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Foreword 

Visual data mining is a collection of interactive methods for knowledge 
discovery from data, which integrates human perceptual capabilities to spot 
patterns, trends, relationships and exceptions with the capabilities of the 
modern digital computing to characterise data structures and display data. 
The underlying technology builds on visual and analytical processes 
developed in various disciplines including data mining, information 
visualisation, and statistical learning from data with algorithmic extensions 
that handle very large, multidimensional, multivariate data sets. The 
outcomes of the growing research and development in visual data mining 
includes means of visual analysis that can assist in uncovering patterns and 
trends and may be missed when using non-visual methods. Consequently, 
the data mining communities have recognised the significance of this area.  

The first and second edition of this workshop series took place at the 
ECML/PKDD conferences in Freiburg and Helsinki in 2001 and 2002, 
respectively. Both workshops were supported by the 3DVDM group from 
Aalborg University, Denmark. The workshops offered to the participants 
of these European machine learning and data mining forums a mixture of 
presentations on state-of-art methods and techniques, with controversial 
research issues and applications. A report about the first workshop has 
been published in SIGKDD Explorations 3 (2), pp. 78-81, the report on the 
second workshop is on the way. A book, which includes a selection from 
the presentations at both workshops is under preparation and is expected to 
be published with Springer (in LNCS series) by the end of 2003. 

Both years, the workshops brought together a number of cross-disciplinary 
researchers, who were pleased with the events and there was a consensus 
about the necessity of turning it into an annual meeting. This workshop has 
been initiated and organised in response to this interest. This year the 
workshop organisers considered the change of the workshop venue from 
Europe to North America, which is the reason why the workshop is 
collocated with ICDM2003. Being a third edition, the workshop is aiming 
to meet the “visualisers” and the “data miners” and create a stimulating 
atmosphere for open discussions of the cross-disciplinary foundations and 
frameworks of visual data mining, visualisation algorithms and interactive 
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visual mining methods. Consequently, the papers selected for presentation 
at the workshop are grouped in the following sessions: Frameworks and 
Result Interpretability in Visual Data Mining (2 papers), Visualisation 
Techniques for Visual Data Mining; Methodologies for Visual Data 
Mining; and Visual Data Mining Software Demonstrations. The works 
selected for presentation at this workshop form a cohesive body of work, 
which indicates that the field has made another step forward towards 
achieving some level of maturity.  

We would like to thank all those who submitted their work to the 
workshop. As part of the ICDM conference series, the workshop follows a 
rigid blind peer-review process. All papers were extensively reviewed by 
at least three referees drawn from the program committee. Special thanks 
go to them. Once again, we would like to thank all those, who supported 
this year’s efforts on all stages – from the development and submission of 
the workshop proposal to the preparation of the final program and 
proceedings. 

Simeon J. Simoff 
Monique Noirhomme-Fraiture 

Michael H. Böhlen 
Mihael Ankerst 

November 2003 
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.1043F&#ì 3�H1;9=>$',D&p0x;/0ËHN3!UM0XHN3¶ìN&X,Më#0X3F0xW2HN3�ëx3�ì10X$ÉW23n�¨0X3�3¶51í/.N&23A�;��)B:�$Rô 3F&X3FOkW�"Ñ; QNQ $'ONík0
;I&23�"Ñ;D?+3�êî&2,D" ?N;IW2;�;IW4W2&X$'ìN.+W23F0�WX,�=>$Ç04.1;DVi;IW4W2&X$'ìN.+W23F0#,/OÞ3F;/ðpHÞ?+$Ç;IíD&p;I"�)I��$'0X.1;DVR$'÷F;��
WX$',DOÈWX3FðpH1ON$POk.N3s0Ë;I&23�.B043s?ÑWX, Q ,D&XWX&p;9éÑ"%$RON3s?È04WX&2.1ð�WX.N&23F0x=>$';Ô=>$'0X.1;DV7êî3F;MW2.N&23F0\04.BðpHA;/0
0 Q V'$'ON3F0F8KWX&23�3s0�8Û;IO1?ò04WX&23F;I" WX.Nì 3F0F8hëË$RWXH�=>$Ç04.B;IVÊ;IW4WX&2$'ìN.+WX3s0�0X.1ðpH�;D0�ð�,DV',D&s8¥;IO1?ò0X$R÷F3
.1043s?ÑW2,Ðð�,DO>=D3FéÐ$'OkWX3F&X3s0cW2$RONí%?N;IW2;²êî3F;MW2.N&23F0F8Dêî,/&x3�õN;I" Q V'3�.10X3�&p0mVR3s;9=k$'ONí²WXHN3¶ëx3�ìÈ0X$RWX3D)

Ja" Q VR3F"Ð3FOkW2;MW2$R,/OÞ,IêÊWXHN$Ç0
��$Ç04.B;IV��Æ3Fì G�$'ON$'ONíMbN&p;I"%3�ëx,D&2CÈHB;D0�ìB3F3�OÆ; QNQ V'$R3s?�W2,
WXHN3�ëx3�ìB04$RWX3²;DO1?�;DðFð�3s0X0\V',Dík0Ë,Iê�WXH137<m,D" Q .+W23�&
,+ð�$'3�O1ð�3²:�3 Q ;D&4W2"Ð3FOkW�,Iê>�Ë3�OB0X0X3�VÇ;I3F&
S�,DV'é/W23FðpHNO1$'ðJaO104WX$RWX.+W23��îHkW4W Qv� U;U9ëËëËë�) ð�0F) & Q $�) 3F?+.V��)
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�8��� Â+�>Â l/^�b�]kvq[\oqb�]kvq[pb�[2dI`4^�`coqesdÔ^�_cn4{koz`c[pn2`cjD_c[ËeFf ÒÊÎ Ï

