
70% subsamples S1:R. Results show that low α = 0.1 should be adopted for stage 1 TP
models, the low group of most stage 2 TP models, the PME model, and the PMN model,
whereas higher α = 0.775, 1 should be adopted for the higher group of stage 2 TP models.
See point 1 in Appendix B for the implementation of all lasso regularisation procedures
under Poisson regression and point 2 in Appendix B for the implementation details using
caret package in R.
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Table 1. Model names for TP, PM, and ZIP models with different lasso regularisation.

Stage 1 Threshold Poisson Stage 2 Threshold Poisson Poisson Mixture Zero-Inflated
TPL-1 Lasso TPLL-2 TPAL-2 Lasso PML Lasso
TPE-1 Elastic net TPLE-2 TPAE-2 Elastic net PME Elastic net

ZIPL Lasso

TPA-1 Adaptive
lasso

TPLA-2 TPAA-2 Adaptive
lasso

PMA Adaptive
lasso

TPN-1 Adaptive
elastic net

TPLN-2 TPAN-2 Adaptive
elastic net

PMN Adaptive
elastic net

ZIPA Adaptive
lasso

2.3. Model Performance Measures
Model performance can be evaluated from different aspects depending on the aims

and model assumptions. The goodness of model fit, prediction accuracy, and classification
of drivers are the main types of criteria that are linked to different metrics.

Firstly, the Bayesian information criterion (BIC) is a popular model fit measure that
contains a deviance and a parameter penalty term using the log of sample size as the model
complexity penalty weight. The Akaike information criterion (AIC) can also be used when
the parameter penalty term uses 2 as the weight. Deviance (without parameter penalty) is
also used by some packages to select models.

Secondly, for prediction accuracy, we adopted the popular mean square error
MSE = ∑N

i=1(yi − µi)
2/N and mean absolute error MAE = ∑N

i=1 |yi − µi|2/N. The
third measure we considered is the correlation ρ between observed and predicted an-
nual claim frequencies (instead of claim frequencies in MSE). A higher correlation shows
better performance.

Lastly, to quantify classification performance, the difference between observed group
membership and predicted group membership should be quantified. In machine learning,
AUC for ROC curve (Fawcett 2006) is a measure of model classification power. It constructs
a confusion matrices condition on the classifier (e.g., ai in (1) for TP-2 and zi1 in (3) for
PM) cutoff, calculates the true positive rate (TPR) (sensitivity) and the false positive rate
(FPR) (1-specificity), and plots the TPR against the FPR as the discrimination cutoff for the
classifier varies to obtain the ROC curve. AUC is the probability that a randomly chosen
member of the positive class has a lower estimated probability of belonging to the negative
class than a randomly chosen member of the negative class. See point 3 in Appendix B
for implementation. For the claim data, we let the binary classifier be the low-claim (safe
driver) and high-claim (risky driver) groups. However, the group membership of each
driver is not observed, so it is approximated using K-means clustering, which minimises
the total within-cluster variation using the selected DVs for each model. These four types
of measures, namely BIC, MSE, ρ, and AUC, assessing different performance perspectives,
were applied to assess the performance of a set of models M.

Although these four measures are popular in statistical and machine learning models,
they are not particularly built for count models. Czado et al. (2009) and Verbelen et al.
(2018) proposed six scores for claim count models based on the idea of probability integral
transform (PIT) or, equivalently, the predictive CDF. The six scores are defined as

Logarithmic: Log(F, y) = − log( fy)

Quadratic (Quad): Quad(F, y) = −2 fy + ∥ f ∥
Spherical: Spher(F, y) = − fy/∥ f ∥

Ranked Probability: RankProb(F, y) =
∞

∑
k=1

[Fy − 1(y ≤ k)]2

Dawid–Sebastiani: Dawid(F, y) =
(y − µF

σF

)2
+ 2 log(σF)

Squared error: SqErr(F, y) = (y − µF)
2

where Y ∼ Poisson, fy = Pr(Y = y), Fy = Pr(Y ≤ y), µF = E(Y), σF = Var(Y), and
∥ f ∥ = ∑∞

k=0 f 2
k . For PM models, fy = π1 fy1 + (1 − π1) fy2, Fy, and µF are similarly defined,

and σ2
F = ∑∞

k=0(k − µF)
2 fk. To accommodate the effect of driver classification, the prior
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probability πg is replaced by posterior probabilities zig in (3). These scores are averaged
over drivers, and lower scores indicate better predictions. The Logarithmic score is the
common NLL, which is a model-fit measure. Quadratic and Spherical scores are similar
to Logarithmic scores for assessing model fit using different functional forms. Dawid–
Sebastiani and Squared error (MSE) scores measure prediction accuracy. For the Dawid–
Sebastiani score, the term 2 log(σF) adjusts for the fact that the first term decays to zero as
σF tends to infinity. The Ranked probability score calculates the sum of squares value to
summarise the PP plot, plotting the fitted cumulative probability Fy against the observed
proportion 1(y ≤ k)/N when averaged. These six measures are used to select the final
model to enrich the versatility of our model selection criteria.

To facilitate model selection, we ranked each model M in the model class M in
descending order of preference for each performance measure mM,1:4 for (BIC, MSE, ρ, AUC)
and mM,1:6 for (Log, Quad, Spher, RankProb, Dawid, SqErr) to obtain ranks
RM,l = rank

M∈M
(mM,l) and sum of ranks

RM =
l

∑
l=1

RM,l , l = 4, 6 (10)

to reflect the performance of each model M.

3. Empirical Studies
3.1. Data Description

The dataset is originated from cars driven in the US, where special UBI sensors were
installed. The University of Haifa Actuarial Research Center provided the data, where
UBI modelling was analysed (Chan et al. 2022). It contains two column vectors of claim
frequencies y = y1:N and policy duration or exposure n = n1:N in a year. Ninety-two
percent of y are zero. Figure 1 displays three histograms for y, n, and annual claim
frequencies a (ai = yi/ni), respectively. The dataset also contains J0 = 65 numerical DVs
constructed based on the information collected from telematics and GPS for N = 14157
drivers. Figure A2 in Appendix D.1 visualises the DVs by plotting xij across driver i,
with colours indicating the number of claims yi = 0, 1, 2+. We remark that the DVs are
labelled up to 77 with some skips of numbers. For example, DV 6, 11, 12, etc. do not
exist in Figure A2. Each DV describing a specific event (details in the next section) has
been aggregated over time to obtain certain incidence rates (per km or hour of driving)
and scaled to normalise their ranges for better interpretability of their coefficients in the
predictive models. These procedures transformed the multidimensional longitudinal DVs
into a single row for each driver, which is the unit of analysis. All DVs are presented as
column vectors x•j, j = 1, . . . , J0.

Figure 1. Histogram of claims (left), exposure (mid), and claims per exposure (right).
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3.2. Data Cleaning and DVs Setting
Telematics sensors are installed by car manufacturers to provide much cleaner signals.

Therefore, standard data cleaning techniques, including the removal of outliers, were
applied. External environmental information from GPS was utilised to minimise false
signals, recognising that driving behaviours are often responsive to varying conditions.
Then, the DVs can be defined to indicate specific driving events, which can associate
with certain driving risks. However, while rapid acceleration is typically undesirable, it
may be necessary when merging onto a busy highway. To accurately process and analyse
telematics and GIS data, roads were categorised into specific types such as highways,
junctions, roundabouts, and others. This segmentation enables a more precise assessment of
driving behaviours across different contexts, improving safety measures and performance
evaluations. Given the complexity of telematics data, including metrics like acceleration
and braking, the definition of events like rapid acceleration or hard braking was adapted
to account for varying road conditions depending also on time. Hence, the DVs were
defined for a range of driving events as combinations of event types (e.g., accelerating,
braking, left/right turning), environmental condition (e.g., interchange, junction), and time
(e.g., the morning rush from 6 am to 9 am). Then, rates of the events (over standardised
period or mileage) were evaluated and normalised. Appendix C provides the labels and
interpretation of these DVs.

3.3. Exploratory Data Analyses
To summarise the variables, their averages are presented: ȳ = 0.083, n̄ = 1.146, and

ā = 0.075. We split the drivers into three classes: Cb, b = 0, 1, 2+, with 0, 1, and at least
2 claims and class sizes Nb. Their proportions—pb = Nb/N—came out to (0.92, 0.07, 0.005),
averaged exposures—n̄b = ∑i∈Cb

ni/Nb—came out to (1.13, 1.38, 1.64), and averaged
annual claim frequencies—āb = ∑i∈Cb

ai/Nb—came out to (0, 0.92, 1.71). The average claim
frequency for C2+ was 2.11. Regressing the claim frequencies yi on the exposure ni, the R2

was only 0.014, showing that the linear effect of exposure on claim frequency is weak and
insignificant. Hence, it is possible that other effects, such as driving behaviour as measured
by the DVs x•j, may impact the claim frequency yi. Sections 3.4–3.6 will analyse such effects
of DVs on claim frequencies.

Section 2.1.1 introduced the Poisson and NB regression for equidispersed and overdis-
persed data, respectively. To assess the level of dispersion, we used sample variance
Var(y) = 0.089, which shows equidispersion possibly due to the large proportion of zeros.
We also tested the equidispersion assumption with the null hypothesis—H0:
Var(Yi) = µi—and alternative hypothesis—H1: Var(Yi) = µi + ψg(µi)—where g(·) > 0
is a transformation function (Cameron and Trivedi 1990), and ψ > 0 (ψ ≤ 0) indicates
overdispersion (underdispersion). See point 4 in Appendix B for the implementation. For
model TPL-1, ψ = 0.0369 (p = 0.0482), and for model TPA-1, ψ = 0.0369 (p = 0.0477),
which are marginally significant outcomes. Moreover, the TP, PM, and ZIP models can
capture some overdispersion by splitting according to threshold and mixture components.
Hence, we focused on Poisson regression for all subsequent analyses.

Moreover, noninformative DVs can lead to unstable models. In Figure A2, seven
DVs (1, 2, 7, 8, 10, 14, and 28) are shown to be sparse, with at most 13 nonzeros. Hence,
we explored the information content of each DV. Firstly, nonsparsity Sj, defined as the
proportion of nonzero data for each DV, is reported. A refined measure is Shannon’s
entropy (Shannon 2001) Hj, which measures the degree of disorder/information of each
DV. While Hj provides no information of the relationship with y, the information gain
IGj evaluates the additional information that the jth DV provides about the claims y with
respect to the three classes Cb, b = 0, 1, 2+.

Apart from the information content of the DVs, it became clear that the multicollinear-
ity between DVs also affects the stability of a regression model. Figure A3a in Appendix D.2
plots the correlation matrix of Corr(x•1:J , y, a), and the correlations of the DVs with y are
denoted by ρj = Corr(x•j, y). The correlation matrix shows that the DVs up to 16 (except 9)
are nearly uncorrelated with each other, the next up to DV 39 are mildly correlated, and the
rest are moderately correlated, reflecting some pattern of these DVs. However, they are
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only weakly correlated with y and a, showing low signal content of each DV in predicting
y and a.

