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Abstract 
Histone modifications (HMs) are pivotal in various biological processes, including transcription, replication, and DNA repair, signifi-
cantly impacting chromatin structure. These modifications underpin the molecular mechanisms of cell-type-specific gene expression 
and complex diseases. However, annotating HMs across different cell types solely using experimental approaches is impractical due 
to cost and time constraints. Herein, we present dHICA (deep histone imputation using chromatin accessibility), a novel deep learning 
framework that integrates DNA sequences and chromatin accessibility data to predict multiple HM tracks. Employing the transformer 
architecture alongside dilated convolutions, dHICA boasts an extensive receptive field and captures more cell-type-specific information. 
dHICA outperforms state-of-the-art baselines and achieves superior performance in cell-type-specific loci and gene elements, aligning 
with biological expectations. Furthermore, dHICA’s imputations hold significant potential for downstream applications, including 
chromatin state segmentation and elucidating the functional implications of SNPs (Single Nucleotide Polymorphisms). In conclusion, 
dHICA serves as a valuable tool for advancing the understanding of chromatin dynamics, offering enhanced predictive capabilities and 
interpretability. 
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Introduction 
At the core of chromatin architecture are the highly conserved 
histone proteins—H1, H2A, H2B, H3, and H4—which serve as 
fundamental building blocks for packaging eukaryotic DNA into 
repetitive nucleosomal units [1]. These units are subsequently 
folded into higher-order chromatin fibers [2]. Histone modifi-
cations (HMs) significantly influence a broad range of cellular 
processes, including gene expression, chromatin structure mod-
ulation, and DNA repair [3]. To elucidate the genome-wide signals 
associated with different cell types and tissues, initiatives such 
as the Encyclopedia of DNA Elements (ENCODE) [4, 5] and  the  
Roadmap Epigenomics Consortiums [6] have made substantial 
strides in systematically characterizing in vivo biochemical sig-
natures across different cell types and tissues, including HMs, 
chromatin accessibility, and DNA methylation. 

Despite these efforts to comprehensively map the epigenomes, 
significant challenges remain. Due to the high costs and time-
consuming nature of experimental work, data have only been col-
lected for a fraction of potential cell type and assay combinations 
outlined in these projects. Furthermore, considering the myriad 
developmental stages and environmental conditions, the diversity 
of possible human cell types is virtually boundless. It is imprac-
tical to anticipate collecting exhaustive data for every potential 

cell type/assay combination. Furthermore, no high-throughput 
assay is perfectly reproducible, and run-to-run differences in the 
same experiment may reflect either biological variation in the 
cells being assayed or experimental variance arising from sample 
preparation or downstream steps in the protocol. 

As a practical solution, the development of in silico models 
to impute unknown epigenomic profiles based on existing data 
offers a promising alternative to these experimental limitations. 
Epigenomic imputation methods such as ChromImpute [7] and  
PREDICTD [8] have been presented to use available data to 
accurately impute the outcomes of missing experiments, thereby 
extending our understanding of epigenomic regulation across 
a more comprehensive spectrum of cell types and conditions. 
Alongside imputing missing data, Avocado [9] has produced 
a dense and information-rich representation of the human 
epigenomes, reducing redundancy, noise, and bias. 

Considering the extensive range of tissues and HMs, relying 
solely on biological experiments to explore underlying mech-
anisms is somewhat unrealistic. Certain studies have been 
conducted to identify HM peaks, helping researchers to focus 
on regions more closely associated with regulatory effects on 
gene expression. For instance, DeepSEA [10] models regulatory 
information encoded by the DNA sequence to predict a wide array 
of epigenomics data, including TF-binding, DNase I sensitivity,
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and HM sites. Both DeepHistone [11] and iHMnBS [12] combine 
DNA sequence and DNase-seq data to classify multiple HM 
peaks. Meanwhile, DeepPTM [13] uses TF-binding data and DNA 
sequences to predict histone posttranslational modifications; 
however, it is limited to predicting only a single modification 
marker in the center of the sequence for a given cell line. These 
methods are trained only in regions with HM peaks, not genome-
wide, which may prevent them from capturing features across 
the entire genome. 

Several models have been developed to predict genome-wide, 
cell-type-specific epigenetic, and transcriptional profiles in large 
mammalian genomes. For instance, Kelley developed Basenji2 
[14], a deep learning model that predicts experimental HMs using 
DNA sequence alone. Enformer [15] advanced this approach by 
integrating a transformer architecture into the convolutional 
blocks, allowing it to process a more extensive range (197-kbp) of 
DNA sequences through the self-attention mechanism, handling 
longer sequences than Basenji2 (131-kbp). 