� �Üã1çV��ècâ�iÛç â+æ�ãIi

bÛ$'íD.1&X3¶üË04H1,Më#0hW2HN3#;I&pðpHN$RWX3sð�WX.1&X3x,Iê7,D.N&�$'" Q VR3F"%3�OkW2;IWX$',DO¥)�� 3\W2;D&Xí/3�W�,DON3Ë,/&
;�í/&X,/. Q
,Iê�ëx3�ì10X$ÉW23F0�êî,D&�;IO1;DVRé+0X$'0F)lJaO Q .NWA,Dê�WXHN3 04é+04WX3�" ð�,DO10X$'04W20¯,Iê�ëx3�ì Q ;IíD3s0�;IOB? ëm3Fì
043F&X=/3�&�V',Dí�5BVR3s0�)\!�ðFð�3F020ÑW2, ëx3�ìØV',Dí $Ç0È3�$RWXHN3F&�WXH1&X,/.NíDHÜW2HN3 V',+ð�;IV�51V'3Æ0Xé>04WX3F"�8m,/&
ìké�?+,MëËO1VR,k;D?+$'ONíÑ$RW�êî&2,D" ;Ñ&23�"%,IW23�ëm3Fì 0X3�&2=D3�&�� Q ,/0204$'ìNV'é�;/0�; Q ;D0204ëx,D&p? Q &X,DWX3sð�WX3s?
&X3s04,/.N&2ð�3$��)
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! ëm3Fì�&X,/ìB,DW��îëx3�ì1ìB,DWT�\$Ç0#.10X3F?AW2,�&23�WX&2$'3�=D3¶W2HN3 Q ;IíD3s0Ë,Iê�W2HN3²ëx3�ì10X$RWX3�;IOB?AWXHN3FO
ð�,DOB0cW2&X.1ð�W%; ëx3�ìöíD&p; Q H¥)8_�.N&%$'" Q VR3F"%3�OkW2;IWX$',DOñ.1043s0ÐWXHN3�&2,Dì ,IW%,Iê�WXHN3M�����ØS
;IV
,>.N$RWX3�ø �E�+�7W2,Ðí/3�ON3F&2;IWX3�WXHN$Ç0\íD&p; Q H¥8>ëËHN$'ðpHA$Ç0Ë04.NìB043$O/.13�OkWXV'é¯ð�,/O>=D3�&XWX3s?%WX,ÐW2HN3�04$'" Q V'3
U¶GÞó êî,D&2"Ñ;MWË.10X3F?Èìké¯WXHN3�=>$Ç04.B;IV'$R÷s;MWX$',DO¯WX,>,DVÇ0F)

JaO Q ;I&p;IV'V'3�V�8v�Æ3FìK,>3F&X=/3�&²óh,Dí�5BVR3s0Ô;D&X3¯?N,MëËONVR,k;D?+3s?�;IO1? Q &X,+ð�3s0X0X3F? W2HN&2,D.Ní/H ;
043s0X0X$R,/ON$'÷�3�&�;DO1?Ü;�ó�_¶U¶GÞó ø �Dý��#51V'3�$'0¯íD3FON3�&p;MW23F?K)>� 3�ì V',Dík0Ñð�,D.1V'?Üì 3�$RO 3F$ÉW2HN3�&
<m,D"%"%,DOÔóh,Dí�bN,D&2"Ñ;MW�,D& P õ>W23�O1?+3s?7<m,/"Ð"%,/OÔó¥,/íb1,D&2"%;IWF)!�x,IW2H²$'O Q .+W-;IOB?�,D.NW Q .+W
,Iê#?+$Rô 3F&X3FO/W Q ;I&XW20�;D&X3Ñ$'O 0cWp;IO1?1;I&p?K�(��GÞó��¶VÇ;IONí/.1;Ií/3F0�0X,�,D.+W Q .+W²,Dê\,DWXHN3F&²0X$R"%$'V';D&
Q &X,/íD&p;I"Ñ0
ð�,/.NVÇ?%ìB3�êî3F?%W2,�WXHN3<04é+04WX3F" ëË$RWXH¯0X"Ñ;IV'VBðpH1;DONíD3s0-;IVÇ0X,�&X3s04.NVRW20mð�;DOÑìB3�.1043s?
ìké¯,IWXH13�&#0Xé>04WX3F"Ñ0�)

� HN3zJaOkWX3FíD&p;MWX$',DO P O1íD$'ON3#$Ç0Ê;�0X.N$RWX3#,Dê Q &X,/íD&p;I"Ñ0iêî,D&Ê?1;MW2; Q &X3 Q ;I&p;MW2$R,/OÔ$�) 3D)>ð�V'3F;IOI�
$RONíB89WX&p;IO104êî,D&2"%$RO1í�;IOB?�$'O/W23�í/&2;IWX$'ONí<?1;MW2;1)+J~W�.B043s0/���.13�&2éD8+��,+ó � ;IO1?���S
;IWXHÐ;D0iëm3FVRV
;D08�#3�íD.1V';D& P õ Q &23F0204$',DO%S
;I&p0X$RONí¶,/O4��GÞó V';DONíD.1;DíD3s0
;IVÇ04, Q &X, Q &X$'3�Wcé²WX3�õkWx?N;MWp;¶WX,²?N,
WXHN3\W2&2;DO10cêî,/&X"Ñ;IWX$',DO¥)�,>. Q1Q ,/&4W�êî,D&-SmGÞGÞó�$Ç0�&X3s;D?+$'V'é�;9=9;D$RVÇ;Iì1VR3Ë;D0iëx3�V'V})/!ñð�,DONO13Fð�W2$R,/O
"Ð,+?+.1VR3�$Ç0Ë$'OÞðpH1;I&2íD3¶,Dê>�x.NV'CÈóh,/;/?+$RO1íÑ,Iê=��GÞó ?1;MW2;%$'OkWX,�?N;IW2;Dì1;D0X3�;IO1?A3�õ>3sð�.+W2$RO1í
,��<ó�ð�,D"%"Ñ;IO1?N0�;Iík;I$'O10cW�WXHN3%?N;MWp;Iì1;/043/)-,+ðpH13�"Ñ;�"Ñ;MWpðpHN$'ONí�$Ç0�?+,/ON3².B04$'ONí¯3�õ>WX3�&2O1;DV
WX,>,DVÇ0�;D0�ëm3FVRVx;D0�ð�,>?N3�04ON$ QNQ 3�Wp0²ëËHN$ÇðpHò"Ñ; Q ?+$Rô 3F&X3FOkWÔ0XðpH13�"Ñ;�;IO1?ò$'" Q ,/&4W1U93�õ Q ,D&XW
?+$Éô73�&23�OkW?��GÞó=UsW23�õ>WÊ51V'3F0x$'OkWX,�U9êî&X,/" &23�VÇ;MW2$R,/O1;IV1W2;DìNVR3s0Ê$'O¯,/.N&\?N;MWp;Iì1;/043�0X3�&2=D3F&F);�Æ3Fì
;Dð�ð�3F020\VR,/íÐ51VR3s0Ë;I&23�;IVÇ04,%$'" Q ,D&XWX3s?A$ROkWX,Ñ?N;IW2;Dì1;D0X3<êî,D&Ë3�õ Q V',D&2$'ONíÐ;DO1?�ð�,/" Q ;I&2$'0X,DOÈ,Iê
:�;IW2;%G�$'ON$RO1í�!#V'íD,D&2$RWXHN"Ñ0Ë;D0\ëx3�V'V¥;D0\=/3�&2$É5 ð�;MW2$R,/O¯,Dê�?N;IW2;Ð$'O/W23�í/&2;IWX$',DO¥)

