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Abstract
Multimedia sources such as images and audio commonly activate
human senses to perceive objects, but limited research has explored
the combined effect of these stimuli on predicting semantic object
perception. In this study, we compare the performance of EEG sig-
nals elicited by image and audio stimuli in classifying semantic
objects, revealing that image stimuli are more discriminative than
audio stimuli. Building on this, we developed a contrastive learning
model that integrates image and audio stimuli, further enhancing
classification performance. Our research makes several key con-
tributions: it compares classifier performance with uni-sensory
versus multisensory stimuli, demonstrates improved performance
with contrastive learning models using EEG data from both im-
age and audio stimuli, and introduces a novel method to generate
positive and negative pairs for contrastive learning models using
cross-sensory EEG data. These findings enhance our understand-
ing of how humans perceive multimedia sources and highlight the
potential of multisensory integration in EEG-based classification.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI).
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1 Introduction
Humans perceive the world through multiple senses, and under-
standing this perception is key in Brain-Computer Interface (BCI)
research. Various experimental paradigms have been designed
to engage specific senses and analyze brain dynamics. Common
paradigms include SSVEP [5, 17, 32], which uses visual flicker to
study visual perception; spatial hearing [7, 21], which examines
auditory perception; motor imagery [1, 9]; which investigates mo-
tor functions; and overt or covert speech [14, 18], which explores
communication abilities. These paradigms have significantly ad-
vanced our knowledge of brain function and human perception.
However, a gap remains in BCI research concerning experiments
that simultaneously engage multiple senses using multiple sources
of stimuli. In real-life scenarios, humans often rely on multisensory
inputs to perform tasks more effectively. Therefore, this study aims
to evaluate the effectiveness of brain signals activated by image
and audio stimuli in object perception. We also examine whether
combining EEG signals from both stimuli types enhances the clas-
sification performance of machine learning models in identifying
the objects perceived by participants.

Much research has utilized machine learning classifiers to clas-
sify perceived objects using EEG data. Traditional models such as
support vector machines (SVM), random forest classifiers, and KNN
models use transformed EEG features that capture crucial informa-
tion in temporal, spectral, or spatial domains to train the model [24].
In contrast, deep learning classifiers like RNN and LSTM models
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[22] are favoured for handling raw EEG data without requiring fea-
ture extraction [25]. Other CNN-based models, such as EEGNet [12]
and DeepConvNet[20], have proven effective in object perception
classification tasks. Furthermore, deep learning classifiers incor-
porating self-attention mechanisms have achieved commendable
results [23]. Recently, self-supervised learning (SSL) methods have
become popular for EEG signal processing, especially for generative
tasks like image or speech generation from brain signals [2, 6, 16].
SSL methods, which include generative SSL, predictive SSL, and
contrastive SSL [28], are particularly beneficial in scenarios with
limited labelled data—a common constraint in BCI research due to
the restricted number of trials.

In this study, we employ a contrastive learning model [11] to
improve the classification of perceived objects using EEG data
from image and audio stimuli, as well as combined signals from
these stimuli. By using EEG data activated by both image and
audio stimuli, we form positive and negative pairs from both uni-
sensory and cross-sensory EEG data. Positive pairs are created
when participants perceive the same object through both seeing
and hearing, while negative pairs are formed when participants
perceive different objects through these senses. Our method of
creating positive and negative pairs without needing EEG data
transformation, as is typically done in existing research, represents
a novel contribution to contrastive learning.

We used an open dataset [29] that recorded EEG signals when
participants saw and listened to objects belonging to three classes:
guitar, penguin, and flower. We conducted five experiments using
traditionalmachine-learningmodels, a simple CNN, and contrastive-
learning deep-learningmodels. The results show that our contrastive-
learning models improved classification performance when using
uni-sensory EEG data. Additionally, classification performance was
enhanced when cross-sensory EEG data from image and audio stim-
uli were combined. This highlights the potential of cross-sensory
data to improve the effectiveness of contrastive learning models in
classifying perceived objects.

In summary, our researchmakes several key contributions. Firstly,
we compare classifier performance using uni-sensory stimuli (image
and audio) versus multisensory stimuli (image and audio simul-
taneously). Secondly, our findings demonstrate that contrastive
learning models improve classification performance when using
EEG data from both image and audio stimuli. Thirdly, we intro-
duce a novel method to generate positive and negative pairs for
contrastive learning models using cross-sensory EEG data. These
contributions enhance our understanding of how humans perceive
multimedia sources and highlight the potential of multisensory
integration in EEG-based classification.

2 Methodology
2.1 The Dataset
We used an open dataset [29] that recorded EEG signals from twelve
participants with normal or corrected vision and hearing, primarily
students from the University of Bath. The original study involved
three paradigm variations for perception tasks across three sensory
modalities: visual image, orthographic, and auditory comprehen-
sion. The semantic categories used were flower, penguin, and guitar.