However, while DNA sequence encodes regulatory informa-
tion for cells and tissue types, Enformer falls short in capturing 
the highly cell-type and developmental stage-specific nature of 
HMs [16]. dHIT [17] has shown promising outcomes in predicting 
HMs from GRO-seq data, demonstrating the potential of leverag-
ing single-assay, cell-type-specific features to enhance predictive 
accuracy. EPCOT [18] incorporates DNase-seq and DNA sequence 
to predict HM tracks for a given cell type, utilizing a pretraining 
and fine-tuning framework. However, the resolution of EPCOT 
(1000 bp) is significantly lower than that of Enformer and Basenji2, 
both of which are 128 bp, far underperforming the popular chro-
matin segmentation method (ChromHMM [19]), which uses 200-
bp resolution. It should be noted that achieving higher resolution 
is crucial for various downstream applications, including chro-
matin segmentation. 

Motivated by these insights, we introduce deep Histone Impu-
tation using Chromatin Accessibility (dHICA) to simultaneously 
predict multiple HM levels using DNA sequence data and chro-
matin accessibility as inputs. More importantly, incorporating 
the transformer architecture [20] into our model expands the 
model’s receptive field, allowing it to capture distal information. 
In cross-cell line and species evaluations, dHICA outperformed 
other state-of-the-art methods, primarily due to its effective inte-
gration of chromatin accessibility data. Chromatin accessibility 
data, particularly active marks, are crucial for model predictions. 
Unlike models that depend solely on DNA, dHICA can predict HMs 
in new cell lines and species without the need for re-training. 
Furthermore, dHICA’s imputed data can be utilized for down-
stream applications, including segmenting chromatin states and 
distinguishing histone acetylation quantitative trait loci (haQTLs) 
from SNPs. dHICA’s robust performance and versatility highlight 
its potential as an innovative tool in genomic research. 

Materials and methods 
Dataset 
This study sourced multiple HMs and sequencing files from 
ENCODE for ATAC-seq and DNase-seq. The HMs utilized included 
H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K27me3, H3K36me3, 
H3K9ac, H3K9me3, and H4K20me1. These markers indicate 
specific functional elements such as enhancers, promoters, and 
gene bodies. This study also explored less commonly studied 
modifications such as H3 lysine 122 acetylation (H3K122ac). For 
the experimental setup, the K562 cell line (chromosomes 1-21) 
was used for model training and validation. Chromosome 22 of 

the K562 and other cell lines, such as GM12878 and HCT116, 
served as the testing ground. Two separate models were optimally 
trained using DNase-seq and ATAC-seq data, respectively. Tables 
S2–S5 in the Supplementary material provide further details on 
the data used. 

Data preprocessing 
This study excludes mitochondrial DNA from the analysis, focus-
ing only on the autosomes and sex chromosomes. To minimize 
potential confounding factors, ENCODE blacklist regions are also 
omitted from the entire genome [21]. To avoid assembly gaps 
and unmappable regions that are more significant than 1 kb, 
we extract 131-kb non-overlapping sequences across the chromo-
somes, which expand to 197 kb on both sides as model inputs. This 
procedure yielded 22727 intervals for extracting DNA sequences 
and chromatin accessibility data. 

DNA sequences are read using a one-hot encoding scheme, 
where A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1], and 
N = [0,0,0,0]. Chromatin accessibility data are extracted directly 
from fold change bigwig files, and we ensure data integrity by 
setting any negative or NaN values to zero, without applying any 
further data transformation. For predicting HM signals, within 
each interval, we summed coverage estimates in a bin with a 
length of 128 bp to serve as the signal for the model to predict. 

To mitigate the influence of experimental factors such as 
batch effects and data quality variations, four distinct chromatin 
accessibility datasets are utilized for the same set of interval 
partitions. This method not only captures the variability across 
different experimental conditions but also effectively quadruples 
the sample size, thereby enhancing the robustness of the data 
processing. Consequently, the assembled dataset encompasses 
a comprehensive total of 90908 samples (exactly four-fold the 
base count of 22727 intervals), with 87868 samples designated 
for training, 1472 for validation, and 1568 for testing, thereby 
guaranteeing extensive coverage and reliable model evaluation. 

Architecture of the dHICA 
Our proposed model, dHICA, builds upon the foundation of 
Enformer and integrates chromatin accessibility data with DNA 
sequence to enhance the prediction of HMs, as illustrated in 
Fig. 1A. The architecture comprises a sophisticated sequence 
of layers designed for optimal data processing and prediction 
accuracy. It starts with two separate convolutional blocks, 
one dedicated to DNA sequences and the other to chromatin 
accessibility data. Each block is tailored to extract the specific 
characteristics of its input data type. These features are then 
processed through a fusion layer, which prepares them for 
the next critical phase. The Transformer block, a pivotal 
model component, excels in capturing long-range dependencies 
and interactions between the DNA sequences and chromatin 
accessibility, which is crucial for understanding their combined 
influence on HMs. The processing sequence concludes with a 
cropping layer followed by a fully connected layer, which together 
refine and predict the 10 specific types of HMs. This integrated 
approach ensures that dHICA not only captures the unique 
aspects of each data but also effectively interprets the complex 
interdependencies that dictate HM patterns. 

