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Abstract: The directional loudspeaker array has various applications due to its capability to direct
sound generation towards the target listener and reduce noise pollution. Differential beamforming
has recently been applied to the loudspeaker line array to produce a broadside frequency-invariant
radiation pattern. However, the existing methods cannot achieve a compromise between robust-
ness and broadband frequency-invariant beampattern preservation. This paper proposed a robust
broadband differential beamforming design to allow the loudspeaker line array to radiate broad-
side frequency-invariant radiation patterns with robustness. Specifically, we propose a method
to determine the ideal broadside differential beampattern by combining multiple criteria, namely
null positions, maximizing the directivity factor, and achieving a desired beampattern with equal
sidelobes. We derive the above ideal broadside differential beampattern into the target beampattern
in the modal domain. We propose a robust modal matching method with Tikhonov regularization
to optimize the loudspeaker weights in the modal domain. Simulations and experiments show im-
proved frequency-invariant broadside beamforming over the 250–4k Hz frequency range compared
with the existing modal matching and null-constrained methods.

Keywords: loudspeaker line array; broadside radiation; robust differential beamforming; broadband
frequency-invariant beamforming

1. Introduction

Directional loudspeaker arrays have attracted the attention of researchers because
of their promising applications in spatial audio reproduction [1,2], public address sys-
tems [3,4], and personal sound zone creation [5,6]. The most commonly used directional
loudspeaker arrays are additive arrays. Additive arrays generate highly directional beam-
patterns by controlling the interference of the waves generated by multiple loudspeakers.
However, due to the diffraction limit, small-sized additive arrays cannot radiate highly
directional beampatterns at low frequencies [7].

In contrast, differential arrays with small aperture sizes can overcome the diffraction
limit to generate and radiate a narrow beampattern. Due to their compact size, frequency-
invariant beampattern, and high spatial directivity, differential arrays have been studied
intensively in microphone array applications over the past two decades. Many different
·geometries of differential microphone arrays have been developed and studied, such
as linear [8–14], planar [15–19], and volumetric [20–23]. Differential beamforming of
linear arrays has been extensively studied, but most research sets the main lobe at the
end-fire direction [8,9,11,13]. Although some studies investigate beam steering for linear
arrays, their beam steering capability is quite limited [10,14]. Planar arrays, such as
circular arrays [17,19] or concentric circular arrays [15,16,18], can effectively solve the beam
steering issue of linear arrays, allowing for arbitrary steering within the plane of the array.
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Volumetric arrays, such as cube arrays [20,21,23] and spherical arrays [22], can produce
consistent sound acquisition performance in the three-dimensional space. However, the
required large number of microphones and huge array volume hinders its applications in
some scenarios.

Because of the reciprocity principle of the acoustic field, the differential beamformers have
also been applied to loudspeaker arrays to produce highly directional patterns [7,24–29]. The
differential loudspeaker array is significant for the field of acoustics and sound technology,
offering a novel approach to improving directional sound quality in various applications
such as sound reinforcement systems [24,26,29], spatial sound reproduction [27], and per-
sonal sound zones [25,28]. Choi used a second-order broadside differential loudspeaker
array with three elements to create a near-field sound zone in a car cabin [25]. Wang
et al. devised a null-constrained method to generate a higher-order broadside differential
beampattern [26]. This approach is convenient for designing differential beamformers in
real applications. However, the frequency-invariant beampattern may only be maintained
over part of the frequency range due to the constraints imposed only at several discrete
directions. Miltello et al. designed a steerable first-order differential beampattern using
a small-size loudspeaker line array with monopole and dipole elements [28]. Our recent
research studied the series expansion method for designing frequency-invariant beampat-
terns using a loudspeaker array [27,29]. In [27]. we design steerable beampattern using a
circular loudspeaker array. This method requires prior knowledge of the target beampat-
tern, which may not be feasible in real-world applications. We also proposed a method
to design broadside beampattern using a differential loudspeaker line array [29]. We first
derived the modal domain target to beampattern the nulls’ information. Then, it employed
modal matching with Jacobi–Anger expansion and distortionless constraint (MM-JAD) to
approximate the target beampattern, which led to better-preserved frequency-invariant
beampatterns across the frequency range of interest, such as the speech frequency range.

This paper proposed a robust broadband differential beamforming design to allow
the loudspeaker line array to radiate broadside frequency-invariant radiation patterns with
robustness. The main contributions are as follows. (1) We propose a method to calculate
the ideal broadside beampattern combining various criteria, namely, null information, max-
imizing the directivity factor, and achieving the beampattern with equal sidelobes. (2) We
derive the modal domain target beampattern of a given ideal broadside differential beam-
pattern. (3) We propose a robust modal matching method with Tikhonov regularization to
design the broadside beamformer in the modal domain.