However, in this study, we focused on image and audio stimuli be-
cause we consider both image and orthographic as visual stimuli,
and images may be the more direct method to visualize the object.
Figure 1 illustrates the experiment paradigm related to the image
and audio stimuli perception tasks, which provided the data for
our models. In the visual image paradigm, participants perceived
and imagined images from the three semantic categories, with the
stimuli being coloured images against a black background. In the au-
ditory comprehension paradigm, participants listened to recordings
of the semantic categories spoken by different speakers.

Figure 1: This figure illustrates the experimental paradigm
used to present visual and auditory stimuli to participants. In
the visual image paradigm (a), participants were shown im-
ages from one of three semantic categories (guitar, penguin,
and flower), presented on a black background. The middle
column shows a picture mask to make the participants stay
focused. In the auditory paradigm (b), participants listened to
recordings corresponding to the semantic categories (guitar,
penguin, and flower). The "x" in the middle column indi-
cates the sound mask. This setup allows for the comparison
and combination of EEG responses to both visual and audi-
tory stimuli for object perception tasks. This figure has been
adapted from [29].

The experiment was conducted on a screen with a resolution of
1920 × 1080 pixels. EEG data was recorded using the ANT Neuro
acquisition software ’eego’, with triggers sent via a Lab Streaming
Layer network to timestamp the stimuli and task information. A
128-channel ANT Neuro eego Mylab system with 124 EEG elec-
trodes was used for data collection. The gel-based waveguard cap
provided active shielding against environmental noise, and the data
was sampled at 1024 Hz with a 24-bit resolution. Electrodes were
positioned according to the five percent electrode system, an ex-
tension of the standard 10/20 layout. CPz served as the reference
electrode, and the left mastoid was used as the ground. Impedance
was maintained below 50 𝑘𝜔 for most electrodes to ensure high-
quality data collection.

2.2 Data Processing
Both manual and automatic methods were employed to detect
bad channels, and common average referencing in MNE was used
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for re-referencing after each processing step. To ensure data qual-
ity, power-line noise at 50 Hz and its harmonics, as well as low-
frequency drifts below 2 Hz, were filtered out. Independent Com-
ponent Analysis (ICA) was applied to the raw pre-processed data
to remove artifacts caused by eye movements and muscle activity.
Artifact-related components were identified and rejected, resulting
in cleaner EEG data for analysis.

For this research, we used the same epoch length of 2000ms for
both image and audio stimuli EEG trials. We segmented the EEG
data based on the semantic objects and sensory stimuli, resulting
in six epoch groups: image-flower, image-penguin, image-guitar,
audio-flower, audio-penguin, and audio-guitar (as shown in Figure
2). To prepare these epoch groups for our classifier model, we
grouped epochs by image and audio stimuli, resulting in datasets
with 1370 trials for each stimulus type. Each stimulus dataset was
then split into training, validation, and test sets with a ratio of
60/20/20. The training, validation, and test sets are formatted as 3D
arrays with the dimensions: number of EEG trials, number of EEG
channels, and trial length. The shapes for the training, validation,
and test sets are (822, 124, 2000), (274, 124, 2000), and (274, 124,
2000), respectively.

2.3 Classifiers
Machine learning models:

For this study, we employed three traditional machine learn-
ing models: Random Forest Classifier (RFC), K-Nearest Neighbors
(KNN), and Support Vector Machine (SVM). The Random Forest
Classifierwas configuredwith 100 decision trees (n_estimators=100),
using the Gini impurity criterion (criterion=’gini’) and a maximum
depth of none (max_depth=None), allowing the trees to grow un-
til all leaves are pure. The K-Nearest Neighbors model was set
with 5 neighbours (n_neighbors=5), using the Euclidean distance
metric (metric=’euclidean’) for calculating distances between data
points. The Support Vector Machine was configured with a radial
basis function kernel (kernel=’rbf’), a regularization parameter of
1.0 (C=1.0), and a gamma value of ’scale’ (gamma=’scale’), which
automatically adjusts the kernel coefficient based on the input data.

We train three machine learning models in image and audio
stimuli EEG datasets extracted in temporal feature (mean), spectral
feature (the power spectral density - PSD), and approximation en-
tropy feature. We utilized a k-fold cross-validation approach with
four folds and implemented an early stopping mechanism with the
patience of 30 epochs to ensure that the model stopped training
once performance on the validation set ceased to improve. The
performance of the machine learning models is shown in Figure 2.