Convolutional blocks and fusion layer 
We applied convolutional blocks with pooling to distill the input 
data, DNA and chromatin accessibility data, into fixed-size repre-
sentations. Precisely, the model dissects the input sequences into 
128-base pair bins to achieve the desired resolution.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
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Figure 1. The dHICA framework illustrated; (A) overview of the dHICA; (B) detailed depiction of the convolutional blocks within dHICA; (C) the fusion  
layer of dHICA integrates features derived from DNA sequence and chromatin accessibility data, and (D) the strategy dHICA employs to segment distant 
genomic regions. 

The architecture comprises seven distinct parts within the 
convolutional blocks, categorized into two primary convolutional 
blocks as depicted in Fig. 1B. The initial convolutional block effec-
tively condenses the spatial dimension from 196608 bp down 
to 1536 bins, which ensures that each vector in the sequence 
symbolizes a 128-bp bin aligning with the resolution parameters 
set for dHICA. 

Following this, six additional blocks utilize dilated convolu-
tions—a technique where the convolutional filters incorporate 
gaps progressively enlarged by a factor of two in each subse-
quent layer. This approach allows the model’s receptive field to 
expand exponentially without linearly increasing complexity. A 
vital feature of this model is the dense connectivity of these 
layers, whereby each layer utilizes inputs from all preceding 
layers instead of only the previous one. This design optimizes 
the number of filters required per layer. It allows for preserving 
and integrating the rich feature set extracted from the initial 
convolutional operations through the complex nuances teased 
out by the dilated convolutions. Each layer can thus concentrate 
on capturing the residual variation that previous layers have not 
addressed. 

For the dilated convolution layers, we increase the number of 
channels Ci by a consistent multiplier until we attain the specified 
channel count C, starting from half that value C/2 in the initial six 
layers. In tandem, the dilation rate Di is augmented by a factor of 
1.5 for each successive layer, with the resulting figure rounded to 
the nearest whole number. For our setup, we define the channel 
size C as 1536 and initiate with C/2 filters along with a pooling 
size 2. 

To further refine and integrate the features extracted from 
the DNA and chromatin accessibility data, we employ fusion 
layers (Fig. 1C). The first dense layer doubles the channel capacity, 

amplifying the feature space, while the subsequent layer scales it 
back to the model’s baseline number of channels. This methodical 
expansion and contraction of the channel space facilitate a more 
nuanced synthesis of the underlying biological signals. 

Transformer block 
The transformer block is the core component of the model, 
encompassing 11 distinct layers that each play a pivotal role in 
interpreting sequence data. This block transforms each position 
in the input sequence through a computed weighted sum of all 
position representations, a process known as attention. Here, 
attention weights are influenced by the embeddings of the 
positions and their relative distances, enabling the incorporation 
of spatial context. 

This attention-driven mechanism is critical to the model’s 
advanced ability to predict HMs. It leverages information from 
critical regulatory regions, such as enhancers, essential for gene 
regulation. A standout feature of the model is its ability to focus 
attention directly across the entire sequence, facilitating seam-
less information exchange across potentially distant elements 
along the DNA strand. As a result, the transformer layers signifi-
cantly broaden the model’s receptive field, capturing regulatory 
elements up to 100 kb away while preserving the integrity of 
information crucial for accurate predictions. 

The attention mechanism within these blocks is mathemati-
cally represented as 

Attention(Q, K, V) = softmax

(
QKT + R√

dk

)
V, (1)  

where Q, K, V represent the queries, keys, and values vectors— 
each a critical component of the attention calculation; dk is



4 | Wen et al.

the dimensionality of the keys and queries, providing necessary 
scaling. The softmax function ensures that the attention weights 
are normalized across the sequence. The term R denotes the 
relative positional encodings, which integrate spatial context into 
the model. The mathematical representation of relative positional 
encoding is as follows: 

Ri,j = exp
(

− 
|i − j| 

log2(|i − j|)
)

, (2)  

where Ri,j represents the relative positional encoding between 
positions i and j. The  parameter  log2(|i − j|) governs the rate 
of decay for the positional encoding, which enables the model 
to dynamically adjust the decay rate based on the positional 
distance, thereby facilitating the capture of long-range dependen-
cies. By incorporating a logarithmic adjustment, dHICA can effec-
tively manage varying sequence lengths, enhancing its ability to 
capture intricate dependencies within diverse sequences. Unlike 
static parameters, this adaptive mechanism allows the model to 
better generalize across different sequence contexts and lengths, 
thus improving overall performance. 