Table 2 reports ρj, Hj, Sj, and IGj to quantify the information content of the 65 DVs,
flags a DV as “✗” when Hj < 1 and Sj < 1% (“✓” otherwise), and highlights IGj in
boldface when IGj > 0 indicates information gain. Asterisks are added to the DVs’ ID to
indicate the two levels of information content in “✓” and boldface, respectively. Twenty
DVs with “✗” were classified as having low information content. Including them in the
more complicated PM and ZIP models led to unstable results. Thus, we dropped them
and considered J1 = 65 − 20 = 45 DVs in the PM and ZIP models, but we considered all
J0 = 65 DVs in the TP models. All the DVs were normalised before analyses to ensure
efficient modelling.

Figure A3 in Appendix D.2 plots the Euclidean distance d(j, j′) =
√

∑N
i=1(xij − xij′)2

between the (j, j′) pair of DVs and demonstrates the hierarchical clustering based on d(j, j′).
The results show one major cluster of size 54 and two more smaller clusters (49∗∗, 36∗,
43∗∗, 72∗, 56∗, 63∗) and (55∗, 59∗, 71∗, 27∗∗, 58∗), with increasing pairwise distance from the
major cluster. All spare DVs labelled as noninformative are in the major cluster. These DV
features guided our interpretation of the selected DVs in subsequent analyses. Refer to
Table A1 and Appendix C for the interpretation of these DVs.

Table 2. Identification of informative DVs. DVs with one asterisk have Hj ≥ 1 and Sj ≥ 1%. DVs
with two asterisks have IGj > 0, indicating information gain.

DVs ρ Hj Sj(%) IGj Flag DVs ρ Hj Sj(%) IGj Flag DVs ρ Hj Sj(%) IGj Flag DVs ρ Hj Sj(%) IGj Flag
1 −0.002 0.08 0.012 0 ✗ 22∗ 0.003 89.45 12.991 0 ✓ 39 0.008 0.42 0.076 0 ✗ 59∗ 0.002 45.89 8.312 0 ✓

2 0.012 0.02 0.002 0 ✗ 23∗ −0.001 87.75 12.871 0 ✓ 43∗∗ −0.053 99.99 13.789 0.002 ✓ 60∗∗ −0.041 99.93 13.787 0.001 ✓

3∗ 0.018 7.04 1.231 0 ✓ 24 0.017 1.02 0.192 0 ✗ 44∗ −0.004 19.69 3.795 0 ✓ 61∗ 0.018 35.71 6.472 0 ✓

4 −0.011 1.91 0.310 0 ✗ 25 −0.002 0.30 0.046 0 ✗ 45∗ 0.002 18.61 3.678 0 ✓ 63∗ 0.006 32.91 6.462 0 ✓

5 0.003 0.79 0.119 0 ✗ 26∗ 0.005 17.50 3.990 0 ✓ 46∗ −0.003 90.51 13.008 0 ✓ 64∗ −0.021 61.78 10.149 0 ✓

7 −0.002 0.01 0.001 0 ✗ 27∗∗ −0.060 99.69 13.773 0.002 ✓ 47∗ −0.035 92.68 13.246 0 ✓ 65 0.0005 1.22 0.295 0 ✗

8 0.004 0.10 0.014 0 ✗ 28 −0.004 0.03 0.003 0 ✗ 49∗∗ −0.061 99.98 13.789 0.002 ✓ 66∗ 0.008 4.41 1.339 0 ✓

9∗ 0.010 28.69 5.666 0 ✓ 29∗ 0.023 4.41 1.288 0 ✓ 50∗ 0.012 6.65 1.247 0 ✓ 67∗∗ −0.060 99.54 13.766 0.002 ✓

10 −0.002 0.01 0.001 0 ✗ 31∗ 0.014 15.93 3.698 0 ✓ 51∗ −0.025 67.41 10.718 0 ✓ 68∗ −0.019 76.17 11.953 0 ✓

13 −0.003 0.45 0.069 0 ✗ 32 0.247 4.41 1.229 0 ✗ 52∗ −0.039 94.18 13.357 0 ✓ 69∗ −0.007 7.83 1.895 0 ✓

14 −0.006 0.06 0.009 0 ✗ 33∗ 0.011 39.01 7.957 0 ✓ 53 0.015 3.00 0.645 0 ✗ 71∗ 0.006 32.11 6.585 0 ✓

15 −0.0001 0.50 0.076 0 ✗ 34∗ −0.001 21.44 5.114 0 ✓ 54∗ 0.023 5.03 1.161 0 ✓ 72∗ 0.007 41.24 7.861 0 ✓

16 0.006 0.24 0.036 0 ✗ 35∗ 0.010 35.54 7.257 0 ✓ 55∗ −0.002 21.21 4.424 0 ✓ 73∗ 0.023 11.09 2.775 0 ✓

18∗∗ −0.010 99.90 13.785 0.001 ✓ 36∗ 0.009 54.80 9.701 0 ✓ 56∗ 0.001 34.25 6.654 0 ✓ 74 0.013 1.03 0.222 0 ✗

19∗ 0.003 77.88 12.129 0 ✓ 37∗ 0.024 2.40 0.856 0 ✓ 57 −0.012 1.23 0.229 0 ✗ 75∗ 0.029 10.85 2.669 0 ✓

20∗ 0.006 67.10 10.980 0 ✓ 38∗ 0.022 3.84 1.355 0 ✓ 58∗ −0.008 61.74 10.378 0 ✓ 76∗ −0.021 35.50 7.043 0 ✓

77∗ 0.011 13.61 3.354 0 ✓

3.4. Two-Stage Threshold Poisson Model
The TP model fit Poisson regression in Section 2.1.1 twice at stages 1 and 2 with the

aim of classifying drivers into safe and risky groups at stage 1 and determining predictive
DVs for each group at stage 2 using a single-component Poisson model. The DVs for TP
models were selected from J = J0 = 65 DVs.

At stage 1, lasso-regularised Poisson regression models were trained through resam-
pling and applied to predict claim frequencies for all drivers. To ensure model robustness
and reduce overfitting, we repeated regularised Poisson regression R = 100 times with 70%
simulated subsamples of size Nr = 9910 each and selected DVs for each repeat. For each
repeat r, the optimal λmin,r was selected with K = 10 (default setting) folds CV. Then, the
DVs most frequently selected were identified using a weighted count Ij in (A3) based on
the RMSE. There were JT1 = 52 selected DVs for TPL-1 model and JT1 = 39 DVs for TPA-1
model. The details are provided in Appendix A. Then, Poisson regression models with the
selected DVs were refitted to all drivers. Parameter estimates βT1 are reported in Table A2
in Appendix E under βT1

j . To visualise these coefficients, Figure 2a plots the heat map of

βT1 for all PT-1 models. Let JT1
S be the number of significant βT1

j with a p value < 0.05. For

the TPA-1 model, Table A2 shows that JT1
S = 13 out of JT1 = 44 selected DVs are significant.

Table 3a shows that TPL-1 and TPE-1 provided a similar selected number JT1 of DVs. The
same applied to models TPA-1 and TPN-1 with adaptive weights. As feature selection is
important, we selected the best model in each group, and they are highlighted in Table 3a.
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Table 3. Model performance measures for stage 1 TP and ZIP models, stage 2 TP and PM models,
and final selection.

Models JT1 AIC BIC MSE Model JT1 AIC BIC MSE
Stage 1 Threshold Poisson models

TPL-1 52 8020 8421 0.0866 TPA-1 39 7998 8300 0.0866
TPE-1 57 8029 8468 0.0866 TPN-1 39 8000 8301 0.0866

Zero-inflated Poisson models

ZIPL JZ
0 = 0

JZ
c = 44

8028 8368 0.0868 ZIPA JZ
0 = 4

JZ
c = 45

8155 8258 0.0873

a Model performance measures for the stage 1 TP and ZIP models.

JT2
hh JT2

Sh Performance measures Ranks

Low High Low High BIC MSE ρ AUC BIC MSE ρ AUC

Sum
RM

τi Models Stage 2 threshold Poisson model
TPLL-1 0 2 0 2 - - - - - - - - -
TPLE-1 0 1 0 1 - - - - - - - - -
TPLA-1 16 22 0 3 8286 0.0863 0.1336 0.5990 4.0 4.0 5.0 4.0 17.0
TPLN-1 23 19 1 1 8326 0.0864 0.1261 0.6119 3.0 2.0 2.0 5.0 12.0
TPAL-1 5 0 2 0 - - - - - - − - -
TPAE-1 17 2 4 1 8132 0.0867 0.1176 0.5958 5.0 1.0 1.0 3.0 10.0
TPAA-1 25 20 4 4 8347 0.0863 0.1324 0.5757 2.0 4.0 4.0 1.0 11.0

τ 0
.0

8

TPAN-1 27 19 3 4 8356 0.0863 0.1323 0.5781 1.0 4.0 3.0 2.0 10.0

TPLL-1 26 3 4 2 8204 0.0864 0.1237 0.6186 8.0 1.5 1.0 7.0 17.5
TPLE-1 39 4 7 2 8321 0.0863 0.1282 0.6111 5.0 3.5 4.0 5.0 17.5
TPLA-1 38 14 6 1 8398 0.0862 0.1332 0.6129 3.0 6.5 7.0 6.0 22.5
TPLN-1 41 11 8 1 8400 0.0862 0.1291 0.6276 2.0 6.5 5.0 8.0 21.5
TPAL-1 35 3 10 3 8281 0.0863 0.1263 0.5972 7.0 3.5 2.5 4.0 17.0
TPAE-1 38 3 10 2 8311 0.0864 0.1263 0.5936 6.0 1.5 2.5 3.0 13.0
TPAA-1 30 15 9 0 8341 0.0862 0.1292 0.5921 4.0 6.5 6.0 2.0 18.5

τ 0
.0

9

TPAN-1 34 18 9 1 8404 0.0862 0.1338 0.5890 1.0 6.5 8.0 1.0 16.5

TPLL-1 49 3 12 0 8400 0.0862 0.1281 0.6284 4.0 2.5 2.0 8.0 16.5
TPLE-1 51 5 13 0 8434 0.0861 0.1319 0.6276 2.0 5.0 4.0 7.0 18.0
TPLA-1 38 18 12 0 8427 0.0860 0.1329 0.6218 3.0 7.0 5.0 6.0 21.0
TPLN-1 42 23 11 0 8507 0.0859 0.1398 0.6170 1.0 8.0 8.0 5.0 23.0
TPAL-1 38 6 11 0 8327 0.0862 0.1313 0.5944 7.0 2.5 3.0 2.0 14.5
TPAE-1 38 5 11 0 8321 0.0863 0.1271 0.5933 8.0 1.0 1.0 1.0 11.0
TPAA-1 35 17 9 0 8396 0.0861 0.1353 0.6005 6.0 5.0 7.0 3.0 21.0

τ 0
.1

0

TPAN-1 35 17 9 0 8397 0.0861 0.1341 0.6012 5.0 5.0 6.0 4.0 20.0

TPLL-1 50 6 13 1 8431 0.0861 0.1310 0.6214 4.0 2.0 1.0 8.0 15.0
TPLE-1 51 12 13 0 8492 0.0860 0.1391 0.6200 3.0 4.5 5.0 7.0 19.5
TPLA-1 41 24 13 0 8503 0.0859 0.1429 0.6183 2.0 6.5 7.0 6.0 21.5
TPLN-1 43 28 12 0 8554 0.0857 0.1457 0.6083 1.0 8.0 8.0 5.0 22.0
TPAL-1 38 8 15 1 8344 0.0861 0.1347 0.6013 8.0 2.0 2.0 2.0 14.0
TPAE-1 38 9 15 0 8353 0.0861 0.1357 0.6008 7.0 2.0 3.0 1.0 13.0
TPAA-1 34 18 15 1 8396 0.0859 0.1366 0.6031 6.0 6.5 4.0 4.0 20.5

τ 0
.1

1

TPAN-1 35 20 15 1 8422 0.0860 0.1403 0.6029 5.0 4.5 6.0 3.0 18.0
Poisson mixture

PML 45 18 4 3 8551 0.0832 0.2345 0.6237 4.0 1.0 1.0 4.0 10.0
PME 45 35 2 4 8704 0.0825 0.2581 0.6216 2.0 2.0 2.0 3.0 9.0
PMA 39 40 6 5 8692 0.0805 0.2972 0.6003 3.0 4.0 3.0 1.0 11.0
PMN 45 44 1 7 8781 0.0811 0.3002 0.6073 1.0 3.0 4.0 2.0 10.0

b Number of significant selected DVs and performance measures for stage 2 TP and PM models.