1D-CNN Deep learning models:
We utilized a straightforward 1D Convolutional Neural Network

(1D-CNN) to classify the EEG data. Additionally, this 1D-CNN
model also served as the backbone for the contrastive learning
models in this study. The model architecture comprises three con-
volutional layers, each followed by batch normalization and max
pooling. The first convolutional layer has 64 filters, a kernel size
of 3, a stride of 1, and a padding of 1. This is followed by a batch
normalization layer and a max-pooling layer with a kernel size
of 2 and a stride of 2. The second convolutional layer has 128 fil-
ters with the same kernel size, stride, and padding, followed by

another batch normalization and max-pooling layer. The third con-
volutional layer consists of 256 filters, again with a kernel size of 3,
stride of 1, and padding of 1, followed by batch normalization and
max pooling. After the convolutional layers, the data is flattened
and passed through a fully connected layer with 512 units, followed
by a dropout layer with a dropout rate of 0.5 to prevent overfitting.
The final output layer is a fully connected layer with the number of
units equal to the number of classes, using a linear activation func-
tion. This architecture allows the model to learn complex temporal
patterns in the EEG data, enhancing its ability to accurately classify
the perceived objects. A four-fold cross-validation strategy, along
with 30 epochs of training, was also applied to train the 1D-CNN
model.

Contrastive learning models:
The constrastive learning model is trained with EEG data from

image and audio stimuli and combines data from these two stim-
uli. For the single stimuli data, the positive pairs are generated
from trials that use the same object (flower, penguin, guitar), the
negative pair are generated from cross-trials that use a different
object (flower-penguin, flower-guitar, and penguin-guitar). For the
cross-stimuli data, the positive pairs are generated from trials that
use the same object but belong to different stimuli (image/audio).
For instance, a positive pair can be formed from trials of image
and audio stimuli in the same trial_id (show the same object, e.g.,
a flower). Negative pairs are created from trials that use different
objects in image and audio cross-stimuli. For example, a trial using
the object "flower" image and another trial using the object "guitar"
audio would form a negative pair.

The core of our model is an embedding network that transforms
the input EEG signals into a lower-dimensional space. We use
the same 1D-CNN deep learning model (described above) as the
backbone for our contrastive learning models, which allow direct
comparison of the performance of 1D-CNN and constrastive learn-
ing models. The 1D-CNN model processes the EEG data from each
modality and outputs a fixed-size embedding vector.

To train our model, we utilize the contrastive loss function (Equa-
tion 1). This loss function is specifically designed to handle pairs
of inputs, encouraging the network to bring embeddings of similar
pairs closer and push embeddings of dissimilar pairs apart. For
similar pairs (positive pairs with label 1), the loss is calculated as
the squared Euclidean distance between the embeddings. For dis-
similar pairs (negative pairs with label 0), the loss is computed as
the squared margin minus the squared Euclidean distance, ensur-
ing that the embeddings of dissimilar pairs are at least a specified
margin apart. The total loss is the mean of all individual losses,
balancing the model’s efforts to cluster similar pairs and separate
dissimilar pairs effectively.

𝐿 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑦𝑖 · ∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑏𝑖 )∥

2+

(1 − 𝑦𝑖 ) ·max(0,𝑚 − ∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑏𝑖 )∥)
2
) (1)

where 𝑁 is the number of pairs, 𝑦𝑖 is the label (1 for similar pairs
and 0 for dissimilar pairs), 𝑓 (𝑥𝑎

𝑖
) and 𝑓 (𝑥𝑏

𝑖
) are the embeddings of

the two samples in the pair, and𝑚 is the margin.

41



BCIMM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Xuan-The Tran, Quoc-Toan Nguyen, Linh Le, Thomas Do, & Chin-Teng Lin

Figure 2: The figure illustrates the data processing and contrastive learning model training pipeline. The process begins with
collecting EEG data from three semantic categories: Flower, Penguin, and Guitar. This data is then processed and labelled into
positive pairs (same object class) and negative pairs (different object classes). The positive and negative pairs are fed into the
contrastive learning model for training. The model leverages the upstream pre-trained models to refine its representations. The
upstream pre-trained models were then used in downstream classification tasks for three semantic objects (flower, penguin,
guitar).

The training involves feeding pairs of EEG signals through the
embedding network to obtain their embeddings, calculating the
contrastive loss, and updating the network parameters using back-
propagation and an optimization algorithm (Adam optimizer). A
four-fold cross-validation strategy, along with 30 epochs of training,
was also applied to train the constrastive learning models. After
training, the model is evaluated based on its ability to correctly
identify positive and negative pairs. We used accuracy and confu-
sion matrices to report the model’s performance, as shown in Table
2 and Figure 4.

2.4 Experiments
In this study, we conducted five experiments to evaluate the effec-
tiveness of various machine learning and deep learning models in
classifying EEG data from different sensory modalities 1. These ex-
periments were designed to compare the performance of traditional
machine learning models, simple 1D-CNN, and contrastive learning
models using EEG data from image and audio stimuli. By analyzing
both uni-sensory and cross-sensory data, we aimed to determine
which methods and combinations yield the highest classification

accuracy and to explore the potential benefits of multisensory inte-
gration in EEG-based classification tasks.