The remainder of this paper is organized as follows. Section 2 presents the signal
model, problem formulation, and some definitions. In Section 3, we propose a method to
design broadside frequency-invariant beampatterns with a line array in the modal domain.
Some simulations are presented in Section 4, including some design examples, along with
a discussion about the effect of regularization on the proposed method and a performance
comparison with the other existing beamforming methods. Section 5 gives the experimental
results, which are consistent with the simulations, validating the proposed method. Finally,
conclusions are given in Section 6.

2. Problem Formulation

Figure 1 shows the schematic diagram of a loudspeaker line array with its broadside
differential beampattern. A loudspeaker line array composed of L (L = 2L0 + 1, L0 ≥ 1)
equally spaced loudspeakers with a spacing of δ lies on the x axis. The array is centred at
the origin of the polar coordinate system. Assuming that each loudspeaker of the array is a
monopole source, the far-field sound pressure at a listener position (r, θ) is

p(k, r, θ) ≈ eikr

4πr

L0

∑
l=−L0

w∗
l (k)e

−ikxl cos θ (1)
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where k is the wave number, the superscript (·)∗ stands for the complex-conjugate operator,
wl(k) represents the weight of l-th loudspeaker at (xl , 0), where xl = lδ is the loudspeaker
index l ∈ [−L0, L0].
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Figure 1. Broadside beamforming with a differential loudspeaker line array.

For the directivity of radiation, we define the normalized far-field radiation pattern as

B(k, θ) = p(k, r, θ)/(eikr/4πr) =
L0

∑
l=−L0

w∗
l (k)e

−ikxl cos θ , (2)

which can be expressed in a vector form

B(k, θ) = wHg(k, θ) (3)

where the superscript (·)H is the conjugate-transpose operator

w = [w−L0(k), . . . , wL0(k)]
T (4)

g(k, θ) = [e−ikx−L0 cos θ , · · · , e−ikxL0 cos θ ]
T

(5)

The superscript (·)T is the transpose operator and w is the weighting vector to be
determined.

The white noise gain (WNG) can represent the radiation efficiency of a loudspeaker
array and is often used as a robustness measure.

WNG =
|B(k, π/2)|2

wHw
(6)

The directivity factor (DF) quantifies the directional property. The 2D-DF can be
defined as the ratio between the power radiated in the broadside direction and the spatial
average of the radiated intensity over the half plane where the loudspeaker array is located.

DF =
π|B(k, π/2)|2∫ π
0 |B(k, θ)|2dθ

=
|B(k, π/2)|2

wHΓw
(7)

where
Γ =

1
π

∫ π

0
gH(k, θ)g(k, θ)dθ (8)

is a square matrix, whose elements are [Γ]ij = J0(k(i − j)δ). J0(·) is the zero-order Bessel
function of the first kind.

The directivity index (DI) represents the directivity factor (DF) on a log scale.

DI = 10 log10(DF) (9)
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3. Methods

We propose an approach based on the series expansion method to design a broadside
frequency-invariant beampattern with a differential loudspeaker line array in the modal
domain, including (1) calculating the target broadside radiation pattern according to
multiple criteria, namely null positions, maximizing the directivity factor, and achieving a
desired beampattern with equal sidelobes, and (2) designing the differential beamformer
using the regularized modal matching method.

3.1. Target Broadside Radiation Pattern
3.1.1. Target Broadside Radiation Pattern with the Null Information

Assuming the spacing between neighboring loudspeakers to be much smaller than the
wavelength, the ideal 2Nth-order broadside differential beampattern can be expressed as

B̃(2N)(θ) ≈
N

∏
n=1

(
1 − cos2 θ

β2
n

)
(10)

where the superscript (·)(2N) denotes the 2Nth-order; N is a positive integer; the parameters
βn, n = 1, 2, . . ., N, determine the N null directions in the range of 0 to π/2, where θnull

N,n =

arccosβn and 0 < θnull
N,1 ≤ θnull

N,2 ≤ . . . ≤ θnull
N,N < π/2. Note that to ensure the effectiveness

of the target broadside beampattern, θnull
N,N must be less than π/2 − π/(4N) [30]. It should

be also pointed out that in order to generate the 2N-th target beampattern, at least 2N + 1
loudspeakers are required.

With the help of the nth elementary symmetric function definitions [31], (10) can be
written in a sum form:

B̃(2N)(θ) =
N

∑
n=0

αN,n cos2n θ (11)

where

αN,n =


1 n = 0

(−1)n ∑
1≤i1<i2 ...<in≤N

1
β2

i1
. . . β2

in

, n = 1, . . . , N. (12)

3.1.2. Target Broadside Radiation Pattern with Maximum Directivity Factor

The 2N-th order broadside differential beampattern in (11) can be written in vector
form

B̃(2N)(θ) = αT
Nc2N (13)

where
αN =

[
αN,0 αN,1 . . . αN,N

]T

c2N = [ 1 cos2 θ . . . cos2N θ ]
T (14)