Performance measures for count models RanksModels
Log Quad Spher RankProb Dawid SqErr Log Quad Spher RankProb Dawid SqErr

Sum
RM

τ0.08: TPLA 0.1360 −0.8550 −1.0015 0.0778 0.0956 0.0906 2.0 4.0 4.0 3.0 4.0 3.0 20.0
τ0.09: TPLA 0.1355 −0.8549 −1.0009 0.0777 0.7710 0.0900 3.5 3.0 3.0 4.0 1.0 5.0 19.5
τ0.10:TPLN 0.1355 −0.8545 −1.0005 0.0780 0.5285 0.0905 3.5 2.0 2.0 2.0 2.0 4.0 15.5
τ0.11: TPLN 0.1363 −0.8541 −1.0002 0.0783 0.4674 0.0912 1.0 1.0 1.0 1.0 3.0 2.0 9.0

PMA 0.1190 −0.8613 −1.0235 0.0760 −0.2932 0.0929 5.0 5.0 5.0 5.0 5.0 1.0 26.0

c Model performance measures for final selection of stage 2 TP and PM models.
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(a) Coefficients βT1 for the selected DVs of stage 1 TP regression models.

(b) Coefficients βT2
Lh, βT2

Hh, h = 1, . . . , 4 for the stage 2 TP regression models.

(c) Coefficients βM
Lj and βM

Hj for PM regression models according to low- and high-claim groups.

Figure 2. Heat map of coefficients, with significant values denoted by “S”.

At stage 2, predicted claims ŷi = µi were calculated using the fitted means in (1)
and βT1. Then, the predicted annual claim frequencies âi = ŷi/ni were calculated, and
drivers were classified into low- and high-claim groups according to âi < τh and âi ≥ τh,
respectively. We considered four thresholds τ = {τh} = (0.08, 0.09, 0.10, 0.11), and the
proportion Ph of drivers classified into the low claim group out of all drivers was (0.70,
0.79, 0.85, 0.90), respectively. Figure 3 shows how the drivers were classified to low- and
high-claim groups according to the four thresholds τ using âi from TPA-1 and visualises the
relationship between the observed ai and predicted âi. We attribute the nonlinear pattern
in these scatter plots partially to the impact of driving behaviour revealed by the DVs.
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Figure 3. Scatter plots of observed annual claim frequencies ai against predicted annual claim
frequencies âi using TPA-1 model cross-classified with low- and high-claim groups by the four
thresholds, with colour indicating claims yi = 0, 1,≥2.

To improve model robustness and reduce overfitting, subsamples S1:R of size
Nr = 0.7N were drawn again, and each Sr was further split into two groups

GT2
L,rh = {yi ∈ Sr : âi < τh} and GT2

H,rh = {yi ∈ Sr : âi ≥ τh}, h = 1, . . . , 4 (11)

where T2 indicates stage-2 of the TP model. Then, regularised Poisson regression was
applied to each GT2

L,rh and GT2
H,rh. Let the index sets Iβ

Lh and Iβ
Hh for nonzero coefficients

(that is, selected at least once from Sr) be defined similar to Iβ in (A2) for h = 1, . . . , 4.
Then, βLh = (β

Lh,j∈Iβ
Lh
) and βHh = (β

Hh,j∈Iβ
Hh
) are averaged parameter estimates for the

low- and high-claim groups, respectively, obtained in a similar manner to β defined in
(A1), and IT2

Lh and IT2
Hh are importance measures based on the RMSE r,Lh and RMSE r,Hh

defined similarly to I in (A3); JT2
Lh and JT2

Hh are the number of frequently selected DVs out
of βLh and βHh, with ILhj > 43 (62 × 0.70; R1 = 0.70 for τ0.08 and max(Ij, j ∈ Iβ) = 62 is
the lower threshold of Ij), 49 (τ0.09), 53 (τ0.10), 56 (τ0.11), IHhj > 19 (62 × 0.30), 13, 9, and 6,
respectively, (and dropped otherwise). Poisson regression models with various selected
DVs were refitted to the low- and high-claim groups for each h. Table A3 in Appendix E
reports the parameter estimates βT2

Lh, βT2
Hh of the best model (TPLA-2 for τ = 0.08, 0.09 and

TPLN-2 for τ = 0.10, 0.11) when the stage 1 model was TPL-1 (from JT1 = 52 selected DVs)
or TPA-1 (JT1 = 39). Table 3b reports the number JT2

Lh , JT2
Hh of selected βT2

Lhj and βT2
Hhj and the

number JT2
LSh, JT2

HSh of significant βT2
Lhj and βT2

Hhj with p values < 0.05.
To visualise these coefficients, Figure 2a presents the heat map for models in the low-

and high-claim groups. It shows that the DVs, which were mostly selected and significant
in the low-claim groups, are 4, 9∗, 18∗∗, 24, 32, 37∗, 47∗, 57, 67∗∗, 73∗, and 74, while the least
are 2, 7, 15, 16, 23∗, 46∗, and 53. For the high-claim group, DVs 4, 29∗, 52∗, and 67∗∗ were
mostly selected. The information content of each DV is indicated by asterisks. See Table 2
for details and Table A1 for the interpretation of these DVs. We observed that there were
more selected DVs for the low claim group with thresholds τ2:4 = 0.09, 0.10, 0.11, and the
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selected DVs are relatively more informative. Two DVs, 4 and 67, were selected in both the
low- and high-level claim groups but with differential effects: negative for the low-claim
group and positive for the high-claim group for DV 4, whereas DV 67 had a consistent
negative effect for both groups.

For model selection, Table 3b summarises the model performance measures, BIC,
MSE, ρ, and AUC (see Section 2.3) using all data for 32 models, with 8 models under each
threshold. The two criteria, BIC and AUC, in Table 3b were averaged over the two groups
using the ratio Rh in Table A3. For each threshold, top ranked measures and the sum of
rank RM in (10) are boldfaced and yellow highlighted. We first dropped those models with
JT2
h , JT2

Sh = 0 for either group and chose the best model M with the top RM. The best stage
two model is TPLA-2 for τ = 0.08, 0.09 and TPLN-2 for τ = 0.10, 0.11. The results will be
compared for the PM and ZIP models in Section 3.7.

3.5. Poisson Mixture Model
To facilitate driver classification, we considered lasso-regularised PM models. To

robustify our results, we again performed 70% resampling to obtain R = 100 subsamples
of size Nr = 9910. The parameters were selected from the J = J1 = 45 more informative
DVs to provide stable results (see Section 3.3). In each subsample Sr, the regularised PM
model was estimated using K = 10 folds CV. Then, the drivers were classified into GM

L,r and
GM

H,r according to ẑig ≥ 0.5 or < 0.5, respectively, where ẑig was defined in (3). Let the index

sets Iβ
L and Iβ

H for a nonzero coefficient (that is, selected at least once from Sr) be defined
similar to Iβ in (A2). Then, βL = (β

L,j∈Iβ
L
) and βH = (β

H,j∈Iβ
H
) are averaged parameter

estimates for the low- and high-claim groups, respectively, obtained in a similar manner to
β defined in (A1); IM

L and IM
H are importance measures based on the RMSE M

r,L and RMSE
M
r,H defined similar to I in (A3); RM is the average ratio of the low group size over R = 100
subsamples; and JM

L and JM
H are the number of selected DVs out of βL and βH, with IM

Lj >

43 (62× 0.69 and RM = 0.69 for PML), 45 (62× 0.73 for PMA), IM
Hj > 19 (62× 0.31 for PML),

and 17 (62 × 0.27 for PMA) similar to JT1. We note that some subsamples had too low of
sample size (<200) for the high-claim group or too low differences (<0.005) of observed
annual claim frequencies between the two groups or both. Both criteria indicate ineffective
grouping and should be eliminated. Consequently, 172 and 113 subsamples were drawn
for the PML and PMA models, respectively, in order to collect 100 effective subsamples.

To obtain the overall parameter estimates βM
L and βM

H , the selected DVs were refitted
to the PM model again. Table A4 in Appendix E reports βM

L and βM
H of the PML and PMA

models, together with IM
L and IM

H . Table 3b reports the number of DVs selected, JM
L , JM

H
(βM

Lj, βM
Hj ̸= 0 and IM

Lj , IM
Hj > 62), and the number of significant selected DVs, JM

LS, JM
HS, for

each PM model. We note that the PM models had more selected and significant DVs for
the high-claim group in general than the TP models. Figure 2c plots the heat map of the
parameter estimates of the two groups for the four PM models. Across all four models, the
two sets of mostly selected and significant variables are (18∗∗, 20∗, 26∗, 29∗, 37∗, 45∗, 58∗,
61∗, 67∗∗, 75) and (18∗∗, 29∗, 31∗, 36∗, 59∗, 67∗∗, 73∗, 75∗, 77∗) for the low- and high-claim
groups, respectively. These two sets of significant DVs are quite different from those of TP
models, as only two DVs from each group (in boldface) were also selected by TP models.
Again, DV 67 was selected by both groups, which was the same as the case of the TP
models. To select the best PM model, Table 3b reports the performance measures BIC, MSE,
ρ, and AUC. According to the sum of ranks RM in (10), the PMA model was selected.
For the selected PMA model, Table A4 shows that there were JM

L = 39 DVs selected for the
low-claim group and JM

H = 40 DVs selected for the high-claim group, of which six (18, 20,
45, 58, 61, 75) and five (29, 36, 59, 67, 73) DVs are significant. See point 5 in Appendix B for
the implementation of the PM models, Appendix C for the interpretation of the significant
selected DVs, and Section 3.7 for the implication of these DVs on risky driving.



Risks 2024, 12, 137 17 of 33

3.6. Zero-Inflated Poisson Model
Since 92% of the claims are zero, we applied the ZIP model in (5) and (6) (Lambert

1992; Zeileis et al. 2008) to capture the structural zero portion of the claims and test if the
structural zero claim group should be included in modelling claims. As with the TP and PM
models, we drew subsamples S1:100, each with Nr = 9910 drivers, and ZIP lasso-regularised
regression was applied to each Sr to robustify the selection of DVs. The procedures were
similar to the cases of the TP and PM models. As with the PM model, the DVs are selected
from J = J1 = 45 more informative DVs to provide stable results.