Table 1: Overview of experiment setups in this study

Experiments Training set Testing set Model

1 Image/Audio Image/Audio RFC, KNN, SVM
2 Image/Audio Image/Audio 1D-CNN
3 Image Image/Audio CL
4 Audio Image/Audio CL
5 Image+Audio Image/Audio CL

2.4.1 Experiment 1: Train machine learning models with EEG data
from image and audio stimulus. In the first experiment, we aimed to
evaluate the performance of traditional machine learning models
using various EEG feature sets for both audio and image stimuli.
Specifically, we used Random Forest Classifier (RFC), K-Nearest
Neighbors (KNN), and Support Vector Machine (SVM) models. The
EEG feature sets considered in this experiment included temporal
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mean features, power spectral density (PSD) features, and approxi-
mation entropy features. The goal was to determine which sensory
EEG data (audio vs. image) yielded better performance in terms of
classification accuracy.

2.4.2 Experiment 2: Train 1D-CNNModel with EEG data from image
and audio stimulus. In the second experiment, we extended our
evaluation by comparing the performance of a deep learning model,
specifically a simple 1D-CNN. The objective was to assess whether
the deep learningmodel could achieve higher classification accuracy
than traditional machine learning models. Additionally, we aimed
to confirm that the image-based EEG data continued to yield better
performance than the audio-based EEG data when using a deep
learning model.

2.4.3 Experiment 3 and 4: Contrastive learning model trained on uni-
stimuli image and audio EEG dataset. The third experiment focused
on developing a contrastive learning model specifically for audio
stimuli within audio trials and for image stimuli within image trials.
Contrastive learning is an effective technique for learning repre-
sentations by contrasting positive pairs (same object class) against
negative pairs (different object class). The goal was to determine
which sensory EEG data (audio vs. image) yielded better perfor-
mance in terms of classification accuracy and to assess whether
contrastive learning models improve classification performance
compared to traditional machine learning and deep learning mod-
els.

2.4.4 Experiment 5: Contrastive Learning model trained on image
and audio cross-stimulus. The final experiment explored cross sen-
sory contrastive learning by combining image and audio stimuli
during the training phases. The Siamese Network was trained on
EEG data from both image and audio stimuli, creating pairs that
included cross-modal combinations (for example, an image trial
paired with an audio trial). The model was evaluated on its ability
to accurately classify and differentiate between mixed image and
audio trials. This experiment aimed to leverage the rich and com-
plementary information from both sensory modalities to enhance
the overall performance of the contrastive learning model.

3 Results
3.1 Image stimuli yield higher object

classification performance than audio
stimuli

The comparative analysis of the test accuracy for different models
across audio and image stimuli is presented in Figure 3. The Ran-
dom Forest Classifier (RFC) achieved a test accuracy of 39.2% for
audio stimuli and 51.2% for image stimuli. The K-Nearest Neighbors
(KNN) model yielded test accuracies of 34.1% for audio and 44.5%
for image stimuli. Similarly, the Support Vector Machine (SVM)
model obtained accuracies of 32.0% for audio and 42.1% for image
stimuli. The 1D Convolutional Neural Network (1D-CNN) model
demonstrated test accuracies of 35.3% for audio and 48.6% for image
stimuli. Across all models, the performance was consistently higher
for image stimuli than audio stimuli, highlighting the more distinct
neural responses elicited by visual stimuli. The inclusion of standard
deviation bars provides an indication of the variability in model

performance, with the image stimuli generally showing less vari-
ability and higher accuracy, emphasizing the effectiveness of visual
stimuli in eliciting more robust and classifiable EEG responses.

Figure 3: The figure compares the accuracy of different mod-
els for audio and image stimuli. Across all models, the ac-
curacy was consistently higher for image stimuli than for
audio stimuli, indicating that visual stimuli elicit more dis-
tinct neural responses. Standard deviation bars illustrate the
variability in model performance.

3.2 Contrastive learning models improve object
classification in both EEG image and audio
stimulus datasets

The results presented in Table 2 highlight the performance improve-
ments achieved by using Contrastive learning models compared
to the 1D-CNN backbone for object classification in both EEG im-
age and audio stimulus datasets. The 1D-CNN model achieved an
accuracy of 48.6% (±3.12) for image stimuli and 35.3% (±2.05) for
audio stimuli. In contrast, the contrastive learning model trained on
image stimuli (CL_image) significantly improved the accuracy to
70.2% (±4.25) for image stimuli and 55.8% (±4.16) for audio stimuli.
Similarly, the contrastive learning model trained on audio stimuli
(CL_audio) achieved accuracies of 58.6% (±4.89) for image stimuli
and 63.7% (±3.47) for audio stimuli. These results indicate that con-
trastive learning models can effectively leverage the underlying
data structures in both EEG image and audio datasets, leading to
significant improvements in classification performance compared
to the traditional 1D-CNN approach.