Inserting (13) into the definition of directivity factor in (7) yields

DF =
π

αT
NCαN

(15)

where B(k, θ) is replaced with B̃(2N)(θ) and

C =

π∫
0

c2NcT
2Ndθ (16)

To obtain the 2N-th order broadside differential beampattern with maximum directiv-
ity factor, the optimization problem can be formulated as follows:

min
αN

αT
NCαN (17)
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It is easy to verify that

αT
NCαN = 1 + α̃T

NC̃α̃N + 2c̃Tα̃N (18)

where 
c̃ =
[

cos2 θ . . . cos2N θ
]T

α̃N =
[

αN,1 . . . αN,N
]T

C̃ =
∫ π

0 c̃c̃Tdθ

(19)

The (m,n)th element of the matrix C̃ is written as

C̃
mn

=
∫ π

0
cos2(m+n) θdθ =

(2m + 2n − 1)!!π
(m + n)!2m+n (m, n = 1, . . . , N) (20)

where (·)!! is the double factorial and (·)! is the factorial.
The optimization problem (17) can be equivalently written as

min
α̃N

α̃T
NC̃α̃N + 2c̃Tα̃N (21)

The optimal real vector α̃N can be solved by using the method of Lagrange multipliers

α̃N = −C̃
−1

c̃ (22)

The optimal real vector αN can be written as

αN =
[
1 α̃T

N

]T
(23)

3.1.3. Target Broadside Radiation Pattern with Equal Sidelobe Level

An Nth-order Chebyshev polynomial of the first kind with respect to the variable can
be defined as [11]

TN(z) =

{
cos(N cos−1 z), |z| ≤ 1

cosh
(

N cosh−1 z
)

, |z| > 1
(24)

Substituting z with a cos2 θ + b, TN(z) becomes a 2N-th order polynomial with respect
to cos θ and the 2N-th order broadside beampattern that follows the Chebyshev polynomial
is formed. The main lobe at θ = π/2 corresponds z1 = b. The value of the Chebyshev
polynomial is

TN(z1) = cosh
(

N cosh−1 b
)

(25)

The sidelobe at θ = 0, z0 = a + b, and we obtain

TN(z0) = 1 (26)

Corresponding to
z0 = a + b = −1 (27)

Setting S is the main lobe to sidelobe ratio, we have

S =
TN(z1)

TN(z0)
= cosh

(
N cosh−1 b

)
(28)

Combing (27) and (28), we obtain

b = cosh
(

1
N cosh−1 S

)
a = −1 − cosh

(
1
N cosh−1 S

) (29)
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Since the zeros of the Chebyshev polynomial are easily found, the nulls of the broad-
side Chebyshev beampattern are

θnull
N,n = arccos

(√
cos((2n − 1)π/(2N))− b

a

)
, n = 1, 2, . . . , N. (30)

Figure 2 shows some examples of target broadside radiation pattern designed by the
methods mentioned above. Figure 2a gives the second-order target broadside radiation
pattern with the given nulls at 15◦ and 165◦. Figure 2b shows the fourth-order ideal
beampattern with nulls at 15◦, 45◦, 135◦, and 165◦. Figure 2c,d illustrate the second-
order and fourth-order broadside differential pattern with maximum directivity factor.
Figure 2e,f show the fourth-order ideal radiation pattern for the −10 dB and −20 dB
sidelobes, respectively.
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Figure 2. The target broadside radiation pattern was designed by multiple criteria. (a) The second-
order broadside beampattern with nulls at 15◦ and 165◦. (b) The fourth-order target beampattern
with nulls at 15◦, 45◦, 135◦, and 165◦. (c) The second-order target beampattern with maximum
directivity factor. (d) The fourth-order target beampattern with maximum directivity factor. (e) The
fourth-order ideal beampattern with equal sidelobe level, where S is set to 10 dB. (f) The fourth-order
ideal beampattern with equal sidelobe levels, where S is set to 20 dB.
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3.2. Beamformer Design

If the 2N-th target broadside beampattern is given, (11) can also be formulated in the
modal domain with a symmetric form

B(2N)(k, θ) =
2N

∑
n=−2N

γneinθ (31)

where

γn =


0, n = ±1,±3, . . . ,±(2N − 1),

N
∑

p=|n|/2

αN,p

22p

(
2p

p − |n|/2

)
, n = 0,±2,±4, . . . ,±2N. (32)

where
(

.

.