����%������Y)��Y)�]��V�a�Y%�S ;IO1? ;DV'0X,¡  �Y)���¢)\�! "Z+�����n�-�a�Y%�S ON3F3F? 0 Q 3Fð�$Ç;IVË?N;IW2;Þêî,D&2"%;IW
;D0¶$'O Q .+W²;DO1? í/$R=/3%,D.+W Q .+W�$'O Q &2, Q &X$'3�Wcé�êî,/&X"Ñ;MWp0¶HN3�OBð�3%WXH137JaOkW23�íD&p;MW2$R,/O P ONíD$'ON3%$'0
&X3$O/.1$R&23F?¯WX,Ñð�,M=/3�&XW\?1;MW2;Ð$'OAWXHN3s043¶êî,/&X"Ñ;MWp0�)

� HN3�=>$'0X.1;IV'$'÷F;MW2$R,/O�0cWp;IíD3�,Dê�WXHN$Ç0 Q $ Q 3�V'$RON3/81ëËHN$ÇðpH�"Ñ; Q 0#WXHN3²3�õ>WX&p;Dð�WX3F?�?N;IW2;Ñ;DO1?
;MW4W2&X$'ìN.+W23F0i$'O/W2,�=>$Ç04.B;IV>$R"Ñ;DíD3F0F89$'0i&23F;DVR$'÷�3s?¶WXHN&2,D.1íDHA� � � 3�õ>W23�O1?+3s?²ëË$RWXHÐ04. QNQ ,/&4W�êî,/&
íD&p; Q H10F)+� � �Ñø �Iÿ����¨;IOB?�W2HN$'0-3�õ>WX3FO104$',DO-�h$Ç0
;¶043�W-,Iêv<�£�£ ð�VÇ;D020iVR$'ìN&p;I&2$R3s0�8M;9=M;I$'VÇ;IìNV'3m,/O
;�&p;IONí/3Ê,Dê ;I&pðpHN$RWX3sð�WX.1&X3s0h$'O1ð�V'.1?+$'ONí
� $'O1?+,Më#0�;IO1?Ôó¥$'O>.+õK) � H13\ð�V';/0X0iV'$Rì1&2;D&Xé¶$Ç0i;/ð�ð�3F0��
04$'ìNV'3Ô3F$ÉW2HN3�&�WXHN&2,D.1íDH V'$'ONCM;IíD3ÔëË$ÉW2HÆ;�<�£�£ Q &2,DíD&p;I"�8N,/&�=>$Ç;¯ëË&p; Q1Q $RO1í/0�0X. QNQ ,D&XWX3s?
êî,D&\0Xð�&X$ Q WX$'ONíÔV';DONíD.1;DíD3s0z� � ð�V}8+S-ékW2HN,DOÑ,/&x@k;9=M;E��)EJaO�W2HN3�ðF;D0X3�,IêKW2HN$Ç0mëx,D&2C78IW2HN3�=>$Ç04.I�
;IV'$R÷s;MWX$',DO 3�ONí/$RON3Ô$'0<?+3FVR$'=D3F&X3s?�$RO WXHN3Ôêî,D&2" ,Iêm; � ð�V
02ð�&2$ Q Ws)-�#3F0X.NVÉWp0¶;I&23�$ROkW23�&p;Dð�W2$R=/3
�D:�U��I: =k$Ç0X.1;IV'$R÷s;MW2$R,/O10¶ëËHN$ÇðpH ð�,D.1V'? ì 3�.10X3F?òì>éÆ;DO1;IV'é+0cWp0<WX, ð�,D" Q ;I&23Ñ;Dð�WX.1;DV-ëm3Fì
04.N&X51ONí Q ;IW4WX3F&XOB0#W2,A3�õ Q 3sð�WX3s? Q ;IW4W23�&2O10�87,/&<"%,/&X3ÔíD3�O13�&p;IV'VRé/81W2HN3%$ROkWX3FO1?+3s? Q .1& Q ,/0X3
;IO1?È&X,/VR3¶,DêÛW2HN3�ëm3Fì10X$ÉW23D)

�Æ3FìñG�$'ON$'ONí H1;D0ÐON,�0X$RONí/VR3A&23Fð�$ Q 3¯êî,/&%02;MW2$'04êîé>$RO1íÆ&23HOk.N$'&X3F"%3�OkWÐ,Dê�;IOB;IV'é>04W20Ð,/&
ìN.10X$RON3s0X0\"Ñ;DO1;Ií/3�&p0�)��x.104$'ON3s0X0X"%3�OÈ;/04CÑH1$Rí/HÈV'3�=/3�V�8N?+$R=/3�&p043
Ok.N3F04WX$',DOB0Fø �Iý���8/êî,D&Ë3�õ+;D"7�
Q VR3 �

¤ Jc0Ë,D.1&\0X$RWX3�04WX$ÇðpCkéI¥
� H1$'ðpH�&23�íD$',DOB0m$'O�$ÉW�;D&X3¶ON,DWT¥
¤ (#,Më ;D?+3 Q W#$'0\,/.N&#ð�,/O>=D3�&p0X$R,/O�,Iê�ìN&2,Më#043F&20ÊWX,ÑìN.1éD3�&p0T¥
¤ � H1;MW�0X$RWX3�O1;9=>$'í/;MW2$R,/OÈ?+,%ëx3¶ëË$'0XHAWX,%3�O1ð�,D.N&p;Ií/3$¥
¤ � H1;MW�;IW4W2&X$'ìN.+W23�?+3F02ð�&2$Rì 3F0\,/.N&Ëì 3F04W�ð�.104WX,/"Ð3F&20T¥
¤ � H1;MW#"Ñ;DCD3F0Ëð�.104WX,D"%3F&20xV',Mé/;IVY¥
¤ (#,Më ð�;IO Q &2,I51V'$'ONí%HN3�V Q .1043�ð�&X,k0X0��a043FVRV7;IO1?È. Q �a0X3�V'V�¥

� HN3F0X3�O/.13F04WX$',DO10-;D&X3Ë0X3�"Ñ;IOkW2$'ðF;IV'VRé²?N$'04W2;DO/WÊêî&X,/" WXHN3�?N;MWp;�;9=9;D$RVÇ;Iì1VR3xêî,D&-;DO1;IV'é+04$Ç0F8
;IO1?ñ04.1$ÉWp;IìNV'3�&X3s0 Q ,DOB043s0Ð;D&X3�ì 3�é/,DO1?�WXHN3Þ02ð�, Q 3�,Dê<3F$ÉW2HN3�&�0X$R" Q V'3Þ?N;IW2; "%$RON$'ONí�,/&
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=k$Ç0X.1;IV'$R÷s;MW2$R,/O¥)l� H1;IW¦�q�ØG ð�;IO Q &X,M=>$Ç?+3D8ÊHN,Mëm3F=D3F&F8
$Ç0¯$'O10X$Rí/HkW¯,DO "%,D&23 0 Q 3sð�$R5BðI8
êî,>ð�.10X3F?MOk.N3F04WX$',DO10F8>êî,D&Ë3�õN;I" Q V'3 �

¤ � H1;MW#$Ç0\W2HN3¶Wcé Q $'ðF;IVKì 3�H1;9=>$',D&\,Iê�;%.10X3�&Ë3�OkW23�&2$RONíÐ,D.1&Ëëm3Fì104$RWX3+¥
¤ � H1;MW�$'0#WXHN3²Wcé Q $'ðF;IV¥ì 3�H1;9=>$',D&#,Dê-;%.1043F&�3FO/W23�&2$RO1íÑ,D.N&#ëx3�ìB04$RWX3�$'O Q ;DíD3�! êî&2,D"
§ :�$Ç0Xð�,D.NOkWX3s?M�m,>,/C�,+;IV'3F0HNNV'$RONC¯,DO�;Ð&X3�êî3�&2&X3F&xëx3�ì Q ;DíD3�� ,Iê
;IO1,IWXH13�&\ëm3Fì�04$RWX3+¥

¤ � H1;MWA$'0�WXHN3ÞWcé Q $'ðF;IV�ì 3�HB;9=k$',D&Ñ,Dê�;�VR,/íDí/3F?ñ$RO &23�í/$'04WX3F&X3s?ñ.1043F&Ñêî&2,D" P .N&2, Q 3
3�OkWX3F&X$'ONí Q ;DíD3A<ñêî&2,D" VR$'ONC�O1;D"%3F?KBX!�?N?�U<$ÉêLW�<m3F&4W2$É5BðF;MW23HDÐ,DO Q ;Ií/3�!¥

¤ � H1;MWÐ$'0²WXH13�Wcé Q $Çð�;IVmìB3FH1;9=>$R,/&�,Iê#; .1043F&²ëËHN,Æð�,D"%3�$'O ,/.N&²ëx3�ì10X$RWX3Þü¯?1;9é W2,
� ëm3F3�C+0²ì 3�êî,/&X3�<mHN&2$Ç0cW2"%;/0%;IO1?�ìN.Né+0Ñ04,/"%3�WXH1$RONíB8�=D3�&p0X.10Ð,DON3AëËHN,�?+$Ç?+OvN W%ì>é
;IO>ékWXHN$'ONí�¥

JaO�,D&p?+3�&�WX, Q ;D&4W2$';DVRV'é�04. Q1Q ,/&4W#W2HN$Ç0�C>$'O1?�,IêÊ;DO1;IV'é+04$Ç0Ëëx3�W2;DCD3�W2HN3�êî,/VRV',MëË$'ONí¯; Q �
Q &X,k;DðpHÈ$RO�,D.1&Ë3�õN;I" Q V'3¶$R" Q V'3�"%3�OkWp;MWX$',DO�,DêhWXH13��q�ØG�êî&p;I"%3�ëx,D&2C �

¤ GÞ;IC/3 Q 3�&p0X,DO1;DVR$'÷�3s?Ñ&X3s04.1VÉWp0Êêî,/&xW2;I&2íD3�WX3s?Ñëm3FìÈ0X.N&Xêî3�&p0�¨.1043F&20F8+ð�.104WX,/"%3�&p0¨�m;D0x, Q �
Q ,k043s?ÈWX,%ìNV'$RO1?NVRéA;IíDí/&X3Fí/;IWX$'ONí²,/OA;DVRVK.10X3�&p0F)

