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A B S T R A C T

The paper is concerned with assigning jobs, each with associated additional operations, to identical machines.
A machine, allocated to a job, must also process all the additional operations associated with this job. An
additional operation that is associated with several jobs assigned to the same machine needs to be processed
by this machine only once. The goal is to minimise the time needed for the completion of all jobs and their
additional operations. It is shown that even very restricted particular cases of the considered problem remain
NP-hard in the strong sense. For the general case, the paper introduces two mixed integer linear programs as
well as a broad class of approximation algorithms and a performance guarantee that is valid for any algorithm
in this class. It is shown that, for one of the above-mentioned NP-hard particular cases, the considered class
contains the best possible approximation algorithm. The performance of the mixed integer linear programs
and several approximation algorithms is compared by means of computational experiments.
1. Introduction

The research presented below was triggered by the needs of a
company designing integrated circuits. In order to test the conformance
of design to the specifications, the company must run various com-
puter programs, each on one workstation from a cluster of identical
workstations. To be prepared for running a program, a workstation has
to complete some additional operations associated with this program,
such as the installation of special libraries, parameter setting and
activation of background processes, and delineation of data sets. The
sets of associated operations for different computer programs assigned
to the same workstation may overlap. In this case, any such common
operation needs to be completed on this workstation only once. The
objective is to determine an assignment of computer programs (and
their associated additional operations) to the workstations that allows
to finish the entire testing in a minimal time.

The research presented below is also applicable far beyond the scope
of software testing. One of such applications is production planning
when it is necessary to minimise the time needed for producing certain
products on identical machining centres. A machining centre permits
the installation of all tools prior to the start of processing and after
this installation produces products by applying the installed tools one
by one in the required order. If several products, assigned to the same
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machining centre, need the same tool (maybe in conjunction with some
other tools), this common tool needs to be installed only once.

The analysed problem can be stated as follows. Consider a finite
set of jobs 𝑁 , each of which is to be assigned to one of 𝑚 identical
machines, where 𝑚 < |𝑁|. It is convenient to assume that the machines
are numbered from 1 to 𝑚 and to denote the set of jobs assigned to
machine 𝑘 ∈ {1,… , 𝑚} by 𝑁𝑘. Each 𝑖 ∈ 𝑁 has a finite set of associated
additional operations 𝑀(𝑖). A machine can process a job 𝑖 only if it also
processes all operations in 𝑀(𝑖). If, for two jobs 𝑖 and 𝑗 assigned to the
same machine, 𝑀(𝑖) ∩𝑀(𝑗) ≠ ∅, then this machine needs to complete
each operation in 𝑀(𝑖)∩𝑀(𝑗) only once. Denote the set of all additional
operations by 𝑀 , i.e. 𝑀 = ∪𝑖∈𝑁𝑀(𝑖), and the processing time of each
𝑔 ∈ 𝑁 ∪ 𝑀 by 𝑝𝑔 . In what follows, it is assumed that all processing
times are positive integers. The goal is to find a partition of 𝑁 into 𝑁1,
. . . , 𝑁𝑚 with the smallest makespan, i.e. with the smallest value of the
function

𝑓 (𝑁1,… , 𝑁𝑚) = max
1≤𝑒≤𝑚

(

∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗

)

. (1)

In what follows, this problem will be referred to as Assignment with
Sharing Additional Operations (ASAO).
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To the best of the authors’ knowledge, the ASAO problem has
never been studied previously. Saying this, it is important to stress
that the ASAO problem closely relates to scheduling with communi-
cation delay and duplication — an active research area in computer
science motivated by the necessity to take into account the time needed
for transferring data between processors in multiprocessor computer
systems.

For the purpose of this discussion, the scheduling problem with
communication delay and duplication can be stated as follows. Con-
sider a finite set of tasks 𝐽 that are to be processed on 𝑚 > 1 parallel
dentical machines. Each machine can process at most one task at

time. Each task 𝑖 ∈ 𝐽 can be processed by any machine and its
rocessing time 𝑝𝑖 remains the same regardless of the machine. Since
uplication is allowed, any task can be processed more than once, each
ime on a different machine. Such a machine processes its own copy
duplicate) of this task; all these duplicates are identical; and the start
f processing a copy does not depend on the start of processing any
ther copy of the same task. The tasks are to be processed subject to
recedence constraints in the form of a directed acyclic graph 𝐺(𝐽 , 𝐴),

where 𝐽 is the set of nodes and 𝐴 is the set of arcs. For any (𝑖, 𝑗) ∈ 𝐴,
achine 𝑘 can start processing a copy of 𝑗 at time 𝑆𝑘

𝑗 only if either the
ame machine starts processing a copy of 𝑖 at time 𝑆𝑘

𝑖 satisfying the
nequality 𝑆𝑘

𝑖 + 𝑝𝑖 ≤ 𝑆𝑘
𝑗 , or 𝑘 does not process a copy of 𝑖 and there

xists machine 𝑘′ that starts processing a copy of 𝑖 at 𝑆𝑘′
𝑖 satisfying

the inequality 𝑆𝑘′
𝑖 + 𝑝𝑖 + 𝑐𝑖𝑗 ≤ 𝑆𝑘

𝑗 , where 𝑐𝑖𝑗 is a non-negative constant
called communication delay. The goal is to minimise the time needed
to complete all tasks. This time is commonly called the makespan and
is denoted by 𝐶max.

It is easy to see that the optimum solution of the ASAO problem
can be found by solving the stated-above scheduling problem with the
bipartite directed acyclic graph 𝐺(𝑀 ∪ 𝑁,𝐴) where the set of arcs is
comprised of all arcs (𝑖, 𝑗) such that 𝑖 is in 𝑀 , 𝑗 is in 𝑁 , and 𝑖 is an
operation associated with task 𝑗, and where the communication delay
𝑐𝑖𝑗 = ∞ for all (𝑖, 𝑗) ∈ 𝐴. Conversely, the scheduling problem with
the bipartite graph 𝐺(𝑀 ∪ 𝑁,𝐴) and infinite communication delay is
equivalent to the ASAO problem.

The rest of the paper is organised as follows. Section 2 outlines
the contribution of this paper together with a survey of the relevant
publications. Section 3 shows that even some very restricted partic-
ular cases of the ASAO problem are NP-hard in the strong sense.
Section 4 introduces a family of approximation algorithms and a per-
formance guarantee which is valid for all the algorithms in this fam-
ily. Section 5 presents two alternative mixed integer linear programs,
while Section 6 describes randomised constructive algorithms. Sec-
tion 7 presents the results of computational experiments with the solu-
tion methods discussed in this paper. The conclusions can be found in
Section 8.

2. Contribution of the paper and related publications

Since the pioneer publications (Rayward-Smith, 1987; Papadim-
itriou and Yannakakis, 1990), scheduling with communication de-
lay has remained a subject of extensive research (Giroudeau and
König, 2007; Drozdowski, 2009). This research is largely motivated by
the necessity to schedule operations in the multiprocessor computer
systems.

Using the three-field notation adopted in scheduling theory (Gra-
ham et al., 1979), the above-stated scheduling problem with commu-
nication delay and duplication can be denoted by 𝑃 |𝑝𝑟𝑒𝑐, 𝑐𝑖𝑗 , 𝑑𝑢𝑝|𝐶𝑚𝑎𝑥.
If, in the precedence constraints (in the acyclic directed graph), a path
cannot contain more than one arc, then the attribute 𝑝𝑟𝑒𝑐 is replaced
by 1𝑝𝑟𝑒𝑐. If, in addition, this directed graph is an out-tree or in-tree,
2

r

then the attribute 1𝑝𝑟𝑒𝑐 is replaced by 1𝑜𝑢𝑡-𝑡𝑟𝑒𝑒 or 1𝑖𝑛-𝑡𝑟𝑒𝑒, respectively.
If all instances of this scheduling problem have the same number of
machines, then the attribute 𝑃 in the first field, indicating that the
number of parallel identical machines is part of the input and may
vary from instance to instance, is replaced by 𝑃𝑚, indicating that all
instances have the same number of machines 𝑚. Similarly, 𝑝𝑖 = 1
and 𝑐𝑖𝑗 = ∞ in the second field of the three-field notation indicate
that the processing of each task takes one unit of time and that the
communication delay is infinitely large, respectively. If the second field
does not contain 𝑐𝑖𝑗 , then 𝑐𝑖𝑗 = 0 for all (𝑖, 𝑗) ∈ 𝐴. The attribute 𝑑𝑢𝑝
indicates the possibility that a task can have multiple copies across
different machines. If the second field does not contain the attribute
𝑑𝑢𝑝, then duplication is not allowed.

Section 3 shows that even some very restricted versions of the ASAO
problem are NP-hard in the strong sense. In terms of scheduling with
communication delay and duplication these results are:

• strong NP-hardness of 𝑃 2|1𝑝𝑟𝑒𝑐, 𝑐𝑖𝑗 = ∞, 𝑝𝑖 = 1, 𝑑𝑢𝑝|𝐶max;
• strong NP-hardness of 𝑃 |1𝑖𝑛-𝑡𝑟𝑒𝑒, 𝑐𝑖𝑗 = ∞, 𝑝𝑖 = 1, 𝑑𝑢𝑝|𝐶max;
• strong NP-hardness of 𝑃 |1𝑜𝑢𝑡-𝑡𝑟𝑒𝑒, 𝑐𝑖𝑗 = ∞, 𝑝𝑖 = 1, 𝑑𝑢𝑝|𝐶max.