)
is combinations, and |·| represents absolute value. With the vector form

B(2N)(k, θ) = γTe(θ) (33)

where
γ = [γ−2N · · · γ2N ]

T (34)

e(θ) = [e−i2Nθ · · · ei2Nθ ]
T (35)

In the series expansion method, the Jacobi–Anger expansion is used to match the
resulting beampattern to the target beampattern in (31). The Jacobi–Anger expansion is

e−iξ cos θ =
+∞

∑
n=−∞

βn(ξ)einθ (36)

where
βn(ξ) = (−i)n Jn(ξ). (37)

is the circular harmonic coefficient and Jn(·) is the nth-order Bessel function of the first kind.
Appling (36) into the exponential of (2) yields

B(k, θ) =
L0

∑
l=−L0

w∗
l (k)

+∞

∑
n=−∞

βn(kxl)einθ (38)

In order to obtain a 2Nth-order broadside target radiation pattern, the infinite series is
truncated to the order 2N:

B(k, θ) =
2N

∑
n=−2N

einθ
L0

∑
l=−L0

βn(kxl)w∗
l (k). (39)

If the radiation pattern in (39) is consistent with the target beampattern in (31), one
can obtain

L0

∑
l=−L0

βn(kxl)w∗
l (k) = γn n = 0,±1, . . . ,±2N (40)

For the design of a broadside differential beamformer, the distortionless constraint in
the broadside direction is required:

wHg(k, π/2) = 1 (41)

Combing (40)–(41),
Φw = η (42)
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where
Φ =

[
β−2N . . . β2N g(k, π/2)

]H (43)

βn = [βn(kx−L0) · · · βn(kxL0)]
T (44)

η =
[
γT 1

]T (45)

With the fact that βn(·) = β−n(·) and (32), one can obtain

Φ̃w = η̃ (46)

where
Φ̃ =

[
β0 · · · β2N g(k, π/2)

]H (47)

is (2N+2)× L full-rank matrix
η̃ = [γ̃T 1]

T
(48)

where γ̃ =
[
γ0 · · · γ2N

]T is the coefficients of the desired beampattern. With the number
loudspeakers L > 2N + 2, the minimum-norm solution of (46) is

w = Φ̃H(Φ̃Φ̃H)
−1

η̃ (49)

To deal with the ill-posed inverse problems existing in (49), Tikhonov regularization is
used to calculate the minimum-norm solution,

w = Φ̃H(Φ̃Φ̃H + µI2N+2)
−1

η̃ (50)

where µ is the regularization parameter, which is a preselected non-negative number to
enhance robustness.

4. Simulations

In this section, we evaluate the performance of the proposed method with a loud-
speaker line array. The target beampattern is the 2Nth-order broadside differential beam-
pattern with maximized directivity factor whose beampattern coefficients are calculated by
the methods mentioned in Section 3.1.2. The frequency range of interest is from 250 Hz to
4 kHz, covering the frequency range of speech.

4.1. The 2Nth-Order Broadside Differential Beamformer Synthesized by the Proposed Method

Different orders of the target broadside differential beampattern with maximized
directivity factor are synthesized by the solution (50) using a line array of 31 loudspeakers
with a spacing of 0.038 m. We first set the regularization parameter µ to a small non-negative
number, 10−12, and then study the effect of this parameter on the beamformer.

The synthesized beampatterns are shown in Figure 3. Different orders of broadside
radiation patterns can be synthesized by the modal matching method with Tikhonov
regularization. Except for the slight deviation in the null positions at some frequency points,
the beamformer gives the frequency-invariant beampattern almost across the evaluated
frequency range. The reason for the nulls’ deviation is that, unlike the null-constrained
method which adds constraints at the null positions, the proposed method approximates
the desired beam in the modal domain. The finite truncation in (39) results in the spatial
aliasing with higher-order circular harmonics. To solve this problem, a higher truncation
order of the Jacobi–Anger expansion should be considered [32].

The WNG and DI are two important metrics in beamforming algorithms. The WNG is a
good indicator of the robustness to element imperfections. The DI quantifies the directional
property. Figure 4 shows the performance of different-order beampatterns synthesized by
the proposed method in terms of WNG and DI. As can be seen in Figure 4a, the WNGs of
the different-order beamformers tend to be consistent above 1 kHz, all exhibiting relatively
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high WNG values, which indicate that the proposed method is robust enough at high
frequencies. At low frequencies, the higher the order of the target beampattern synthesized,
the lower the WNG obtained. It indicates that the eighth-order broadside differential
beamformer has the worst anti-perturbation ability below 1 kHz. Figure 4b shows the
DIs of different order beamformers designed by the proposed method. As seen, the DI
increases with the order of the synthesized beampattern. Except for some fluctuations at
certain frequencies, which coincide with the conclusion of Figure 3, the DIs of all four kinds
of beamformers can approximately maintain a constant at all evaluated frequencies.

Appl. Sci. 2024, 14, 6383 9 of 22 
 

1( )H H −=w Φ ΦΦ η  (49) 

To deal with the ill-posed inverse problems existing in (49), Tikhonov regularization 

is used to calculate the minimum-norm solution, 

1

2 2( )H H

N −

+= +w Φ ΦΦ I η  (50) 

where   is the regularization parameter, which is a preselected non-negative number to 

enhance robustness. 