In addition, the confusion matrices in Figure 4a,b provide a de-
tailed comparison of the classification performance for different
models and stimuli types. Figure 4a matrix shows the performance
of the CL_image model on image stimuli. This model achieved
a high accuracy, with clear distinctions between the classes. The
Flower class (red) has a true positive count of 63, with 12 and 17
instances misclassified as Penguin and Guitar, respectively. The
Penguin class (blue) shows 59 true positives, with 15 and 17 mis-
classifications as Flower and Guitar, respectively. The Guitar class
(green) has the highest true positive count of 71, with minimal
misclassifications, indicating a strong performance in classifying
images.
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The Figure 4b matrix represents the CL_audio model’s perfor-
mance on audio stimuli. This model shows a slightly lower accuracy
than the image stimuli, with the Flower class having 53 true posi-
tives and higher misclassifications (25 as Penguin and 14 as Guitar).
The Penguin class shows 60 true positives, with 15 and 16 instances
misclassified as Flower and Guitar, respectively. The Guitar class
has 62 true positives, with 15 misclassifications as Flower and 14
as Penguin. This highlights the challenges of distinguishing be-
tween classes when using audio stimuli, as evidenced by the higher
misclassification rates.

Table 2: Performance of classifiers in our experiments

Models Image Stimulus Audio Stimulus

1D-CNN (backbone) 48.6 ± 3.12 35.3 ± 2.05
CL_image 70.2 ± 4.25 55.8 ± 4.16
CL_audio 58.6 ± 4.89 63.7 ± 3.47

CL_image_audio_equal 67.3 ± 4.63 60.9 ± 4.15
CL_image_audio_combine 73.6 ± 3.52 66.2 ± 4.31

3.3 The cross-stimulus image and audio
improves contrastive learning models
performance

Further analysis in Table 2 demonstrates that combining cross-
stimuli image and audio data significantly enhances the perfor-
mance of contrastive learning models. The contrastive learning
model trained on a cross-sensory dataset (with the total number
of positive and negative pairs equal to the number of these pairs
in the uni-stimulus datasets)(CL_image_audio_equal) achieved an
accuracy of 67.3% (±4.63) for image stimuli and 60.9% (±4.15) for
audio stimuli. On the other hand, when combining image and audio
stimuli, which doubled the number of training pairs, the model
achieved the highest accuracies of 73.6% (±3.52) for image stimuli
and 66.2% (±4.31) for audio stimuli. This combined cross-stimulus
approach leverages the complementary information in both data
types, resulting in improved model robustness and classification ac-
curacy, highlighting the benefits of using a multisensory approach
in EEG-based classification tasks.

The CL_image_audio_combine model has been shown in Figure
4c,d matrices demonstrate the performance of both image and au-
dio stimuli. For image stimuli (Figure 4c), the model demonstrates
superior performance with many true positives for each class: 136
for Flower, 139 for Penguin, and 129 for Guitar. Misclassifications
are significantly reduced compared to the other models, indicating
the effectiveness of combining image and audio data in improving
classification accuracy. For audio stimuli (Figure 4d), the model
also shows improved performance with true positive counts of 112
for Flower, 127 for Penguin, and 124 for Guitar. Although there
are still some misclassifications, the combined model outperforms
the audio-only model, suggesting that leveraging multiple sensory
inputs enhances the model’s robustness and accuracy in classifying
EEG data.

3.4 Contrastive learning models performance
explanation

To visualize how the contrastive learning model classifies objects
in the representation space, we applied t-SNE visualization [26] for
the best performance model (CL_image_audio_combine).

The CL_image_audio_combine model’s performance on EEG
datawas shown in Figure 5, which illustrates the t-SNE visualization
of three classes: Flower, Penguin, and Guitar. Figure 5a represents
the results for image stimuli, while Figure 5b corresponds to audio
stimuli.

In the image stimuli visualization, the clusters for each class (red
for Flower, blue for Penguin, and green for Guitar) are more distinct
and well-formed. Most data points for each class are tightly grouped
around their respective centres (black ’x’ markers), indicating fewer
misclassifications. The Flower and Guitar clusters exhibit some
overlap, but overall, the image stimuli data demonstrates a clear
separation between the classes.

In contrast, the audio stimuli visualization shows more overlap
between the clusters, particularly between the Flower and Guitar
classes. Although the Penguin class remains relatively distinct,
there is a noticeable increase in misclassified points compared to
the image stimuli. The centres of the clusters are still visible, but the
spread of points around these centres is larger, indicating a higher
degree of classification uncertainty for audio stimuli.