Let Iβ
0 and Iβ

c be the index sets of nonzero parameter estimates (that is, selected at
least once from Sr) in the zero and count models, respectively, defined in a similar manner
to Iβ in (A2). Then, the averaged parameter estimates β0 = (β

0,j∈Iβ
0
) for the zero model

and βc = (β
c,j∈Iβ

c
) for the count model are obtained in a similar manner to β in (A1);

IZ
0 and IZ

c are importance measures based on the RMSE Z
0,r and RMSE Z

c,r, respectively,
defined similarly to I in (A3), and JZ

0 and JZ
c are the number of selected DVs out of β0

and βc, with IZ
0,j > 62 and IZ

c,j > 62 similar to JT1. Next, the JZ
0 and JZ

c selected DVs were

refitted to the ZIP model for all data to obtain the overall parameter estimates βZ
0 and βZ

c .
Parameters β0, βc were averaged before refit, parameters βZ

0 , βZ
c were averaged after refit,

and the importance measures IZ
0 , IZ

c are reported in Table A4. Table 3a reports the number
of selected DVs JZ

0 and JZ
c , and performance measures AIC, BIC, and MSE for the ZIPL

and ZIPA models following the regularisation choices from the two chosen TPL-1 and
TPA-1 models. Between the two ZIP models, the ZIPA model was chosen, because it had
nonzero DVs selected for the zero component and a lower BIC. However, the MSE was the
highest among all the models shown in Table 3b, indicating low predictive power. More
importantly, the zero model estimates the probability of structural zero among all zero, but
it does not guide the classification of safe and risky drivers, because safe drivers can claim
less but not necessarily none, and risky drivers can claim none by luck or for a no-claim
bonus. Hence, drivers classified to the structural zero claim group are not necessarily safe
drivers. As a result, the ZIPA model was excluded from model comparison and selection.
See Appendix B.6 for the implementation of ZIP models.

3.7. Model Comparison and Selection
We compared the performance of the TP and PM models in terms of claim prediction,

predictive DVs selection, and driver classification. Table 3b displays the performance of all
32 TP models and four PM models. The best TP model for each threshold and the best PM
model were selected according to RM in (10) using four measures. Among the selected
TPLA-2 (τ = 0.08, 0.09), TPLN-2 (τ = 0.10, 0.11), and PMA models, Table 3c shows that the
PMA model succeeded through the final selection using six count model scores, confirming
the superiority of PM model in many aspects and its preferability over the Poisson model.
For an interpretation of the significant selected DVs (29, 36, 59, 67, 73; all with positive
coefficients except 59) using the PMA model, risky driving is associated with more frequent
severe brake to slow-down at weekday and weekend nights, as well as more frequent severe right
turns at the junction at weekday nights and Friday rush time.

Apart from the numerical measures, we also visualised their performance using
ROC curves. Section 2.3 introduces the AUC according to three classes of drivers with
yi = 0, 1,≥ 2 or an overall class of all drivers. For each of these classes, the AUC was drawn
for the binary classifier of low- and high-claim groups comparing the predicted group, with
the proxy observed group of each driver estimated by K-means clustering using JT1 = 52
selected DVs (from TPL-1 model) for all stage 2 TP models and J1 = 45 informative DVs
for the PM model. Figure 4 plots the two clusters using the first two principal components
(PCs) that explain 22.11% and 17.44% of variance, respectively, using selected DVs for the
two cases. The results show that the first PC could separate the two clusters well for both
cases. For the stage 2 TP (PM) model, N1 = 9450 (9372) claims were assigned to the low
claim cluster accounting for 67% (66%) of drivers using K-means clustering. These two
proportions of the low claim group using K-means clustering are not far away from the
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estimated proportions Ph = 0.7 to 0.89 in Tables A3 using the TPL-1 model, as well as
PM = 0.73 using the PMA model.

(a) Using JT
1 = 52 selected DVs from TPL-1. (b) Using JM = 45 informative DVs for PM.

Figure 4. K-means clustering analysis to segment drivers into low-claim cluster in red, with blue
shade ellipse and high-claim cluster in blue, as well as red shade ellipse for TP and PM models.

Figure 5a–e plots the ROC curves with AUC values using classifier ŷi/ni for the best
stage 2 TP models under each threshold and classifier ẑi1 in (3) for the best PMA model. The
AUCs have been calculated into subgroups yi = 0 (red), 1 (blue), ≥ 2 (green) in Figure 5a–e,
and all the data are shown in Figure 5f. The zigzag patterns of the green lines indicate
small sample sizes for drivers with yi ≥ 2. Table 3b reports the overall AUC values, which
are the weighted averages of the three AUC values in each of Figure 5a–e and show that
model TPLN-2 when τ = 0.10 is the best classifier of low- and high-claim groups, while
PMA displays the third classifying power. However, the accuracy of the results depends
on whether K-means clustering can estimate the true latent groups well.

Since zero-claim drivers are not necessarily safe drivers after considering the DVs,
we expect some zero-claim drivers to be risky and non-zero-claim drivers to be safe. This
disagreement reflects the impact of DVs on assessing driving risk apart from the claim
information. Zero disagreement (ZD) is defined as the proportion, out of all drivers, of
those zero-claim drivers classified as risky and non-zero claim drivers classified as safe.
This ZD is 3.2% for the best PMA model. This small ZD is due to the low MSE showing
agreement between the predicted and observed claims.

(a) τ0.08: TPLA-2
(b) τ0.09: TPLA-2

Figure 5. Cont.
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(c) τ0.10: TPLN-2 (d) τ0.11: TPLN-2

(e) PMA (f) All TP and PMA

Figure 5. ROC curve and AUC values for (a–d) the four best stage 2 TP; (e) PMA model; and (f) four
best stage 2 TP models and one PM model.

4. UBI Experience Rating Premium
In the context of general insurance, a common approach for assessing risk in the typical

short-tail portfolio involves multiplying predicted claims frequency by claims severity to
determine the risk premium. This derived risk premium is subsequently factored into
the profit margin, alongside operating expenses, to determine the final premium charged
to customers. This paper centers on claims frequency, and in the premium calculation
discussed herein, we assume that claim severity remains constant. Consequently, the
premium calculation relies on predicting claims frequency.

The traditional experience rating method prices premiums using historical claims and
offers the same rate for drivers within the same risk group (low/high or safe/risky). If
individual claim history is available, premiums can be calculated using individual claims
relative to overall claims—both from historical records. However, although this extended
historical experience rating method can capture the individual differences of risk within a
group, it still fails to reflect drivers’ recent driving risk. The integration of telematic data
enables us to tailor pricing to current individual risks. This enhanced method is called the
UBI experience rating method. We leverage premium pricing as a strategic approach to refine
our pricing methodology.

Suppose that a new driver i was classified to claim group g with index set Cg of all
drivers in this group and i ∈ Cg. Let Pit be his premium for year t, Li,t−1 be the historical
claim/loss in year t − 1, Lg

t−1 = ∑i′∈Cg Li′ ,t−1 be the total claim/loss from the claim group

g that driver i was classified to, and Pg
t−1 = ∑i′∈Cg Pi′ ,t−1 be the total premium from the
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claim group g. Moreover, suppose that the best PMA model was trained using the sample
of drivers. Let xi•,t be the observed DVs for driver i at time t, g = 1 safe group (g = 2 risky
group) be the classified group if the group indicator ẑi1 > 0.5 (otherwise), ŷi,t in (4) be the
predicted claim frequency given xi•,t, ŷg

t = (∑i′∈Cg ŷi′ ,t)/Ng be the average predicted claim
frequencies from the claim group g that driver i was classified to, and Ng be the size of
group g.

Using the proposed UBI experience rating method, the premium Pit for driver i in year
t is given by

Pit,κ = (1 + R∆
i,t)× P̄g

t × Eit × F + P̄∗
t × Eit × (1 − F) (12)

where P̄g
t is the group average annual premium in period t from the group data, P̄∗

t is the
average annual premium from all data or some other data source, F is the credibility factor
(Dean 1997), Eit is the exposure of driver i, and R∆

i,t−1 is the individual adjustment factor to
the overall group loss ratio given by

R∆
i,t = R∆,H

i,t−1 +κR∆,UB
i,t , (13)

which is the sum of the historical loss rate change adjustment R∆,H
i,t−1 and weighted UBI

predicted loss rate change adjustment R∆,UB
i,t−1 ; κ ∈ [0, 1] is the UBI policy parameter to deter-

mine how much UBI adjustment is applied to R∆,UB
i,t−1 in R∆

i,t when updating the premium

to account for current driving behaviour. The historical loss rate change R∆,y
i,t−1, historical

individual loss ratio Ri,t−1, and historical group loss ratio Rg
t−1 are, respectively,

R∆,H
i,t−1 =

Ri,t−1 − Rg
t−1

Rg
t−1

, Ri,t−1 =
Li,t−1

Pi,t−1
, and Rg

t−1 =
Lg

t−1

Pg
t−1

. (14)

The UBI predicted loss rate change R∆,UB
i,t , UBI predicted individual loss ratio Ry

i,t, and
UBI predicted group loss ratio Ry,g

t are, respectively,

R∆,UB
i,t =

Ry
i,t − Ry,g

t

Ry,g
t

, Ry
i,t =

ŷi,t

Pi,t
, and Ry,g

t =
ŷg

t

Pg
t

.

The credibility factor F is the weight of the best linear combination between the
premium estimate (1 + R∆

i,t)× P̄g
t using the sample data to the premium estimate P̄∗

t using
all data or data from another source to improve the reliability of the premium estimate Pit.
The credibility factor increases with the business size and, hence, the number of drivers in
the sample. Dean (1997) provided some methods to estimate F and suggested full credibility
F = 1 when the sample size N is large enough, such as above 10,000 in an example. As
this requirement is fulfilled for the telematic data with size N = 14,157, and all data are
used to estimate the chosen PMA model, a full credibility of F = 1 was applied. In cases
where insured vehicles are less in number in the sample, the credibility factor F may vary,
and external data sources may be used to improve the reliability of the premium estimate.
Moreover, as the selected PMA model can classify drivers, the premium calculation can
focus on the classified driver group to provide a more precise premium calculation.

We give an example to demonstrate the experience rating method and its extension
to UBI. Suppose that driver i is classified as a safe driver (g = 1) in a driving test and
wants to buy auto insurance for the next period (Eit = 1). As summarised in Table 4, the
annual premium for the safe group is P̄1

t = $300 and for the risky group is P̄2
t = $500.

Driver i has recorded Li,t−1 = 0.2 in annual claim frequency and paid an annual premium
of Pi,t−1 = $500 before. The safe group has recorded an average of L1

t−1 = 0.1 in annual
claim frequency and paid an annual premium if P1

t−1 = $310 per driver before. The risky
group has recorded an average of L2

t−1 = 0.3 claims/loss and paid P2
t−1 = $510 in annual

premium per driver before. Driver i has more claims than the average of a safe group
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before. According to these historical claim frequencies, driver i is expected to be relatively
more risky than the average of the safe group, so he should pay more.

To illustrate the UBI experience rating method, additional assumptions about the
predicted annual claim frequencies for driver i have been added to the last row of Table 4.
Assume that driver i has a predicted annual claim frequency ŷi,t−1 = 0.15 before; then,
that of the safe group is ŷ1

t−1 = 0.105, and that of the risk group is ŷ2
t−1 = 0.305. This

suggests that driver i operates his vehicle more safely than his historical claims indicate.
This information is summarised in Table 4.

Table 4. Assumptions summary in a case study in thousand dollars.