4. Simulations 

In this section, we evaluate the performance of the proposed method with a loud-

speaker line array. The target beampattern is the 2Nth-order broadside differential beam-

pattern with maximized directivity factor whose beampattern coefficients are calculated 

by the methods mentioned in Section 3.1.2. The frequency range of interest is from 250 Hz 

to 4 kHz, covering the frequency range of speech. 

4.1. The 2Nth-Order Broadside Differential Beamformer Synthesized by the Proposed Method 

Different orders of the target broadside differential beampattern with maximized di-

rectivity factor are synthesized by the solution (50) using a line array of 31 loudspeakers 

with a spacing of 0.038 m. We first set the regularization parameter   to a small non-

negative number, 1210− , and then study the effect of this parameter on the beamformer. 

The synthesized beampatterns are shown in Figure 3. Different orders of broadside 

radiation patterns can be synthesized by the modal matching method with Tikhonov reg-

ularization. Except for the slight deviation in the null positions at some frequency points, 

the beamformer gives the frequency-invariant beampattern almost across the evaluated 

frequency range. The reason for the nulls’ deviation is that, unlike the null-constrained 

method which adds constraints at the null positions, the proposed method approximates 

the desired beam in the modal domain. The finite truncation in (39) results in the spatial 

aliasing with higher-order circular harmonics. To solve this problem, a higher truncation 

order of the Jacobi–Anger expansion should be considered [32]. 

  

Appl. Sci. 2024, 14, 6383 10 of 22 
 

  

Figure 3. Synthesized broadside beampatterns for a line array of 31 loudspeakers. (a) Second-order, 

(b) fourth-order, (c) sixth-order, (d) eighth-order. 

The WNG and DI are two important metrics in beamforming algorithms. The WNG 

is a good indicator of the robustness to element imperfections. The DI quantifies the di-

rectional property. Figure 4 shows the performance of different-order beampatterns syn-

thesized by the proposed method in terms of WNG and DI. As can be seen in Figure 4a, 

the WNGs of the different-order beamformers tend to be consistent above 1 kHz, all ex-

hibiting relatively high WNG values, which indicate that the proposed method is robust 

enough at high frequencies. At low frequencies, the higher the order of the target beampat-

tern synthesized, the lower the WNG obtained. It indicates that the eighth-order broadside 

differential beamformer has the worst anti-perturbation ability below 1 kHz. Figure 4b 

shows the DIs of different order beamformers designed by the proposed method. As seen, 

the DI increases with the order of the synthesized beampattern. Except for some fluctuations 

at certain frequencies, which coincide with the conclusion of Figure 3, the DIs of all four 

kinds of beamformers can approximately maintain a constant at all evaluated frequencies. 

 

 

Figure 3. Synthesized broadside beampatterns for a line array of 31 loudspeakers. (a) Second-order,
(b) fourth-order, (c) sixth-order, (d) eighth-order.

Appl. Sci. 2024, 14, 6383 10 of 22 
 

  

Figure 3. Synthesized broadside beampatterns for a line array of 31 loudspeakers. (a) Second-order, 

(b) fourth-order, (c) sixth-order, (d) eighth-order. 

The WNG and DI are two important metrics in beamforming algorithms. The WNG 

is a good indicator of the robustness to element imperfections. The DI quantifies the di-

rectional property. Figure 4 shows the performance of different-order beampatterns syn-

thesized by the proposed method in terms of WNG and DI. As can be seen in Figure 4a, 

the WNGs of the different-order beamformers tend to be consistent above 1 kHz, all ex-

hibiting relatively high WNG values, which indicate that the proposed method is robust 

enough at high frequencies. At low frequencies, the higher the order of the target beampat-

tern synthesized, the lower the WNG obtained. It indicates that the eighth-order broadside 

differential beamformer has the worst anti-perturbation ability below 1 kHz. Figure 4b 

shows the DIs of different order beamformers designed by the proposed method. As seen, 

the DI increases with the order of the synthesized beampattern. Except for some fluctuations 

at certain frequencies, which coincide with the conclusion of Figure 3, the DIs of all four 

kinds of beamformers can approximately maintain a constant at all evaluated frequencies. 

 

 

Figure 4. The performance of the different-order synthesized beamformers: (a) WNG and (b) DI.