The known results in this realm are as follows. According to Zinder
and Roper (1995), 𝑃 |1𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1|𝐶max is NP-hard in strong sense,

hile Papadimitriou and Yannakakis (1990) proved that scheduling
nit execution time tasks on an infinite number of machines with
constant communication delay and duplication, i.e., the problem
∞|𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 𝑐, 𝑑𝑢𝑝|𝐶max, is NP-hard. Jakoby and Reischuk (1992
roved that this problem remains NP-hard even if the precedence con-
traints graph is a binary in-tree. Chrétienne (1994) showed that when
ask processing times and communication delays are arbitrary, then
he problem with unlimited number of processors is NP-hard even when
he precedence graph is an in-tree of depth two. Strong NP-hardness of
roblem 𝑃 |𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max has been proven by Rayward-Smith
1987). Hoogeveen et al. (1994) showed that even the
roblem 𝑃 |𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max = 4 is strongly NP-complete.
enstra et al. (1996) proved the strong NP-hardness of problem
|𝑖𝑛-𝑡𝑟𝑒𝑒, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max. In all these cases, allowing duplication
oes not affect the proofs, and hence, the corresponding problems with
uplication are also strongly NP-hard (Drozdowski, 2009). Bampis et al.
1996) proved that problem 𝑃 |𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 𝑐, 𝑑𝑢𝑝|𝐶max = 𝑐 + 3 is
P-complete, which also follows from the result by Hoogeveen et al.

1994) mentioned above.
Sections 4–6 propose algorithms for solving the general case of the

SAO problem and contribute:

• a performance guarantee for a family of approximation algo-
rithms,

• two mixed integer linear programs,
• randomised constructive algorithms.

n terms of scheduling with communication delay and duplication,
hese results complement the following existing literature. Papadim-
triou and Yannakakis (1990) designed a 2-approximation algorithm
or 𝑃∞|𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 𝑐, 𝑑𝑢𝑝|𝐶max. Colin and Chrétienne (1991) pro-
osed an algorithm that generates optimal schedules for problem
∞|𝑝𝑟𝑒𝑐, 𝑐𝑖𝑗 , 𝑑𝑢𝑝|𝐶max if communication delays are smaller than the
inimum task execution time. Jung et al. (1989) solved problem
∞|𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 𝑐, 𝑑𝑢𝑝|𝐶max with an 𝑂(|𝐽 |𝑐+2) dynamic program-
ing algorithm. For a finite number 𝑚 of machines, unit task execution

imes, and unit communication delay, Munier and Hanen (1997) de-
1 performance guarantee for a list scheduling algorithm.
ived the 2 − 𝑚
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Various heuristic algorithms without a performance guarantee were
designed for the general scheduling problem with communication delay
and duplication by Kruatrachue and Lewis (1988), Darbha and Agrawal
(1997), Ahmad and Kwok (1998), Park et al. (1998), Bansal et al.
(2003). Maiti et al. (2020) proposed a polynomial-time approximation
algorithm for scheduling on uniform machines with a fixed commu-
nication delay. Orr and Sinnen (2020) devised a branch-and-bound
algorithm for problem 𝑃 |𝑝𝑟𝑒𝑐, 𝑐𝑖𝑗 , 𝑑𝑢𝑝|𝐶max and investigated the number
of duplicated tasks in the produced schedules. Tang et al. (2020)
formulated the problem as a mixed integer linear program. Ahmad
and Alam (2021) proposed a list scheduling algorithm incorporating
task duplication for heterogeneous computing environments executing
scientific big data workflow applications.

3. Computational complexity

An instance of the decision version of the ASAO problem requires
an answer to the question: for a given positive integer 𝐶, does there
exist a partition of 𝑁 into 𝑚 non-empty subsets 𝑁1, . . . , 𝑁𝑚 for which
𝑓 (𝑁1,… , 𝑁𝑚) does not exceed 𝐶?

The proof below is a reduction from the Clique problem (CLIQUE)
that is strongly NP-complete (Garey and Johnson, 1979) and can be
stated as follows:

CLIQUE Given an integer 𝑘 > 1 and a graph 𝐺(𝑉 ,𝐸), where 𝑉 is the
set of nodes and 𝐸 is the set of edges, such that

𝑘 < |𝑉 | and 𝑘2 − 𝑘
2

< |𝐸|. (2)

Does 𝐺(𝑉 ,𝐸) contain 𝑘 nodes that induce a subgraph where any two
nodes are linked by an edge (such a subgraph is called complete or
a 𝑘-clique)?

Observe that the largest number of edges in a graph with 𝑘 nodes
is 𝑘2−𝑘

2 , and a graph with 𝑘 nodes has this number of edges if and only
f it is complete (is a 𝑘-clique).

heorem 1. The ASAO problem is NP-hard in the strong sense even when
= 2 and 𝑝𝑖 = 1 for all 𝑖 ∈ 𝑁 ∪𝑀 .

roof. Let integer 𝑘 > 1 and graph 𝐺(𝑉 ,𝐸) be an instance of the
LIQUE problem, where 𝑉 = {𝑣1,… , 𝑣𝑛} is the set of nodes and 𝐸 is
he set of edges. The edge that links nodes 𝑣 and 𝑢 will be denoted by
𝑣, 𝑢}. The corresponding instance of the decision version of the ASAO
roblem is constructed as follows.

For each {𝑣, 𝑢} ∈ 𝐸, introduce a job 𝑥{𝑣,𝑢}. Denote the set of all these
obs by 𝑋. Observe that |𝑋| = |𝐸|. Introduce two additional disjoint sets
f jobs, 𝑇 and 𝑇0, such that

𝑇 | = 𝑘2 + 𝑘
2

and |𝑇0| = 1. (3)

The set 𝑁 is a union of these three disjoint sets, 𝑋, 𝑇 , and 𝑇0. For each
𝑣 ∈ 𝑉 , introduce an operation 𝑦𝑣. Denote the set of all these operations
y 𝑌 . Observe that |𝑌 | = |𝑉 |. The set 𝑀 is a union of two disjoint sets

of operations, 𝑌 and an additional set 𝑆 such that

|𝑆| = 𝑛 + |𝐸| − 𝑘2 − 𝑘
2

− 1. (4)

For each 𝑗 ∈ 𝑁 ,

𝑀(𝑗) =

⎧

⎪

⎨

⎪

⎩

𝑆 if {𝑗} = 𝑇0
{𝑦𝑣} ∪ {𝑦𝑢} if 𝑗 = 𝑥{𝑣,𝑢} ∈ 𝑋

𝑌 if 𝑗 ∈ 𝑇
. (5)

Finally,
3

𝐶 = 𝑛 + |𝐸| + 𝑘, 𝑚 = 2, and 𝑝𝑖 = 1 for all 𝑖 ∈ 𝑁 ∪𝑀.
Suppose that there exists a partition of 𝑁 into 2 non-empty subsets
𝑁1 and 𝑁2 such that

𝑓 (𝑁1, 𝑁2) ≤ 𝐶 = 𝑛 + |𝐸| + 𝑘. (6)

Without loss of generality assume that 𝑇0 ⊆ 𝑁1. Then, by virtue of (5),
𝑆 ⊆ ∪𝑖∈𝑁1𝑀(𝑖). Furthermore, this assumption leads to the inequality

𝑇 ∩𝑁2 ≠ ∅, (7)

because otherwise 𝑇 ⊂ 𝑁1, which, by virtue of (5), implies 𝑌 ⊂
∪𝑖∈𝑁1𝑀(𝑖), and consequently,

𝑓 (𝑁1, 𝑁2) ≥
∑

𝑖∈𝑁1

𝑝𝑖 +
∑

𝑗∈∪𝑖∈𝑁1𝑀(𝑖)
𝑝𝑗 ≥ |𝑇0| + |𝑇 | + |𝑆| + |𝑌 |

1 + 𝑘2 + 𝑘
2

+ 𝑛 + |𝐸| − 𝑘2 − 𝑘
2

− 1 + 𝑛 > 𝐶,

which contradicts (6). This, in turn, implies that 𝑇 ∩ 𝑁1 = ∅, because
otherwise, by virtue of (5) and (7),

𝑌 ⊂ ∪𝑖∈𝑁1𝑀(𝑖) and 𝑌 ⊆ ∪𝑖∈𝑁2𝑀(𝑖),

and consequently, taking into account (2),

𝑓 (𝑁1, 𝑁2) ≥
2|𝑌 | + |𝑆| + |𝑋| + |𝑇 | + |𝑇0|

2

= 𝑛 + 𝑛
2
+

|𝐸|

2
− 𝑘2 − 𝑘

4
− 1

2
+

|𝐸|

2
+ 𝑘2 + 𝑘

4
+ 1

2
> 𝐶,

hich contradicts (6).
Summarising the above,

0 ⊆ 𝑁1, 𝑆 ⊆ ∪𝑖∈𝑁1𝑀(𝑖), 𝑇 ⊆ 𝑁2, 𝑌 ⊆ ∪𝑖∈𝑁2𝑀(𝑖), (8)

nd hence,

𝑋 ∩𝑁2
| ≤ 𝐶 − |𝑌 | − |𝑇 | = 𝑛 + |𝐸| + 𝑘 − 𝑛 − 𝑘2 + 𝑘

2
= |𝐸| − 𝑘2 − 𝑘

2
,

which, since |𝐸| = |𝑋| = |𝑋 ∩𝑁2
| + |𝑋 ∩𝑁1

|, gives

𝑘2 − 𝑘
2

≤ |𝑋 ∩𝑁1
|. (9)

Furthermore, by (6) and (8),

| ∪𝑖∈𝑁1 𝑀(𝑖) ∩ 𝑌 | + |𝑋 ∩𝑁1
| ≤ 𝐶 − |𝑆| − |𝑇0|

𝑛 + |𝐸| + 𝑘 −
(

𝑛 + |𝐸| − 𝑘2 − 𝑘
2

− 1
)

− 1 = 𝑘2 − 𝑘
2

+ 𝑘.