Driver i (Safe) Safe Group Risky Group
Average annual premium P̄g

t - 0.3 0.5
Historical annual premium Pi,t−1, Pg

t−1 0.5 0.31 0.51
Historical annual claims Li,t−1, Lg

t−1 0.2 0.1 0.3
Predicted annual claim frequencies ŷi,t−1, ŷg

t−1 0.15 0.105 0.305

Taking the policy parameter κ = 1, the UBI experience rating premium is given by

Pit,1 = (1 + R∆
i,t)× P̄ci ,t × Ei × F = (1 + 0.1260)× 300 × 1 × 1 = $337.80

where the historical loss rate change R∆
i,t−1, the historical loss ratio Ri,t−1 for driver i, the

historical loss ratio for safe group R1
t−1, the UBI predicted loss rate change R∆,UB

i,t−1 , the UBI

predicted loss ratio Ry
i,t for driver i, and the UBI predicted loss ratio Ry,1

t for the safe group
are, respectively,

R∆
i,t = R∆,H

i,t−1 + 1 × R∆,UB
i,t = 0.2403 − 0.1143 = 0.1260, (15)

R∆,H
i,t−1 =

Ri,t−1 − R1
t−1

R1
t−1

=
0.4 − 0.3225

0.3225
= 0.2403, Ri,t−1=

Li,t−1

Pi,t−1
=

0.2
0.5

= 0.4, R1
t−1=

L1
t−1

P1
t−1

=
0.1
0.31

= 0.3225, (16)

R∆,UB
i,t =

Ry
i,t − Ry,1

t

Ry,1
t

=
0.3 − 0.3387

0.3387
= −0.1143, Ry

i,t=
ŷi,t

Pi,t−1
=

0.15
0.5

= 0.3, Ry,1
t =

ŷ1
t

P1
t
=

0.105
0.31

= 0.3387

using (12). So, the premium for driver i using the UBI experience rating method is $337.80.
This premium is higher than the premium P̄1

t = $300 for the safe group because the loss
ratio for driver i is higher relative to the overall ratio in the safe group using historical
claims. However, his current loss ratio due to current safe driving reduces the adverse
effect due to the higher historical claims.

Nevertheless, we recognise that not all insured vehicles are equipped with telematic
devices, introducing potential data gaps in the telematics insights. In response to this
challenge, the UBI policy parameter κ in (13) can be set to 0. This adaptation to the
UBI pricing model in (12) also allows for the application to newly insured drivers with
only historical records (traditional demographic variables). This premium called historical
experience rating premium for driver i during period t is

Pit,0 = (1 + R∆,H
i,t−1)× P̄1

t × Ei × F = (1 + 0.24031)× 300 × 1 × 1 = $372.09

where the historical loss rate change R∆
i,t−1 is given by (16). This loss rate change can

capture individual differences within a claim group using historical claims but fails to
reflect the recent driving risk. Hence, this premium is higher than the UBI experience
rating premium calculated using both historical and current driving experience. Thus, the
historical experience rating method is unable to provide immediate compensation/reward
for safe driving.

Moreover, the UBI premium can track driving behaviour more frequently and closely
using regularly updated claim class and annual claim frequency prediction ŷi,t. The
updating period can be reduced to monthly or even weekly to provide more instant
feedback using the live telematic data. In summary, the proposed UBI experience rating
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premium provides a correction of the loss rate change R∆
i,t of the experience rating only

premium using the sum of both the historical loss rate change R∆,H
i,t−1 and the UBI predicted

loss rate change R∆,UB
i,t . Here, the proposed PMA model can predict more instantly the

annual claim frequencies ŷi,t using live telematic data. Hence, the UBI premium can
be updated more frequently to provide incentives for safe driving. The proposed UBI
experience rating premium provides an incremental innovation to the business processes
allowing the company to gradually transit to the new regime of UBI by adjusting the UBI
policy factor κ in (13) such that κ can gradually increase from 0 to 1 if driver i wants his
premium to gradually account for his current driving.

We remark that our analyses made a few assumptions. Firstly, we assumed that the
annual premium P̄g

t covers the total cost with possibly some profit, and the expectations
of loss ratios R∆,H

i,t−1 and R∆,UB
i,t across drivers i in group g are around zero. To assess the

validity of the assumptions on expectations, one can obtain the distributions of R∆,H
i,t−1, R∆,UB

i,t

based on the most recent data. If their means m∆,H
g ,m∆,UB

g are not zero, the overall loss ratio
R∆

i,t in (13) can be adjusted as

R∆
i,t = m∆,H

g R∆,H
i,t−1 +m∆,UB

g κR∆,UB
i,t (17)

for group g. For conservative purposes, the means m∆,H
g ,m∆,UB

g can be replaced by say
75% quantiles q∆,H

g,0.75, q∆,UB
g,0.75 of the distributions. Secondly, it also implicitly assumes perfect

or near-perfect monitoring. However, the advent of monitoring technologies reduces
the extent of asymmetric information between insureds and insurers and reduces moral
hazard costs.

5. Conclusions
In summary, our study, based on claim data from 14,157 drivers exhibiting equidis-

persion and a substantial 92% of zero claims, introduces a novel approach using two-stage
TP, PM, and ZIP regressions. Employing regularisation techniques such as lasso, elastic
net, adaptive lasso, and adaptive elastic regularisation, we aimed to predict annual claim
frequencies, identify significant DVs, and categorised drivers into low-claim (safe driver)
and high-claim (risky driver) groups. To ensure the robustness of our findings, we per-
formed 100 resampling iterations, each comprising 70% of the drivers for all TP, PM, and
ZIP models. Our empirical results show that PMA model with adaptive lasso regularisation
displayed the best performance in this study. This finding provides relevant guidelines for
practitioners and researchers, as the analysis is based on a sound representative telematics
sample. Moreover, the PMA model is highly favoured in Table 3c, and its implementation
is more straightforward than the TP models.

Furthermore, we proposed to utilise the best-performing PMA model for implement-
ing a UBI experience rating method, aiming to enhance the efficiency of premium pricing
strategies. This approach shifts the focus from traditional claim history to recent driving
behaviour, offering a nuanced assessment of drivers’ risk profiles. Notably, our proposed
UBI premium pricing method departs from the annual premium revision characteristic of
traditional methods and instead allows for more frequent updates based on recent driving
performance to provide instant rewards for safe driving practices and feedback against
risky driving using scores of the selected significant DVs for the high-claim group. This
dynamic pricing approach not only incentivises responsible and less-frequent driving but
also minimises the cross-subsidisation of risky drivers. By enabling a more accurate and
timely reflection of driver risk, the UBI contributes to improved loss reserving practices
for the auto insurance industry. In essence, our findings support the adoption of UBI
experience rating methods as a progressive and effective means of enhancing both driver
behaviour and the overall operational efficiency of auto insurance companies.

To implement the PMA models for premium pricing, Section 3.5 provides the mod-
elling details and Appendix B.5 the technical application. If it is challenging, some data
analytic companies are experienced to support the handling of telematics data, running of
PMA models, predicting drivers’ claims, and revising the UBI experience rating premiums.
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Updating the frequency for models, claim predictions, and premiums depends on the
resources and type of policies. As a suggestion, the PMA models can be updated annually
to reflect the change in road conditions, transport policies, etc., and the drivers’ predicted
annual claims can be updated fortnightly or monthly depending on drivers’ mileage. When
their predicted annual claims are updated, the premium can also be updated to provide
an incentive for good driving. Averaged and individual driving scores for the selected
significant DVs (e.g., 29, 36, 59, 67, 73 for the high-claim group of PMA model) can be sent
possibly with warnings to inform driving behaviour and encourage skill improvement.
These selected significant DVs are associated with more frequent severe brake to slow
down at weekday and weekend nights, as well as more frequent severe right turns at the
junction at weekday nights and Friday rush time.

In the context of future research within this domain, expanding the classification of
driver groups to three or more holds the potential to encompass a wider range of driving
styles, ultimately leading to more accurate predictions of claim liability. Introducing an
intermediary driver group, distinct from the existing safe and risky classifications, offers
an avenue to capture unique driving behaviours and potentially enhances the predictive
power of our models. This extension not only enables a closer examination of different
driving behaviours but also poses challenges in terms of identifying and interpreting these
additional groups. While the application of similar mixture models and regularisation
techniques for modelling multiple components remains viable, unravelling the intricacies
of distinct groups within the expanded framework introduces interpretative complexities.
Determining whether the third group is a composite of the existing two or represents a
genuinely distinct category presents additional challenges. Moreover, handling the label
switching problem becomes more intricate when dealing with mixture models featuring
multiple groups.

A parallel trajectory for future exploration centers around the integration of neural
networks as an alternative modelling approach. In contrast to the selection of key driving
variables, neural networks employ hidden layers to capture intricate dynamics, incorpo-
rating diverse weights and interaction terms. This modelling paradigm allows for the
application of network models to trip data without temporal aggregation, as exemplified by
Ma et al. (2018), facilitating a more detailed analysis of driving behaviours in conjunction
with real-time information on surrounding traffic conditions.
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A Adaptive lasso
AIC Akaike information criterion
BIC Bayesian information criterion
DVs Driver behaviour variables
E Elastic net
GLM Generalized linear model
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L Lasso
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MSE Mean squared error
N Adaptive elastic net
NB Negative binomial
PAYD Pay As You Drive
PHYD Pay How You Drive
PM Poisson mixture
RMSE Root mean squared error
ROC Receiver operating characteristic curve
TP Two-stage threshold Poisson
UBI Usage-based auto insurance
ZIP Zero-inflated Poisson

Appendix A. Details of Stage 1 TP Model Procedures
1. Draw subsamples Sr = {(xi•, ni, yi), i ∈ Ir}, r = 1, . . . , R, with each containing

Nr = 9910 drivers, where the index set Ir contains all i being sampled. The K-fold CV
(K = 10) further splits Sr into 10 nonoverlapping and equal-sized (Nk = 991) CV sets

Srk = {(xi•, ni, yi), i ∈ Irk}, k = 1, . . . , K with index set Irk

and the training sets are ST
rk = Sr \ Srk, with index set ITrk = Ir \ Irk. Set λ =

(λ1, . . . , λM) for some M to be the list of potential λ.
2. Estimate βλm ,rk = argmin

β

LOSSλ,α,w(β) in (7) for each λm ∈ λ and training set ST
rk at

repeat r and CV k. Find optimal λm that minimises some regularised CV test statistic
such as MSE, MAE, or Deviance (Dev). Taking Dev as an example,

λr,min = argmin
λm∈λ

Devr(λm) = argmin
λm∈λ

1
Nr

K

∑
k=1

∑
i∈Irk

−2 log f
(
yrki; µrki(βλm ,rk)

)
where the mean µrki,λm = exp

(
xi•βλm ,rk + log(ni)

)
. Among MSE, MAE, and Dev

statistics, optimal λr,min using Dev is selected according to the RMSE of predicted
claims for all subsamples. Using λr,min, βr = (βr1, . . . , βrJ) is re-estimated based
on the subsample Sr. Figure A1a plots Poisson deviance with SE against log(λm),
showing how it drops to λr,min for the first subsample (r = 1). Figure A1b shows how
βrj shrinks to zero as λ increases.