¤ Q�0X3�:�;IW2;%G�$'ON$'ONí�!#V'íD,/&X$RWXHN"Ñ0xêî,/&Ë3�õ>WX&p;Dð�WX$'ONíÔO13�ë $RO10X$'íDHkW#;IO1?A"%3F;/04.N&23F0F)
¤ P " Q V',Mé�;�?N;IW2;Dì1;D0X3x0X3�&2=D3F&Û;DO1?�&23�VÇ;MW2$R,/O1;IV�Ok.N3�&2é�V';DONíD.B;IíD3s0Û;/0h"%3s;IO10ÛWX,¶0X.NìN"%$ÉW
0 Q 3Fð�$É5 ð�O/.13�&2$R3s0Ë;Ií/;D$ROB0cWË?N;MWp;Ð3D) í1) Q &2,�©c3sð�WX$',DO�;IOB?È;DíDíD&23�ík;MW2$R,/O10�8H©c,D$'O10\3�W2ðI)

¤ QËW2$RV'$R÷F3�=>$Ç04.1;DVR$'÷F;IWX$',DOÐWX,Ô,Dì+Wp;I$'O�;IOÑ,M=/3�&p;IV'V Q $'ð�WX.N&23�ð�,D&2&X3FV';IWX$'ONí�0cWp;MW2$'ð#0X$RWX3�04WX&2.1ð1�
WX.N&23²ëË$RWXHK�¨?+é>O1;D"%$'ð$�#;DðFð�3s0X0 Q ;MWXWX3�&2O10F)\,+. QNQ ,D&XW § ;MW�;ÑíDVÇ;IO1ð�3;N ,M=D3F&X=>$'3�ë#0\.10X$RO1í
=>$'0X.1;IV�;DíDíD&23�ík;MW2$R,/OÜ;DO1? 5BVÉW23�&p0�)Ë!#" Q V'$Rêîék$'ONí 0 Q 3sð�$Ç;IV<êî3F;IWX.N&23F0È=>$';ö$ROkW23�&p;Dð�W2$R=/3
ð�,/O/W2&X,/V})

! CD3FéÆ$Ç0X0X.N3Ñêî,/&�W2HN3È?N;IW2;�"%$'ON$'ONí Q ;D&4WÔ,Iê\WXHN$Ç0 Q &X,+ð�3F020�$'0²HN,Më ,DON3�WX&p;IO10XV';IWX3s0
WXHN3ÑON,DWX$',DOÆ,IêxWXHN3 %5Z¨[-�(XT�! ª�TSTWI��«H�('�2 ,Dêx;È.10X3�&�$'O/W2,�;Dð�W2.1;IV>Ok.N3F&X$'3F0¶,/O ?N;IW2;A043�W20<W2,
ék$'3�VÇ?ò04.I`Ñð�$R3FOkW�$RO10X$'íDHkW�êî,D&�;DOò;DO1;IV'é>÷�$'ONíAWX3s;I" W2,�$'?+3FOkWX$RêîéÆëËHN3�WXHN3F&��î,/&�HN,Mëq��WXH13
�îìN.10X$'ON3F020¨��íD,k;IVÇ0Ñ,Iê�W2HN3 ëx3�ì10X$RWX3ÞH1;9=/3Þì 3�3�OÖ0X;IWX$Ç0c513s?Ü&X3FV';IWX$'=D3�W2, W2HN,/0X3�W2;D&Xí/3�W23F?
ð�.104WX,/"Ð3F&20F)

� HN3F0X3 Q ,D$'OkW20
0X3�&2=D3ÊWX,¶3�" Q H1;/04$'÷�3xHN,Më =>$Ç04.B;IV'$R÷s;MWX$',DOÐð�,/" Q VR3F"Ð3FOkW20�?N;MWp;<"Ð$'ON$'ONí1)
� HN3¶V';IW4WX3F&\$'0Ë;DìB,/.+WË.+WX$'VR$'÷�$'ONíÑð�; Q ;Iì1$RV'$ÉW2$R3s0x,IêhW2HN3¶"Ñ;DðpHN$'ON3<WX,Ô51O1?�;IOB?VU9,/&xð�,D" Q .+W23
Q ;MWXWX3�&2O10¶ëË$RWXHN$'OòWXH13�?N;MWp;D0X3�WF8KìB;D0X3F?Æ,DOòON,IW2$R,/O10¶,Iê Q ;IW4WX3F&XOò?+3F&X$'=D3s?Þêî&2,D" ?N,D"Ñ;I$'O
CkO1,MëËVR3s?+íD3Ô,D&¶0cWp;MWX$Ç04WX$Çð�0F)-��$'0X.1;DVR$'÷F;IWX$',DO¥87$'O ð�,DOkWX&p;D04WF8 $'0¶;DìB,/.+W<.B04$'ONíAHk.1"%;DOÆðF; Q ;��
ìN$RV'$RWX$'3F0\W2,%?N3�WX3sð�W Q ;MW4W23�&2O10\,D&Ë?+$Ç02ð�3�&2OÈWX&23�O1?N0#ëË$ÉW2HN$RO�=>$Ç04.1;DVK&X3 Q &23F0X3�OkW2;IWX$',DO10F)

JaO�,D.N&i; QNQ &X,k;DðpH¶ëm3Ê51&p0cWi3�õ>WX&p;Dð�Wh.10X3�&�043s0X0X$R,/O10Kêî&2,D" ëx3�ì�V',Dík0�8�WXHN$Ç0iék$'3�VÇ?N0Û&X3s04.1VÉWp0
&X3FV';IWX3F?ÔW2,�;�0 Q 3Fð�$É5Bð Q 3�&p0X,DOÑ;D0
"Ô.1ðpHÑ;D0 Q ,/0204$'ìNV'3D);Q�043F&Ê0X3F0204$',DO10
;D&X3\W2HN3�OÑð�,DO>=D3F&4W23F?
$ROkWX,Ñ;Ñ0 Q 3sð�$Ç;IV¥ð$,+SK!�: P ø �/ú!�Kêî,D&2"Ñ;MW �

¬I+®\¯!°a±+²\³E´�µI¶!·I¸¹¬;°\¶1²\³�µ�¶!·I¸º¬I¶+°I³+²=»+¸º¬�¶+°I³$²\¼a¸

(#3�&23 ¶+°a³+²=» $Ç0AWXHN3 0X"Ñ;IV'VR3F&�Ok.1"Ð3F&X$Çð�;DV�=M;IV'.N3ò,Iên,>,D.N&pð�3sS
;Ií/3@Jc:�;IO1? � ;D&Xí/3�W��
S
;IíD3HJc:²8KëËH1$RV'3 ¶+°a³+²\¼ $Ç0¶WXHN3¯V';D&Xí/3�&¶O>.N"%3�&2$'ðF;IV
=M;IV'.N3Ñ,Iê � ;I&2íD3�W2S
;Ií/3@Jc:�;IO1?h,>,/.N&��
ð�3FS
;DíD3HJc:A�kWXH1$'0\,/&2?+3F&X$'ONíÐ$'0\O13�3F?N3F?�;D0\$'O Q .+WËW2,ÑðH,+SK!�: P ON3F3F?N0xW2,ÑìB3�0X,D&XWX3F?¥) � HN$'0
$RO Q .+W�"%3F;IOB0�W2H1;MW�;�ð�.B0cW2,D"%3�&4�îëx3�ìò0X.N&4êî3F&T��ì ,D.Ní/HkW ¶+°I³+²�» ;DO1? ¶+°I³+²\¼ �};IO1? WXH>.10
=k$Ç0X$ÉW23F?ÈWXHN3�0X,D.1&2ð�3<;DO1?�Wp;I&2íD3�W Q ;IíD3s0¨�ÊW2,DíD3�WXHN3F&#;MWËHN3F&#04HN, QNQ $'ONí��¨ð�VR$ÇðpCI��)
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bN,D&m3F;/ðpH¯ð�V'$'ðpC%,Dê¥.1043F&mëx3�O13�3F?ÑWX,²HB;9=D3�ì ,IW2H¯0X,D.N&pð�3 Q ;IíD3<;IO1?ÑW2;I&2íD3�W Q ;DíD3D8kON,DW
©c.10cWÊ0X,D.1&2ð�3x,/&�W2;D&Xí/3�W Q ;Ií/3D8M$'O%,D&p?+3�&iWX,�?N3F;IV1ëË$ÉW2H%?N$Éô73�&23�OkWÊð�;/043s0i$ROÑ.10X3�&
OB;9=k$'í/;IWX$',DO
04.1ðpHØ;/0�(#$RW4W2$RO1íC�x&X,Më#0X3�&$N 04�x;/ðpCC�x.+WXWX,DO ,/&Ñ51O1?N$RONí P OkWX&2éöS
;DíD3�,D& P õ+$ÉWAS
;IíD3/)
bN.N&XWXHN3F&X"%,/&X3/8V,>,D.1&2ð�3 Q ;Ií/3F0R�¨,D&�W2;I&2íD3�W Q ;Ií/3F0T�x,D.+W<,Iê
,D.1&#ëm3Fì10X$ÉW23²ð�,/.NV'?�3F$ÉW2HN3�&<ì 3
ð�,DOB04$Ç?+3�&23F?�;/0�;�0X$RO1íDV'3 Q ;Ií/3�,D&Ëêî,/&�"%,D&23²?+3�W2;D$RVÇ0�;DO1;IV'é+04$Ç0Ë"².1VÉW2$ Q V'3ÔS
;DíD3HJc:�0Ëð�,D.NVÇ?
ìB3Ñ;D020X$Rí/ON3F? ìkéÞ;�ð�V';/0X0X$É5 ð�;MW2$R,/OÞ,D&�ð�VR.104WX3F&X$'ONí�;IV'íD,/&X$RWXHN" 02;9é�,DO &X3�êî3�&2&X3F&�Q�#ó9�î,/&
P õ+$ÉW#S
;DíD3$�-WX,Ñík;I$'OÈ"%,/&X3¶$'O104$'íDHkWs)

�Æ3�ð�,DO>=D3F&4W
W23�õ>Wm$'O Q .NWx?N;IW2;�$'OkWX,²ì1$RO1;D&Xé²êî,D&2"Ñ;MWF8/=D3F&4W2$'ðF;IV+êî,/&X"Ñ;MWs8D"Ñ;IC/3#$'O1?+$Çð�3F0
;IO1?A&2.NOAð$,+SK!�: P ;IV'íD,/&X$RWXH1" .10X$RONí%V',Mëm3F&\VR$'"%$ÉW�,Dêxü�;DO1?A. QNQ 3�&#V'$R"%$RW#,Iê\ü¶$RO�,D&p?+3F&
WX,%íD3�W X¨'�)�%5�Y)���S1� êî&23HOk.N3FOkWË0X3HOk.N3FO1ð�3s0\ëË$ÉW2H�;Ôí/$R=/3�OA04. Q1Q ,/&4Ws)��Ë3F0X.NVRW20Ë;D&X3¶$'" Q ,D&XWX3s?
$ROkWX,�?N;IW2;IìB;D0X3F0F8 0XHN,D&XWX3F&�êî&23HOk.N3FOkW¶0X3HOk.N3FO1ð�3s0�;D&X3Ô&X3F"Ð,M=/3F?K)7óh;IWX3F&¶?N$Éô73�&23�OkW�O/.13�&2$R3s0
;I&23Ñ3�õ+3Fð�.+WX3s?�;Ií/;D$ROB0cW�W2HN$'0Ô?N;MWp;Þ;DðFð�,/&2?+$'ONíAWX,Æ04,/"Ð3�ð�&X$RWX3F&X$',DOò3/) íB)Û0X. QNQ ,D&XW²,Iê\WXH13
Q ;MWXWX3�&2O10\êî,/.NO1?K8 V'3�ONíDWXH�,Iêiêî,D.1O1? Q ;MWXWX3F&XO10�3�WpðI) � H1$'0�íD$'=D3F0xW2HN3��13�õ+$RìN$'V'$ÉWcéÈWX,ÑW2&2;DO10��
V';IWX3 %5Z¨[-�(XT�! z�TSTWI�!«$�('!2 $'OkWX, ?N$Éô73�&23�OkWÐ; QNQ &2, Q &2$Ç;MWX3nOk.N3F&X$'3F0²;Dð�ð�,D&p?+$'ONí�WX, 0X.Nìa©c3sð�W2$R=/3
&X3$O/.1$R&23�"%3�OkW�0X3�W�êî,D&XWXHÞì>é�;IOB;IV'é>0X$Ç0ËWX3s;I" ëË$RWXHN,/.+W�í/,D$'ONí¯;IV'VÛWXHN3Ôëx;9é�?+,MëËO�WX,Èëm3Fì
VR,/í%;DO1;IV'é+04$Ç0\;Iík;I$'O¥)