This comparison highlights the model’s performance in distin-
guishing between classes when using image stimuli compared to
audio stimuli, as evidenced by the tighter and more distinct clusters
in the t-SNE plot for image stimuli.

4 Discussion
In this paper, our primary objective was to explore the impact of
multisensory integration on the performance of EEG-based classifi-
cation models. We aimed to compare classifier performance using
uni-sensory stimuli (image and audio) versus multisensory stimuli
(image and audio simultaneously). Additionally, we introduced a
novel method to generate positive and negative pairs for contrastive
learning models using cross-sensory EEG data.

The results of our study demonstrate the significant advantages
of multisensory integration in EEG-based classification. The con-
strastive learning model trained on multisensory EEG data consis-
tently outperformed models that relied solely on either image or
audio stimuli. The t-SNE visualizations revealed more distinct and
compact clusters for the combined stimuli, particularly for image
stimuli, indicating a higher accuracy and fewer misclassifications.
The confusion matrices further corroborated these findings, show-
ing a higher number of true positives and reduced misclassifications
for the combined model. These results suggest that integrating
multiple sensory inputs can enhance the discriminative power of
EEG-based classification models.

Many contrastive learning models have been implemented with
EEG data, such as Contrastive Predictive Coding [3, 4], Transfor-
mation Contrastive Learning [15], Non-negative EEG Contrastive
Learning [8, 30], Spatial Contrastive Learning [13], and Graph Con-
trastive Methods [10, 31], all of which have demonstrated potential
in enhancing model performance in various experiment tasks. In
this study, we introduce a novel contrastive learning method that
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Figure 4: This figure shows four confusionmatrices representing the classification performance of different contrastive learning
models for image and audio stimuli. Subplot (a) displays the confusion matrix for the CL_image model using image stimuli,
while subplot (b) shows the confusion matrix for the CL_audio model using audio stimuli. Subplot (c) illustrates the confusion
matrix for the CL_image_audio_combine model using image stimuli, and subplot (d) presents the confusion matrix for the
CL_image_audio_combine model using audio stimuli.

forms positive and negative pairs from cross-sensory EEG data.
Our model underscores the potential of multisensory integration in
improving the accuracy and robustness of EEG-based classification
systems. The enhanced performance observed in the combined
model can be attributed to the richer and more diverse information
captured from both image and audio stimuli. This multisensory
approach may align with how humans perceive and process infor-
mation, providing a more comprehensive understanding of brain
activity.

Our study builds upon previous research that has explored the
use of EEG data for classification tasks [24]. However, unlike prior
studies that predominantly focused on single-modal stimuli, this
work highlights the benefits of a multisensory approach. Previous
studies have shown that individual sensory modalities can provide

valuable insights into brain activity, but they often suffer from limi-
tations in accuracy and generalizability. By integrating both image
and audio stimuli, our study addresses these limitations and demon-
strates a significant improvement in classification performance.
This approach not only enhances the model’s accuracy but also
provides a more holistic understanding of the underlying neural
processes.

Despite the promising results, our study has several limitations
that warrant further investigation. Firstly, we used 1D-CNN as the
backbone for our contrastive learning model. More advanced deep
learning models, such as Transformer [27] or U-NET [19], may
be considered to improve the accuracy of the contrastive learning
method. Secondly, a custom loss function could be designed to fur-
ther optimize model performance. Additionally, our study focused
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Figure 5: The figure illustrates t-SNE visualizations of the contrastive learning model (CL_image_audio_combine) performance
with image and audio stimuli. Subplot (a) represents the t-SNE visualization for image stimuli, while subplot (b) shows the
t-SNE visualization for audio stimuli. Each point corresponds to an EEG trial, with colours indicating different object classes:
red for Flower, blue for Penguin, and green for Guitar. The black ’X’ marks denote the cluster centers. The t-SNE plots reveal
more distinct and compact clusters for image stimuli than audio stimuli, indicating better classification performance with
visual inputs.

on three specific classes (Flower, Penguin, Guitar), and it is essential
to evaluate the generalizability of the multisensory approach to
other categories and contexts. Another limitation is that combin-
ing image and audio stimuli data effectively doubles the training
size, leading to better model classification performance. However,
when using an equal-size training set (between multisensory and
each unisensory dataset), the CL_image_audio_equal model did
not outperform the CL_image and CL_audio models in their re-
spective testing stimuli. Future research should build upon these
findings and address these limitations to further advance the field of
EEG-based brain-computer interfaces and cognitive neuroscience.