3. Average those nonzero coefficients (selected at least once) over repeats as below:

β j =
R

∑
r=1

βrjI(βrj ̸= 0)
/ R

∑
r=1

I(βrj ̸= 0), j ∈ Iβ (A1)

where I(A) is the indicator function of event A, and the index set

Iβ={j : ∃r = 1, . . . , R, βrj ̸= 0} (A2)

contains those DVs selected at least once over R subsamples in stage 1. The averaged
coefficients β j∈Iβ (based on Dev) are reported in Table A2 for the TPL-1 and TPA-1
models using the optimal λmin. For example, DV 10 is not even selected once for the
TPL-1 model.

4. Further select DVs that are frequently (not rarely) selected according to a weighted
selection frequency measure given by

Ij =
R

∑
r=1

1
RMSEr

I(βrj ̸= 0), j ∈ Iβ (A3)

weighting inversely to RMSEr. Superscripts T1, T2, M, and Z are added to Ij when
applied to the stage 1 TP, stage 2 TP, PM, and ZIP models, respectively. This weighted
selection counts I = (Ij∈Iβ) using MSE, MAE, and deviance, which are also reported
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in Table A2 for the TPL-1 and TPA-1 models. Table 3a shows that the TPL-1 and
TPA-1 models have been selected according to the model performance measures AIC,
BIC, and MSE. The results of the TPL-1 model in Table A2 show that 12 DVs in deep
grey highlight with Ij < 0.2 max(Ij)

j∈Iβ

= 62 have been dropped, as they are rarely

selected, resulting in JT1 = 65 − 1 − 12 = 52 DVs. These JT1 DVs can be interpreted
as frequently selected DVs or simply selected DVs.

(a) Poisson deviance for CV (b) Coefficients path

Figure A1. (a) The Poisson deviance CV criteria across log λm to find λmin. (b) Coefficient β j across
log λ for stage 1 TP model using lasso regularisation based on the first subsample (r = 1).

Appendix B. Some Technical Details of Model Implementation
1. This study utilises R commands glm to fit Poisson regression and glmnet to fix Poisson

regression with lasso regularisation (Zeileis et al. 2008). The latter command begins
with adopting the R function sparse.model.matrix as
data feature <- sparse.model.matrix(∼., dt feature).
We use the argument penalty.factor in cv.glmnet for adaptive lasso. We remark
that the glmnet package does not provide a p value. We extract the p value for the
selected DVs by refitting the model using glm procedure.

2. We use the 100 simulated dataset in stages 1 and 2 of the TP and PM models to explore
optimal α values in the elastic net. We first set up our 10-fold CV strategy. Using
caret package in R, we use train() with method = “glmnet” to fit the elastic net.
XX = model.matrix(Claims ~ . -EXP-1,data=stage1)

YY = stage1$Claims
OFF = log(stage1$EXP)
Fit_stage1 <- caret::train(

x = cbind(XX,OFF),
y = YY,
method = "glmnet",
family = "poisson",
tuneLength = 10,
trControl = trainControl(method="cv", number = 10, repeats = 100)

)

3. We use roc() in the pROC package to calculate the AUC. The latex2exp package also
provides an ROC plot.

4. We implement the AER package in R using the built-in command dispersiontest()
that assesses the alternative hypothesis H1 : Var(Yi) = µi + Ψ × trafo(µi), where the
transformation function trafo(µi) = µi (by default, trafo = NULL) corresponds to the
Poisson model with Var(Yi) = (1 + Ψ)µi. If the dispersion 1 + Ψ is greater than 1, it
indicates overdispersion.

5. The PM regression model is estimated using
FLXMRglmnet(formula = .∼., family = c("gaussian","binomial","poisson"),
adaptive = TRUE, select = TRUE, offset = NULL, ...)
in the R package flexmix (Leisch 2004) to fit mixtures of GLMs with lasso regulari-
sation. Setting adaptive = TRUE for the adaptive lasso triggers a two-step process.
Initially, an unpenalised model is fitted to obtain the preliminary coefficient estimates
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β̂ j for the penalty weights wj = 1/|β̂ j|.Then, wj values are applied to each coefficient
in the subsequent model fitting. With the selected DVs for the low- and high-claim
groups, FLXMRglmfix() refits the model, provides the significance of the coefficients,
predicts claims, supports CV values and evaluates various goodness-of-fit measures.

6. The ZIP regression model is estimated using the zipath() function for lasso and
elastic net regularisation and the ALasso() function for adaptive lasso regularisation
from the mpath and AMAZonn packages. The optimal lambda minimum is searched via
10-fold cross-validation with cv.zipath() and applied to both fitted models, ZIPL
and ZIPA, for R = 100 subsamples, each with 70% data. Full data are refitted to the
PM model based on the selected DVs using Poisson zeroinf.

Appendix C. Driving Variable Description
Event type
ACC Acceleration Event—Accelerating/From full stop

C1 Smooth acceleration (acceleration to 30 MPH in more than 12 s)
C2 Moderate acceleration (acceleration to 30 MPH in 5–11 s)

BRK Braking Event—Full Stop/Slow down
C1 Smooth, even slowing down (up to about 7 mph/s)
C2 Mild to sharp brakes with adequate visibility and road grip (7–10 mph/s)

LFT Left turning Event—None (Interchange, curved road, overtaking)/At Junction
C1 Smooth, even cornering within the posted speed and according to the road

and visibility conditions
C2 Moderate cornering slightly above the posted speed (cornering with light

disturbance to passengers)
RHT Right turning Event—None (Interchange, curved road, overtaking)/At Junction

C1 and C2 are the same as LFT

Time type
T1 Weekday late evening, night, midnight, early morning
T2 Weekday morning rusk, noon, afternoon rush
T3 Weekday morning, afternoon, no rush
T4 Friday rush
T5 Weekend night
T6 Weekend day

Table A1. Driving variable labels.

DV1 ACC_ACCELERATING_T3_C1 DV19 BRK_FULLSTOP_T1_C1 DV39 LFT_NONE_T1_C1 DV57 RHT_NONE_T1_C1
DV2 ACC_ACCELERATING_T3_C2 DV20 BRK_FULLSTOP_T1_C2 DV43 LFT_NONE_T6_C1 DV58 RHT_NONE_T1_C2
DV3 ACC_ACCELERATING_T4_C1 DV22 BRK_FULLSTOP_T2_C2 DV44 LFT_NONE_T6_C2 DV59 RHT_NONE_T4_C1
DV4 ACC_ACCELERATING_T4_C2 DV23 BRK_FULLSTOP_T3_C1 DV45 LFT_ATJUNCTION_T1_C1 DV60 RHT_NONE_T4_C2
DV5 ACC_ACCELERATING_T5_C1 DV24 BRK_FULLSTOP_T3_C2 DV46 LFT_ATJUNCTION_T1_C2 DV61 RHT_NONE_T5_C1
DV7 ACC_ACCELERATING_T5_C2 DV25 BRK_FULLSTOP_T4_C1 DV47 LFT_ATJUNCTION_T2_C1 DV63 RHT_NONE_T5_C2
DV8 ACC_FROMFULLSTOP_T1_C1 DV26 BRK_FULLSTOP_T4_C2 DV49 LFT_ATJUNCTION_T3_C1 DV64 RHT_NONE_T6_C1
DV9 ACC_FROMFULLSTOP_T1_C2 DV27 BRK_FULLSTOP_T6_C1 DV50 LFT_ATJUNCTION_T3_C2 DV65 RHT_NONE_T6_C2
DV10 ACC_FROMFULLSTOP_T2_C1 DV28 BRK_FULLSTOP_T6_C2 DV51 LFT_ATJUNCTION_T4_C1 DV66 RHT_ATJUNCTION_T1_C1
DV13 ACC_FROMFULLSTOP_T3_C2 DV29 BRK_SLOWDOWN_T1_C1 DV52 LFT_ATJUNCTION_T4_C2 DV67 RHT_ATJUNCTION_T1_C2
DV14 ACC_FROMFULLSTOP_T4_C1 DV31 BRK_SLOWDOWN_T2_C1 DV53 LFT_ATJUNCTION_T5_C1 DV68 RHT_ATJUNCTION_T2_C1
DV15 ACC_FROMFULLSTOP_T4_C2 DV32 BRK_SLOWDOWN_T2_C2 DV54 LFT_ATJUNCTION_T5_C2 DV69 RHT_ATJUNCTION_T2_C2
DV16 ACC_FROMFULLSTOP_T5_C1 DV33 BRK_SLOWDOWN_T4_C1 DV55 LFT_ATJUNCTION_T6_C1 DV71 RHT_ATJUNCTION_T3_C2
DV18 ACC_FROMFULLSTOP_T5_C2 DV34 BRK_SLOWDOWN_T4_C2 DV56 LFT_ATJUNCTION_T6_C2 DV72 RHT_ATJUNCTION_T4_C1

DV35 BRK_SLOWDOWN_T5_C1 DV73 RHT_ATJUNCTION_T4_C2
DV36 BRK_SLOWDOWN_T5_C2 DV74 RHT_ATJUNCTION_T5_C1
DV37 BRK_SLOWDOWN_T6_C1 DV75 RHT_ATJUNCTION_T5_C2
DV38 BRK_SLOWDOWN_T6_C2 DV76 RHT_ATJUNCTION_T6_C1

DV77 RHT_ATJUNCTION_T6_C2
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Appendix D. Visualisation of Driver Variables
Appendix D.1. Driving Variables by Claim Frequency

Figure A2. Value against driver ID with colours showing claim frequency yi = 0, 1,≥2 for 65 DVs.
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Appendix D.2. Correlation Matrix and Hierarchical Clustering of Driving Variables

(a) Correlation matrix between 65 DVs, claims, exposure, and annual claims.

(b) Distance score and hierarchical clustering between 65 DVs.

Figure A3. Relationship between variables using correlation matrix and hierarchical clustering.
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Appendix E. Parameter Estimates of all Models

Table A2. Parameter estimates β in (A1) for stage 1 TP models before refit with R = 100 subsamples
of 70% data using Poisson glmnet, βT1 after refitting to full data using Poisson glm on the selected
DVs with IT2

j > 62 (otherwise dropped as indicated in grey highlight), and selection criteria IT1 in

(A3). There are JT1 = 52 DVs selected for TPL-1 and JT1 = 39 DVs selected for TPA-1 under columns
βT1

j . The bold with yellow highlighted under βT1
j are significant.