Furthermore, the model employs Multi-Head Attention (MHA) 
to conduct multiple attention computations in parallel, allowing 
each head to capture distinct features of the input data indepen-
dently 

MHA(Q, K, V) = Concat(head1, . . .  , headh)WO 

headi = Attention(QWQ 
i , KWK 

i , VWV 
i ), 

(3) 

where WQ 
i , WK 

i , WV 
i are parameter matrices for ith attention head, 

WO is the output weight matrix that combines the heads, and the 
number of heads h is set to 8. 

Cropping layer 
To tackle the computational challenges associated with analyzing 
distant regions in genomic sequence data, a cropping layer is 
employed. This layer excises 320 positions from each end of the 
sequence, effectively shortening it by 320 × 128 bp as illustrated 
in Fig. 1D. The process leaves only the central 896 positions. 
This cropping strategy is crucial because of the model’s inherent 
limitations in capturing and learning effectively from regions 
distant from the sequencing center. These constraints are due to 
the model’s architecture, which is designed to primarily perceive 
and analyze regulatory elements facing toward the sequencing 
center. At the same time, it struggles to detect elements beyond 
the sequence boundaries. 

Following this, a fully connected layer is implemented to pre-
dict HMs with a resolution of 128 bp. This step not only refines the 
model’s output but also significantly reduces the computational 
burden. 

Model training 
We adopted a supervised learning approach to optimize our 
dHICA model, utilizing the Mean Squared Error (MSE) loss 
function to optimize performance. To assess which chromatin 
accessibility data better complements dHICA, we conducted 
parallel training using identical model architectures on both 
ATAC-seq and DNase-seq data. Our training dataset comprised 
chromosomes 1–20 from the K562 cell line, with chromosome 21 
reserved for validation and chromosome 22 for testing. 

We configured the MSE loss function with an initial learning 
rate of 0.0001, incorporating a learning rate decay strategy that 

reduces the rate by a factor of 1.4 every 5 epochs following the first 
10 epochs. Although recent studies have shown that PoissonNLL 
Loss can outperform MSE Loss in predicting epigenomic signals 
[22], our observations indicated no significant difference in perfor-
mance between the two loss functions (Supplementary Text S1), 
which may be due to the Poisson distribution approximating a nor-
mal distribution when the mean parameter is sufficiently large. 
The model was optimized over 300 epochs, processing batches 
of 1500 samples each. This rigorous training ensures that dHICA 
can reliably predict steady-state HMs across various cell types, 
assuming that the underlying relationships between HMs, DNA, 
and chromatin accessibility signals remain consistent. 

Results 
Performance evaluation across different cell 
lines, tissues, and species 
To thoroughly investigate the generalization capability of our 
model, we applied dHICA on a diverse array of cell lines (GM12878, 
MCF-7, HeLa-S3, HCT116, HepG2, IMR-90, and A549), along with 
human (heart and spleen) and mouse (hindbrain, heart, and G1E) 
tissues, despite its exclusive training on K562. 

The imputed HMs exhibit robust correlation with experimental 
data (Fig. 2A) [23]; particularly noteworthy is the predicted back-
ground region data, which exhibits lower noise levels than the 
experimental data. Among the marks we attempted to model, 
only the repressive marks H3K9me3 and H3K27me3 showed sub-
par performance, likely due to their weak correlation with chro-
matin accessibility signals, low data values, and average sequenc-
ing quality [17, 24]. 

For the evaluation of HM imputations, we employed the 
method outlined in the ENCODE imputation challenge [25] 
to compute the Pearson’s correlation between imputed and 
experimental HMs across seven distinct cell lines and four 
tissues (Fig. 2D and S5). Active marks (H3K4me3, H3K4me2, 
H3K4me1, and H3K9ac), which are predominantly associated 
with promoters and enhancers, exhibited consistent performance 
across holdout cell types, akin to the performance observed in 
the training cell line K562 (with an average Pearson’s correlation 
exceeding 0.7). There was a slight decrease in performance 
near repressive regions (H3K9me3, H3K27me3, and H3K20me1). 
And the imputation performance across different cell lines 
correlated with the similarity of HMs in the correlation between 
the predicted and training cell lines K562 (Fig. S6). Therefore, 
the model showcases robust generalization across all HMs, 
demonstrating its effectiveness in diverse chromatin contexts. 

