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Abstract: This survey paper examines the applications, methodologies, and future prospects of multi-

modal large language models (MLLMs) within the educational landscape. MLLMs, which integrate

multiple data modalities such as text, images, and audio, offer innovative solutions that enhance

learning experiences across various educational domains, including language acquisition, STEM

education, interactive content creation, and medical training. The paper highlights how MLLMs

contribute to improved engagement, personalized learning paths, and enhanced comprehension

by leveraging their ability to process and generate contextually relevant content. The key findings

underscore the transformative potential of MLLMs in modern education, suggesting significant im-

provements in both learner outcomes and pedagogical strategies. The paper also explores emerging

trends and technological advancements that could shape the future of education, advocating for

continued research and collaboration among stakeholders to fully harness the capabilities of MLLMs.

As the integration of MLLMs into educational settings progresses, addressing ethical considerations

and ensuring equitable access remain critical to maximizing their benefits.

Keywords: multimodal large language models (MLLMs); AI in education; educational technology

(EdTech); multimodal integration in learning; computer vision in education

1. Introduction

The integration of technology in education has undergone significant evolution over
the past few decades, transforming learning landscapes and pedagogical practices. From
early computer-assisted learning programs to sophisticated AI-driven educational ap-
plications, technology’s impact on education has been profound and multifaceted [1,2].
These innovations have provided educators and learners with unprecedented access
to information, personalized learning experiences, and tools that enhance engagement
and comprehension.

Recently, artificial intelligence (AI) has emerged as a pivotal force in education, revolu-
tionizing how content is delivered and consumed. AI-driven educational applications, such
as adaptive learning systems and intelligent tutoring, have demonstrated the potential to
tailor educational experiences to individual learner needs, promoting greater accessibility
and inclusivity [3]. The historical context of these technologies highlights their significance
in addressing diverse educational challenges, from bridging knowledge gaps to fostering
critical thinking skills.

Among the most transformative developments in AI are large language models
(LLMs), such as OpenAI’s GPT-4o and GPT-o1, which have exhibited remarkable ca-
pabilities in understanding and generating human-like text [4]. Trained on vast amounts
of data, these models can perform a wide array of language tasks, including translation,
summarization, question-answering, and creative writing. The introduction of LLMs into
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educational settings has opened new avenues for enhancing teaching and learning pro-
cesses. They offer personalized feedback, generate educational content, support language
learning, and even assist in administrative tasks [1].

Advancing beyond LLMs, multimodal large language models (MLLMs) extend these
capabilities by integrating multiple data modalities such as text, images, audio, and
video [5]. This integration enables MLLMs to process and generate content across dif-
ferent formats, making them particularly valuable for educational applications that require
a holistic understanding of multimodal information. For instance, MLLMs can assist in
creating interactive learning materials, facilitating visual explanations of complex concepts,
and supporting accessibility for learners with diverse needs [6].

The convergence of LLMs and multimodal processing represents a significant shift in
educational technology, promising to further personalize and enrich learning experiences.
As these models become increasingly sophisticated and accessible, understanding their
potential applications and implications in education becomes crucial.

This survey aims to explore the current state of MLLMs in education, examining their
applications, challenges, and future directions. The main contributions of this paper are
threefold: (1) an exploration of the current applications of MLLMs in education, high-
lighting their potential to transform traditional learning methods; (2) an analysis of the
challenges and ethical considerations associated with implementing MLLMs in educa-
tional environments, such as data privacy and security; and (3) a discussion of emerging
trends and future directions for MLLMs in education [7], with recommendations for further
research and collaboration.

The overall structure of the survey can be viewed in Figure 1. The Introduction sets
the stage by placing multimodal large language models (MLLMs) into an educational
context, examining their growing importance in teaching and learning. Preliminaries of
MLLMs then offers a foundational exploration of their core components and underlying
technologies, clarifying how they integrate multiple modalities. Applications of MLLMs in
Education illustrates their current roles in enhancing adaptive learning, providing virtual
tutoring, automating content creation, and streamlining educational management systems.
Discussion and Future Directions addresses ethical issues, technological hurdles, and the
need for improved personalization, engagement, and accessibility, suggesting pathways
to strengthen MLLMs’ contributions to the educational landscape. Finally, Conclusions
synthesizes the key insights and findings, highlighting the paper’s main contributions and
implications for future practice and research.

Figure 1. The overall structure of the survey.
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2. Preliminaries of MLLMs

2.1. Overview of Large Language Models (LLMs)

Large language models (LLMs) have revolutionized the field of artificial intelligence,
particularly in natural language processing (NLP) tasks. These models are designed to un-
derstand, generate, and manipulate human language with a high degree of fluency and co-
herence. Notable examples include OpenAI’s GPT-4o and Anthropic’s Claude3.5, which are
trained on vast amounts of textual data and can perform a wide array of language-related
tasks such as translation, summarization, question answering, and content creation [8–10].
LLMs leverage the transformer architecture [11], utilizing self-attention mechanisms to
capture complex dependencies in language, enabling them to generate human-like text that
is contextually relevant.

The transformer architecture has been pivotal in the success of LLMs. It allows
models to process input data in parallel rather than sequentially, significantly improving
computational efficiency and performance on large datasets. Self-attention mechanisms
within transformers enable the models to weigh the importance of different parts of the
input data, capturing long-range dependencies and nuances in language [6]. This capability
has led to breakthroughs in tasks that were previously challenging for AI, such as coherent
essay writing and intricate dialogue generation.

Despite their impressive capabilities, traditional LLMs are limited to processing tex-
tual data [12]. This constraint restricts their applicability in contexts where information is
conveyed through multiple modalities, such as images, audio, and video. Human com-
munication and learning are inherently multimodal, often involving the integration of
visual cues, auditory signals, and textual information. The inability of LLMs to process non-
textual data limits their effectiveness in applications that require a holistic understanding
of diverse information sources.

2.2. Evolution to Multimodal Large Language Models (MLLMs)

To address the limitations of traditional LLMs, researchers have developed multimodal
large language models (MLLMs), which extend the abilities of LLMs by integrating and
processing diverse data modalities alongside text [6,12,13]. MLLMs represent a significant
advancement in AI, enabling the fusion of textual and non-textual data to create models
that can comprehend and generate contextually relevant outputs across different modalities.
This integration allows MLLMs to perform complex tasks that mirror human-like under-
standing and communication, such as interpreting images with accompanying descriptions
or generating detailed visual content from textual prompts.

The development of MLLMs has led to several notable models that demonstrate the
seamless integration of multiple modalities. One such model is OpenAI’s CLIP (Contrastive
Language–Image Pre-training), which learns visual concepts from natural language su-
pervision [14]. CLIP aligns images and textual descriptions in a shared embedding space,
allowing it to perform tasks such as image classification, object recognition, and image-text
retrieval without explicit task-specific training data. By leveraging a contrastive learning
approach, CLIP can understand the relationship between images and text, making it highly
versatile in handling multimodal data.

Similarly, DALL·E and DALL·E 2 are models capable of generating high-quality
images from textual prompts by utilizing diffusion models conditioned on text embed-
dings [15,16]. These models showcase the ability to merge text and visual understanding
seamlessly, creating novel images that correspond to detailed textual descriptions. This ca-
pability has profound implications for creative industries, design, and educational content
creation, where visualizations generated from textual concepts can enhance comprehension
and engagement.

Another significant development is DeepMind’s Flamingo, a visual language model
that can perform few-shot learning across multiple modalities [13]. Flamingo integrates
vision and language modalities in a single model, enabling it to handle tasks like visual
question answering, image captioning, and dialogue with minimal task-specific training. By
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leveraging large-scale pre-training and attention mechanisms [17], Flamingo can adapt to
new tasks with limited data, highlighting the potential for efficient and scalable deployment
of MLLMs in various applications.

In educational contexts, MLLMs support diverse learning needs by facilitating adap-
tive and inclusive educational experiences. For example, they can generate interactive
learning materials, produce visual explanations for complex topics, and provide accessibil-
ity features, such as audio descriptions for visual content. The transition from text-based
LLMs to MLLMs thus marks a significant shift in educational technology, offering educa-
tors and students new opportunities to interact with AI in more dynamic, immersive, and
effective ways [18].

As MLLMs continue to evolve, they will further redefine the educational landscape,
enabling a deeper level of personalization, engagement, and accessibility in learning. This
integration of multiple modalities aligns well with the diverse learning styles and needs of
today’s students, enhancing both teaching and learning experiences.

2.3. Key Technologies and Architectures

The development of multimodal large language models (MLLMs) relies on several
advanced technologies and architectures, each playing a crucial role in enabling these
models to process and integrate data from multiple modalities effectively. Figure 2 shows
the general model architecture of MLLMs. This subsection highlights the core components,
including the transformer architecture, fusion techniques, and specialized training methods
that empower MLLMs to generate coherent and contextually relevant multimodal outputs.

Figure 2. The general model architecture of MLLMs.

2.3.1. Transformer Architectures and Attention Mechanisms

At the core of MLLMs are neural networks based on the transformer architecture [6],
which are well suited for handling sequential data and learning complex patterns across
different modalities. Transformers use self-attention mechanisms to weigh the significance
of different parts of the input data, allowing the model to focus on the most relevant
information [19]. Extensions of the transformer architecture have been developed to handle
multimodal inputs, such as Vision Transformer (ViT) for images [20] and Audio Transformer
for audio data [21].