Appl. Sci. 2024, 14, 6383 10 of 20

4.2. Effect of the Regularization on the Proposed Method

The regularization parameter has an impact on the performance of the beamformer.
To demonstrate this, we compare the WNGs and DIs of the sixth-order synthesized beam-
former with different regularization parameters. The WNGs and DIs are plotted in Figure 5.
As seen in Figure 5a, in the frequency range above 1 kHz, the WNG does not change with
the increase in µ, indicating that there is no ill-conditioned problem existing in solving the
optimal weighting and the solution is robust at high frequencies. Below 1 kHz, the larger
the value of µ, the more frequency points have the WNG above 0 dB. When µ equals 10−12,
the WNGs are below −20 dB at some frequency points, indicating the beamformer has poor
anti-perturbation ability. When µ equals 0.01, the WNG is above 0 dB above 300 Hz, which
is considered robust enough for practical applications. Figure 5b shows the impact of the
regularization parameter on the DI. As seen, the regularization parameter mainly affects
the DI of the proposed method at low frequencies. Below 1 kHz, as the regularization
parameter increases, the fluctuation amplitude of the DI increases. This indicates that the
improvement of the WNG at low frequencies comes at the cost of increased fluctuation of
the DI. Additionally, it is noted that, at high frequencies, the DI corresponding to µ equals
0.01, which is slightly higher than the DI when µ is set to a smaller value. This indicates that
a larger regularization parameter, although affecting the frequency-invariant characteristic
of the beampattern at low frequencies, improves the proposed method’s robustness at low
frequencies and slightly enhances the directivity performance at high frequencies.
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4.3. Performance Comparison
4.3.1. Comparison with MM-JAD (the Method in [29])

Compared to the MM-JAD method, the proposed method improves the robustness of
the solution by adding a regularization parameter. Figure 5. shows that the regularization
parameter mainly affects the performance of the beamformers below 1 kHz. To better
evaluate the differences between the proposed method and the MM-JAD method at low
frequencies, Figure 6 presents comparisons between the synthesized beampattern by the
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MM-JAD method, the proposed method, and the ideal beampattern at frequencies of
250 Hz, 500 Hz, 750 Hz, and 1 kHz. The regularization parameter is set to 0.01. As can
be seen at 250 Hz and 500 Hz, compared with the proposed method, the beampattern
synthesized by MM-JAD is closer to the ideal beampattern. The beamformer designed by
the proposed method cannot generate the target sixth-order broadside beampattern but
forms a second-order and a fourth-order broadside beampattern, respectively. At 750 Hz,
the proposed method can form a sixth-order beampattern, and the match with the sidelobe
of the ideal beampattern is not as good as the MM-JAD. At 1 kHz, the beampatterns
produced by both MM-JAD and the proposed method are similar, with slight difference
from the ideal beampattern.

The performance comparison between the beamformers synthesized by MM-JAD and
those synthesized by the proposed method is listed in Table 1. As seen, at 250 Hz, the
proposed method obtained a higher WNG than that of the MM-JAD method by sacrificing
the performance of DI. At 500 Hz, the proposed method improves the WNG by adding
a regularization parameter. Meanwhile, the DI of the proposed method is comparable
to that of the MM-JAD method. At 750 Hz, the WNG of the proposed method has been
further improved and the DI is also higher than that of the MM-JAD method. At 1 kHz, the
WNG and the DI values of the two methods are similar, indicating the MM-JAD method is
robust enough at high frequencies, and the improvement due to adding the regularization
parameter is not significant. Hence, it can be found that, compared to the MM-JAD method,
the proposed method balances system robustness and directivity by adding a regularization
parameter to trade-off between the WNG and DI at low frequencies.
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4.3.2. Performance Comparison between MM-JAD and the Proposed Method with the
Perturbations Added to the Spatial Responses of the Loudspeakers

To demonstrate the proposed method is more robust than the MM-JAD method at
low frequencies, the performance of the two methods are evaluated under uncertainties in
the frequency response of the loudspeakers, for which the error has a multiplicative form
with uniform distribution between −3 and +3 dB in magnitude and uniform distribution
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between −10◦ and +10◦ in phase. The performance averages over 5000 Monte Carlo trails
describe the performance of the system with robustness.

Table 1. The WNG and DI performance (dB) of -MM-JAD and the proposed method at 250 Hz,
500 Hz, 750 Hz, and 1 kHz.

Freq (Hz) WNG (dB) DI (dB)

-MM-JAD Proposed -MM-JAD Proposed

250 −61.8 −1.1 8.5 6.4
500 −24 5.8 8.5 8.3
750 −0.1 13.6 8.4 9.2

1000 12.1 12.4 8.4 8.5

Figure 7 shows comparisons of the desired beampattern and the averaged simulated
beampatterns with the two methods. It can be seen from Figure 7a that, at 250 Hz, the
beampattern synthesized by the MM-JAD method deviates significantly from the ideal
beampattern and we cannot discern any directionality of the beamformer from the radiated
beampattern. Although the beampattern radiated by the proposed method does not form
the target sixth-order beampattern, the fact that the main lobe is 10 dB higher than the
sidelobes indicates that the beamformer already exhibits directionality. At 500 Hz, the MM-
JAD method still lacks directionality, but the main lobe of the beampattern radiated by the
proposed method already resembles that of the ideal beampattern. At 750 Hz, the main lobe
of the MM-JAD method is approaching that of the desired beampattern, but the sidelobes
still deviate significantly. Meanwhile, the main lobe and sidelobes of the proposed method
are both approaching that of the ideal beampattern. At 1 kHz, the two methods are both
robust enough to approximate the target beampattern when the errors occur. The above
indicates that, although Figure 6 shows that the MM-JAD method approaches the desired
beampattern more closely than the proposed method below 750 Hz when disregarding
element imperfections, the directivity of the MM-JAD method significantly decreases once
there are element inconsistencies. Therefore, in practical applications, the proposed method
will have an advantage over the MM-JAD method.