Moving beyond genome-wide predictive accuracy, we delved 
into the imputed results near HM peaks and transcription start 
sites (TSS). The signals in those regions are the most informative 
[26], enabling a detailed examination of their distribution. While 
the dHICA’s performance varies significantly across different cell 
lines on a genome-wide scale, there were no significant disparities 
in accuracy observed across various HM peaks with high signal 
intensity (Fig. 2C and Supplementary Text S2). And the imputa-
tion effectively captured the nuanced distribution of HM signals 
near the TSS of annotated genes (Fig. 2B, S10, and  S11). Within 
TSS regions, dHICA comprehensively encompasses both active 
and repressive marks, aligning closely with biological expecta-
tions [27]. The substantial correlation between the distribution of 
imputed and experimental HM signals further bolsters confidence 
in dHICA’s ability to accurately represent biological phenomena, 
affirming that it goes beyond merely learning average signal 
intensities of HMs [28].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
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Figure 2. Comprehensive analysis of cross-cell-type and cross-species imputations; (A) genome browser comparison between experimental and predicted 
histone marks near gene CCDC14 and ROPN1 in GM12878, and (B) comparison of dHICA’s imputed signals and experimental data proximal to the TSS 
in K562 and HCT116; (C) evaluation of dHICA’s performance across HM peak regions; (D) comparison of Pearson’s correlation of ATAC model across cell 
lines, tissues, and species; empty cells indicate that no experimental data are available for comparison in the cell type shown, and (E) distribution of 
cell-type-specific HM imputations by dHICA, indicating the effective capability of dHICA in distinguishing cell-type-specific features. 

Additionally, our model, originally trained on the human K562 
cell line, extended to HM signals in mouse cell and tissue types 
( Fig. 2D). What surprised us is that dHICA achieved even higher 
accuracy in mouse tissues compared with human tissues, which 
was due to data quality issues. The result exhibits distinct levels 
of similarity with the training cell line without retraining the 
model, which could help explore the general features of HMs that 
are shared across mammalian cell types. This capability unveils 
significant potential applications in annotating genomes of less-
explored mammalian species. 

Inspired by CEMIG [29], we employed dHICA to discern 
cell-type-specific HM peak sites in K562 and GM12878 cells. 
For each HM, we delineated K562-specific, GM12878-specific, 
and shared peaks (detailed in Supplementary Text S3). The 
variation in loci between different cell types reflects distinct 
regulatory mechanisms and gene expression patterns [30]. We 

investigate dHICA’s ability to identify cell-type-specific features 
by comparing the distribution of signal values in different cell-
type-specific peak regions, measured in raw counts imputed 
by dHICA (Fig. 2E). Ideally, the K562 imputation should show 
significantly higher signal values at K562-specific peaks than 
at GM12878-specific peaks, with a reciprocal pattern expected 
for GM12878 imputations. A one-sided Wilcoxon rank sum test 
against the null hypothesis that the signal values in different cell-
type-specific peaks are identical yielded a p-value significantly 
less than 0.01, supporting the conclusion that dHICA effectively 
distinguishes cell-type-specific features. Despite being trained 
solely on the K562, dHICA accurately identifies specific regions, 
even in GM12878 cells that have not been trained. 

Given dHICA’s ability to accurately predict epigenomic 
features across cell lines, for further evaluation, we compare 
its performance with other baseline methods, including EPCOT,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
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Table 1. The comparison of auPRC between different models across HM peak regions 

Methods Input Cell line H3K4me3 H3K9ac H3K27ac H3K27me3 Average 

dHICA DNA+ATAC K562 0.919 0.708 0.718 0.575 0.730 
dHICA DNA+DNase K562 0.871 0.649 0.647 0.360 0.632 
EPCOT DNA+ATAC K562 0.887 0.528 0.482 0.258 0.539 
EPCOT DNA+DNase K562 0.857 0.531 0.637 0.359 0.596 
Enformer DNA K562 0.865 0.578 0.530 0.160 0.533 
deepPTM DNA+TF H1 0.903 0.719 0.554 0.240 0.604 
deepSEA DNA H1 0.737 0.563 0.534 0.440 0.569 
ChromImpute HM(existing) H1 0.617 0.688 0.200 0.788 0.573 

Enformer, deepPTM, deepSEA, and ChromImpute. However, due 
to the diverse nature of prediction tasks (binary models for 
classifying HM peaks versus quantitative models for imputing 
signal tracks), making direct fair comparisons is challenging 
[ 22]. To address this issue, we divided the comparison into two 
main aspects: focusing on performance in HM peak regions and 
assessing genome-wide performance. 

To compare the performance of state-of-the-art methods in HM 
peak regions, and due to data imbalance, we calculate the auPRC 
of imputations rather than auROC from different baseline meth-
ods, as shown in Table 1 and Figs S7 and S8. Given that deepPTM 
only imputes H3K4me3, H3K9ac, H3K27ac, and H3K27me3, we 
select these four HM markers for comparison, as they correlate 
with both active and repressive regions in the genome. This selec-
tion ensures that the subsets of HMs are reasonable. And dHICA 
using ATAC-seq achieved the best performance, with an average 
auPRC higher than 0.7. 