Attention mechanisms are crucial for MLLMs, enabling them to prioritize certain
aspects of input data over others. In multimodal settings, cross-modal attention allows the
model to align and fuse information from different modalities [22]. For example, in visual
question-answering tasks, the model needs to attend to relevant regions in an image based
on a textual question [23].
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2.3.2. Multimodal Fusion Techniques

Information fusion is a critical component in MLLMs, enabling the effective combina-
tion of data from different modalities. Fusion methods are typically categorized into the
following categories:

• Early fusion (single-stream): Integrates modalities at the input level, allowing the
model to learn cross-modal representations from the beginning. This method processes
all modalities simultaneously, enabling the model to capture interactions between
different types of data early in the processing pipeline [6].

• Late fusion (dual-stream): Processes each modality separately before combining
their representations at a higher level. This approach allows for specialized process-
ing of each modality, which can be beneficial when modalities have very different
characteristics or when pre-trained unimodal models are used [6].

The choice between early and late fusion depends on the specific application and the
nature of the data involved. Effective fusion strategies are essential for MLLMs to leverage
the complementary information present in different modalities, leading to more robust and
accurate models.

2.3.3. Pre-Training and Fine-Tuning

MLLMs often undergo extensive pre-training on large multimodal datasets to acquire
a broad understanding of various data types [5,24]. This is followed by fine-tuning on
specific tasks or domains to optimize their performance for particular applications [25–27].

2.3.4. Encoder and Decoder Architectures

The architecture of MLLMs often builds upon the transformer framework, extending
it to handle multiple modalities. Two primary architectural approaches are used:

• Encoder-only models: Models like CLIP focus on creating embeddings for different
modalities that can be compared or combined [14]. The encoder processes input data
to generate a fixed-size representation, capturing the essential features of the input
regardless of its modality. This approach is effective for tasks that require matching or
retrieving information across modalities.

• Encoder–decoder models: Models used in tasks like image captioning process input
data through an encoder and generate outputs via a decoder, allowing for generative
tasks [5]. The encoder transforms the input data into a latent representation, which
the decoder then uses to generate a sequence of outputs in another modality. This
architecture is well suited for tasks that involve translation between modalities, such
as generating descriptive text from images.

2.4. Examples of Prominent MLLMs

As shown in Figure 3, several notable multimodal large language models (MLLMs)
have emerged in recent years, showcasing the transformative potential of this technology
in various fields.

Figure 3. Timeline of major representative MLLMs, starting from 2022.
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We selected some of the state-of-the-art MLLMs to analyze their technical details as
well as their advantages and disadvantages in application. It is worth noting that we found
the open-source MLLM technical information to be more detailed, allowing us to perform
a more nuanced analysis. Table 1 provides an overview of some of the most impactful
MLLMs and their key features.

Table 1. Overview of selected prominent MLLMs and their educational applications.

Model Key Capabilities Educational Applications Open Source

PaLM-E
Integrates vision and language for robotics and

embodied AI.

Enhances interactive, physical learning
environments, especially in STEM and robotics

education.
No

LLaVA
Combines vision and language for
general-purpose understanding.

Visual question answering, image captioning,
supporting visually enriched content in learning

platforms.
Yes

Kosmos-G
Processes text and images for multimodal

comprehension.
Facilitates interactive content, supports
collaborative and visual learning tools.

No

GPT-4o
Extends LLM capabilities to visual data,

enabling conversational responses to images.

Supports interactive learning with text and
visual input, such as image-based Q&A and

description generation.
No

MM1
Achieves state-of-the-art performance in

multimodal tasks by combining high-resolution
visual processing and language models.

Supports tasks like in-context learning,
multi-image reasoning, and few-shot learning,

useful for assessments and exploratory learning.
No

Llama 3-V
Combines vision, language, coding, reasoning,

and tool usage with multilingual support.
Enables adaptive and multilingual learning,
coding education, and collaborative projects.

Yes

NVLM 1.0
Frontier-class multimodal model with

exceptional vision-language reasoning and
text-only improvements.

Supports OCR tasks, multimodal math
reasoning, and document analysis in

educational environments.
Yes

BLIP
Pre-trained for text-image retrieval and

multimodal content generation.
Facilitates creative content development and

storytelling in visual education.
Yes

2.4.1. Open-Source MLLMs

NVLM 1.0: Developed by NVIDIA, NVLM 1.0 is a frontier-class family of multimodal
large language models designed to excel in vision-language tasks while maintaining or
even improving text-only performance [28]. NVLM introduces three architectural variants:
the decoder-only NVLM-D, the cross-attention-based NVLM-X, and the hybrid NVLM-H,
each catering to different multimodal processing needs. With model sizes up to 72 billion
parameters, NVLM combines state-of-the-art performance with high flexibility for handling
diverse multimodal inputs.

NVLM’s training process incorporates a meticulously curated dataset blend, includ-
ing high-quality multimodal and text-only supervised fine-tuning (SFT) datasets. This
approach preserves text-only capabilities while enhancing vision-language performance.
NVLM-D processes multimodal input directly within the LLM, achieving unified reasoning
capabilities. NVLM-X employs gated cross-attention for efficient high-resolution image
processing, while NVLM-H combines elements of both architectures, providing superior
reasoning and computational efficiency.

One of NVLM 1.0’s key strengths is its performance on diverse benchmarks, where
it rivals or surpasses proprietary models like GPT-4o and Claude 3.5. For instance,
NVLM-D demonstrates exceptional OCR capabilities, achieving the highest scores on
benchmarks such as OCRBench and VQAv2. NVLM-H leads in multimodal reasoning
tasks like MathVista and multidisciplinary reasoning, proving its versatility for complex
educational applications.

Despite these advancements, NVLM models also present challenges. The large-scale
models require substantial computational resources for both training and deployment,
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which may limit accessibility for smaller institutions. Additionally, while NVIDIA plans to
open-source the training code and model weights, the complexity of implementation might
pose challenges for non-specialist users without significant expertise or infrastructure.

NVLM 1.0’s public release is a significant contribution to the open-source ecosystem,
offering powerful tools for research and development in multimodal AI. Its focus on main-
taining text-only performance during multimodal training sets a new standard, enabling
its integration into educational technologies without compromising existing capabilities.
By providing production-grade multimodality and robust benchmarks, NVLM supports
the creation of advanced applications across various fields, including education, healthcare,
and content generation.

Potential applications: NVLM 1.0 can be utilized to build OCR-based educational
tools, multimodal math reasoning assistants, and adaptive content generation systems. For
example, its superior OCR capabilities can support the digitization of historical documents
for research purposes, while its multimodal reasoning abilities can enhance STEM education
with visual problem-solving tasks.

Llama 3-V: Llama 3-V is the latest addition to Meta’s family of open-source foundation
models, featuring a herd of models designed to natively support multilinguality, coding,
reasoning, and tool usage. The largest variant of Llama 3-V is a dense transformer model
with 405 billion parameters and a context window of up to 128 K tokens [29]. The models
are trained on an unprecedented corpus of 15 trillion multilingual tokens, enabling them
to achieve state-of-the-art performance across a wide range of language understanding
tasks. The Llama 3-V models, available under an updated open-source license, include
pre-trained and post-trained versions, with the flagship Llama 3-V.1 model delivering
competitive quality compared to GPT-4.

One of the major advantages of Llama 3-V lies in its versatility and performance. By
supporting multilinguality and tool usage, it offers immense flexibility for global educa-
tional applications, including language instruction, cross-cultural studies, and adaptive
learning environments. Its extended context window makes it particularly well suited for
tasks requiring in-depth reasoning, such as literature analysis, historical document inter-
pretation, and coding exercises. Additionally, Meta’s emphasis on safety, demonstrated
through the Llama Guard 3 model for input and output safety, ensures that the models can
be deployed responsibly in educational contexts.

Despite its strengths, Llama 3-V presents challenges. While being open-source, its
large-scale models like the 405B parameter variant require substantial computational
resources, making them difficult to deploy for institutions with limited infrastructure. The
extensive training and fine-tuning processes, although yielding exceptional results, also
necessitate expertise and investment in hardware and personnel. Moreover, while Meta
has improved pre-training data quality and post-training alignment processes, the scale
of Llama 3-V may raise concerns about data privacy and ethical implications in specific
use cases.

Llama 3-V’s compositional approach to multimodality—integrating image, video, and
speech recognition capabilities—shows promising results that rival state-of-the-art models
in these domains. Although these multimodal extensions are still under development,
they highlight the potential of Llama 3-V to transform education by enabling innovative
applications such as visual storytelling, multilingual video-based lessons, and speech-
assisted learning tools. The commitment to public release ensures transparency and fosters
a collaborative research ecosystem to enhance the model further.

Overall, Llama 3-V represents a significant milestone in the evolution of open-source
MLLMs, demonstrating the potential of large-scale, multimodal models to advance global
education and research. Its balance between performance, openness, and safety positions it
as a valuable asset for institutions aiming to integrate cutting-edge AI technologies into
their educational strategies.

Potential applications: Llama 3-V can enable visual storytelling, multilingual video-
based lessons, and adaptive learning platforms. Its large context window is particularly
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useful for creating tools that assist in complex problem solving, such as code debugging
environments or interactive literature exploration.

LLaVA (Large Language and Vision Assistant): LLaVA is an open-source model de-
signed to combine visual encoders with large language models, enabling general-purpose
visual and language understanding [30]. It supports tasks such as visual question answer-
ing, image captioning, and the development of interactive, multimodal educational content.
One major advantage of LLaVA is its accessibility and adaptability. Being open-source,
it allows educators and developers to customize the model to address specific learning
needs, such as creating tailored visual aids or interactive lessons. Furthermore, it fosters
innovation by providing a platform for experimentation and collaboration within the
educational community.