TPL-1

glmnet with 100 Repeats glm glmnet with 100 Repeats glm glmnet with 100 Repeats glm

Measures MSE MAE Deviance Poisson Measures MSE MAE Deviance Poisson Measures MSE MAE Deviance Poisson

DVs IT1
j βj βT1

j DVs IT1
j βj βT1

j DVs IT1
j βj βT1

j

1 - 34 7 −0.0029 - 28 3 126 61 −0.0031 - 55 - 119 68 0.0082 0.0134

2 89 232 228 0.0176 0.0159 29 227 276 279 0.0279 0.0360 56 37 136 123 0.0149 0.0061

3 180 317 337 0.0402 0.0619 31 251 324 337 0.0409 0.0535 57 139 310 334 −0.0446 −0.1696

4 140 307 334 −0.0409 −0.0987 32 302 327 341 0.0474 0.0513 58 24 147 109 0.0115 0.0095

5 3 109 61 0.0085 - 33 133 273 266 0.0256 0.0393 59 68 252 229 0.0282 0.0448

7 - 136 116 −0.0021 −0.0830 34 - 85 20 −0.0073 - 60 95 198 191 −0.0243 −0.0091

8 7 95 37 −0.0011 - 35 146 245 242 0.0222 0.0168 61 255 317 320 0.0426 0.0626

9 272 310 320 0.0417 0.0546 36 262 320 334 0.0576 0.0797 63 98 242 235 0.0219 0.0346

10 - 17 - - - 37 292 327 334 0.0424 0.0518 64 30 194 160 −0.0264 −0.0348

13 10 140 72 −0.0154 −0.0253 38 184 290 289 0.0238 0.0263 65 - 99 41 −0.0084 -

14 - 105 14 −0.0031 - 39 71 232 228 0.0122 0.0160 66 41 164 133 0.0164 0.0173

15 14 119 68 −0.0190 −0.0065 43 78 204 204 −0.0381 −0.0505 67 329 330 341 −0.1400 −0.1706

16 3 113 65 0.0001 −0.0004 44 3 112 41 −0.0113 - 68 17 102 61 −0.0135 -

18 316 327 341 0.0969 0.1254 45 3 78 48 0.0172 - 69 17 188 140 −0.0166 −0.0320

19 - 85 20 0.0021 - 46 31 194 164 0.0210 0.0361 71 78 231 224 0.0172 0.0185

20 173 310 323 0.0363 0.0563 47 177 314 330 −0.0611 −0.0918 72 187 303 297 0.0319 0.0418

22 41 205 177 0.0133 0.0309 49 95 245 252 −0.0341 −0.0448 73 302 327 341 0.0587 0.0743

23 - 133 75 −0.0051 −0.0235 50 72 228 218 0.0157 0.0205 74 102 242 242 0.0216 0.0350

24 136 272 262 0.0213 0.0236 51 116 289 306 −0.0517 −0.0944 75 336 330 341 0.0621 0.0659

25 - 119 58 −0.0087 - 52 150 307 324 −0.0397 −0.0623 76 48 239 235 −0.0236 −0.0565

26 58 160 139 0.0129 0.0024 53 65 174 157 0.0156 0.0107 77 157 307 324 0.0324 0.0549

27 17 160 129 −0.0205 −0.0402 54 163 262 272 0.0209 0.0208

TPA-1

glmnet with 100 Repeats glm glmnet with 100 Repeats glm glmnet with 100 Repeats glm

Measures MSE MAE Deviance Poisson Measures MSE MAE Deviance Poisson Measures MSE MAE Deviance Poisson

DVs IT1
j βj βT1

j DVs IT1
j βj βT1

j DVs IT1
j βj βT1

j

1 3 41 24 −0.0712 - 28 - 79 - - - 55 - 41 20 0.0030 -

2 61 95 68 0.0360 0.0149 29 228 279 276 0.0311 0.0357 56 14 99 61 0.0311 -

3 160 317 310 0.0512 0.0608 31 217 316 313 0.0514 0.0536 57 78 306 327 −0.0797 −0.1726

4 89 296 310 −0.0630 −0.1035 32 319 337 340 0.0552 0.0503 58 - 38 3 0.0297 -

5 - 61 10 0.0482 - 33 78 248 214 0.0352 0.0363 59 31 204 139 0.0374 0.0478

7 - 24 - - - 34 - 38 17 −0.0201 - 60 58 143 126 −0.0288 −0.0093

8 - 34 13 −0.0067 - 35 102 190 177 0.0258 0.0199 61 163 283 282 0.0595 0.0702

9 187 300 289 0.0517 0.0579 36 248 334 330 0.0703 0.0775 63 41 194 150 0.0358 0.0422

10 - - - - - 37 285 334 330 0.0513 0.0530 64 27 143 89 −0.0551 −0.0317

13 - 48 20 −0.0144 - 38 160 231 218 0.0298 0.0271 65 - 17 10 −0.0100 -

14 - 62 - - - 39 7 116 71 0.0132 0.0163 66 17 109 55 0.0221 -

15 3 86 31 −0.0200 - 43 48 235 204 −0.0577 −0.0510 67 336 340 340 −0.1752 −0.1686

16 - 14 3 −0.0088 - 44 - 44 7 −0.0294 - 68 - 85 55 −0.0201 -

18 333 340 340 0.1212 0.1205 45 3 72 44 0.0293 - 69 7 99 34 −0.0334 -

19 10 65 17 0.0146 - 46 10 130 51 0.0410 - 71 37 129 102 0.0291 0.0204

20 112 286 272 0.0426 0.0567 47 170 327 327 −0.0773 −0.0913 72 156 269 248 0.0479 0.0443

22 20 143 85 0.0300 0.0282 49 58 194 187 −0.0470 −0.0367 73 289 340 337 0.0710 0.0733

23 - 55 14 −0.0171 - 50 27 129 92 0.0259 0.0206 74 51 228 167 0.0301 0.0341

24 58 188 147 0.0237 0.0230 51 51 282 262 −0.0718 −0.0918 75 316 340 333 0.0748 0.0709

25 - 34 3 −0.0843 - 52 136 306 303 −0.0493 −0.0618 76 41 225 184 −0.0446 −0.0565

26 21 68 38 0.0201 - 53 10 71 54 0.0182 - 77 116 290 273 0.0457 0.0554

27 10 153 105 −0.0349 −0.0359 54 109 176 183 0.0259 0.0256
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Table A3. Parameter estimates βT2
Lh, βT2

Hh for the stage 2 TP models with R = 100 subsamples
of 70% data. Parameters are based on JT1 = 52 DVs in stage 1, and JT

2 refers to the number of
frequently selected DVs with ILhj > 43 (τ0.08), 49 (τ0.09), 53 (τ0.10). 56 (τ0.11), and IHhj > 19, 13, 9,
and 6, respectively, which differ across threshold. Significant βT2

Lhj, βT2
Hhj are in boldface with yellow

highlighted.

τ0.08: TPLA-2 τ0.09: TPLA-2 τ0.10: TPLN-2 τ0.11: TPLN-2

Groups Low High Low High Low High Low High

Rh 0.70 0.30 0.79 0.21 0.85 0.15 0.90 0.10

Ihj 43 19 49 13 53 9 56 6

JT
2 17 22 38 14 42 23 43 28

DVs ILhj βT2
Lhj DVs IHhj βT2

Hhj DVs ILhj βT2
Lhj DVs IHhj βT2

Hhj DVs ILhj βT2
Lhj DVs IHhj βT2

Hhj DVs ILhj βT2
Lhj DVs IHhj βT2

Hhj

2 - - 2 42 0.0277 2 - - 2 19 0.0169 2 - - 2 18 0.0108 2 - - 2 5 0.0250

3 8 0.0093 3 31 0.0356 3 52 0.0331 3 - - 3 116 0.0515 3 5 0.0235 3 118 0.0403 3 - -

4 49 −0.0567 4 42 0.0366 4 254 −0.0714 4 43 0.0466 4 356 −0.0748 4 76 0.0864 4 357 −0.0833 4 129 0.1443

7 - - 7 - - 7 - - 7 - - 7 - - 7 - - 7 - - 7 - -

9 95 0.0636 9 3 −0.0081 9 350 0.0976 9 3 −0.0416 9 348 0.0953 9 10 −0.0421 9 357 0.0859 9 15 −0.0528

13 4 −0.0882 13 48 0.0410 13 66 −0.0648 13 87 0.0824 13 243 −0.0513 13 91 0.0814 13 278 −0.0545 13 83 0.0667

15 11 −0.0010 15 6 −0.0205 15 26 −0.0193 15 - - 15 44 −0.0643 15 - - 15 22 −0.0286 15 8 0.0355

16 11 −0.0584 16 17 0.0252 16 33 −0.0353 16 68 0.0424 16 22 −0.0077 16 55 0.0426 16 11 −0.0097 16 15 0.0219

18 46 0.0820 18 36 0.0608 18 210 0.0827 18 3 0.0867 18 323 0.0764 18 - - 18 343 0.1031 18 - -

20 15 −0.0056 20 45 0.0351 20 40 0.0428 20 - - 20 207 0.0437 20 - - 20 171 0.0363 20 3 0.0768

22 72 −0.0633 22 89 0.0407 22 15 −0.0469 22 8 0.0272 22 36 −0.0138 22 5 0.0174 22 47 −0.0218 22 18 0.0432

23 11 0.0060 23 6 0.0196 23 33 0.0084 23 3 −0.0091 23 101 0.0292 23 8 −0.0442 23 139 0.0280 23 40 −0.0761

24 35 0.0645 24 11 0.0316 24 195 0.0727 24 3 0.0456 24 348 0.0904 24 - - 24 339 0.0844 24 - -

26 113 0.0577 26 6 −0.0608 26 199 0.0516 26 11 −0.0282 26 185 0.0377 26 3 −0.0094 26 154 0.0270 26 8 −0.0363

27 61 −0.0502 27 34 0.0476 27 95 −0.0422 27 5 −0.0264 27 214 −0.0478 27 10 −0.0320 27 75 −0.0287 27 33 −0.0863

29 12 −0.0749 29 95 0.0211 29 48 −0.0497 29 32 0.0179 29 163 0.0476 29 11 −0.0494 29 157 0.0358 29 13 0.0148

31 12 0.0563 31 17 0.0219 31 74 0.0495 31 3 0.0463 31 287 0.0555 31 5 0.0323 31 286 0.0549 31 - -

32 46 0.0614 32 61 0.0320 32 332 0.1115 32 - - 32 345 0.0893 33 8 −0.0312 32 332 0.0801 32 - -

33 23 0.0492 33 - - 33 147 0.0523 33 - - 33 309 0.0569 33 - - 33 264 0.0492 33 5 −0.0615

35 - - 35 25 0.0343 35 85 0.0277 35 - - 35 127 0.0265 35 - - 35 61 0.0227 35 5 0.0954

36 69 0.0575 36 3 0.0776 36 137 0.0411 36 - - 36 264 0.0536 36 - - 36 318 0.0591 36 3 −0.0304

37 243 0.1047 37 14 0.0276 37 354 0.1337 37 - - 37 355 0.1239 37 - - 37 357 0.1153 37 - -

38 38 −0.0502 38 22 0.0304 38 78 −0.0596 38 16 0.0401 38 127 −0.0437 38 39 0.0386 38 25 −0.0237 38 18 0.0239

39 87 −0.0652 39 - - 39 251 −0.0819 39 - - 39 327 −0.1015 39 3 0.0148 39 132 −0.1482 39 - -

43 27 −0.0380 43 6 0.0150 43 59 −0.0501 43 13 −0.0375 43 65 −0.0265 43 26 −0.0868 43 82 −0.0289 43 83 −0.0808

46 4 −0.0310 46 67 0.0310 46 15 0.0088 46 5 0.0376 46 26 0.0188 46 - - 46 36 0.0345 46 10 0.0868

47 60 −0.0564 47 6 −0.0103 47 225 −0.0711 47 3 −0.0745 47 341 −0.0804 47 - - 47 321 −0.0713 47 - -

49 15 −0.0375 49 - - 49 59 −0.0326 49 11 −0.0564 49 54 −0.0219 49 75 −0.0759 49 193 −0.0381 49 26 −0.0744

50 15 −0.0394 50 11 0.0320 50 29 −0.0543 50 - - 50 87 −0.0308 50 13 0.0291 50 64 −0.0244 50 22 0.0360

51 152 −0.0853 51 150 0.0625 51 206 −0.0769 51 8 0.0623 51 214 −0.0555 51 - - 51 314 −0.0776 51 7 0.0969