For genome-wide HM imputation comparison, we compute 
Pearson’s correlation, Spearman’s correlation, and Root Mean 
Square Error (RMSE) between experimental signals and imputa-
tion from dHICA, EPCOT, and Enformer (Supplementary Text S4). 
From Fig. 3A, we easily discern that dHICA outperforms other 
baselines in all performance metrics. We further compare dHICA 
with EPCOT, as it is the most similar and comparable to our 
model. Like dHICA, it incorporates DNA sequences and chromatin 
accessibility data for the predictive tasks. However, EPCOT used 
four cell lines (K562, MCF-7, GM12878, and HepG2) as training 
datasets, whereas dHICA only used K562. To make the comparison 
fairer, we calculate the correlation of HMs between different cell 
lines (Fig. S6), and we ultimately select five cell lines that are most 
similar to the K562, along with K562 itself for evaluation between 
EPCOT and dHICA. Among the six cell lines (K562, GM12878, MCF-
7, HCT116, HeLa-S3, and IMR-90) used for comparison, dHICA only 
used one cell line, K562, for training, while EPCOT used three cell 
lines (K562, GM12878, MCF-7) for model training. Though EPCOT 
is generally considered to be effective, dHICA has consistently 
shown superior performance in predicting HM markers (Fig. 3B). 
This is true regardless of whether the chromatin accessibility 
signals used by the model come from ATAC-seq or DNase-seq. 

Contribution of DNA and chromatin accessibility 
data 
Most baselines rely solely on DNA sequence inputs, poten-
tially lacking cell-type-specific features. In contrast, dHICA 
integrates one-hot encoded DNA sequences and cell-type-
specific chromatin accessibility signals. These cell-type-specific 
signals, represented by raw sequencing reads without data 
transformation, comprehensively impute HM signals. For cell-
type-specific inputs, we opt for ubiquitous chromatin accessibility 

profiles from DNase-seq and ATAC-seq due to their profound 
implications in gene regulation and chromatin organization. 

To evaluate the impact of DNA information and chromatin 
accessibility data on enhancing the model’s performance in pre-
dicting HM signals, we separately trained the dHICA using only 
DNA or chromatin accessibility data on the K562. Subsequently, 
we assessed the performance of these individual models on the 
HCT116 and compared them with the standard dHICA model. 
Initially, we computed genome-wide Pearson’s correlation from 
imputations generated by different individual models. As depicted 
in Fig. 4A, using both DNA and chromatin accessibility data con-
sistently yielded higher Pearson’s correlation than using either 
component alone. For active marks, relying solely on chromatin 
accessibility data outperformed the use of DNA sequence data 
alone, whereas this was not the case for repressive marks. 

Considering the pivotal role of gene elements and their intri-
cate interactions with HMs [31], along with the use of HM signals 
near various gene elements by many computational methods to 
predict gene expression [32–34], we are particularly interested in 
the predictive performance of HMs around gene elements. We 
finally selected five gene elements: promoter, enhancer, insulator, 
gene body, and PolyA, and calculated the Pearson’s correlation 
in these regions (Fig. 4B). Aligned with the intricate interaction 
between HMs and gene elements, HMs exhibit significant perfor-
mance, particularly in regions where they closely associate with 
specific gene elements—for instance, H3K4me3 in promoters, 
H3K4me1 in enhancers, and H3K36me3 in gene bodies. 

To delve deeper into the primary impact of DNA information 
and chromatin accessibility data in gene elements, we conducted 
a comparative analysis of Pearson’s correlation of the individual 
models around these gene elements, as depicted in Fig. 4C. Con-
sistent with the genome-wide conclusion, for markers associated 
with enhancers and promoters, chromatin accessibility data play 
a more crucial role than DNA. Conversely, DNA assumes greater 
importance for marks associated with transcription and repres-
sive regions. However, the incorporation of chromatin accessibility 
data also contributes significantly, as evidenced by the superior 
performance of the standard dHICA model compared with indi-
vidual models using DNA alone genome-wide. 

dHICA enables precise peak calls and chromatin 
state imputation for landscape insights 
Since dHICA can impute the signal track of HM markers, we 
asked whether it can be used to identify HM peak regions. We 
apply LanceOtron [35] to call peaks from HM signals generated by 
dHICA, EPCOT, and ENCODE data (Table S4). We then compared 
the imputed peak regions with those from ENCODE by computing 
the Jaccard correlation, Recall, Precision, and F1 score (Fig. 5A 
and S9).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
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Figure 3. Multidimensional performance assessment; (A) aggregate metrics, including Pearson’s correlation, Spearman’s correlation, and RMSE, were 
evaluated over six cell lines (K562, GM12878, HCT116, Hela-S3, MCF-7, and IMR-90), and (B) genome-wide comparison of EPCOT and dHICA methodologies 
across multiple cell lines. 