LLaVA also poses significant challenges. The implementation of the model requires
considerable technical expertise and computational resources, which may not be readily
available to many educational institutions. Furthermore, the absence of dedicated support
services means that troubleshooting and model optimization must often be handled inter-
nally, potentially delaying adoption and reducing its usability in time-sensitive scenarios.

Potential applications: LLaVA can support the creation of interactive learning environ-
ments, such as visual science tutorials or personalized art history lessons. Its adaptability
makes it ideal for generating tailored visual aids for diverse subjects.

2.4.2. Proprietary MLLMs

GPT-4o (Multimodal Version): GPT-4o, developed by OpenAI, integrates visual
and textual data for advanced multimodal reasoning. Its applications in education are
vast, ranging from interactive learning environments to visual question answering and
conversational image interpretation. One of its primary advantages is its exceptional
performance and reliability [31]. The model’s robust capabilities ensure accurate and
consistent results across a wide range of tasks, making it a reliable tool for educators.
Moreover, the professional support and regular updates provided by OpenAI enhance its
usability and stability in educational settings, ensuring that institutions can deploy the
model with confidence.

GPT-4o’s proprietary nature introduces challenges. The high licensing fees can be
prohibitive for many educational institutions, particularly those operating on limited
budgets. Additionally, its closed design restricts customization, preventing institutions
from tailoring the model to specific educational contexts or integrating it with existing
systems beyond the predefined parameters.

Potential applications: GPT-4o can be used to create advanced virtual tutors ca-
pable of visual and textual reasoning. For example, it could support biology lessons
with real-time microscopic image analysis or assist in art classes with detailed image
composition feedback.

Kosmos-G: Developed by Microsoft, Kosmos-G offers enhanced multimodal capabili-
ties, including advanced visual and text comprehension. It is well suited for collaborative
and visual learning tools, integrating seamlessly with Microsoft’s ecosystem, such as Teams
and Office 365, to provide a unified platform for education [32]. This integration simplifies
its adoption and enhances user experience, particularly for institutions already utilizing
Microsoft products.

Nevertheless, Kosmos-G’s advantages are accompanied by significant limitations. The
model’s cost can be a major barrier for adoption, as it requires both licensing fees and infras-
tructure investment. Moreover, its reliance on Microsoft’s ecosystem may limit its flexibility,
making it less suitable for institutions that use diverse or non-Microsoft technologies.

Potential applications: Kosmos-G can enhance educational platforms like Teams by
integrating multimodal features, such as document summarization and diagram under-
standing, making collaborative projects more efficient.
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MM1: MM1 is a family of multimodal large language models (MLLMs) developed
by Apple, designed to achieve state-of-the-art performance in multimodal tasks by care-
fully analyzing architectural components and data choices [33]. MM1 includes both dense
models with up to 30 billion parameters and mixture-of-experts (MoE) models with up
to 64 billion parameters. Through comprehensive ablation studies, MM1 identifies cru-
cial design principles for integrating visual and textual data, such as the importance of
image resolution, visual encoder capacity, and the mix of pre-training data. The models
exhibit enhanced capabilities like in-context learning, multi-image reasoning, and few-
shot chain-of-thought prompting. MM1 demonstrates competitive performance across a
range of established multimodal benchmarks, highlighting the effectiveness of large-scale
multimodal pre-training and offering valuable insights for future MLLM development.

MM1’s proprietary status limits its accessibility. The high costs associated with its
deployment, both in licensing and required infrastructure, restrict its use to well-funded
institutions. Additionally, its closed system design precludes customization, which may
limit its adaptability for diverse educational needs.

Potential applications: MM1 can support advanced assessments, such as AI-driven
exam proctoring or complex data interpretation tasks in STEM fields, making it a valuable
tool for high-level education.

3. Applications of MLLMs in Education

The advent of multimodal large language models (MLLMs) has ushered in a new era
in educational technology, offering innovative solutions that enhance both teaching and
learning experiences. Using the ability to process and generate content across multiple
modalities, such as text, images, audio, and video, MLLMs are transforming the educational
landscape [34]. This section explores the diverse applications of MLLMs in education,
highlighting how these advanced AI models are being integrated into various educational
tools and platforms to address longstanding challenges and meet the evolving needs of
learners and educators.

Table 2 summarizes several key areas where MLLMs are making a significant impact:

• Adaptive learning platforms: Examining how MLLMs enable personalized learning
experiences by dynamically adjusting instructional content to meet individual learners’
needs, preferences, and performance levels.

• Virtual tutors and chatbots: Exploring the role of MLLMs in developing intelligent
virtual assistants that provide personalized support, guidance, and interactive learning
opportunities through natural language conversations.

• Intelligent content creation: Investigating how MLLMs automate and enhance the
development of educational materials, including textbooks, lesson plans, assessments,
and multimedia resources, thereby increasing efficiency and accessibility.

• AI-powered learning management systems (LMSs): Analyzing the integration of
MLLMs into LMS platforms to enhance content delivery, personalize learning paths,
and facilitate more engaging and interactive educational experiences.

• AI-based insight and predictive analytics for educators: Discussing how MLLMs
provide educators with actionable insights by analyzing multimodal educational data,
enabling early identification of at-risk students and informed decision making.

• Grading and assessment tools: Assessing the application of MLLMs in automating
grading processes, providing objective evaluations, and delivering detailed, personal-
ized feedback across various types of student work.

Through these explorations, the section aims to demonstrate the transformative po-
tential of MLLMs in education. By presenting case studies, technological insights, and
practical applications, we seek to highlight how MLLMs not only enhance learning out-
comes and engagement but also support educators in delivering high-quality, personalized
instruction. The objective is to provide a comprehensive understanding of how MLLMs are
shaping the future of education and to inspire further research and implementation in this
promising field.
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Table 2. Applications of MLLMs in education.

Application Area Technologies Used Examples of Applications Case Study

Adaptive Learning Platforms
MLLMs with transformer
architectures (ViT, AST)

Cognii, Carnegie Learning’s
MATHia, Knewton, Duolingo,

Smart Sparrow

Integration of MLLMs in
Duolingo

Virtual Tutors and Chatbots

Transformer-based language
models (GPT-3, GPT-4),
VisualGPT, DeepSpeech,

Tacotron 2, ADS

Squirrel AI Learning,
Duolingo, Watson Tutor,

Woebot [35]

Implementation of LOVA3 in
Virtual Tutoring Systems

Intelligent Content Creation

Transformer-based
multimodal models (GPT-4,

BLIP-2), DALL·E and DALL·E
2, NLG (GPT-3, T5)

Automated textbook
generation, quiz and

assessment generation,
interactive simulations,

multimedia content creation,
language translation and

localization

Automated Quiz Generation
Using GPT-3

AI-powered LMS
GPT-4 and CLIP, natural

language interfaces, Wav2Vec
2.0, Tacotron 2

Coursera, edX, Udemy,
Knewton’s Alta

Integration of MLLMs in
Coursera

Insight and Predictive
Analytics

GPT-4, CLIP, computer vision
models (OpenFace), speech

and audio processing models
(Wav2Vec 2.0)

Early warning systems,
sentiment and emotion

analysis, adaptive feedback
generation, curriculum and

instructional design insights,
collaborative skills assessment

Early Warning System Using
MLLMs

Grading and Assessment
Tools

NLP and NLU (GPT-4, BERT),
computer vision and image

recognition (CLIP, ViT),
speech and audio processing

(Wav2Vec 2.0)

E-Rater by ETS, MOSS,
CodeRunner, Duolingo
English Test, tools for

multimodal assignment
evaluation

Reducing the Cost of
Short-Answer Scoring with

MLLMs

The table summarizes key applications of MLLMs in education.

3.1. Adaptive Learning Platforms

3.1.1. Introduction to Adaptive Learning Platforms

Adaptive learning platforms are educational systems designed to deliver personalized
learning experiences by dynamically adjusting instructional content based on individual
learners’ needs, preferences, and performance [36,37]. These platforms leverage data
analytics and artificial intelligence to monitor learner interactions, assess understanding,
and tailor content to optimize engagement and learning outcomes [38]. By providing
customized pathways, adaptive learning aims to address the diverse abilities and learning
styles present in educational settings.

The advent of multimodal large language models (MLLMs) has significantly enhanced
the capabilities of adaptive learning platforms. MLLMs enable the integration of various
data modalities—such as text, images, audio, and video—allowing for richer, more interac-
tive learning experiences [12]. This multimodal approach aligns with the understanding
that learning is a complex process involving multiple senses and cognitive functions [39].

3.1.2. Technology Used: MLLMs in Adaptive Learning

The incorporation of MLLMs into adaptive learning platforms represents a con-
vergence of advanced AI technologies and educational methodologies. MLLMs utilize
transformer-based architectures [11], which employ self-attention mechanisms to process
sequential and non-sequential data across different modalities [19]. Extensions like Vision
Transformer (ViT) [20] and Audio Spectrogram Transformer (AST) [20] enable processing
of visual and auditory data, respectively.
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Techniques for integrating data from multiple modalities are crucial. Models like CLIP [14]
and UNITER [24] align visual and textual representations in a shared embedding space,
facilitating cross-modal understanding. Adaptive platforms use algorithms that analyze
learner data to adjust content delivery. MLLMs enhance this by interpreting complex
multimodal inputs, such as facial expressions, speech patterns, and handwriting [5].

Moreover, MLLMs can generate contextually relevant feedback and explanations in
natural language, improving learner comprehension and engagement [8]. By leveraging
these technologies, adaptive learning platforms can offer more nuanced and effective
personalization, catering to individual learner profiles.