Moreover, by adding

| ∪𝑖∈𝑁1 𝑀(𝑖) ∩ 𝑌 | + |𝑋 ∩𝑁1
| ≤ 𝑘2 − 𝑘

2
+ 𝑘

and (9), we get

| ∪𝑖∈𝑁1 𝑀(𝑖) ∩ 𝑌 | ≤ 𝑘. (10)

Denote by 𝑉 the set of all nodes 𝑣 in the graph 𝐺(𝑉 ,𝐸) such that the
corresponding operation 𝑦𝑣 ∈ ∪𝑖∈𝑁1𝑀(𝑖) ∩ 𝑌 , and denote by 𝐸 the set
f all edges {𝑣, 𝑢} in the graph 𝐺(𝑉 ,𝐸) such that the corresponding job
{𝑣,𝑢} ∈ 𝑋 ∩𝑁1. According to (5), for each {𝑣, 𝑢} ∈ 𝐸, the nodes 𝑣 and
are in 𝑉 . Hence, by virtue of (9) and (10) and by taking into account

hat the number of edges in a graph containing |𝑉 | nodes cannot exceed
|𝑉 |

2−|𝑉 |

2 ,

𝑘2 − 𝑘
2

≤ |𝑋 ∩𝑁1
| = |𝐸| ≤

≤ |𝑉 |

2
− |𝑉 |

2
=

| ∪𝑖∈𝑁1 𝑀(𝑖) ∩ 𝑌 |2 − | ∪𝑖∈𝑁1 𝑀(𝑖) ∩ 𝑌 |
2

≤ 𝑘2 − 𝑘
2

which implies

|𝐸| = 𝑘2 − 𝑘 . (11)

2
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The right-hand side of (11) is the largest number of edges in a graph
with 𝑘 nodes. Therefore, the number of nodes in 𝑉 cannot be less than
. This observation, together with (10), gives

≤ |𝑉 | = | ∪𝑖∈𝑁1 𝑀(𝑖) ∩ 𝑌 | ≤ 𝑘,

nd consequently, |𝑉 | = 𝑘, which, by virtue of (11), implies that the
ubgraph induced by 𝑉 is a 𝑘-clique.

Conversely, assume that the graph 𝐺(𝑉 ,𝐸) has a 𝑘-clique. Without
loss of generality, let 𝑣1, . . . , 𝑣𝑘 be the nodes in this clique. Consider
the partition of 𝑁 into 𝑁1 and 𝑁2 where

𝑁1 = 𝑇0 ∪ {𝑥{𝑣𝑖 ,𝑣𝑗} ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑘}. (12)

Then, according to (5),

∪𝑖∈𝑁1𝑀(𝑖) = {𝑦𝑣1 ,… , 𝑦𝑣𝑘} ∪ 𝑆,

and taking into account (3) and (4),
∑

𝑖∈𝑁1

𝑝𝑖 +
∑

𝑗∈∪𝑖∈𝑁1𝑀(𝑖)
𝑝𝑗 = 1 + 𝑘2 − 𝑘

2
+ 𝑘 + 𝑛 + |𝐸| − 𝑘2 − 𝑘

2
− 1 = 𝐶.

Furthermore, (12) implies that
2 = 𝑇 ∪ (𝑋 ⧵ {𝑥{𝑣𝑖 ,𝑣𝑗} ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑘}), (13)

hich, in turn, by virtue of (5), implies

𝑖∈𝑁2𝑀(𝑖) = 𝑌 .

onsequently, taking into account (3),
∑

∈𝑁2

𝑝𝑖 +
∑

𝑗∈∪𝑖∈𝑁2𝑀(𝑖)
𝑝𝑗 = |𝑇 | + |𝑋 ⧵ {{𝑣𝑖, 𝑣𝑗} ∶ 𝑖 < 𝑗 ≤ 𝑘}| + |𝑌 |

= 𝑘2 + 𝑘
2

+ |𝑋| − 𝑘2 − 𝑘
2

+ |𝑉 | = 𝑘 + |𝐸| + 𝑛 = 𝐶.

Hence, the partition of 𝑁 , defined by (12) and (13), satisfies (6). □

Two particular cases of the ASAO problem, studied below, will be
eferred to as ASAO_M and ASAO_N. Observe that, for both problems,
SAO_M and ASAO_N, the number of machines 𝑚 can vary from

nstance to instance.
For each instance of ASAO_M,

• 𝑝𝑖 = 1 for all 𝑖 ∈ 𝑁 ∪𝑀 ;
• the number of machines 𝑚 is part of the input;
• |𝑀(𝑖)| = 1 for all 𝑖 ∈ 𝑁 .

Thus, each job has only one associated additional operation, although
the same additional operation can be associated with several jobs.

As far as ASAO_N is concerned, for any 𝑗 ∈ 𝑀 , denote by 𝑁(𝑗) the
set of all 𝑖 ∈ 𝑁 such that 𝑗 ∈ 𝑀(𝑖). For each instance of ASAO_N,

• 𝑝𝑖 = 1 for all 𝑖 ∈ 𝑁 ∪𝑀 ;
• the number of machines 𝑚 is part of the input;
• |𝑁(𝑗)| = 1 for all 𝑗 ∈ 𝑀 .

Thus, each additional operation is associated with only one job, al-
though the same job can be associated with several additional oper-
ations.

The proof of the following theorem is a reduction from the 3-
partition problem (3-PARTITION), which is strongly NP-complete (Garey
and Johnson, 1979) and can be stated as follows:

3-PARTITION Given 3𝑟 integers 𝑎1,… , 𝑎3𝑟, each greater than one,
and an integer 𝐵 such that
3𝑟
∑

𝑘=1
𝑎𝑘 = 𝑟𝐵, (14)

and, for each 𝑘,
𝐵 < 𝑎 < 𝐵 . (15)
4

4 𝑘 2
Does there exist a partition of the set {1, 2,… , 3𝑟} into 𝑟 subsets
𝑍1,… , 𝑍𝑟 such that, for each 𝑍𝑒,
∑

𝑘∈𝑍𝑒

𝑎𝑘 = 𝐵? (16)

Observe that (15) implies that if the desired partition exists, the cardi-
nality of each 𝑍𝑘 is equal to three.

Theorem 2. The ASAO_M problem is NP-hard in the strong sense.

Proof. Consider an instance of the 3-PARTITION problem, i.e. 3𝑟
integers 𝑎1,… , 𝑎3𝑟, each greater than one, and an integer 𝐵, satisfying
(14) and (15). The corresponding instance of the decision version of
the ASAO_M problem is constructed as follows. Set

• 𝑚 = 𝑟 and 𝐶 = 𝐵;
• 𝑀 = {𝑗1,… , 𝑗3𝑟} and 𝑁 = ∪3𝑟

𝑘=1𝐴𝑘 where 𝐴1,… , 𝐴3𝑟 are disjoint
sets such that |𝐴𝑘| = 𝑎𝑘 − 1 for each 1 ≤ 𝑘 ≤ 3𝑟;

• 𝑁(𝑗𝑘) = 𝐴𝑘 for each 1 ≤ 𝑘 ≤ 3𝑟, and 𝑝𝑖 = 1 for all 𝑖 ∈ 𝑁 ∪𝑀 .