Figure 4. Analysis of the contribution of DNA and chromatin accessibility data; (A) Pearson’s correlation of dHICA genome-wide using DNA or chromatin 
accessibility data in the HCT116; (B) the performance of dHCIA’s imputations across different gene elements in the HCT116; (C) the contribution of DNA 
and chromatin accessibility data across different gene elements in the HCT116. 
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Figure 5. Downstream application and explanation of dHCIA; (A) Jaccard scores for dHICA and EPCOT across different cell lines (K562, GM12878, HCT116) 
by either ATAC (top) or DNase (bottom) model; (B) venn diagram of peak calls in H3K4me3 (HCT116) from LanceOtron using data from EPCOT and dHICA; 
regions that did not intersect were assessed for overlap with promoters or enhancers, and (C) bar plot of peak calls in the HCT116 from LanceOtron using 
data from EPCOT and dHICA by either ATAC (top) or DNase (bottom) model, showing the ratio of non-intersecting regions that overlap with promoters or 
enhancers; (D) thumbnail images from the most highly enriched regions called by LanceOtron from either dHICA (left) or EPCOT (right), and the center 
panel shows the average coverage of the peak regions from either dHICA (top) or EPCOT (bottom) for H3K4me3 (HCT116); (E) performance assessment 
for chromatin state segmentation using ChromHMM based on HM signals imputed by dHICA and EPCOT, and (F) genome browser in K562 and GM12878 
cells shows the 18-state ChromHMM model using ChIP-seq data used to train the model (Broad) or based on imputation (dHICA predicted); (G) FISs of  
haQTLs and nearby SNPs within 500 bp. 

We further investigated the differences between dHICA and 
EPCOT peak calls. As shown in Fig. 5B, for H3K4me3 in the HCT116, 
we identified 32270 EPCOT-only peaks and 11596 dHICA-only 
peaks. Notably, 15.5% of peaks exclusively called by EPCOT over-
lapped with promoters or enhancers, whereas 53.3% of dHICA-
only peak calls showed such overlap. This trend was consis-
tent across all active markers (Fig. 5C). When visualizing the top 

enriched peaks called using different HM imputations, dHICA’s 
peaks demonstrated significantly higher signal than those from 
EPCOT (Fig. 5D). This pattern was also observed when inspecting 
the average signal of the peak calls; EPCOT-only peaks were 
typically found in areas with less surrounding signal, containing 
narrower peaks with very low enrichment compared with dHICA-
only peaks. It seems that EPCOT-only peaks represent a sporadic
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sampling of numerous peaks near noise levels throughout the 
genome, while the peaks missed by EPCOT and identified by 
dHICA are relatively strongly enriched. 

Chromatin state segmentation and genome annotations are 
essential for various genomic tasks, including the identification 
of active regulatory elements and the interpretation of disease-
associated genetic variations across different cell types and in 
human diseases [36, 37]. Given the robust performance of dHICA 
in the vicinity of gene elements, we investigated whether chro-
matin states defined by ChromHMM could be inferred using 
HM markers imputed by dHICA [38]. We used the pretrained 
reported ChromHMM model that defined 18 distinct chromatin 
states based on six marks for which we trained imputation mod-
els (H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K9me3, and 
H3K27me3) [19]. Examination through the Integrative Genomics 
Viewer showed that chromatin states were highly consistent [39], 
regardless of whether they were defined using ENCODE data or 
dHICA’s imputation (Fig. 5F). This highlights dHICA’s ability to 
accurately represent the underlying epigenetic landscape, suc-
cessfully extrapolating complex chromatin configurations from 
integrated datasets. The consistency of the imputed states with 
those derived from ENCODE data suggests that this can be a 
viable alternative for predicting chromatin states, particularly in 
contexts where ChIP-seq data are unavailable or when detailed 
analysis of chromatin states is required due to the extensive 
variability in human chromatin states [40, 41]. 

To achieve a more quantitatively robust and principled eval-
uation of chromatin state segmentation, we applied SAGAconf 
[42] to compare the annotations derived from imputation with 
ENCODE ChIP-seq data in both K562 and GM12878. We included 
EPCOT for comparison, as it closely resembles our model, as 
illustrated in Fig. 5E. We calculated the area under the scaled 
min-max curve (auSMC), posterior calibration curves r-squared, 
and correlation coefficients (r-values) between the ENCODE data 
and the imputations generated by both dHICA and EPCOT, with 
detailed metrics provided in the Supplementary Text S5. For each 
of the metrics, dHICA outperformed EPCOT, regardless of whether 
ATAC-seq or DNase-seq data were used. Additionally, although 
GM12878 serves as a test cell type for dHICA and a training cell 
type for EPCOT, where EPCOT should presumably perform better, 
dHICA still excelled over EPCOT in segmentation and genome 
annotations tasks. 

dHICA explains functional implications of SNPs 
Genome-wide association studies (GWAS) have successfully iden-
tified numerous genetic variants associated with complex traits 
and diseases [43, 44]. However, elucidating these associations’ 
biological mechanisms is challenging, as most SNPs are non-
coding, and their regulatory roles remain unclear [45, 46]. The 
genotype-independent signal correlation and imbalance (G-SCI) 
test [47], leveraging ChIP-seq assays on H3K27ac, has streamlined 
the identification of histone acetylation quantitative trait loci 
(haQTLs), thereby aiding in pinpointing causal variants within 
GWAS loci and advancing our understanding of their functional 
implications. 