3.1.3. Examples of Applications

Several educational platforms and research initiatives have begun integrating MLLMs
into adaptive learning systems. Cognii [40] is an AI-based virtual learning assistant that
uses NLP and MLLMs to provide personalized tutoring and open-response assessments in
natural language. Carnegie Learning’s MATHia [41] incorporates AI to adapt mathematics
instruction, potentially enhanced by MLLMs to interpret handwritten mathematical expres-
sions and provide step-by-step feedback. Knewton [42] is an adaptive learning technology
that could utilize MLLMs to process multimodal learner data, such as interaction patterns
and facial expressions, to adjust instructional strategies.

Duolingo [43,44], a language learning app, employs AI for personalized lesson plans.
The integration of MLLMs allows for speech recognition and dialogue practice, enhancing
language acquisition through multimodal interactions. Smart Sparrow [45] is an adap-
tive e-learning platform that enables the creation of interactive and adaptive courseware,
potentially leveraging MLLMs for richer content delivery and learner analytics.

3.1.4. Case Study: Integration of MLLMs in Duolingo

Duolingo, a widely used language learning platform, provides an illustrative case of
integrating MLLMs into adaptive learning. Aiming to make language learning accessi-
ble and engaging through gamified lessons and personalized learning paths [44,46], the
platform adapts to learners’ proficiency levels, focusing on areas that need improvement.

Duolingo incorporates MLLMs to enhance its adaptive capabilities. It uses speech
recognition and synthesis technologies, employing models such as WaveNet [47] for high-
quality speech synthesis and integrating speech recognition to assess pronunciation and
fluency. Using MLLM, Duolingo generates and interprets textual, auditory, and visual
content, providing a comprehensive learning experience [43]. It uses data from the students
across the modalities to tailor the difficulty of the lesson, the types of content, and the
feedback [48].

For example, MLLMs enable Duolingo to create interactive exercises that involve
listening, speaking, reading, and writing, catering to different learning styles. By processing
speech and written input, the platform provides immediate, personalized feedback, helping
learners correct errors in real time. Analyzing learner performance allows the platform
to adjust the sequence of lessons and introduce new vocabulary or grammar concepts
when appropriate.

A study examined how Duolingo leverages AI and MLLM to improve language
learning [43]. The findings indicated improved engagement: the integration of multimodal
exercises increased user engagement and time spent on the platform. The learners showed
enhanced proficiency gains due to personalized feedback and adaptive content. MLLMs
allowed Duolingo to generate content across multiple languages efficiently, supporting a
diverse user base.

However, challenges such as data privacy emerged, as handling multimodal learner
data raised concerns about privacy and data security. In addition, resource intensity was a
concern, as training and deployment of MLLMs require significant computational resources.
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3.2. Virtual Tutors and Chatbots

3.2.1. Introduction to Virtual Tutors and Chatbots

Virtual tutors and chatbots are AI-driven systems designed to simulate human tutor-
ing and conversational interactions in educational settings. They provide learners with
personalized assistance, feedback, and guidance, often available on-demand and scalable to
large numbers of users [49]. These systems aim to enhance learning experiences by offering
interactive dialogues, answering queries, and adapting to individual learner needs.

The integration of multimodal large language models (MLLMs) has significantly
advanced the capabilities of virtual tutors and chatbots. By leveraging MLLMs, these
systems can process and generate content across multiple modalities—such as text, speech,
and images—enabling richer interactions and more effective communication [50]. This
multimodal capability aligns with the diverse ways in which learners perceive and engage
with educational content.

Recent advancements in MLLMs, such as the development of LOVA3 (Learning to
Visual Question Answering, Asking, and Assessment) [51], have further enhanced the potential
of virtual tutors and chatbots. LOVA3 equips MLLMs with additional capabilities beyond
traditional question answering, enabling them to ask questions and assess responses.
This aligns closely with human learning mechanisms and supports deeper multimodal
understanding, making virtual tutors and chatbots more effective in educational contexts.

3.2.2. Technology Used: MLLMs in Virtual Tutors and Chatbots

The deployment of MLLMs in virtual tutors and chatbots involves several key tech-
nologies. Transformer-based language models, such as GPT-4 [4,9], serve as the foundation
for generating coherent and contextually relevant textual responses. Their capacity to un-
derstand and produce human-like language makes them suitable for conversational agents.

Multimodal integration allows MLLMs to extend traditional language models by
incorporating additional modalities. For example, models like LOVA3 [51] integrate visual
information into language understanding and generation, enabling chatbots to reference
and generate content based on images. This is particularly valuable in educational settings
where visual content is integral to learning.

Advanced dialogue systems utilize MLLMs to manage context, maintain conversation
flow, and handle multi-turn dialogues [52]. These systems enable virtual tutors to provide
coherent and contextually appropriate responses over extended interactions. LOVA3, in par-
ticular, enhances these capabilities by introducing tasks that foster the skills of asking and
assessing questions in the context of images, thereby enriching the interactive experience.

Personalization and adaptive learning are enhanced by MLLMs, which can analyze
user inputs and learning patterns to tailor responses and instructional strategies [53].
The ability to ask and assess questions, as enabled by frameworks like LOVA3, allows
virtual tutors to engage learners more effectively, encouraging deeper engagement with the
material and fostering critical thinking skills.

3.2.3. Examples of Applications

Several applications demonstrate the integration of MLLMs into virtual tutors and
chatbots. Educational platforms are increasingly incorporating advanced MLLMs to pro-
vide personalized learning experiences. For instance, LOVA3’s capabilities can be leveraged
to develop virtual tutors that not only answer student queries but also pose relevant ques-
tions and assess student responses, thereby simulating a more interactive and engaging
learning environment.

Language learning assistants can benefit from MLLMs that handle multiple modalities.
By integrating LOVA3’s approach, these assistants can incorporate visual prompts and
assessments, enhancing language acquisition through multimodal interactions.

In STEM education, virtual tutors equipped with MLLMs like LOVA3 can assist
students in subjects like mathematics and science by providing detailed explanations,
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posing challenging problems, and assessing student solutions. This mirrors the human
tutoring process more closely and can lead to better learning outcomes.

3.2.4. Case Study: Implementation of LOVA3 in Virtual Tutoring Systems

The implementation of LOVA3 in virtual tutoring systems offers valuable insights into
how MLLMs can enhance educational experiences. LOVA3 is an innovative framework
designed to equip MLLMs with the abilities to answer, ask, and assess questions in the
context of images [51]. This triad of skills aligns with human learning mechanisms and is
crucial for understanding the world and acquiring knowledge.

Technologically, LOVA3 utilizes two supplementary training tasks, GenQA and EvalQA,
to foster the skills of asking and assessing questions. GenQA focuses on enabling the model
to generate diverse question–answer pairs from a single input image, thereby equipping
the MLLM with the capability to ask questions. This ability encourages learners to engage
more deeply with information, enhancing problem-solving skills. EvalQA involves tasking
the MLLM to predict the correctness of a given visual–question–answer triplet. This assess-
ment capability allows virtual tutors to evaluate student responses, provide feedback, and
guide learners toward a deeper understanding of the material.

The model architecture of LOVA3 integrates a vision encoder with a large language
model through a simple MLP adapter, allowing the system to process and generate multi-
modal content efficiently. Training involves a mixture of tasks, including traditional visual
question answering (VQA), GenQA, and EvalQA, enhancing the model’s comprehensive
understanding and interactive capabilities.

In virtual tutoring systems, implementing LOVA3 can lead to several benefits. By
enabling the virtual tutor to ask questions and assess responses, the interaction becomes
more dynamic and engaging, resembling a human tutor’s approach. The tutor’s ability
to generate questions and assess answers encourages students to think critically and
engage more deeply with the content. Incorporating visual elements into questioning and
assessment aligns with diverse learning styles and can improve comprehension.

For example, a virtual tutor using LOVA3 can present an image related to a biology
lesson and generate questions that prompt the student to identify structures, explain
functions, or predict outcomes. The tutor can then assess the student’s responses, provide
feedback, and adjust subsequent interactions based on the student’s understanding.

A study by Zhao et al. [54] demonstrated that training MLLMs using the LOVA3

framework improved performance across various multimodal datasets and benchmarks.
The results underscored the critical role of these additional tasks in fostering comprehensive
intelligence in MLLMs. The model showed consistent performance gains, highlighting its
effectiveness in enhancing multimodal comprehension.

While LOVA3 enhances virtual tutoring systems significantly, challenges exist. Han-
dling a wide range of topics and queries requires extensive training data. LOVA3 addresses
this by compiling a comprehensive set of multimodal foundational tasks, but scaling this to
cover all educational content remains a challenge. Ethical considerations are paramount:
privacy, data security, and ensuring appropriate responses are essential, especially when
dealing with sensitive information. Educational virtual tutors need to handle complex
and varied content, and ensuring the accuracy and relevance of generated questions and
assessments requires continuous updates and validations of the model.

The implementation of LOVA3 in virtual tutors showcases the potential for delivering
personalized and effective educational experiences. It highlights how advancements in
MLLMs can address the complexities of content and provide scalable solutions that adapt
to individual learner needs. By equipping virtual tutors with the abilities to answer, ask,
and assess, LOVA3 brings AI-driven education closer to the nuanced and interactive nature
of human tutoring.
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3.3. Intelligent Content Creation

3.3.1. Introduction to Intelligent Content Creation

Intelligent content creation refers to the utilization of artificial intelligence, particularly
multimodal large language models (MLLMs), to automate and enhance the development
of educational materials. This includes generating textbooks, lesson plans, assessments,
interactive simulations, and multimedia resources tailored to specific learning objectives
and individual learner needs [55]. By leveraging MLLMs, educators and content developers
can produce high-quality, engaging, and personalized educational content more efficiently
and effectively.