Observe that for this instance of the decision version of the ASAO_M
problem

∑

𝑖∈𝑁∪𝑀
𝑝𝑖 =

3𝑟
∑

𝑘=1

∑

𝑔∈𝐴𝑘∪{𝑗𝑘}
𝑝𝑔 =

3𝑟
∑

𝑘=1
𝑎𝑘 = 𝑟𝐵 = 𝑚𝐵. (17)

Suppose that there exists a partition of 𝑁 into 𝑚 non-empty subsets
𝑁1,… , 𝑁𝑚 such that

𝑓 (𝑁1,… , 𝑁𝑚) ≤ 𝐶 = 𝐵. (18)

Then, taking into account (1), for each 1 ≤ 𝑒 ≤ 𝑚,

𝐵 ≥
∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗 ,

which together with (17) gives

𝑚𝐵 ≥
𝑚
∑

𝑒=1

(

∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗

)

≥
∑

𝑖∈𝑁∪𝑀
𝑝𝑖 = 𝑚𝐵,

and consequently,
𝑚
∑

𝑒=1

(

∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗

)

=
∑

𝑖∈𝑁∪𝑀
𝑝𝑖 (19)

and
∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗 = 𝐵 for each 1 ≤ 𝑒 ≤ 𝑚. (20)

For each 1 ≤ 𝑘 ≤ 3𝑚, there exists a unique 𝑐 such that 𝑗𝑘 ∈
∪𝑖∈𝑁𝑐𝑀(𝑖), because otherwise 𝑝𝑗𝑘 will appear in the left-hand side of
(19) more than once, which contradicts this equality. This implies that
if index 𝑒 is not equal to this 𝑐, then 𝐴𝑘 ∩ 𝑁𝑒 = ∅, and consequently
𝐴𝑘 ⊆ 𝑁𝑐 . For each 1 ≤ 𝑒 ≤ 𝑚, denote by 𝐾𝑒 the set of all 𝑘 such that
𝑗𝑘 ∈ ∪𝑖∈𝑁𝑒𝑀(𝑖). Then, taking into account (20),

𝐵 =
∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗 =

∑

𝑘∈𝐾𝑒

∑

𝑔∈𝐴𝑘∪{𝑗𝑘}
𝑝𝑔 =

∑

𝑘∈𝐾𝑒

𝑎𝑘.

So, 𝑍1 = 𝐾1,… , 𝑍𝑟 = 𝐾𝑟 is a required partition of the set {1, 2,… , 3𝑟}.
Conversely, let 𝑍1,… , 𝑍𝑟 be a partition of the set {1, 2,… , 3𝑟} such

that each 𝑍𝑒 satisfies (16). Then, taking into account that 𝑚 = 𝑟,

𝑁1 = ∪𝑘∈𝑍1
𝐴𝑘, … , 𝑁𝑚 = ∪𝑘∈𝑍𝑟

𝐴𝑘

is a partition of 𝑁 which satisfies (18) because, for each 1 ≤ 𝑒 ≤ 𝑚,
∑

𝑖∈𝑁𝑒
𝑝𝑖 +

∑

𝑗∈∪𝑖∈𝑁𝑒𝑀(𝑖)
𝑝𝑗 =

∑

𝑘∈𝑍𝑒

|𝐴𝑘| + |𝑍𝑒| =

∑

(𝑎𝑘 − 1) + |𝑍𝑒| =
∑

𝑎𝑘 = 𝐵. □

𝑘∈𝑍𝑒 𝑘∈𝑍𝑒
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It is easy to see that the ASAO_N problem is also NP-hard in the
strong sense. Indeed, the condition that, for each 𝑗 ∈ 𝑀 , |𝑁(𝑗)| = 1
mplies that, for any two 𝑖 ∈ 𝑁 and 𝑢 ∈ 𝑁 , 𝑀(𝑖) ∩𝑀(𝑢) = ∅. So, there

exists an optimal partition 𝑁1,… , 𝑁𝑚 such that, for any 𝑖 ∈ 𝑁 , there
exists 𝑁𝑒 such that 𝑀(𝑖) ⊂ 𝑁𝑒 and 𝑀(𝑖) ∩𝑁𝑘 = ∅ for all 𝑘 ≠ 𝑒. On the
other hand, problem 𝑃 ∥ 𝐶𝑚𝑎𝑥 is NP-hard in the strong sense (Garey and
Johnson, 1979) and, for any instance of 𝑃 ∥ 𝐶𝑚𝑎𝑥, its optimal makespan
is equal to the optimal value of (1) for the instance of ASAO_N where
the set |𝑁| is obtained by introducing for each 𝑔 ∈ 𝐽 a job 𝑖(𝑔) such
that |𝑀(𝑖(𝑔))| = 𝑝𝑔 − 1.

Recall that the ASAO problem with 𝑚 = 2 and 𝑝𝑖 = 1 for all
∈ 𝑁 ∪ 𝑀 is equivalent to 𝑃 2|1𝑝𝑟𝑒𝑐, 𝑐𝑖𝑗 = ∞, 𝑝𝑖 = 1, 𝑑𝑢𝑝|𝐶max,

nd problems ASAO_N and ASAO_M are equivalent to
|1𝑖𝑛-𝑡𝑟𝑒𝑒, 𝑐𝑖𝑗 = ∞, 𝑝𝑖 = 1, 𝑑𝑢𝑝|𝐶max and 𝑃 |1𝑜𝑢𝑡-𝑡𝑟𝑒𝑒, 𝑐𝑖𝑗 = ∞, 𝑝𝑖 = 1, 𝑑𝑢𝑝|

𝐶max, correspondingly. Thus, the three scheduling problems with com-
munication delay and duplication are NP-hard in the strong sense.

4. Approximation algorithms

There exist a number of approximation algorithms for the 𝑃 ∥ 𝐶max
scheduling problem (Pinedo, 2012; Leung, 2004). In the light of the
discussion above, each of these algorithms is also applicable to the
ASAO_N problem.

Consider the general case of the ASAO problem. For any partition
𝑅1,… , 𝑅𝑟 of 𝑁 , the algorithm presented below and referred to as Par-
tition Conversion constructs a partition of 𝑁 into 𝑚 subsets 𝑃 1,… , 𝑃𝑚.
For this partition, Theorem 3 below establishes an upper bound in terms
of the partition 𝑅1,… , 𝑅𝑟 on the deviation of 𝑓 (𝑃 1,… , 𝑃𝑚) from the
optimal value of this function. This leads to a two-phase optimisation
procedure where the first phase is a choice of a partition 𝑅1,… , 𝑅𝑟

and the second phase is the conversion of 𝑅1,… , 𝑅𝑟 into 𝑃 1,… , 𝑃𝑚.
In other words, this two-phase procedure can be viewed as a family of
approximation algorithms which differ from each other by the method
of initial partitioning of 𝑁 .

If 𝑟 = 1 and consequently 𝑅1 = 𝑁 , i.e. no partition has been actually
made, Partition Conversion is applied to the original set of jobs. Other
two extreme choices of the initial partition are 𝑅1,… , 𝑅𝑟 where each
|𝑅𝑘

| = 1 and consequently 𝑟 = |𝑁|, and, for ASAO_M, 𝑅1,… , 𝑅|𝑀|

where each 𝑅𝑘 is 𝑁(𝑗) for some 𝑗 ∈ 𝑀 . It will be shown that, unless
𝑃 = 𝑁𝑃 , the latter choice of the initial partition for ASAO_M leads to
the best possible polynomial-time algorithm in terms of the guaranteed
upper bound on the deviation from the optimal value of (1).

Partition Conversion constructs the required partition using the
value

𝐷 =
⎡

⎢

⎢

⎢

1
𝑚

⎛

⎜

⎜

⎝

∑

𝑗∈𝑁
𝑝𝑗 +

𝑟
∑

𝑢=1

∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

+ max
1≤𝑢≤𝑟

⎧

⎪

⎨

⎪

⎩

max
𝑗∈𝑅𝑢

𝑝𝑗 +
∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔

⎫

⎪

⎬

⎪

⎭

− 1

which is computed based on the input partition 𝑅1,… , 𝑅𝑟. Partition
onversion constructs 𝑃 1 by consecutively assigning to 𝑃 1 the jobs from
1, then from 𝑅2, and so on as long as the total processing time of the
ssigned jobs and the required associated additional operations does
ot exceed 𝐷. After that, in the same manner, using the remaining
obs, Partition Conversion constructs 𝑃 2 and so on. The choice of 𝐷
guarantees that at most 𝑚 sets 𝑃 𝑒 will be constructed. Since the ASAO
roblem requires to construct a partition consisting of exactly 𝑚 sets,
n the case when less than 𝑚 sets were constructed, the final part of the
lgorithm redistributes some jobs from the already constructed sets 𝑃 𝑒
5

o new sets of the partition.
Partition Conversion
1: 𝑃 1 = ∅, 𝑘 = 1, 𝑒 = 1, 𝐻1 = 𝑅1,… ,𝐻𝑟 = 𝑅𝑟