Inspired by the G-SCI method and studies on cell-type-specific 
haQTLs [48, 49], we employed the dHICA, which can impute cell-
type-specific and tissue-specific HM signals, to analyze the SNPs 
identified by G-SCI, which demonstrates dHICA’s potential to 
enhance understanding of the functional implications of these 
SNPs. Following DeepHistone [11], we identified a set of 6925 
SNPs (haQTLs) specific to H3K27ac in the GM12878 from the 
1000 Genomes Project [50]. We also created a negative control set 

with equivalent SNPs, each ∼500-bp away from a corresponding 
haQTL. Using the formula �p = |pref − palt|, where  pref denotes 
the signal intensity associated with the reference allele, and 
palt represents the signal intensity of the alternative allele post-
mutation, as defined in the study [51], we calculated functional 
implication scores (FISs) for these SNPs. The results in Fig. 5G 
indicate that haQTLs have significantly higher scores than con-
trol SNPs. This was substantiated by a one-sided Wilcoxon rank 
sum test, which revealed a marked difference in the median 
scores between the two groups, with a p-value of 3.651E-320. 
Consequently, our analysis supports the biological understanding 
that haQTLs are more likely to impact the function of the lym-
phoblastoid epigenome and, in turn, influence phenotypic traits 
[52]. This demonstrates that dHICA can effectively distinguish 
SNPs potentially responsible for specific phenotypes from their 
neighboring genetic variants. 

Discussion 
In this study, we presented dHICA, a deep learning framework 
that integrates chromatin accessibility information and DNA 
sequences to predict cell-type-specific HM signals accurately. 
By incorporating the transformer structure alongside dilated 
convolutions, dHICA significantly expands the model’s receptive 
field, enabling it to capture long-range interactions between 
genomic elements. 
dHICA outperformed other state-of-the-art methods across var-
ious cell lines and species, primarily due to its integration of 
chromatin accessibility data, which provides cell-type-specific 
features, particularly active gene elements. Moreover, dHICA’s 
imputed data can be utilized for downstream tasks such as chro-
matin state segmentation and distinguishing haQTLs from SNPs. 
Given its ability to predict HMs in new cell lines and species 
without re-training, dHICA holds significant potential for refined 
and personalized analysis, provided that users can supply the 
necessary chromatin accessibility data. 

Considering the good performance of dHICA trained solely on 
K562, we further explored applying other cell lines for model 
training to enhance the accuracy and robustness of dHICA’s HM 
predictions. Like EPCOT, we trained dHICA-multiple, incorporating 
data from the K562, GM12878, HepG2, and MCF-7 cell lines (Fig. 
S3). To maintain consistency in dataset size for each marker, we 
excluded the H3K122ac marker, as it is only sequenced in K562. 
As illustrated in Fig. S4, integrating data from multiple cell lines 
improved the performance in the training cell lines (GM12878, 
HepG2, and MCF-7), compared with dHICA, but no significant 
enhancements in test cell lines. 

While dHICA demonstrates superior performance, there are 
opportunities for further refinement. (i) Data normalization and 
quality improvement: dHICA processes raw counts directly from 
bigWig files without any data transformation or normalization, 
which may introduce noise and variability. Implementing 
normalization strategies for GC% [53], employing denoising tools 
[54], or exploring data transformation techniques such as arcsinh-
transformed epigenomic feature signals could enhance data 
quality. (ii) Improving the performance of multi-cell models: 
although we have initially integrated data from other cell lines 
for model training to capture multi-cell features, the performance 
improvements have been limited. This may require improvements 
in data preprocessing and model architecture to extract features 
across multiple cell lines and enhance overall performance. 
(iii) Prediction of gene expression: given the established link 
between HMs and gene expression [55], and considering dHICA’s

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae459#supplementary-data
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capability in accurately imputing HMs, there is potential for the 
model to predict gene expression. Ideally, this capability would 
significantly broaden dHICA’s applications and contribute to a 
deeper understanding of biological mechanisms. 

Key Points 
• This study proposes a deep learning framework, dHICA, 

which integrates chromatin accessibility information 
and DNA sequences to predict cell-type-specific HM 
signals accurately. 

• dHICA largely benefits from the chromatin accessibil-
ity data. 

• Across various cell lines, dHICA consistently outper-
forms other state-of-the-art methods. 

• dHICA facilitates precise peak calls and chromatin 
state segmentation, providing deeper insights into the 
genomic landscape. 

• dHICA aids in elucidating the functional implications 
of SNPs. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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