Traditional content creation in education is often time consuming and requires signifi-
cant expertise. Intelligent content creation addresses these challenges by automating parts
of the content development process and enabling the creation of materials that can adapt to
diverse learning styles and preferences [1]. The integration of multiple modalities—text, im-
ages, audio, and video—enhances the accessibility and inclusivity of educational resources,
catering to a wider range of learners.

3.3.2. Technology Used: MLLMs in Intelligent Content Creation

The implementation of MLLMs in intelligent content creation involves several key
technologies. Transformer-based multimodal models, such as GPT-4 [9] and BLIP-2 [5],
process and generate content across multiple modalities. GPT-4, for example, accepts both
text and image inputs, enabling the generation of rich, contextually relevant content that
combines textual explanations with visual elements.

Image generation models like DALL·E and DALL·E 2 [15,16] can generate high-quality
images from textual descriptions. These models facilitate the creation of visual content
such as diagrams and illustrations, enhancing comprehension of complex concepts.

Natural language generation (NLG) is another crucial technology. Advanced language
models like GPT-4 [9] and T5 [56] generate coherent and contextually appropriate textual
content, including explanations, summaries, and questions.

MLLMs also enable multimodal content synthesis by integrating various data types to
create interactive and multimedia educational materials. Models that combine audio and
visual data can generate instructional videos or interactive simulations [13].

Adaptive content personalization is achieved by analyzing learner data, allowing
MLLMs to generate content personalized to the learner’s proficiency level, interests, and
learning style [57]. This involves adapting the difficulty, presentation style, and content
focus to suit individual needs.

3.3.3. Examples of Applications

Several applications demonstrate the use of MLLMs in intelligent content creation.
Automated textbook generation utilizes AI systems to summarize and organize information
from various sources to generate textbooks and study materials. Models like GPT-3 can
produce explanatory text on a given topic, compiled into educational resources.

Quiz and assessment generation involves MLLMs creating assessment items such as
multiple-choice questions, short answers, and problem-solving exercises tailored to specific
learning objectives [58]. This automation supports educators in developing formative and
summative assessments efficiently.

Interactive simulations and virtual labs are created by integrating textual descriptions
with visual and interactive elements. MLLMs help create virtual laboratory environments
and simulations, allowing students to explore concepts hands-on [59].

Multimedia content creation is enhanced by MLLMs enabling the creation of educational
videos, animations, and presentations by generating scripts, visual content, and even
voice-overs [60].

Language translation and localization are facilitated by AI models that translate educa-
tional content into multiple languages, ensuring accessibility for non-native speakers and
supporting multilingual education [61].
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3.3.4. Case Study: Automated Quiz Generation Using GPT-3

Assessments are crucial for evaluating learner understanding and progress. Creating
high-quality assessment items is resource intensive and requires subject matter expertise.
Automated quiz generation using MLLMs like GPT-3 offers a solution by generating diverse
and contextually appropriate questions based on educational content [58].

GPT-3 is leveraged for its advanced language generation capabilities to create ques-
tions and answers. It can generate various types of questions, including multiple-choice,
true/false, and open-ended formats. Prompt engineering involves crafting specific prompts
to guide GPT-3 in generating questions that align with learning objectives and appropri-
ate difficulty levels. Content filtering and quality assurance algorithms evaluate the gen-
erated questions for correctness, relevance, and potential biases, ensuring the quality
of assessments.

Educational platforms integrate automated quiz generation to provide immediate
assessments after lessons, enhancing engagement and retention. Adaptive learning sys-
tems generate quizzes tailored to learner performance, allowing the system to adjust the
difficulty and focus of subsequent content. Teacher support tools enable educators to use
AI-generated quizzes as a starting point, saving time in test preparation and allowing them
to focus on instructional design.

A study by Lu et al. (2022) investigated the use of GPT-3 for automated question gen-
eration in educational settings [58]. The findings indicated that GPT-3 generated questions
of acceptable quality, covering key concepts with varying difficulty levels. Automation
significantly reduced the time required to create assessments, and the model allowed for
generating questions tailored to specific topics and learning outcomes.

Challenges included content accuracy, as some generated questions contained inaccu-
racies or ambiguities, necessitating human review. Bias and fairness were also concerns, as
the model occasionally produced content reflecting biases present in the training data, high-
lighting the need for oversight. Ensuring questions are directly relevant to specific instruc-
tional content remains a challenge, emphasizing the importance of contextual alignment.

MLLMs like GPT-3 have the potential to automate educational assessment creation.
While offering significant efficiencies, human oversight is essential to ensure accuracy,
fairness, and alignment with educational objectives. Ongoing advancements in MLLMs are
expected to improve the quality and reliability of automated content creation.

3.4. AI-Powered Learning Management Systems (LMSs)

3.4.1. Introduction to AI-Powered Learning Management Systems

AI-powered learning management systems (LMSs) are platforms that incorporate
artificial intelligence technologies, including multimodal large language models (MLLMs),
to enhance the delivery, management, and personalization of educational content [62].
Traditional LMS platforms facilitate the administration, documentation, tracking, reporting,
and delivery of educational courses or training programs. The integration of AI trans-
forms these systems into intelligent platforms capable of providing personalized learning
experiences, adaptive content, and interactive engagement [63].

MLLMs enable AI-powered LMSs to process and generate content across multiple
modalities such as text, images, audio, and video. This multimodal capability allows for
richer, more engaging educational experiences that cater to diverse learning styles and
needs [12]. By analyzing vast amounts of learner data, AI-powered LMSs can adapt to
individual learners’ progress, preferences, and performance, thereby enhancing the overall
effectiveness of the educational process [55].

3.4.2. Technology Used: MLLMs in AI-Powered LMSs

The integration of MLLMs into LMS platforms involves several key technologies.
MLLMs like GPT-4 [9] and CLIP [14] can process and understand content in various for-
mats, enabling the LMS to handle textual, visual, and auditory data effectively. Advanced
language models facilitate interactions between the LMS and users through natural lan-
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guage interfaces, allowing for conversational queries, personalized feedback, and adaptive
content delivery [8]. AI algorithms analyze learner behaviors and preferences to recom-
mend tailored content, with MLLMs enhancing this by interpreting complex patterns in
multimodal data [64]. Furthermore, MLLMs can generate and grade assessments, provide
detailed explanations, and offer suggestions for improvement across multiple modalities.
Incorporating models like Wav2Vec 2.0 [65] and Tacotron 2 [66] allows the LMS to support
voice interactions and auditory content delivery.

3.4.3. Examples of Applications

Several AI-powered LMS platforms and initiatives demonstrate the application of
MLLMs in education. Coursera is an online learning platform that offers massive open
online courses (MOOCs), specializations, and degrees [67]. Coursera utilizes AI to person-
alize course recommendations and enhance the learning experience [68]. Similarly, edX
incorporates AI to provide adaptive learning experiences, including personalized content
and assessments [69]. Udemy uses AI algorithms to analyze learner data and provide course
recommendations tailored to individual interests and needs [70]. Knewton’s Alta is an
AI-powered adaptive learning platform that uses data analytics and MLLMs to personalize
learning paths and provide real-time feedback [71].

3.4.4. Case Study: Integration of MLLMs in Coursera

Coursera is one of the world’s leading online learning platforms, partnering with
universities and organizations to offer courses, specializations, certificates, and degree
programs [72]. The platform serves millions of learners globally, providing access to a
wide range of educational content. Coursera has integrated AI technologies to enhance its
platform, aiming to improve learner engagement, personalize learning experiences, and
increase the effectiveness of online education [68].

Coursera leverages various AI technologies, potentially including MLLMs, to enhance
its platform. Natural language processing (NLP) is used for processing course content,
generating summaries, and facilitating search and recommendation systems [68]. Ma-
chine learning algorithms analyze learner data to personalize course recommendations
and adapt content delivery based on individual performance and preferences [73]. AI
algorithms provide instant feedback on assignments, particularly in programming and
technical courses [74]. While the specific use of MLLMs is not publicly detailed, Coursera
handles various content types, including video lectures, readings, quizzes, and interac-
tive assignments.

Coursera uses AI to recommend courses and content to learners based on their inter-
ests, past activity, and learning goals [64]. AI-powered translation services enable course
content to be accessible in multiple languages, enhancing inclusivity [75]. For certain
subjects like computer science, AI algorithms grade assignments and provide feedback,
improving efficiency and scalability [74]. Additionally, AI analyzes learner progress to
suggest skill improvements and potential career paths [68].

Coursera’s AI-driven recommendation system increases learner engagement by sug-
gesting relevant courses and content [64]. AI enables Coursera to manage a vast number
of learners and courses, providing consistent quality of education at scale [68]. Person-
alized learning paths and instant feedback contribute to better learner performance and
satisfaction [73]. Language translation and multimodal content delivery make education
accessible to a global audience with diverse needs [75].

Challenges include data privacy and security: handling sensitive learner data requires
robust security measures and compliance with regulations such as GDPR [76]. Ensuring that
AI algorithms do not perpetuate biases is critical, and models must be trained on diverse
datasets to mitigate this risk [77]. Learners and educators may require understanding
of how AI makes recommendations or grades assessments, highlighting the need for
transparency and explainability [78].
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While specific details on Coursera’s use of MLLMs are not publicly disclosed, the
potential integration of MLLMs could enhance several aspects of the platform. MLLMs
can analyze multimodal learner data to provide more accurate and personalized content
recommendations. Incorporating models like GPT-4 [9] could enable conversational inter-
faces for learner support and engagement. MLLMs could assist in generating and curating
content across text, images, and videos, enriching the learning materials available. More-
over, multimodal translation and content adaptation can make courses more accessible to
learners with disabilities or those speaking different languages.