Table 2 lists comparisons with the averaged WNG and DI performance of the two
methods. At 250 and 500 Hz, the WNG of the MM-JAD method below −15 dB and the
corresponding DI value below 0 dB indicate that the energy radiated by the line array to the
broadside is lower than the averaged energy radiated by the array to the front half-plane.
At 750 Hz, as the WNG of the MM-JAD method is above 0 dB, the DI reaches 7.3. At
1 kHz, due to the WNGs, the two methods are all above 12 dB, and their DI values are also
relatively close. Comparing Tables 1 and 2, it can be observed that with the perturbations in
the spatial responses of the loudspeakers, the WNG and DI of the proposed method remain
almost consistent. This also indicates that the beamformer with Tikhonov regularization
can mitigate the impact of transfer function errors on the beamformer.

Table 2. The averaged WNG and DI performance (dB) of MM-JAD and the proposed method with the
perturbation added to the frequency response of the loudspeakers at 250 Hz, 500 Hz, 750 Hz, and 1 kHz.

Freq (Hz)
WNG (dB) DI (dB)

-MM-JAD Proposed -MM-JAD Proposed

250 −15.6 −1.1 −1.8 5.6
500 −15.4 5.8 −2.1 8.1
750 0.3 14.0 7.3 9.2

1000 12.6 12.8 8.3 8.4
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4.3.3. Comparison with the Other Differential Beamforming Methods

In this section, to demonstrate the performance and advantages of the proposed
method, we compare the performance of the proposed method with three other existing
broadside differential beamforming methods: (i) the DD method [7], which combines the
differential and delay-and-sum patterns, (ii) the MN method [26], which utilizes the null po-
sition for the target beampattern to design the beamformer, and (iii) the MNA method [26],
which uses the null position and the angle corresponding half-power bandwidth for the tar-
get beampattern to design the beamformer. In the simulations, the regularization parameter
of the proposed method is set to 0.01 across the whole evaluated frequencies.

Figure 8 shows the WNG and DI of the proposed method compared with the methods
DD, MN, and MNA. In Figure 8a, the DD method has the lowest WNG among the four
methods below 2 kHz, indicating the worst anti-perturbation ability at low frequencies. The
MN method has the maximum WNG above 1 kHz. The proposed method has the highest
WNG below 500 Hz and has the same WNG as the MNA method in the frequency range
of 1–2.5 kHz. Although the WNG of the proposed method is the lowest above 2.5 kHz,
the value is still greater than 5 dB, which is considered as a proper level of robustness
in practical applications. Figure 8b shows the DI of the DD and MN methods increases
with frequency. The DI of the MNA method maintains almost the same below 2 kHz but
increases with frequency above 2 kHz. The DI of the proposed method can maintain a
constant above 1 kHz. Below 1 kHz, due to the trade-off between the WNG and DI, the DI
of the proposed method exhibits slight fluctuations.

The wideband beampattern can intuitively illustrate the broadband frequency-invariant
characteristics of the beamformer. We present the synthesized beampattern of these four
methods in Figure 9. The main lobes of the DD and MN methods become narrower as the
frequency increases. Below 2 kHz, the main lobe of the MNA method remained almost
the same. However, grating lobes appear above 2 kHz. In contrast, the proposed method
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maintained the frequency-invariant pattern in the frequency range of 750–4k Hz. Although
the proposed method cannot hold the frequency-invariant beampattern below 750 Hz, the
beampattern shown in Figure 9d reflects the actual beampattern radiated by the line array
due to the increased WNG.
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5. Experiments
5.1. Experimental Setup

To evaluate the practical performance of the proposed method, a line array of 31 loud-
speakers (HiVi B1S) with spacing of 0.038 m, shown in Figure 10a, has been built. The
experimental setup is shown in Figure 10b. The array was installed in an anechoic chamber
and placed on top of a turntable. An omni-directional microphone (BSWA MPA201) was
placed at 3 m from the geometrical center of the array. Both the microphone and the line
array were placed at a height of 2 m from the floor.
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5.2. Results and Discussion 
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Figure 10. Photo of the line array with 31 loudspeakers and experimental setup of the measurement:
(a) the line array and (b) the experimental setup.

The transfer functions between loudspeakers in the array and the microphone have
been measured. The speaker is excited by linear swept sine signal in the frequency range of
250–4k Hz with resolution of 5 Hz, and an AP2720 audio analyzer is used to measure the
transfer functions from the loudspeaker to the microphone position. The transfer functions
measured at every 5◦ from 0◦ to 180◦ by using the turntable have been undertaken to
calculate the measured beampattern by different beamforming methods.