2: while 𝑘 ≤ 𝑟 do
3: 𝐻 = 𝐻𝑘

4: while 𝐻 ≠ ∅ do
5: choose arbitrary 𝑖 ∈ 𝐻
6: if

∑

𝑗∈𝑃 𝑒∪{𝑖}
𝑝𝑗 +

∑

𝑗∈∪𝑔∈𝑃𝑒∪{𝑖}𝑀(𝑔)
𝑝𝑗 ≤ 𝐷 then

7: 𝑃 𝑒 = 𝑃 𝑒 ∪ {𝑖}
8: 𝐻𝑘 = 𝐻𝑘 ⧵ {𝑖}
9: end if
0: 𝐻 = 𝐻 ⧵ {𝑖}
1: end while
2: if 𝐻𝑘 ≠ ∅ then
3: 𝑒 = 𝑒 + 1
4: 𝑃 𝑒 = ∅
5: else
6: 𝑘 = 𝑘 + 1
7: end if
8: end while
9: while 𝑒 < 𝑚 do
0: 𝑘 = 1
1: while |𝑃 𝑘

| = 1 do
2: 𝑘 = 𝑘 + 1
3: end while
4: choose arbitrary 𝑖 ∈ 𝑃 𝑘

5: 𝑃 𝑘 = 𝑃 𝑘 ⧵ {𝑖}
6: 𝑒 = 𝑒 + 1
7: 𝑃 𝑒 = {𝑖}
8: end while
9: return 𝑃 1,… , 𝑃𝑚

Theorem 3. Partition Conversion constructs a partition of𝑁 into 𝑚 subsets
𝑃 1,… , 𝑃𝑚 such that

𝑓 (𝑃 1,… , 𝑃𝑚) − 𝑓 ∗

≤
⎡

⎢

⎢

⎢

1
𝑚

⎛

⎜

⎜

⎝

∑

𝑗∈𝑁
𝑝𝑗 +

𝑟
∑

𝑢=1

∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

+ max
1≤𝑢≤𝑟

⎧

⎪

⎨

⎪

⎩

max
𝑗∈𝑅𝑢

𝑝𝑗 +
∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔

⎫

⎪

⎬

⎪

⎭

max

{⌈

1
𝑚

∑

𝑖∈𝑁∪𝑀
𝑝𝑖

⌉

, max
𝑖∈𝑁

(

𝑝𝑖 +
∑

𝑗∈𝑀(𝑖)
𝑝𝑗

)}

− 1,

where 𝑓 ∗ is the optimal value of (1).

Proof. Observe that if 𝑃 𝑒 = ∅, then the condition in line 6 is satisfied,
which leads to the expansion of 𝑃 𝑒 by job 𝑖, chosen in line 5. Each time
when 𝑃 𝑒 is expanded by job 𝑖, chosen in line 5, this job is eliminated
from 𝐻𝑘 and from 𝐻 . Observe also that if 𝐻𝑘 ≠ ∅ after the execution
of the while loop 4–11, then the next iteration of the while loop 2–
18 commences with this 𝐻𝑘 and 𝑃 𝑒 = ∅. Furthermore, index 𝑘 is
increased according to line 16, and consequently 𝐻𝑘 is eliminated from
further consideration, only when 𝐻𝑘 = ∅. Hence, the while loop 2–
18 terminates after a finite number of iterations with some partition
𝑃 1,… , 𝑃 𝑒′ of 𝑁 .

In order to prove that 𝑒′ ≤ 𝑚, assume to the contrary that 𝑒′ > 𝑚.
For each 1 ≤ 𝑒 < 𝑒′, denote by 𝑘𝑒 the largest among all 𝑘 such that
𝑃 𝑒 ∩𝑅𝑘 ≠ ∅ and denote by 𝐾𝑒 the set defined as follows. If the increase
of 𝑒 in line 13 (and consequently the termination of the construction of
𝑃 𝑒) is triggered in line 12 by set 𝐻𝑘𝑒+1, then 𝐾𝑒 is the set of all 𝑘 such
that 𝑃 𝑒 ∩ 𝑅𝑘 ≠ ∅. Otherwise, if the increase of 𝑒 in line 13 is triggered
in line 12 by set 𝐻𝑘𝑒 , then 𝐾𝑒 is the set of all 𝑘 such that 𝑃 𝑒 ∩ 𝑅𝑘 ≠ ∅

and 𝑘 < 𝑘𝑒.
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In the former case, i.e. in the case when 𝑘𝑒 ∈ 𝐾𝑒, the while loop
4–11 failed to add to 𝑃 𝑒 an element of 𝐻𝑘𝑒+1. So, for any 𝑖 ∈ 𝐻𝑘𝑒+1,
∑

∈𝑃 𝑒

𝑝𝑗 +
∑

𝑘∈𝐾𝑒

∑

𝑗∈∪𝑔∈𝑅𝑘𝑀(𝑔)
𝑝𝑗 + 𝑝𝑖 +

∑

𝑗∈𝑀(𝑖)
𝑝𝑗 ≥

∑

𝑗∈𝑃 𝑒∪{𝑖}
𝑝𝑗 +

∑

𝑗∈∪𝑔∈𝑃𝑒∪{𝑖}𝑀(𝑔)
𝑝𝑗 ≥ 𝐷+1

nd consequently

∑

𝑗∈𝑃 𝑒
𝑝𝑗 +

∑

𝑘∈𝐾𝑒

∑

𝑗∈∪𝑔∈𝑅𝑘𝑀(𝑔)
𝑝𝑗 ≥

1
𝑚

⎛

⎜

⎜

⎝

∑

𝑗∈𝑁
𝑝𝑗 +

𝑟
∑

𝑢=1

∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔
⎞

⎟

⎟

⎠

. (21)

In the latter case, i.e. in the case when 𝑘𝑒 ∉ 𝐾𝑒, the while loop 4–11
failed to add to 𝑃 𝑒 the element 𝑖 ∈ 𝑅𝑘𝑒 , chosen as a result of the last
xecution of line 5. Hence,
∑

∈𝑃 𝑒

𝑝𝑗 +
∑

𝑘∈𝐾𝑒

∑

𝑗∈∪𝑔∈𝑅𝑘𝑀(𝑔)
𝑝𝑗 + 𝑝𝑖 +

∑

𝑗∈∪𝑔∈𝑅𝑘𝑒 𝑀(𝑔)
𝑝𝑗 ≥

∑

𝑗∈𝑃 𝑒∪{𝑖}
𝑝𝑗 +

∑

𝑗∈∪𝑔∈𝑃𝑒∪{𝑖}𝑀(𝑔)
𝑝𝑗

≥ 𝐷 + 1,

which again leads to (21). Taking into account that, for any 1 ≤ 𝑢 ≤ 𝑚
and 1 ≤ 𝑣 ≤ 𝑚 such that 𝑢 ≠ 𝑣, 𝑃 𝑢 ∩ 𝑃 𝑣 = ∅ and 𝐾𝑢 ∩𝐾𝑣 = ∅, we obtain
by adding (21) for all 1 ≤ 𝑒 ≤ 𝑚,
𝑚
∑

𝑒=1

∑

𝑗∈𝑃 𝑒
𝑝𝑗 ≥

∑

𝑗∈𝑁
𝑝𝑗 +

𝑟
∑

𝑢=1

∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔 −

𝑚
∑

𝑒=1

∑

𝑘∈𝐾𝑒

∑

𝑗∈∪𝑔∈𝑅𝑘𝑀(𝑔)
𝑝𝑗 ≥

∑

𝑗∈𝑁
𝑝𝑗 ,

which contradicts the assumption that 𝑃𝑚+1 ≠ ∅.
If 𝑒′ < 𝑚, then the partition 𝑃 1, . . . , 𝑃 𝑒′ , constructed by the while

loop 4–11, becomes the initial current partition for the while loop 19–
28. At each iteration, the while loop 19–28 constructs a new current
partition of 𝑁 by finding a set in the current partition, containing more
than one element (such a set exists by virtue of 𝑚 < |𝑁|), removing one
element from this set, and introducing a new set that is comprised of
only this one element.

Taking into account that

𝑓 ∗ ≥ max

{⌈

1
𝑚

∑

𝑖∈𝑁∪𝑀
𝑝𝑖

⌉

, max
𝑖∈𝑁

(

𝑝𝑖 +
∑

𝑗∈𝑀(𝑖)
𝑝𝑗

)}

and that 𝑓 (𝑃 1,… , 𝑃𝑚) ≤ 𝐷, we have

(𝑃 1,… , 𝑃𝑚) − 𝑓 ∗ ≤ 𝐷 − max

{⌈

1
𝑚

∑

𝑖∈𝑁∪𝑀
𝑝𝑖

⌉

, max
𝑖∈𝑁

(

𝑝𝑖 +
∑

𝑗∈𝑀(𝑖)
𝑝𝑗

)}

⎡

⎢

⎢

⎢

1
𝑚

⎛

⎜

⎜

⎝

∑

𝑗∈𝑁
𝑝𝑗 +

𝑟
∑

𝑢=1

∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

+ max
1≤𝑢≤𝑟

⎧

⎪

⎨

⎪

⎩

max
𝑗∈𝑅𝑢

𝑝𝑗 +
∑

𝑔∈∪𝑗∈𝑅𝑢𝑀(𝑗)
𝑝𝑔

⎫

⎪

⎬

⎪

⎭

− 1

−max

{⌈

1
𝑚

∑

𝑖∈𝑁∪𝑀
𝑝𝑖

⌉

, max
𝑖∈𝑁

(

𝑝𝑖 +
∑

𝑗∈𝑀(𝑖)
𝑝𝑗

)}

which completes the proof. □

Recall that Partition Conversion specifies a family of algorithms,
where a particular algorithm is defined by the choice of the initial par-
tition 𝑅1,… , 𝑅𝑟. The performance guarantee presented in Theorem 3 is
rather complicated, and it is not known in general what initial partition
to choose in order to obtain a good approximation of the optimal
partition. However, as stated in the corollary below, the family contains
an algorithm with the best possible performance guarantee for problem
ASAO_M.