Coursera’s integration of AI technologies demonstrates the significant impact of AI-
powered LMS platforms in scaling education and personalizing learning experiences. While
explicit use of MLLMs is not detailed, the potential for incorporating such technologies
offers avenues for further enhancing the platform’s capabilities. Addressing challenges
related to data privacy, bias, and transparency is essential for the ethical and effective
implementation of AI in education.

3.5. AI-Based Insight and Predictive Analytics for Educators

3.5.1. Introduction to AI-Based Insight and Predictive Analytics for Educators

AI-based insight and predictive analytics involve the use of artificial intelligence
algorithms and machine learning models to analyze educational data, extract meaningful
insights, and predict future trends or learner outcomes [79]. These tools empower educators
by providing data-driven decision support, enabling them to identify at-risk students,
personalize instruction, and improve curriculum design. The integration of multimodal
large language models (MLLMs) enhances these capabilities by processing and interpreting
data from multiple modalities—such as text, images, audio, and video—offering a more
comprehensive understanding of learner behaviors and needs [12].

Traditional educational analytics often rely on structured data and predefined metrics,
which may not capture the full spectrum of learner interactions and experiences. MLLMs
can analyze unstructured data, such as discussion forum posts, assignment submissions,
speech recordings, and facial expressions, providing deeper insights into student engagement,
comprehension, and emotional states [6]. This multimodal approach enables educators to
make more informed decisions and interventions to enhance learning outcomes.

3.5.2. Technology Used: MLLMs in AI-Based Insight and Predictive Analytics

The deployment of MLLMs in educational analytics involves several key technologies.
Multimodal data analysis allows models like GPT-4 [9] and CLIP [14] to process and inter-
pret data from various modalities, enabling the extraction of rich features and patterns from
diverse data sources. Advanced language models perform natural language processing
(NLP) and understanding (NLU) on textual data from student interactions—such as dis-
cussion forums, essays, and feedback—to identify topics, sentiments, and comprehension
levels [19].

In addition, MLLMs with computer vision capabilities analyze images and videos,
such as classroom recordings or student-submitted media, to assess engagement, participa-
tion, and emotional states through facial expression recognition [80]. Tools like OpenFace
provide robust frameworks for facial behavior analysis, enabling educators to gauge stu-
dent emotions and engagement. Speech and audio processing models, such as Wav2Vec
2.0 [65], transcribe and analyze audio data, offering insights from student presentations,
oral exams, or verbal feedback.

Furthermore, MLLMs contribute features to predictive models that forecast student
performance, dropout risks, and learning trajectories based on historical and real-time
data [81]. Techniques for integrating data from multiple modalities enhance the robustness
and accuracy of predictive analytics [6].
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3.5.3. Examples of Applications

The use of MLLMs in providing AI-based insights and predictive analytics for educa-
tors is demonstrated in several applications. Early warning systems analyze multimodal
data to identify students at risk of underperforming or dropping out. For instance, text
analysis of student messages combined with engagement metrics can provide early in-
dicators of disengagement [82]. Sentiment and emotion analysis processes textual and
visual data to gauge student sentiments and emotions, helping educators understand the
classroom climate and address issues promptly [83].

Adaptive feedback generation is another application where MLLMs analyze student
submissions to provide personalized feedback, highlighting areas of strength and improve-
ment [55]. By aggregating and analyzing data on student interactions with course materials,
educators gain curriculum and instructional design insights that inform adjustments and
teaching strategies [84]. Additionally, analyzing multimodal data from group projects, dis-
cussions, and peer interactions allows for the assessment of collaborative skills and group
dynamics [85]. Evaluating student presentations using audio and visual data provides
feedback on delivery, clarity, and engagement [86].

3.5.4. Case Study: Early Warning Systems Using MLLMs

Early warning systems (EWSs) aim to identify students who are at risk of academic
failure or dropping out, allowing educators to intervene proactively [82]. Traditional
EWSs rely on structured data such as grades, attendance, and demographic information.
Integrating MLLMs enables the analysis of unstructured and multimodal data, providing a
more comprehensive risk assessment.

In this context, data are gathered from various sources, including textual data like
discussion posts, emails, and assignment submissions; visual data such as video recordings
of classes or online interactions; and audio data from recordings of student speeches or dis-
cussions. NLP models like BERT [19] are utilized to analyze textual data for sentiment, topic
modeling, and engagement indicators. Computer vision models, such as OpenFace [80],
are employed for facial expression recognition to assess emotions and engagement levels.
Speech recognition models like Wav2Vec 2.0 [65] transcribe and analyze audio data for
speech patterns and indicators of confusion or hesitation.

Features extracted by MLLMs are combined with machine learning algorithms—such
as random forests or neural networks—to predict at-risk students. For example, in uni-
versity settings, institutions implement EWSs to monitor student engagement in online
courses, using data from learning management systems (LMSs), discussion forums, and
assignment submissions [87]. In K-12 education, schools use multimodal data, including
classroom observations and student interactions, to identify students needing additional
support [88]. Massive open online courses (MOOCs) analyze participant data to predict
dropout rates and tailor interventions [89].

A study by Giannakos et al. (2019) explored the use of multimodal data and MLLMs
to enhance early warning systems in online education [90]. The findings indicated that
incorporating multimodal data significantly improved the accuracy of predicting at-risk
students compared to models using only traditional data. Key predictive features included
textual engagement, where the frequency and sentiment of discussion posts correlated with
student success; emotional indicators, where facial expression analysis provided insights
into student frustration or confusion during video interactions; and speech patterns, where
hesitation and speech rate in audio submissions were linked to comprehension difficulties.
Early identification enabled timely interventions such as personalized support, tutoring,
or counseling.

However, challenges were identified, including data privacy and ethics, as collecting
and analyzing sensitive data requires strict adherence to privacy regulations and ethical
considerations. Technical complexity is also a concern, as implementing MLLMs and
processing multimodal data demand significant computational resources and expertise.
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Interpretability is another challenge, as complex models may lack transparency, making it
difficult for educators to understand the basis of predictions.

The case study demonstrates the potential of MLLMs in enhancing early warning
systems through the analysis of multimodal data. By providing more accurate and com-
prehensive risk assessments, educators can intervene effectively to support at-risk stu-
dents. Addressing challenges related to privacy, technical implementation, and model
interpretability is essential for practical deployment.

3.6. Grading and Assessment Tools

3.6.1. Introduction to Grading and Assessment Tools

Grading and assessment are fundamental components of the educational process,
providing feedback to learners and informing instructional decisions. Traditional grading
methods often involve manual evaluation of student work, which can be time consuming,
subject to human bias, and inconsistent across different evaluators [91]. The advent of
artificial intelligence, particularly multimodal large language models (MLLMs), has opened
new avenues for automating and enhancing the grading and assessment process [92].
MLLMs can process and evaluate complex student outputs across various modalities—such
as essays, short answers, presentations, code, and multimedia projects—providing timely,
objective, and detailed feedback [93,94].

Automated grading systems leveraging MLLMs aim to improve efficiency, consistency,
and fairness in assessments. By analyzing student submissions using advanced natural lan-
guage processing (NLP) and computer vision techniques, these systems can assess not only
the correctness but also the quality and depth of understanding demonstrated in student
work [95]. Moreover, MLLMs enable formative assessments by providing personalized
feedback and recommendations for improvement, supporting adaptive learning paths [96].

3.6.2. Technology Used: MLLMs in Grading and Assessment

The implementation of MLLMs in grading and assessment tools involves several key
technologies. Natural language processing (NLP) and understanding (NLU) are employed
in MLLMs like GPT-4 [9] and BERT [19] to analyze and understand student-written text,
such as essays and short answers, code comments, and other textual data. These models
can evaluate grammatical correctness, coherence, argumentation quality, and adherence
to rubrics.

For short-answer scoring (SAS), models need to understand concise responses and
compare them against expected answers or rubrics. Techniques such as semantic simi-
larity assessment and entailment recognition are crucial in accurately evaluating short
answers [97].

Computer vision and image recognition are utilized for assignments involving visual
components, such as diagrams, handwritten responses, or design projects. Models like
CLIP [14] and ViT [20] process and assess visual data.

Speech and audio processing is applied in assessments requiring oral presentations or
language proficiency. Models like Wav2Vec 2.0 [65] and Speech Transformers [98] transcribe
and analyze spoken language for fluency, pronunciation, and content accuracy.

Multimodal data integration allows MLLMs to integrate data from multiple modalities
to assess complex assignments that combine text, visuals, and audio [99]. This integration
enables a holistic evaluation of student work.

Rubric-based and criterion-referenced assessment involve training AI models to align
with specific grading rubrics and criteria, ensuring that evaluations are aligned with
learning objectives [100]. For SAS, aligning models with rubrics is particularly important
due to the variability in acceptable short answers.

Feedback generation is another critical aspect, where MLLMs generate personalized
feedback, highlighting strengths and areas for improvement, and suggesting resources for
further learning [97].