5.2. Results and Discussion

In this section, we will present the comparative results of the experiments to demon-
strate the advantages of the proposed method over other existing beamforming methods.

5.2.1. Comparison with Other Broadside Differential Beamforming Methods

The main objective of the proposed beamformer is to design a broadside differential
beampattern over a wide range of frequencies. Figure 11 presents the measured beampat-
terns by four different methods: MN, MNA, MM-JAD, and the proposed method with
a regularization parameter of 0.01 within the frequency range of 250–4k Hz. Figure 11a
shows the MN method cannot generate an effective beampattern under 500 Hz. The main
lobes kept very well in the frequency range of 500–1k Hz and became narrower as the
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frequency increases above 1k Hz. From Figure 11b, the MNA method also fails to produce
an effective beampattern at low frequencies. In the frequency range of 1–2.2 kHz, the main
lobe of the beampattern can remain constant. However, grating lobes appear above 2.2 kHz.
By comparing Figure 11c,d, it can be seen that above 1 kHz, the beampattern generated by
both the MM-JAD method and the proposed method can maintain a constant beam width.
However, below 1 kHz, the beampattern formed by the proposed method is superior to that
generated by the MM-JAD method. Comparing the measured beampatterns in Figure 11d
with the simulation results shown in Figure 11d, the experimental results are consistent
with the simulation results, which demonstrates that the broadside frequency-invariant
beampattern can be synthesized by the proposed method in a broad band of frequencies.
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5.2.2. Comparison with the Method in Ref. [29] (MM-JAD) at Low Frequencies

To better observe the superiority of our proposed method compared to the method
in Ref. [29] at low frequencies, we compare the measured beampattern designed by the
MM-JAD method and the proposed method with the ideal beampattern at four different
frequencies: 250 Hz, 500 Hz, 750 Hz, and 1k Hz. Figure 12 gives the comparison results.
From Figure 12a,b, the maximum value of the beampattern of the MM-JAD method is
not in the broadside direction, indicating that the MM-JAD method cannot generate an
effective beampattern below 500 Hz. Meanwhile, although the beampattern of the proposed
method does not approximate the ideal beampattern as expected, it can produce an effective
beampattern in the broadside direction. The experiment results are consistent with the
simulation results shown in Figure 7a,b. From Figure 12c, it can be seen that at 750 Hz,
the main lobe of the MM-JAD method is close to that of the ideal beampattern, but there
is still a significant deviation in the sidelobes. Figure 12d shows that at 1 kHz, despite
array imperfections and measurement errors causing the sidelobes and null positions of
the two methods differ from the ideal beampattern, the beampatterns of the MM-JAD
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and the proposed methods are identical, validating the conclusion obtained during the
simulation: when the WNG is large, the proposed method yields the same results as the
MM-JAD method.
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5.2.3. Comparison with Benchmark Beamforming Methods

To further illustrate the superiority of the proposed method in generating broadband
frequency-invariant beampatterns, we compared the proposed method with traditional
beamforming methods. We selected two classical beamformers as our benchmark methods,
namely the Delay and Sum (DS) method, which is derived by maximizing the WNG [7],
and the Minimum Variance Distortionless Response (MVDR) method, which aims to
minimize the output power of the array while maintaining a distortionless response in the
desired direction [33]. The MVDR method requires a regularization parameter during the
solving process. We set the regularization parameter to 0.01, which is consistent with the
regularization parameter added in the proposed method. Figure 13 gives the measured
broadband radiation patterns of the benchmark methods. Comparing Figure 13 with
Figure 12d, it can be found that the main lobe of the beampattern generated by the DAS
and MVDR methods becomes narrower as the frequency increases. Meanwhile, the main
lobe of the beampattern synthesized by the proposed method remains constant throughout
the entire evaluation frequency range, even at high frequencies.
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6. Conclusions

In this paper, a robust broadside frequency-invariant beamforming method is pro-
posed for a differential loudspeaker line array. We present a method to calculate the ideal
broadside beampattern combining various criteria, namely, null information, maximizing
the directivity factor, and achieving the beampattern with equal sidelobes. We derive the
modal domain target beampattern of a given ideal broadside differential beampattern.
We propose a robust modal matching method with Tikhonov regularization to design
the broadside beamformer in the modal domain. Simulations and experimental results
show that the proposed method outperforms the null-constrained and MM-JAD methods,
achieving frequency-invariant broadside beamforming over the range of 250 Hz–4 kHz. It
is worth noting that the above analysis and results are obtained under free-field conditions.
The proposed method was only validated at a distance of 3 m in an anechoic chamber. In a
regular room, the directional performance of the proposed method may degrade due to
the influence of room reflections. Future work will verify the proposed method in more
complex and real-world environments.
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