Corollary 1. If, for ASAO_M, 𝑟 = |𝑀| and each 𝑅𝑢 is 𝑁(𝑗) for some
∈ 𝑀 , then

(𝑃 1,… , 𝑃𝑚) − 𝑓 ∗ ≤ 1

here 𝑓 ∗ is the optimal value of (1).
6

Proof. From Theorem 3,

𝑓 (𝑃 1,… , 𝑃𝑚) − 𝑓 ∗

≤
⌈ 1
𝑚
(|𝑁| + |𝑀|)

⌉

+ 2 − 1 − max
{⌈ 1

𝑚
(|𝑁| + |𝑀|)

⌉

, 2
}

= 1. □

As an example, consider the following instance of the ASAO_M
roblem. Let 𝑚 = 3, 𝑁 = {𝐽1,… , 𝐽10}, 𝑀 = {𝑂1, 𝑂2, 𝑂3, 𝑂4}, 𝑁(𝑂1) =
𝐽1, 𝐽2}, 𝑁(𝑂2) = {𝐽3, 𝐽4}, 𝑁(𝑂3) = {𝐽5}, 𝑁(𝑂4) = {𝐽6,… , 𝐽10}. Let
= 4 and 𝑅𝑘 = 𝑁(𝑂𝑘) for 1 ≤ 𝑘 ≤ 4. Then, 𝐷 =

⌈

1
3 (10 + 4)

⌉

+
max{2, 2, 2, 2} − 1 = 6. Assume that in line 5 of Partition Conversion,
the job 𝐽𝑖 with the smallest 𝑖 is always chosen. In the first iteration
of the while loop 2–18, jobs 𝐽1 and 𝐽2 are assigned to subset 𝑃 1. In
the second iteration, jobs 𝐽3 and 𝐽4 are also assigned to subset 𝑃 1.
In the third iteration, it turns out that adding the job from 𝑅3 to 𝑃 1

results in exceeding the bound 𝐷 on the total time required to process
the jobs and additional operations in 𝑃 1. Therefore, lines 13–14 are
executed, such that a new subset 𝑃 2 is created. In the fourth iteration
of the while loop 2–18, job 𝐽5 is added to 𝑃 2. In the next iteration,
jobs 𝐽6, 𝐽7, 𝐽8 are added to 𝑃 2. Afterwards, since adding either 𝐽9 or
10 to 𝑃 2 would make the total time required to process the jobs in
2 and their additional operations larger than 𝐷, a new subset 𝑃 3 is
onstructed. In the last iteration of the while loop 2–18, jobs 𝐽9 and
10 are added to 𝑃 3. Since 𝑚 subsets were created, the while loop 19–
8 is not executed. Thus, the obtained partition is 𝑃 1 = {𝐽1, 𝐽2, 𝐽3, 𝐽4},
2 = {𝐽5, 𝐽6, 𝐽7, 𝐽8}, 𝑃 3 = {𝐽9, 𝐽10}, and its makespan is max{6, 6, 3} = 6.

t is easy to check that the optimum makespan for the considered
nstance is 5, and it can be achieved by choosing 𝑃 1 = {𝐽1, 𝐽2, 𝐽5},
2 = {𝐽3, 𝐽4, 𝐽6} and 𝑃 3 = {𝐽7, 𝐽8, 𝐽9, 𝐽10}.

. Mixed integer linear programming formulations

In this section, two mixed integer linear programming formulations
re proposed for the ASAO problem. For the first formulation, denoted
y ILP1, define for all 𝑖 ∈ 𝑀 and 𝑘 = 1,… , 𝑚 binary variables 𝑥𝑖𝑘 such
hat 𝑥𝑖𝑘 = 1 if additional operation 𝑖 is executed on machine 𝑘, and
𝑖𝑘 = 0 otherwise. Similarly, for all 𝑗 ∈ 𝑁 and 𝑘 = 1,… , 𝑚, define
inary variables 𝑦𝑗𝑘 such that 𝑦𝑗𝑘 = 1 if job 𝑗 is executed on machine
, and 𝑦𝑗𝑘 = 0 otherwise. Let 𝐶max be a variable denoting the value of
he makespan. The problem can be stated as follows.

ILP1) minimise 𝐶max (22)

s.t.
𝑚
∑

𝑘=1
𝑦𝑗𝑘 = 1 ∀ 𝑗 ∈ 𝑁 (23)

𝑦𝑗𝑘|𝑀(𝑗)| ≤
∑

𝑖∈𝑀(𝑗)
𝑥𝑖𝑘 ∀ 𝑗 ∈ 𝑁, 𝑘 = 1,… , 𝑚 (24)

∑

𝑖∈𝑀
𝑥𝑖𝑘𝑝𝑖 +

∑

𝑗∈𝑁
𝑦𝑗𝑘𝑝𝑗 ≤ 𝐶max ∀ 𝑘 = 1,… , 𝑚 (25)

𝑦𝑗𝑘 = 0 ∀ 𝑗 ∈ 𝑁, 𝑘 = 𝑗 + 1,… , 𝑚 (26)

𝑥𝑖𝑘 ∈ {0, 1} ∀ 𝑖 ∈ 𝑀, 𝑘 = 1,… , 𝑚 (27)
𝑦𝑗𝑘 ∈ {0, 1} ∀ 𝑗 ∈ 𝑁, 𝑘 = 1,… , 𝑚 (28)

In the above formulation, constraints (23) guarantee that each job
s assigned to exactly one machine. The additional operations required
y each job 𝑗 are performed on the machine executing 𝑗 by (24).
nequalities (25) ensure that all machines finish processing by time
max. Equalities (26) are symmetry breaking constraints. Namely, it is
ssumed that job 𝑗 can only be assigned to a machine with number
ot exceeding 𝑗. In other words, the numbering of the machines is not
rbitrary. The machine executing job 1 is always considered the first
achine. If job 2 is assigned to a different machine than job 1, then

he machine executing job 2 is considered the second machine, and so
n. The formulation (22)–(28) contains 𝑂(𝑚(|𝑁| + |𝑀|)) variables and
(𝑚|𝑁|) constraints.
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Although the symmetry breaking constraints (26) are used in ILP1,
there may still exist many optimum solutions that differ only by the
numbering of the machines. Therefore, the second formulation, denoted
by ILP2, where the machines are not numbered at all, is proposed. A
job 𝑖 will be called an anchor if no job 𝑗 > 𝑖 is assigned to the same
machine as 𝑖. For each 𝑖, 𝑗 ∈ 𝑁 such that 𝑗 ≤ 𝑖, define a binary variable
𝑥𝑖𝑗 such that 𝑥𝑖𝑗 = 1 if and only if, for some 1 ≤ 𝑒 ≤ 𝑚, 𝑖 is an anchor
assigned to machine 𝑒, and 𝑗 is also assigned to machine 𝑒. Moreover,
or each 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , define a variable 𝑦𝑖𝑗 such that 𝑦𝑖𝑗 = 1 if,
or some 1 ≤ 𝑒 ≤ 𝑚, 𝑖 is an anchor assigned to machine 𝑒 and 𝑗 is an
dditional operation required by some job assigned to machine 𝑒, and
𝑖𝑗 = 0 otherwise. The problem can be formulated as follows.

ILP2) minimise 𝐶max (29)
s.t.

∑

𝑖∈𝑁
𝑥𝑖𝑖 = 𝑚 (30)

|𝑁|

∑

𝑖=𝑗
𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝑁 (31)

𝑖
∑

𝑗=1
𝑥𝑖𝑗 ≤ |𝑁|𝑥𝑖𝑖 ∀ 𝑖 ∈ 𝑁 (32)

|𝑀(𝑗)|𝑥𝑖𝑗 ≤
∑

𝑔∈𝑀(𝑗)
𝑦𝑖𝑔 ∀ {𝑖, 𝑗} ⊂ 𝑁, 𝑗 ≤ 𝑖 (33)

𝑖
∑

𝑗=1
𝑝𝑗𝑥𝑖𝑗 +

∑

𝑔∈𝑀
𝑝𝑔𝑦𝑖𝑔 ≤ 𝐶max ∀ 𝑖 ∈ 𝑁 (34)

𝑥𝑖𝑗 ∈ {0, 1} ∀ {𝑖, 𝑗} ⊂ 𝑁, 𝑗 ≤ 𝑖 (35)

𝑦𝑖𝑗 ∈ {0, 1} ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (36)

In the above program, constraints (30) guarantee that there are
xactly 𝑚 anchors. Each job is assigned to exactly one machine by (31).
nequalities (32) ensure that if 𝑥𝑖𝑗 = 1 for some 𝑗 ≤ 𝑖 then job 𝑖 is an
nchor. By constraints (33), all additional operations required by job 𝑗
re executed on the machine to which 𝑗 is assigned. Inequalities (34)

guarantee that all machines finish their computations by time 𝐶𝑚𝑎𝑥. The
formulation (29)–(36) contains 𝑂(|𝑁|(|𝑁|+|𝑀|)) variables and 𝑂(|𝑁|

2)
constraints.