5 Conclusion
Our study demonstrates that multisensory integration enhances the
performance of EEG-based classification models. Combining image
and audio stimuli, the contrastive learning model achieved supe-
rior accuracy and robustness compared to uni-sensory models. The
t-SNE visualizations and confusion matrices revealed more distinct
and compact clusters with fewer misclassifications, particularly for
image stimuli. Our findings underscore the potential of leverag-
ing multiple sensory inputs to improve the discriminative power
and reliability of EEG-based classification systems. Additionally,
our research demonstrates improved performance with contrastive
learning models using EEG data from both image and audio stimuli
and introduces a novel method to generate positive and negative
pairs for contrastive learning models using cross-sensory EEG data.
These contributions enhance our understanding of how humans
perceive multimedia sources and highlight the potential of multi-
sensory integration in EEG-based classification.

Acknowledgements
This work was partly supported by the Australian Research Coun-
cil (ARC) under discovery grants DP210101093 and DP220100803
and the UTS Human-Centric AI Centre funding sponsored by
GrapheneX (2023-2031). Research was also partially sponsored by
the Australia Defence Innovation Hub under Contract No. P18-
650825, Australian Cooperative Research Centres Projects (CRC-P)
Round 11 CRCPXI000007, US Office of Naval Research Global under
Cooperative Agreement Number ONRG - NICOP - N62909-19-1-
2058, and AFOSR – DST Australian Autonomy Initiative agreement
ID10134. We also thank the NSW Defence Innovation Network and
the NSW State Government of Australia for financial support in
part of this research through grant DINPP2019 S1-03/09 and PP21-
22.03.02. Xuan-The Tran would like to thank the support of the
Science and Technology Scholarship Program for Overseas Study
for Master’s and Ph.D. degrees at VinUniversity, Vingroup, Vietnam.
Corresponding authors: Thomas Do and Chin-Teng Lin (Emails:
thomas.do@uts.edu.au and chin-teng.lin@uts.edu.au)

References
[1] Minkyu Ahn and Sung Chan Jun. 2015. Performance variation in motor imagery

brain–computer interface: a brief review. Journal of neuroscience methods 243
(2015), 103–110.

[2] Miguel Angrick, Maarten C Ottenhoff, Lorenz Diener, Darius Ivucic, Gabriel
Ivucic, Sophocles Goulis, Jeremy Saal, Albert J Colon, Louis Wagner, Dean J
Krusienski, et al. 2021. Real-time synthesis of imagined speech processes from
minimally invasive recordings of neural activity. Communications biology 4, 1
(2021), 1055.

[3] Anahit Babayan, Miray Erbey, Deniz Kumral, Janis D Reinelt, Andrea MF Reiter,
Josefin Röbbig, H Lina Schaare, Marie Uhlig, Alfred Anwander, Pierre-Louis
Bazin, et al. 2019. A mind-brain-body dataset of MRI, EEG, cognition, emotion,
and peripheral physiology in young and old adults. Scientific data 6, 1 (2019),
1–21.

[4] Hubert Banville, Omar Chehab, Aapo Hyvärinen, Denis-Alexander Engemann,
and Alexandre Gramfort. 2021. Uncovering the structure of clinical EEG signals
with self-supervised learning. Journal of Neural Engineering 18, 4 (2021), 046020.

46



EEG-Based Contrastive Learning Models For Object Perception Using Multisensory Image-Audio Stimuli BCIMM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

[5] Fabrizio Beverina, Giorgio Palmas, Stefano Silvoni, Francesco Piccione, Silvio
Giove, et al. 2003. User adaptive BCIs: SSVEP and P300 based interfaces. Psych-
Nology J. 1, 4 (2003), 331–354.

[6] Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou.
2023. Seeing beyond the brain: Masked modeling conditioned diffusion model for
human vision decoding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

[7] Francesco Ferracuti, Alessandro Freddi, Sabrina Iarlori, Sauro Longhi, and Paolo
Peretti. 2013. Auditory paradigm for a P300 BCI system using spatial hearing. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
871–876.

[8] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new
approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[9] Mahyar Hamedi, Sh-Hussain Salleh, and Alias Mohd Noor. 2016. Electroen-
cephalographic motor imagery brain connectivity analysis for BCI: a review.
Neural computation 28, 6 (2016), 999–1041.

[10] Thi Kieu Khanh Ho and Narges Armanfard. 2023. Self-supervised learning for
anomalous channel detection in EEG graphs: Application to seizure analysis. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 37. 7866–7874.

[11] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. Advances in neural information processing systems 33 (2020), 18661–
18673.

[12] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon,
Chou P Hung, and Brent J Lance. 2018. EEGNet: a compact convolutional neural
network for EEG-based brain–computer interfaces. Journal of neural engineering
15, 5 (2018), 056013.

[13] Yang Li, Ji Chen, Fu Li, Boxun Fu, Hao Wu, Youshuo Ji, Yijin Zhou, Yi Niu,
Guangming Shi, and Wenming Zheng. 2022. GMSS: Graph-based multi-task
self-supervised learning for EEG emotion recognition. IEEE Transactions on
Affective Computing 14, 3 (2022), 2512–2525.