Future Internet 2024, 16, 467 20 of 31

3.6.3. Examples of Applications

Several applications and systems illustrate the use of MLLMs in grading and assess-
ment. Automated essay scoring (AES) systems, such as E-Rater by ETS, employ NLP
techniques to assess essays in standardized tests, evaluating features such as grammar,
usage, mechanics, style, and development. Short-answer scoring (SAS) systems assess
brief responses to questions, requiring models to understand and evaluate the correct-
ness and relevance of concise student inputs [97]. Code assessment platforms, including
systems like MOSS (Measure of Software Similarity) [101] and CodeRunner, utilize AI
to evaluate programming assignments, checking for correctness, efficiency, and plagia-
rism [102]. Handwritten response grading involves AI models processing scanned images
of handwritten math or short-answer responses, interpreting handwriting and assessing
correctness. Oral language proficiency testing is seen in applications like Duolingo English
Test, which use speech recognition and MLLMs to evaluate language proficiency through
spoken responses [43]. Multimodal assignment evaluation includes tools that assess stu-
dent presentations or projects combining text, visuals, and audio, using MLLMs to analyze
each component and the overall coherence.

3.6.4. Case Study: Reducing the Cost of Short-Answer Scoring with MLLMs

Automated short-answer scoring (SAS) is the task of automatically evaluating brief
student responses to prompts based on predefined rubrics and reference answers [20,41,103].
SAS is particularly challenging due to the variability in acceptable answers and the need
for models to understand nuanced student inputs. A significant barrier to the widespread
adoption of SAS systems is the cost associated with preparing training data for each new
prompt, as rubrics and reference answers differ between prompts [23].

A recent study by Funayama et al. (2024) addressed this challenge by proposing a
two-phase approach to reduce the cost of training SAS models [104]. The approach involves
pre-fine-tuning a language model on existing rubrics and answers with gold score signals
from annotated prompts and then fine-tuning it on a new prompt with limited data. By
utilizing key phrases—representative expressions that answers should contain to increase
scores—the model learns the relationship between key phrases and student answers across
different prompts.

In the pre-fine-tuning phase, the model is trained on cross-prompt data, enabling it to
learn general scoring principles shared across prompts. Specifically, the model uses the key
phrases from rubrics to understand what constitutes a high-quality answer in a general
sense. During the fine-tuning phase, the model is adapted to a new prompt using limited
data, benefiting from the knowledge acquired during pre-fine-tuning without requiring
access to the proprietary cross-prompt data.

The study utilized BERT [19] as the base language model and conducted experiments
on a dataset enriched with a large number of prompts, rubrics, and answers. The findings
indicated that fine-tuning on existing cross-prompt data with key phrases significantly
improves scoring accuracy, especially when the training data for the new prompt is limited.
The model demonstrated improved generalizability and reduced the amount of in-prompt
data required for effective scoring.

Key insights included the importance of designing the model to learn the general
properties of the scoring task and leveraging key phrases to align with the rubrics. By
focusing on the relationship between key phrases and student answers, the model effec-
tively captured the essential elements required for high-quality responses, enabling it to
generalize across different prompts.

Challenges identified in the study included ensuring data accessibility, as cross-prompt
data might be proprietary and not readily available for all educators. The proposed two-
phase approach addresses this by allowing the pre-fine-tuned model’s parameters to be
shared without exposing the underlying data, thus maintaining data privacy while still
benefiting from the knowledge gained during pre-fine-tuning. Additionally, the study
emphasized the need for the model to effectively learn from diverse prompts to generalize
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well to new prompts, suggesting that increasing the diversity of prompts during pre-fine-
tuning enhances the model’s performance on unseen prompts.

The incorporation of MLLMs in SAS demonstrates significant potential for enhancing
the efficiency and scalability of short-answer grading. By reducing the data requirements
and leveraging cross-prompt learning, educators can adopt automated scoring systems with
lower costs and improved performance. Addressing challenges related to data accessibility,
model generalizability, and alignment with scoring rubrics is essential for the broader
adoption of such systems.

4. Discussion and Future Directions

The integration of multimodal large language models (MLLMs) into educational
applications offers transformative potential for teaching and learning. This section examines
the significant benefits that MLLMs bring to education, acknowledges the limitations and
challenges associated with their deployment, and proposes future directions toward a
unified AI-powered educational ecosystem. By understanding both the advantages and the
obstacles, we can better harness MLLMs to enhance educational outcomes while addressing
critical concerns.

4.1. Benefits of Using MLLMs in Educational Applications

The integration of MLLMs into educational applications is revolutionizing the land-
scape of teaching and learning. One of the foremost benefits is the facilitation of person-
alized and adaptive learning experiences. MLLMs can analyze a vast array of learner
data across multiple modalities—including text, speech, images, and videos—to tailor
educational content to individual students’ needs, preferences, and proficiency levels. This
level of personalization enhances engagement and can significantly improve academic out-
comes. For instance, adaptive learning platforms powered by MLLMs adjust the difficulty
and style of content delivery in real time, responding to the learner’s performance and
interaction patterns [62].

Moreover, MLLMs enhance engagement through their ability to process and generate
content across multiple modalities. They can transform complex textual information
into visual diagrams, provide auditory explanations for intricate concepts, or generate
interactive simulations. This multimodal content delivery caters to diverse learning styles,
making education more inclusive and effective. Research indicates that multimodal learning
experiences improve comprehension and retention rates compared to traditional unimodal
approaches. For example, science education can be significantly enriched by MLLMs
generating interactive 3D models of molecular structures or astronomical phenomena,
thereby deepening students’ understanding.

Another critical benefit is the automation and enhancement of content creation.
MLLMs can generate high-quality educational materials, including textbooks, lesson plans,
assessments, and multimedia resources. This automation reduces the burden on educators,
allowing them to allocate more time to instructional strategies and student engagement.
Additionally, the scalability of MLLMs means that educational content can be rapidly
produced and updated, ensuring that learning materials remain current with the latest
knowledge and pedagogical practices [105].

MLLMs also play a pivotal role in improving accessibility and inclusivity in education.
By offering content in various formats, they support learners with disabilities or those
requiring alternative learning resources. For instance, MLLMs can provide real-time
transcription and translation services, convert text to speech for visually impaired learners,
or generate sign language representations for the hearing impaired. Such capabilities
ensure that education becomes more equitable, aligning with universal design for learning
principles [106].

Furthermore, MLLMs offer advanced support for educators through AI-powered
tools. By leveraging predictive analytics and insights derived from multimodal educational
data, MLLMs can identify learning gaps, predict at-risk students, and suggest targeted
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interventions. Automated grading systems powered by MLLMs provide objective evalua-
tions and detailed, personalized feedback across various types of student work, including
essays, presentations, and even creative projects. This not only enhances the efficiency
of educational processes but also improves the quality of feedback, which is crucial for
student development.

Lastly, MLLMs enable the development of intelligent virtual tutors and chatbots that
provide personalized support and interactive learning opportunities through natural lan-
guage conversations. These AI agents can answer students’ queries in real time, provide
explanations, and guide them through problem-solving processes. The continuous avail-
ability of such support fosters learner autonomy and can bridge gaps in understanding
outside traditional classroom hours [107].

4.2. Limitations of Using MLLMs in Educational Applications

Despite the significant benefits, the deployment of MLLMs in education is accom-
panied by several limitations that warrant careful consideration. One of the primary
challenges is the technical and resource constraints associated with implementing these
advanced models. MLLMs require substantial computational power and specialized tech-
nical expertise to develop, deploy, and maintain. Educational institutions, especially those
in developing regions or with limited funding, may find it prohibitive to invest in the
necessary infrastructure. This disparity can exacerbate existing inequalities in educational
access and quality [108].

Data privacy and security concerns also pose significant obstacles. MLLMs often
rely on the collection and analysis of extensive personal data to function effectively. In
educational settings, this includes sensitive information about students’ learning behav-
iors, performance, and potentially personal identifiers. Ensuring compliance with data
protection regulations such as the General Data Protection Regulation (GDPR) in Europe or
the Family Educational Rights and Privacy Act (FERPA) in the United States is essential.
However, many institutions may lack the robust data governance frameworks required to
safeguard this information adequately [109].

Bias and fairness issues inherent in MLLMs are another critical limitation [110–112].
These models learn patterns from vast datasets, which may contain historical biases and
stereotypes. Consequently, MLLMs can inadvertently perpetuate or even amplify these
biases in their outputs, affecting the fairness and equity of educational content and assess-
ments. For example, language models might generate content that is culturally insensitive
or skewed towards certain demographics, disadvantaging minority groups. Addressing
these biases is essential to prevent the reinforcement of inequalities within the educational
system [77].

Moreover, the use of MLLM applications separately, as standalone solutions, leads
to fragmentation and inefficiencies. Isolated applications may not integrate seamlessly
with existing educational technologies or with each other, resulting in a disjointed learn-
ing experience for students. This lack of interoperability hampers the comprehensive
understanding of a learner’s progress, as data and insights are siloed within individual
applications. Educators may struggle to aggregate information from disparate sources to
inform instructional decisions effectively [113]. Consequently, the potential of MLLMs to
enhance education is not fully realized when applications operate in isolation.

Over-reliance on technology and reduced human interaction present additional con-
cerns. While MLLMs can augment educational processes, there is a risk that excessive
dependence on AI could diminish the role of educators and the value of human relation-
ships in learning. Social interaction, mentorship, and the development of soft skills are
critical components of education that AI cannot fully replicate. Students may miss out on
the nuances of human communication, empathy, and collaborative learning experiences,
which are essential for personal and professional development.

Finally, ethical considerations regarding the transparency and accountability of AI
decision-making processes are paramount. MLLMs operate as complex black-box models,
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making it challenging to interpret how they arrive at specific outputs or recommendations.
This opacity can hinder trust and acceptance among educators and learners, who may be
wary of relying on systems that lack explainability. Ensuring that MLLMs provide inter-
pretable and justifiable outputs is crucial for their successful integration into educational
settings [114].