6. Randomised constructive algorithms

In this section, randomised constructive algorithms are proposed. As
a subroutine, the randomised algorithms use a greedy approach, where
each consecutive job is assigned to the machine which is considered
the best. If the partial solution resulted from assigning the job to
machine 𝑘1 is shorter than the partial solution obtained by choosing
machine 𝑘2, then machine 𝑘1 is considered better than 𝑘2. Moreover, if
the two solutions have the same length and the additional processing
time required to process the job on machine 𝑘1 is shorter than the
additional processing time required to process the job on machine
𝑘2, then machine 𝑘1 is also considered better than 𝑘2. Note that the
two processing times may be different because some of the additional
operations associated with the current job may already be present on
machine 𝑘1 or machine 𝑘2.

Clearly, the performance of the above greedy method depends on
the order in which the jobs are processed. Unfortunately, it is not
known what job sequence could be beneficial. Therefore, the ran-
domised constructive algorithms run the greedy algorithm many times,
using random job orders, and return the best solution found. The
algorithm that analyses 𝐾 random job orders will be denoted by
Greedy(𝐾).

Assigning a job to a machine requires checking which of its associ-
ated additional operations are already assigned to the machine. Using
a hash table based set data structure, the presence of a given operation
can be checked in average 𝑂(1) time. Hence, assigning a single job to
a given machine takes 𝑂(|𝑀|) time. In order to find the best machine
7

a

for a job, it is necessary to assign it temporarily to each machine. This
operation is executed by the greedy method for all jobs, and hence, a
solution is constructed from a given job sequence in 𝑂(𝑚|𝑁||𝑀|) time.
n consequence, the complexity of the randomised Greedy(𝐾) algorithm
s 𝑂(𝐾𝑚|𝑁||𝑀|).

It should be noted that an attempt at solving the ASAO problem
sing metaheuristics, such as a genetic algorithm and a variable neigh-
ourhood search, was also made. Unfortunately, the properties of the
roblem make it very difficult to solve with such methods. When a
olution with a balanced machine load is changed by relocating a single
ob or a group of jobs to a different machine, the makespan rarely
ecomes better, and even when it does, the improvement is usually
ery small. Indeed, in order to significantly improve such a solution,
n algorithm would have to find a group of jobs that share associated
dditional operations but are assigned to different machines. Then,
he group of jobs should be reassigned so that they are all executed
n the same machine 𝑘, and in consequence, some of their addi-
ional operations would be executed on a smaller number of machines
han before the change. Moreover, some of the other jobs previously
ssigned to machine 𝑘 should be moved to the other machines in
rder to balance the load. Finding such a complex beneficial solution
hange in a metaheuristic algorithm is very improbable. The conducted
omputational experiments showed that when 𝐾 is large enough, the
reedy(𝐾) algorithms obtain better results than metaheuristics, and

till have a shorter execution time. Therefore, the designed genetic
lgorithm and variable neighbourhood search are not presented in the
aper.

. Computational experiments

The proposed algorithms were tested in a series of computational
xperiments. The algorithms were implemented in C++ and run on an
ntel Core i7-7820HK CPU @ 2.90 GHz with 32 GB RAM. The mixed
nteger linear programs were solved using Gurobi.

It turned out that solving the mixed integer linear programs may
ake many hours even for moderate size instances. Therefore, a time
imit of one hour was imposed on models ILP1 and ILP2. Since the
ptimal solutions were not always known, the obtained results were
ompared to the larger among the two lower bounds found by Gurobi
hile solving ILP1 and ILP2. Solution quality was measured by the
verage relative error with respect to this lower bound.

.1. The general case

In the first set of experiments, the behaviour of the integer linear
rogramming formulations, several approximation algorithms based on
artition Conversion and the randomised constructive algorithms for
he general case of the problem was analysed. For heuristics Greedy(𝐾),

many values of parameter 𝐾 were studied. Naturally, choosing a larger
𝐾 results in obtaining better solutions, but also in a longer compu-
tation time. In what follows, the results delivered by Greedy(1) and
Greedy(10|𝑁|) will be presented. These two algorithm variants show
what can be achieved with a minimal effort, i.e. when only one random
job sequence is selected, and what results can be obtained when a
significant amount of time is used to produce many solutions.

In the generated test instances, the number of machines was 𝑚 ∈
2, 16], and the numbers of jobs and additional operations were between

10 and 50. The execution times 𝑝𝑗 were selected randomly from the
range [1, 20]. The numbers of additional operations required by indi-
vidual jobs were controlled by the density parameter 𝑑 ∈ [0.1, 0.6].
recisely, for each job 𝑖 and additional operation 𝑗, a random number
𝑖𝑗 ∈ [0, 1] was generated. If 𝑟𝑖𝑗 < 𝑑, then operation 𝑗 was associated
ith job 𝑖. If after selecting all values 𝑟𝑖𝑗 some operation 𝑗 was not
ssociated with any job, then a job was chosen randomly, and 𝑗 was

dded to the list of operations associated with this chosen job. Unless
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Fig. 1. Algorithm performance vs. |𝑁|, for |𝑀| = |𝑁|, 𝑚 = 5. (a) Average quality, (b) average execution time.
Fig. 2. Algorithm performance vs. 𝑚, for |𝑁| = |𝑀| = 30. (a) Average quality, (b) average execution time.
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stated otherwise, 𝑑 = 0.25 was used. For each analysed combination of
arameter values, 10 instances were generated and solved.

Fig. 1 presents the results obtained for tests with 𝑚 = 5, variable |𝑁|

and |𝑀| = |𝑁|. All instances with |𝑁| ≤ 25 were solved to optimality by
both ILP1 and ILP2. However, the time limit of one hour was reached
by these algorithms for some instances with |𝑁| ∈ {30, 35}, and for
all tests with |𝑁| ≥ 40. The differences between the performance of
the two ILPs are not large, but ILP1 is slightly faster than ILP2 for
|𝑁| ≤ 35, and it obtains slightly better results than ILP2 for |𝑁| ≥ 30.

he relative errors reported for both algorithms grow fast when |𝑁|

ecomes large, and exceed 25% for |𝑁| = 50. However, this effect
ay be to a large degree caused by the increasing distance between

he lower bound found and the actual optimum. The results delivered
y Greedy(1) for instances with |𝑁| ≤ 25 are not good, as the average
rrors are between 15% and 21%. However, heuristic Greedy(10|𝑁|)
erforms much better, with errors below 6% for |𝑁| ≤ 25. For instances
ith |𝑁| > 30, the performance of Greedy(10|𝑁|) in comparison to

he ILPs is rather stable, and the difference between Greedy(1) and
reedy(10|𝑁|) decreases. Standard deviations of the percentage errors
btained by the algorithms were also computed, but for the sake of
eadability, they are not presented in the charts. Of course, the standard
eviations of ILP1 and ILP2 errors are 0 for |𝑁| ≤ 25. For larger
nstances, the standard deviations of ILP1, ILP2 and Greedy(10|𝑁|) are
ery similar, and they are in the range between 1% and 4%. The results
btained by Greedy(1) are less stable, especially for instances with
mall |𝑁|. The standard deviation of Greedy(1) errors is more than 13%
or |𝑁| = 10, and it decreases to around 4% when |𝑁| becomes large.
aturally, Greedy(1) is the fastest among the analysed algorithms (see
ig. 1b). Greedy(10|𝑁|) is faster than ILP1 and ILP2 for |𝑁| ≥ 25.

The behaviour of several algorithms using the Partition Conversion
ethod was also tested. Recall that Partition Conversion requires an
8

nitial partition of the set of jobs as part of input. The analysed
artitions were: a single set containing all jobs, a partition consisting of

sets having 1 job each, and different randomly generated partitions.
nfortunately, the results obtained by this group of algorithms were
ot good. The best solutions were usually obtained using an initial
artition consisting of a single set, but even in this case the errors
ere between 60% and 80%. Therefore, the results delivered by the
lgorithms based on Partition Conversion are not included in Fig. 1 and
he following charts, in order to better expose the differences between
he other algorithms. It seems that Partition Conversion may not be

good tool for solving the general version of the ASAO problem in
ractice. Indeed, it is not certain whether an initial partition leading
o obtaining a good assignment of jobs to machines always exists, and
ven if it does, it is not known how to find it.