52 4 −0.0013 52 45 −0.0826 52 151 −0.0387 52 8 −0.0763 52 268 −0.0416 52 16 −0.0202 52 293 −0.0462 52 7 −0.0014

53 152 0.0733 53 - - 53 95 0.0407 53 3 0.0167 53 51 −0.0297 53 10 0.0507 53 110 0.0380 53 5 0.0094

54 34 0.0424 54 6 0.0210 54 56 0.0202 54 3 0.0047 54 47 0.0256 54 3 0.0332 54 232 0.0392 54 - -

55 11 0.0340 55 - - 55 158 0.0483 55 16 −0.0460 55 152 0.0354 55 13 −0.0540 55 228 0.0491 55 33 −0.1115

56 49 0.0443 56 3 −0.0516 56 122 0.0412 56 3 −0.0275 56 196 0.0327 56 13 −0.0398 56 132 0.0401 56 20 −0.0636

57 15 −0.0626 57 - - 57 214 −0.0672 57 92 0.0740 57 337 −0.0673 57 49 −0.1974 57 346 −0.0739 57 45 −0.2011

58 49 0.0432 58 78 −0.0545 58 74 0.0290 58 57 −0.0548 58 91 0.0349 58 96 −0.0789 58 100 0.0280 58 98 −0.0941

59 65 0.0571 59 - - 59 207 0.0566 59 33 −0.0480 59 294 0.0557 59 91 −0.0799 59 285 0.0552 59 50 −0.0947

60 50 −0.0413 60 8 0.0345 60 55 −0.0442 60 - - 60 239 −0.0514 60 10 0.0615 60 221 −0.0514 60 10 0.0957

61 8 0.0465 61 31 0.0258 61 26 0.0135 61 32 0.0445 61 149 0.0485 61 - - 61 146 0.0504 61 8 0.0182

63 8 −0.0378 63 67 0.0422 63 4 −0.0054 63 - - 63 15 −0.0068 63 16 0.0675 63 50 0.0219 63 3 0.0811

64 26 −0.0629 64 - - 64 88 −0.0593 64 - - 64 142 −0.0489 64 - - 64 211 −0.0458 64 35 0.0833

66 38 0.0499 66 - - 66 225 0.0496 66 - - 66 254 0.0416 66 - - 66 211 0.0400 66 3 −0.0610

67 31 −0.0420 67 176 −0.1401 67 310 −0.0912 67 187 −0.1461 67 363 −0.1275 67 112 −0.0977 67 357 −0.1418 67 97 −0.1485

69 19 −0.0407 69 76 0.0508 69 121 −0.0523 69 - - 69 98 −0.0353 69 - - 69 46 −0.0232 69 5 −0.0503

71 30 0.0396 71 6 −0.0682 71 192 0.0464 71 8 −0.0405 71 175 0.0328 71 3 −0.0374 71 100 0.0228 71 2 −0.0005

72 8 0.0326 72 11 0.0267 72 41 0.0265 72 - - 72 76 0.0236 72 - - 72 104 0.0219 72 10 0.0867

73 42 0.0594 73 50 0.0344 73 185 0.0747 73 5 0.0291 73 268 0.0709 73 5 0.0354 73 321 0.0709 73 2 0.0015

74 - - 74 17 0.0248 74 122 0.0458 74 3 0.0242 74 276 0.0611 74 - - 74 188 0.0446 74 - -

75 15 0.0488 75 107 0.0456 75 254 0.0707 75 16 0.0436 75 301 0.0730 75 3 0.0451 75 332 0.0844 75 - -

76 27 −0.0662 76 6 −0.0343 76 151 −0.0588 76 5 −0.0035 76 276 −0.0549 76 10 0.0779 76 271 −0.0491 76 27 0.0867

77 7 0.0400 77 14 0.0209 77 26 0.0373 77 5 0.0330 77 36 0.0075 77 24 0.0574 77 100 0.0391 77 5 0.0448
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Table A4. Parameter estimates β0, βc for ZIP model before refit, βM
L , βM

H for PM, and βZ
0 , βZ

c for ZIP
models after refitted to all data based on selected DVs and selection criteria IM

L , IM
H , IZ

0 , IZ
c , with

R = 100 subsamples of 70% data. For PM model, JM
L , JM

H refer to the number of frequently selected
DVs with IM

Lj > 43 (PML), 45 (PMA), and IM
Hj > 19 (PML), 17 (PMA); otherwise, they are dropped,

as in grey highlight. For ZIP model, JZ
0 , JZ

c refer to the number of frequently selected DVs with
IZ
0j > 62 and IZ

cj > 62; otherwise, β0j and βcj are excluded, as in grey highlight. Significant parameters

βM
Lj, βM

Hj, βZ
0j, βZ

cj are boldfaced and yellow highlighted.

PML PMA ZIPA

IM
j 43 19 IM

j 45 17 IZ
j 62 62

JM 45 18 JM 39 40 JZ 4 45

Low High Low High Zero CountDVs
IM
Lj βM

Lj IM
Hj βM

Hj

DVs
IM
Lj βM

Lj IM
Hj βM

Hj

DVs
IZ
0j β0j βZ

0j IZ
cj βcj βZ

cj

3 118 0.0182 47 0.0983 3 71 0.0380 126 0.1182 3 44 −0.0022 - 291 0.0404 0.0514

9 88 −0.0003 20 0.0275 9 27 −0.0226 16 0.0106 9 20 −0.0047 - 172 0.0170 0.0450

18 324 0.0636 27 0.0477 18 206 0.0877 149 0.1078 18 - - - 88 0.0044 0.1352

19 311 0.0491 3 0.1058 19 200 0.0877 82 0.0821 19 10 −0.0003 - 136 0.0050 −0.0263

20 78 −0.0197 37 0.0919 20 71 −0.0443 27 −0.0532 20 34 −0.0053 - 291 0.0552 0.0717

22 162 0.0098 54 0.0633 22 91 −0.0484 101 0.0839 22 47 −0.0104 - 217 0.0333 0.0441

23 335 −0.2076 24 −0.2634 23 219 −0.2801 159 −0.2732 23 - - - 84 −0.0025 −0.0247

26 250 0.0259 98 0.0370 26 212 0.0375 81 0.0119 26 3 1.91 × 10−5 - 125 0.0069 0.0014

27 338 0.0450 3 0.0068 27 251 0.0755 60 0.0576 27 10 0.0004 - 339 −0.1900 −0.0495

29 324 0.0355 17 0.0633 29 172 0.0663 79 0.0722 29 24 −0.0005 - 267 0.0182 0.0363

31 294 0.0352 14 0.0390 31 165 0.0637 87 0.0496 31 20 −0.0024 - 234 0.0265 0.0515

33 138 −0.0150 - - 33 50 −0.0516 13 −0.0265 33 55 −0.0123 - 213 0.0243 0.0426

34 287 0.0369 7 0.1254 34 127 0.0586 57 0.0533 34 3 −0.0001 - 88 −0.0022 −0.0234

35 331 0.0578 7 0.0130 35 299 0.1089 43 0.0735 35 20 −0.0029 - 132 0.0099 0.0232

36 335 0.0501 31 0.0450 36 214 0.0690 120 0.0642 36 30 −0.0103 - 281 0.0464 0.0752

37 304 0.0284 13 0.0522 37 183 0.0416 51 0.0567 37 10 −0.0009 - 298 0.0429 0.0524

38 230 −0.0516 7 0.0002 38 121 −0.1553 40 0.0017 38 98 −0.0265 -39.0618 121 0.0076 −0.0065

43 88 −0.0267 3 −0.0238 43 36 −0.0296 44 −0.0703 43 17 0.0008 - 173 −0.0397 −0.0471

44 57 0.0078 - - 44 54 0.0575 37 0.0932 44 - - - 155 −0.0099 −0.0287

45 274 0.0541 24 0.0395 45 249 0.1177 79 0.0982 45 10 −0.0005 - 153 0.0090 0.0188

46 338 −0.0957 14 −0.0442 46 259 −0.1665 78 −0.1081 46 30 −0.0042 - 264 0.0569 0.0362

47 338 −0.1644 20 −0.0469 47 292 −0.2914 77 −0.1493 47 3 0.0000 - 322 −0.0843 −0.0940

49 249 0.0241 10 0.0235 49 91 0.0430 23 0.0378 49 165 0.0366 −0.0193 251 −0.1070 −0.0597

50 331 −0.0898 24 −0.0447 50 197 −0.1691 126 −0.1419 50 - - - 122 0.0077 0.0145

51 335 −0.0981 14 −0.0381 51 225 −0.1602 119 −0.1378 51 17 0.0004 - 301 −0.0865 −0.0868

52 314 0.0265 37 0.0265 52 93 0.0447 81 0.0538 52 10 0.0023 - 311 −0.0738 −0.0660

54 84 0.0134 - - 54 40 0.0111 7 0.0496 54 17 −0.0013 - 213 0.0197 0.0182

55 112 0.0183 7 0.0196 55 33 0.0027 14 −0.0053 55 7 0.0001 - 88 0.0016 0.0109

56 142 0.0193 44 0.0636 56 33 0.0478 114 0.0780 56 3 −0.0003 - 75 0.0012 0.0002

58 240 0.0298 17 0.0632 58 154 0.0718 62 0.0692 58 3 −0.0001 - 128 0.0087 0.0157

59 294 −0.0433 17 −0.0817 59 115 −0.1431 73 −0.1543 59 24 −0.0035 - 200 0.0189 0.0409

60 318 0.0574 24 0.0934 60 183 0.1142 162 0.0945 60 13 0.0024 - 231 −0.0259 −0.0053

61 223 0.0297 3 0.0193 61 167 0.0773 37 0.0514 61 20 −0.0032 - 244 0.0403 0.0560

63 189 −0.0652 20 −0.0031 63 162 −0.1524 125 −0.0583 63 37 −0.0057 - 98 0.0088 0.0362

64 162 0.0132 7 0.0346 64 71 0.0231 7 0.0641 64 - - - 139 −0.0220 −0.0409

66 338 −0.1689 7 −0.0538 66 297 −0.3054 64 −0.1943 66 7 −0.0001 - 81 0.0050 0.0175

67 88 −0.0263 - - 67 37 −0.0730 40 0.0416 67 20 0.0044 - 339 −0.1312 −0.1510

68 210 −0.0265 7 −0.0102 68 90 −0.0940 52 −0.1397 68 7 0.0001 - 67 −0.0013 −0.0041

69 199 0.0210 17 0.0611 69 95 0.0537 26 0.0420 69 7 0.0005 - 180 −0.0190 −0.0286

71 270 0.0388 14 0.0725 71 141 0.0869 76 0.0686 71 34 −0.0040 - 145 0.0098 0.0114

72 318 0.0473 183 0.1172 72 217 0.0774 194 0.0950 72 30 −0.0040 - 268 0.0338 0.0391

73 335 0.0631 88 0.1193 73 242 0.1072 109 0.1064 73 75 −0.0129 −0.1323 288 0.0391 0.0617

75 321 −0.0545 27 −0.0622 75 142 −0.1177 136 −0.1645 75 20 −0.0022 - 301 0.0511 0.0634

76 257 0.0361 10 0.0327 76 161 0.0722 83 0.0827 76 7 0.0009 - 244 −0.0380 −0.0656

77 284 0.0324 17 0.0370 77 170 0.0740 74 0.0615 77 98 −0.0189 −34.9726 149 0.0132 −0.0313
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