4.3. Future Directions: Towards a Unified AI-Powered Educational Ecosystem

The limitations associated with standalone MLLM applications underscore the need
for a cohesive and integrated approach. The future of educational technology lies in
developing a unified AI-powered educational ecosystem that brings together various LLM
and MLLM agents in a coordinated and interoperable framework. Such an ecosystem
would address inefficiencies by enabling seamless communication and data exchange
between AI agents, educational platforms, and stakeholders.

Creating this unified ecosystem involves establishing common standards and protocols
for data interoperability. By adopting open architectures and APIs, different AI agents and
educational technologies can interact effectively, sharing insights and providing a holistic
view of learner progress. This interoperability facilitates personalized learning pathways
that adapt based on comprehensive data from multiple sources, enhancing the effectiveness
of educational interventions.

MLLM agents, which integrate language understanding with multimodal data process-
ing—such as text, images, audio, and video—play a critical role in enriching educational
content and interactions. For instance, models like PaLM-E [115] and LLaVA [30] demon-
strate the potential of MLLMs in understanding and generating multimodal content. These
agents can interpret visual inputs and generate coherent textual explanations, enabling
more interactive and engaging learning experiences.

LLM agents, built upon advanced language models like GPT-4 [9], serve as conver-
sational interfaces that guide learners through educational materials, answer complex
queries, and provide real-time feedback. They enhance learner autonomy by supporting
self-directed learning and offering personalized recommendations based on individual
progress and preferences.

Integrating retrieval-augmented generation (RAG) technology further enhances the
capabilities of these AI agents within the educational ecosystem. RAG models combine
the strengths of large language models with external knowledge bases, enabling the AI
to access and retrieve relevant information from vast datasets in real time [116]. This
integration ensures that the AI agents provide up-to-date and accurate information, which
is particularly crucial in rapidly evolving fields of study.

In the unified ecosystem (see Figure 4), MLLM and LLM agents equipped with RAG
capabilities collaborate to deliver adaptive learning pathways. For example, when a learner
poses a question that requires current data or specialized knowledge, the RAG-enabled
agent can retrieve information from trusted educational databases, scholarly articles, or
institutional repositories [117]. This approach not only enhances the depth and accuracy of
responses but also allows for personalized content generation that aligns with the learner’s
curriculum and learning objectives.

Furthermore, these AI agents enable global connectivity among learners and educators,
fostering cross-cultural exchanges and collaborative projects. Platforms incorporating
MLLM, LLM, and RAG technologies can facilitate mentorship opportunities, virtual study
groups, and peer feedback mechanisms, promoting peer-to-peer learning on a global scale.

Advancements in cloud computing and edge technologies offer scalable and accessible
infrastructure for deploying MLLMs [54]. Utilizing cloud-based services allows institu-
tions to leverage powerful AI capabilities without the need for extensive on-premises
hardware. This democratization of technology can reduce barriers to adoption, enabling
institutions of varying sizes and resources to participate in the unified ecosystem. Partner-
ships with technology providers and investment in shared resources can further enhance
accessibility [118].
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Figure 4. Future unified AI-powered educational ecosystem, supported by external modules and in-

frastructures.

Embedding ethical AI practices into the design and implementation of the unified
ecosystem is imperative. This includes ensuring transparency in AI algorithms, implement-
ing measures to detect and mitigate biases, and upholding stringent data privacy standards.
Engaging a diverse group of stakeholders—including educators, learners, policymakers,
and ethicists—in the development process can help align the technology with educational
values and societal norms [119].

The unified ecosystem should be envisioned as augmenting, rather than replacing,
the role of educators. AI agents can handle administrative tasks, provide supplemental
instruction, and offer personalized support, freeing educators to focus on higher-order
teaching activities such as facilitating critical discussions, fostering creativity, and mentor-
ing students. This synergy between AI and human educators enhances the educational
experience by combining technological efficiency with human insight and empathy [3].

Moreover, the unified ecosystem can foster global collaboration and resource shar-
ing. By connecting educational platforms across institutions and borders, learners and
educators can engage in cross-cultural exchanges, collaborative projects, and peer learning
opportunities. Such global connectivity enriches the educational experience, preparing
learners for participation in an increasingly interconnected world [120].

To support continuous learning and adaptability, the ecosystem should incorporate
mechanisms for ongoing feedback and improvement. AI agents can learn from interactions,
outcomes, and user feedback, refining their models over time to enhance effectiveness.
Additionally, professional development programs for educators are essential to equip them
with the skills to leverage AI tools effectively and to adapt pedagogical approaches in
response to technological advancements [73].

In conclusion, transitioning towards a unified AI-powered educational ecosystem
addresses the limitations of standalone MLLM applications and maximizes the benefits of
AI in education. By integrating various AI agents into a cohesive platform that emphasizes
interoperability, ethical practices, and collaboration between technology and human edu-
cators, the educational landscape can be transformed. This unified approach promises to
create a more connected, equitable, and effective educational system that is responsive to
the needs of learners in the era of AI.
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4.4. Shift of Tides in Future Education

One of the most significant changes is that future education will be full of lifelong
learning opportunities. Education is evolving beyond the confines of traditional institutions
and specific age groups. Large language models (LLMs) have the potential to enhance
lifelong learning by creating adaptive learning paths tailored to individuals at any stage of
their careers. These models can curate personalized educational experiences, recommend
relevant resources, and even simulate mentorship. For example, platforms like Coursera
utilize AI-driven algorithms to suggest courses aligned with user preferences and identified
skill gaps [121]. Additionally, Duolingo’s integration of GPT-4 for personalized language
instruction demonstrates how LLMs can revolutionize continuous learning [46]. Recent
research by Liu et al. [122] explores how LLMs can adapt content delivery based on real-time
learner feedback, further personalizing the educational experience.

At the same time, artificial intelligence is redefining the roles and responsibilities
of educators. Artificial intelligence will not replace educators but will augment their
roles. LLMs can handle routine tasks such as grading, administrative work, and resource
generation, allowing teachers to focus on fostering critical thinking and creativity. For
instance, AI assistants like Gradescope by Turnitin have already streamlined grading
workflows. Future LLM-driven systems could further assist by providing insights into
student behavior, recommending tailored interventions, and offering real-time teaching
assistance. Projects like Khan Academy’s Khanmigo, developed using OpenAI’s GPT-4,
exemplify how AI can support educators by providing personalized tutoring and aiding
in lesson planning [123]. With proper use of LLMs tools, they can also analyze student
interactions to offer educators actionable insights, enhancing the effectiveness of teaching
strategies [124].

Looking ahead, it will be crucial to ensure that LLM-driven educational tools support
diverse local and cultural contexts. One proposal is to encourage modular integration of
LLMs within existing course management systems, allowing educators to select, adjust, and
refine AI-driven resources without overhauling their entire digital infrastructure. Another
avenue involves enhancing the explainability and transparency of LLM outputs, enabling
teachers and learners to understand the reasoning behind suggestions and decisions.
Additionally, collaborations between AI developers, educators, and policymakers could
yield standards and best practices that preserve data privacy, maintain ethical rigor, and
promote fair access. Such efforts may include open data frameworks that allow educational
institutions to share vetted learning materials, or the development of certification programs
that recognize teachers trained in effectively leveraging LLM tools.

5. Conclusions

5.1. Summary of Key Insights

This survey underscores the transformative potential of multimodal large language
models (MLLMs) in education, highlighting their effectiveness in diverse fields such as
language learning, STEM education, and content creation. MLLMs have demonstrated
significant improvements in student engagement, comprehension, and overall educational
outcomes. By leveraging their ability to integrate multiple data modalities, MLLMs provide
a richer and more interactive learning experience compared to traditional educational tools.

5.2. Final Thoughts

The integration of MLLMs into educational settings marks a substantial step forward
in enhancing the learning experience. However, there are several challenges that need to
be addressed to ensure their responsible use. Ethical considerations, such as the potential
for bias in AI-generated content, privacy concerns related to data collection, and the
need for transparency in AI decision-making processes, are critical issues that must be
continually evaluated [77,125]. Furthermore, it is essential to consider the implications of
these technologies on educational equity, ensuring that all students have equitable access
to the benefits of MLLMs, regardless of socioeconomic status or geographic location [73].
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Another major ethical issue is algorithmic bias. MLLMs, like all AI systems, are only
as unbiased as the data on which they are trained. If the training data reflect existing biases,
these can be perpetuated or even exacerbated by the AI system, leading to unfair educa-
tional outcomes for certain groups of students. It is crucial that educational institutions and
AI developers work together to ensure that the datasets used to train MLLMs are diverse
and representative [77].

Further research and development are crucial to fully realize the potential of MLLMs
in education. This includes not only advancing the technical capabilities of these models
but also ensuring that their deployment in educational environments is guided by ethical
principles and a commitment to equity. Collaboration among educators, technologists,
policymakers, and ethicists will be vital in shaping the future of education in the age of AI.
Developing comprehensive frameworks for the ethical evaluation of AI tools in education
can help address these challenges and ensure that the integration of MLLMs benefits all
learners [62].

Moreover, continuous audits and assessments of AI systems are necessary to identify
and mitigate biases, ensuring that these systems remain fair, transparent, and effective.
The development of MLLMs should also be inclusive, with diverse AI development teams
representing different perspectives and experiences to help identify potential biases early
in the development process [126].

To move forward, stakeholders must focus on creating inclusive, adaptable, and re-
sponsible educational environments that leverage the power of MLLMs while safeguarding
against their potential risks. This proactive approach will help maximize the benefits of
AI-driven education, preparing students for a rapidly evolving digital world and ensuring
that the future of learning is bright, equitable, and effective.
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