Fig. 2 shows the algorithms’ performance for |𝑁| = |𝑀| = 30 and
ariable 𝑚. The quality of the solutions delivered by ILP1 and ILP2 is
lmost identical for all values of 𝑚. If 𝑚 is very small or very large,
he optimum solution can be found within the one hour time limit by
oth algorithms. The most difficult instances are the ones with 𝑚 ∈
6, 10]. When 𝑚 is small, ILP1 is faster than ILP2. However, optimum

solutions for instances with 𝑚 ≥ 12 are found by ILP2 in a much
shorter time than by ILP1. Similarly as in the previous experiment,
heuristic Greedy(10|𝑁|) delivers much better results than Greedy(1).

oreover, it is significantly faster than both ILPs for 𝑚 ∈ [4, 12]. The
istance between the quality of the solutions produced by the ILPs
nd Greedy(10|𝑁|) is between 5% and 9% of the lower bound for
uch tests. The standard deviations of the percentage errors delivered
y ILP1, ILP2 and Greedy(10|𝑁|) are again very similar for the cases
here ILP1 and ILP2 do not always find optimum solutions, i.e. when
∈ [6, 10]. Their values are between 5% and 9%, which means

hey are substantially larger than in the previous experiment, where
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Fig. 3. Algorithm performance vs. 𝑑, for |𝑁| = |𝑀| = 30, 𝑚 = 10. (a) Average quality, (b) average execution time.
n
I
s
a
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I
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the number 𝑚 of machines was smaller. The standard deviations of
Greedy(1) errors increase with growing 𝑚 and are close to 10% for
𝑚 ≥ 12. Greedy(10|𝑁|) is again much more stable than Greedy(1), with
standard deviations smaller than 4% for such tests.

The experiments with changing density parameter 𝑑 show that
ILP1 and ILP2 deliver very similar results for all analysed values of
𝑑 ∈ [0.1, 0.6] (see Fig. 3). The obtained errors are the largest for
𝑑 ∈ [0.2, 0.4]. Both algorithms reach the time limit for a majority of
tests with |𝑁| = |𝑀| = 30, 𝑚 = 10 and 𝑑 ≥ 0.2. However, ILP2 is faster
than ILP1 for 𝑑 ∈ {0.1, 0.15}. The randomised constructive algorithms
perform better for large values of 𝑑 than for the small ones. This is
probably caused by the fact that when 𝑑 is large, then many additional
operations have to be executed on multiple machines in the optimal
solutions. Hence, the optimum makespans are larger than for small
𝑑, and in consequence, it is easier to produce high quality solutions.
Once again, the standard deviations of the errors obtained by ILP1,
ILP2 and Greedy(10|𝑁|) are similar, and Greedy(1) has larger standard
deviations, especially when 𝑑 is small.

In summary, for the general version of the ASAO problem, ILP1
and ILP2 obtain very similar results. Their running times are usually
also similar, but ILP2 is faster than ILP1 when 𝑚 is large or 𝑑 is
small. For solving small instances, using one of the ILPs seems the best
option. For larger instances, Greedy(10|𝑁|) or some other variant of the
randomised constructive algorithm can be used to obtain a reasonably
good solution in a shorter time. Algorithms based on Partition Conver-
sion do not perform well, at least for the input partitions analysed in
the conducted experiments.

7.2. Problem ASAO_M

Recall that for problem ASAO_M, Partition Conversion using the
initial partition 𝑁(1),… , 𝑁(|𝑀|) constructs a schedule for which the
makespan is greater than the optimum by at most one. From now
on, this particular algorithm will be called PC_M. The goal of the
experiments presented here was to check how the remaining proposed
algorithms perform in comparison to PC_M for ASAO_M.

In order to generate demanding instances, a procedure inspired by
the transformation used in the proof of Theorem 2 was designed. For
a given number of machines 𝑚 ∈ {5, 10}, the number of jobs was
|𝑁| = 𝑙𝑚, where 𝑙 ∈ {20, 30, 40, 50}, and the number of additional
operations was set to |𝑀| = 3𝑚. Then, a set of 3𝑚 random numbers
𝑎1,… , 𝑎3𝑚 greater than 1, such that ∑3𝑚

𝑘=1 𝑎𝑘 = |𝑁|+3𝑚, was generated.
The 𝑘th additional operation, where 𝑘 ∈ {1,… , |𝑀|}, was associated
with 𝑎𝑘 − 1 unique jobs. For each pair of 𝑚 and 𝑙 values, 10 instances
were generated and solved. The results obtained for such tests are
summarised in Tables 1 and 2. A set of random instances constructed
without using the above procedure, similarly as for the general case
9

of the ASAO problem, was also generated. A comparison of the results
Table 1
Average solution quality for ASAO_M problem.
𝑚 |𝑁| ILP1 ILP2 PC_M Greedy(1) Greedy(10|𝑁|)

5 100 0.00% 3.91% 3.91% 40.72% 12.57%
5 150 0.00% 2.12% 2.12% 33.35% 11.13%
5 200 0.00% 1.16% 1.16% 26.45% 9.66%
5 250 0.00% 0.94% 0.94% 21.51% 8.42%

10 200 0.00% 4.35% 4.35% 53.91% 21.74%
10 300 0.00% 3.93% 2.73% 48.96% 17.83%
10 400 0.00% 4.41% 2.09% 48.50% 16.01%
10 500 0.00% 3.20% 1.51% 47.00% 14.67%

Table 2
Average algorithm execution time for ASAO_M problem (seconds).
𝑚 |𝑁| ILP1 ILP2 PC_M Greedy(1) Greedy(10|𝑁|)

5 100 1.18E−1 3.60E+3 4.49E−3 1.92E−1 1.91E+2
5 150 1.94E−1 3.60E+3 5.89E−3 2.86E−1 4.29E+2
5 200 2.84E−1 3.60E+3 7.51E−3 3.79E−1 7.64E+2
5 250 3.67E−1 3.60E+3 8.90E−3 4.72E−1 1.19E+3

10 200 6.91E−1 3.60E+3 7.98E−3 5.83E−1 1.16E+3
10 300 1.39E+0 3.60E+3 1.08E−2 8.66E−1 2.60E+3
10 400 2.28E+0 3.60E+3 1.36E−2 1.15E+0 4.60E+3
10 500 2.87E+0 3.61E+3 1.66E−2 1.41E+0 7.16E+3

obtained for the two sets confirmed that the method based on the proof
of Theorem 2 produced instances which were more difficult for the ILPs
and Greedy(𝐾) algorithms.

Recall that the performance guarantee of PC_M pertains to absolute
error. Hence, the relative error of this algorithm is smaller for the
instances with larger optimum values of the makespan. It is worth
noting that also for the remaining algorithms, the errors reported in
Table 1 decrease with increasing |𝑁| for a fixed 𝑚. This is caused by
the fact that when |𝑁| becomes larger, but |𝑀| = 3𝑚 is fixed, the
umber of jobs associated with a given additional operation increases.
n consequence, many additional operations have to be duplicated on
everal machines in the optimum solutions, and hence, the suboptimal
ssignments found by the algorithms are relatively closer to the op-
imum. Although the instances analysed in this subsection are much
arger than the ones representing the general case of the ASAO problem,
LP1 was able to solve them to optimality in a very short time. On
verage, its computations took 0.367 s for the largest tests with 𝑚 = 5,

and less than 3 s for the largest tests with 𝑚 = 10 (see Table 2).
Contrarily, ILP2 did not finish computations on any instance within
the time limit. Indeed, its average running time is at least one hour
for each group of tests. Moreover, the makespans found by ILP2 were
up to several percent longer than the optimum. The results delivered by
the randomised constructive algorithms show that they do not benefit
from the special structure of the instances of ASAO_M. Indeed, the

errors obtained by Greedy(1) are very large. The results obtained by
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Greedy(10|𝑁|) are substantially better, but they are not comparable
to the ones returned by PC_M. Moreover, the long running time of
Greedy(10|𝑁|), which exceeds one hour for the largest tests, makes it
unsuitable for solving instances with hundreds of jobs.

All in all, it seems that ILP1 can efficiently handle even very large
instances of the ASAO_M problem. PC_M always delivers almost optimal
solutions and is guaranteed to have a very low runtime. ILP2 and
the randomised constructive algorithms should not be used for solving
ASAO_M.

8. Conclusions

This paper considers a combinatorial optimisation problem ASAO,
inspired by applications in software testing and manufacturing, and
proves that even very restricted particular cases of this problem are NP-
hard in the strong sense. These computational complexity results are
complemented by a method of designing approximation algorithms and
an upper bound on the deviation from the optimal value of the objective
function which is valid for all algorithms constructed by this method.
Furthermore, two mixed integer linear programming formulations and
randomised constructive algorithms are proposed and tested by means
of computational experiments. The obtained results show that both ILPs
produce good solutions for the general version of the problem, and that
ILP1 quickly delivers optimum solutions even for very large instances
of ASAO_M. The Greedy(10|𝑁|) algorithm may be used for finding
reasonably good solutions of the general ASAO problem when the ILP1
and ILP2 running times are too long. The results presented in the
paper also contribute to the realm of scheduling with communication
delay, since the studied combinatorial optimisation problem can be
viewed as a parallel machine scheduling problem with infinitely large
communication delay, duplication and the partial order on the set
of jobs in the form of a graph where a path cannot contain more
than one arc. Given the computational complexity of the considered
problem, a logical continuation of the presented research would be
the design and analysis of various further heuristic and approximation
algorithms, including but not limited to the algorithms based on the
method presented in the paper.
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