[14] Diego Lopez-Bernal, David Balderas, Pedro Ponce, and Arturo Molina. 2022. A
state-of-the-art review of EEG-based imagined speech decoding. Frontiers in
human neuroscience 16 (2022), 867281.

[15] Mostafa Neo Mohsenvand, Mohammad Rasool Izadi, and Pattie Maes. 2020.
Contrastive representation learning for electroencephalogram classification. In
Machine Learning for Health. PMLR, 238–253.

[16] David A Moses, Matthew K Leonard, Joseph G Makin, and Edward F Chang.
2019. Real-time decoding of question-and-answer speech dialogue using human
cortical activity. Nature communications 10, 1 (2019), 3096.

[17] Liang Ou, Thomas Do, Xuan-The Tran, Daniel Leong, Yu-Cheng Chang, Yu-Kai
Wang, and Chin-Teng Lin. 2023. Improving CCA Algorithms on SSVEP Classifi-
cation with Reinforcement Learning Based Temporal Filtering. In Australasian
Joint Conference on Artificial Intelligence. Springer, 376–386.

[18] Jerrin Thomas Panachakel and Angarai Ganesan Ramakrishnan. 2021. Decoding
covert speech from EEG-a comprehensive review. Frontiers in Neuroscience 15
(2021), 642251.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. In Medical image computing
and computer-assisted intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 234–241.

[20] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef
Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank
Hutter, Wolfram Burgard, and Tonio Ball. 2017. Deep learning with convolutional
neural networks for EEG decoding and visualization. Human brain mapping 38,
11 (2017), 5391–5420.

[21] Martijn Schreuder, Benjamin Blankertz, and Michael Tangermann. 2010. A new
auditory multi-class brain-computer interface paradigm: spatial hearing as an
informative cue. PloS one 5, 4 (2010), e9813.

[22] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena 404
(2020), 132306.

[23] Jiayao Sun, Jin Xie, and Huihui Zhou. 2021. EEG classification with transformer-
based models. In 2021 ieee 3rd global conference on life sciences and technologies
(lifetech). IEEE, 92–93.

[24] Xuan-The Tran, Thomas Do, Nikhil R Pal, Tzyy-Ping Jung, and Chin-Teng Lin.
2024. Multimodal fusion for anticipating human decision performance. Scientific
Reports 14, 1 (2024), 13217.

[25] Xuan-The Tran, Thomas Tien-Thong Do, and Chin-Teng Lin. 2023. Early Detec-
tion of Human Decision-Making in Concealed Object Visual Searching Tasks:
An EEG-BiLSTM Study. In 2023 45th Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC). IEEE, 1–4.

[26] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[28] Weining Weng, Yang Gu, Shuai Guo, Yuan Ma, Zhaohua Yang, Yuchen Liu, and
Yiqiang Chen. 2024. Self-supervised Learning for Electroencephalogram: A
Systematic Survey. arXiv preprint arXiv:2401.05446 (2024).

[29] Holly Wilson, Mohammad Golbabaee, Michael J Proulx, Stephen Charles, and Ea-
monn O’Neill. 2023. EEG-based BCI dataset of semantic concepts for imagination
and perception tasks. Scientific Data 10, 1 (2023), 386.

[30] Chaoqi Yang, Cao Xiao, M Brandon Westover, Jimeng Sun, et al. 2023. Self-
supervised electroencephalogram representation learning for automatic sleep
staging: model development and evaluation study. JMIR AI 2, 1 (2023), e46769.

[31] Weishan Ye, Zhiguo Zhang, Min Zhang, Fei Teng, Li Zhang, Linling Li, Gan
Huang, Jianhong Wang, Dong Ni, and Zhen Liang. 2023. Semi-supervised dual-
stream self-attentive adversarial graph contrastive learning for cross-subject
eeg-based emotion recognition. arXiv preprint arXiv:2308.11635 (2023).

[32] Danhua Zhu, Jordi Bieger, Gary Garcia Molina, and Ronald M Aarts. 2010. A sur-
vey of stimulation methods used in SSVEP-based BCIs. Computational intelligence
and neuroscience 2010, 1 (2010), 702357.

47


	Abstract
	1 Introduction
	2 Methodology
	2.1 The Dataset
	2.2 Data Processing
	2.3 Classifiers
	2.4 Experiments

	3 Results
	3.1 Image stimuli yield higher object classification performance than audio stimuli
	3.2 Contrastive learning models improve object classification in both EEG image and audio stimulus datasets
	3.3 The cross-stimulus image and audio improves contrastive learning models performance
	3.4 Contrastive learning models performance explanation

	4 Discussion
	5 Conclusion
	References