�Ë3F0X.NVRW\$Ç0\;ÐíD&p; Q HÈ&2;IWXHN3F&ÊW2H1;IO�;%04$'" Q VR3�0X3HOk.N3FO1ð�3¶04$'O1ð�3<.B043F&\ðF;IOÈíD,Ðì1;DðpC%êî&2,D"
,DON3 Q ;Ií/3¯W2, Q &X3F=k$',D.B0Ô,/ON3F0Ð,/&²êî,/VRV',MëT;IOBðpHN,D&p0²$'O W2HN3�0X;D"%3Èëx3�ì Q ;Ií/3¯,/&%0X$'" Q VRé
êî,DV'VR,Më ;Ðð�VR,k043s? Q ;MWXH�;/0Ë043$O/.13�O1ð�3<,Dê Q ;DíD3s0�)

�Æ3A;MW4W23�" Q WÐWX, Q &23F0X3�OkWÔ;IìB0cW2&2;/ð�WX$',DOB0�,Iê�V';D&Xí/3¯;I"%,D.1O/Wp0�,Dê�?N;MWp;Þ$'O WX.1ON3F?ö?+$*�
;IíD&p;I"Ñ0¯$ROÖ,D&p?+3�&ÈWX,ö"%;Iõ+$R"%$'÷�3 , QNQ ,D&XWX.NO1$ÉW2$R3s0¯êî,/& Q ;MW4W23�&2OÖ?+3�WX3sð�WX$',DOÖ=>$';�Hk.1"%;DO
Q 3F&2ð�3 Q W2.1;IV
ð�; Q ;Iì1$RV'$ÉW2$R3s0�)\� 3%H1;9=D3Ð?+3F0X$Rí/ON3F?Æ043F=D3F&2;DVÛ=>$Ç04.1;DVR$'÷F;IWX$',DO ?N$';DíD&p;I"Ñ0�870X,D"%3
,IêhëËHN$ÇðpH¯HB;9=D3#ì 3�3FO¯$'" Q VR3F"Ð3FOkWX3F?¥) � HN3<ð�,DOkWX&2$'ìN.+WX$',DO¯,IêÛ0X,D"%3�,Dê¥WXH1,/0X3�?+$Ç;Ií/&2;D"%0Ê$'0
?+$'02ð�.B0X0X3F?Ð;IO1?Ð$'VRV'.104WX&p;MW23F?Ð04HN,/&4W2VRé\�M=>$Ç?+3�,�ð�V'$ Q 0�,Iê WXHN3#0Xé+0cW23�" $'OÑ;Dð�WX$',DO%;I&23x;9=M;I$'VÇ;IìNV'3
êî&X,/" WXHN3�ëx3�ì Q ;Ií/3<,DêhW2HN3��q�ØG Q &2,�©c3sð�W�ø �1ü1�~)

½ {Ëã1ä8} {4r4æ�è4å¿¾ºÀ#ázp>} è4çcoòâ+äÁsÂivux¾ºÀ#áqp=} èXçco

!�?+=M;IOBð�3F0Û$'O²0Xð�$R3FOkWX$R5Bð-=>$Ç04.1;DVR$'÷F;IWX$',DO<WX3sðpHNON$�Ok.N3F0F8 Q ;I&XWX$Çð�.NVÇ;I&2VRé<$'O�WXHN3x?+,D"Ñ;D$RO�,Dê��1.N$Ç?
?+é>O1;I"%$Çð�0Ëø �+ü�GI������89H1;9=/3x$'O10 Q $'&X3s?².10
WX,�; Q1Q VRéÔ04$'"%$RVÇ;I&�W23FðpHNON$�Ok.N3F0-$RO%$'O+êî,D&2"Ñ;MWX$',DOÐ=>$*�
04.1;DVR$'÷F;IWX$',DOò,DOòW2HN3¯ëx3�ì ?N,D"Ñ;I$'O¥)�� 3¯.B043¯;DO ;IO1;DVR,/íDéÆìB3�Wcëm3F3�OòWXH13 § �1,Më�N¥,Iê#.B043F&
ð�V'$'ðpC²04WX&23F;D"Ñ0iWXHN&2,D.Ní/HÐ;<ëx3�ì10X$RWX3D8/;IO1?²WXHN3?�B,Më�,Iê-�1.N$Ç?N0
$'OÑ; Q H>é>0X$Çð�;IV+3FO>=k$'&2,DON"%3�OkWs8
$ROA;I&2$R=/3�;MW\ON3�ëù&X3 Q &X3s043FOkW2;MW2$R,/O10-!�0mëË$RWXHÈ"%,/04W Q &2,Dì1VR3F"%0m,Iê¥$'O+êî,/&X"Ñ;MW2$R,/O�=>$'0X.1;DVR$'÷F;��
WX$',DO¥8N,/.N&\&X3 Q &23F0X3�OkW2;IWX$',DO¯,DêÛëx3�ì�;DðFð�3F020x$RO>=/,DV'=D3F0xV',+ð�;MW2$RO1í § ;IìB0cW2&2;/ð�WHN+ð�,DO1ð�3 Q Wp0��î3D) í1)
ëm3Fì Q ;IíD3s0¨�<ëË$RWXH1$RO ;�í/3�,D"%3�WX&2$'ð%0 Q ;Dð�3D)c� $RWXH�W2HN$'0²;D0�;�ì1;/043/8KWXH13%êî,DV'VR,MëË$'ONí�$Ç?+3F;/0
"Ð,DWX$'=M;MWX3�,/.N&Ë?+3F0X$'íDO�,IêÛWXHN3�=>$Ç04.1;DVR$'÷F;IWX$',DO�?+$Ç;IíD&p;I"Ñ0x?+$Ç0Xð�.10X0X3F?A$'O¯W2HN3�ON3�õkW�0X3Fð�WX$',DO �

¤ Jcð�,/ON$'ð<=>$Ç04.1;DVR$'÷F;IWX$',DOA,DOA3�õ>WX&p;Dð�WX3s?�êî3s;MWX.1&X3s0xêî&X,/"T:�;IW2;ÑG�$'ON$'ONí1)
¤ S
;I&XWX$Çð�V'3�W2&2;/ðpC>$RONíÔêî,D&\W2&2;/ð�$'ONíÐWXHN3 Q ;MWXH�,DêÛ.10X3�&ËO1;9=>$'í/;IWX$',DO¥)
¤ bN3s;MWX.1&X3AWX&p;DðpC>$'ONí�UI?+3�W23Fð�WX$',DO¥8Ûêî,D&%$'O10cWp;IO1ð�3AWX.N&2ìN.NV'3�O1ð�3�=D,D&XWX3�õ ?+3�W23Fð�W2$R,/O�W23FðpHa�
ON$�O/.13F0F87êî,D&¶$'?N3�OkWX$Rêîé>$RONí�;A.10X3�&�ð�é+ð�V'$'ONíA;D&X,/.NO1?Þ;A0X3�W�,IêÊëx3�ì Q ;DíD3F0F)\d#,IW23ÐWXH1;IW
;%04$'"%$RVÇ;I& Q H13�ON,/"Ð3FO1;ÐH1; Q1Q 3FO10\êî,D&#;Ð.10X3�&ËOB;9=k$'í/;IWX$'ONí Q ;Ií/3F0Ë;IOB?�W2HN$'0�ð�,D.1V'?Aì 3
$ROkW23�& Q &X3�WX3s? ì ,IWXHÜ;D0%ð�,DO+êî.10X$',DOö;DO1?ö"Ð$Ç0XVR3s?�WX&p;DðpC>$'ONí ,D&�O/.1$ÉW23A&23�=/3�&p043A;ÆðF;D0X3
ëËHN3�&23�;Ð.1043F&Ë$'0Ëêî,>ð�.10X$RONí%,/O�;%ð�VR.104WX3F&ËëËHN$ÇðpHÈHN3!UM0XHN3¶H1;D0xêî,/.NO1?A$'O/W23�&23F04WX$'ONí1)
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¤ , Q VÇ;MWXWX$'ONí êî,/&Ð0X$'" Q VRé>$'ONíÆ=>$Ç04.B;IV'$R÷s;MWX$',DO�$R" Q V'3�"%3�OkWp;MWX$',DOö$ROñ?+3�OB043 Q ;I&XW20	�îì ,IW2H
§ H1,IWHNÛ;IO1? § ð�,DVÇ?cN Q ;D&4Wp0¶,Iêx;Aí/&2; Q HÆð�,D.NVÇ? ì 3�0 Q V';IW4W23F? $RO ,D&p?+3F&�W2,Aêî,>ð�.10�.10X3�&p0HN
;MWXWX3�OkW2$R,/OA,/OÈ3s?+íD3s0Ëð�,/ONON3Fð�WX$'ONíÐWXHN3s043¶Wcëx,Ð&X3FíD$',DO10F)

¤ biVR.N$Ç?ò3�=/3�OkW²?+3�WX3Fð�WX$',DO�,/O OB;9=k$'í/;IWX$',DOòð�V'$'ðpC+04WX&23F;D"%0<W2,Þð�; Q WX.N&23�0 Q 3sð�$Ç;IVq�¨$ROkWX3F&��
3F04WX$'ONí^�x3F=D3FO/Wp0�)
JaO ø �Mþ;�¥=k$Ç0X.1;IV'$R÷s;MW2$R,/O¯W23FðpHNON$�Ok.N3F0\ëx3�&23¶íD&2,D. Q 3F?¯$ROAW2HN&X3F3�ð�;IWX3�í/,D&2$R3s0 �

üD)�Ã  �';�T�! AÄVSTX¨Wa)��(Å@��S�� íD$'=D3È;ÆOk.1;IV'$ÉWp;MW2$R=/3D8hí/VR,/ì1;IVm=>$'0X.1;IV'$'÷F;MW2$R,/O�,Iê#W2HN3È?1;MW2;Æ;MW%;
VR,MëÖVR3F=D3FVK,Iê
;Iì104WX&p;Dð�WX$',DO¥)

�+)�Ã S¨'�3�S@%52��(X¹%�STX¨Wa)��(Å@��S�� 3�õkW2&2;/ð�WÞí/3�,D"%3�WX&2$'ðò,/ìa©c3Fð�W20��}ð�.N&2=D3s0�8�0X.N&Xê¨;Dð�3F0F8#04,/VR$Ç?N0T�
êî&X,/" W2HN3#?N;MWp;N) � H13�éÔðF;IOÐìB3�ð�,DOB04$Ç?+3�&23F?Ð;D0�$'OkWX3F&X"%3F?N$';IWX31�~V'3�=D3FV+&X3 Q &23F0X3�OkW2;IWX$',DO10F8
ìB,DWXH�ëË$RWXH�&X3Fí/;D&2?�WX,ÑV',>ðF;IV'$ÉWcé�;DO1?AVR3F=D3FVK,Iê
;Iì104WX&p;Dð�WX$',DO¥)

�N) ��ST��%&�a2�S@Ç��T�+�@STÈn%�STX¨Wa)��(Å@��S�� 3�õkW2&2;/ð�W#HN$'íDHI��V'3�=/3�V�81;Iì104WX&p;Dð�W#3�OkWX$RWX$'3F0#êî&X,/" W2HN3²?N;IW2;N)
� HN3�3�" Q HB;D0X$'0\$Ç0Ë,DO�Ok.1;DO/W2$É5 ð�;MW2$R,/O¯êî,/&Ë"%,D&23 Q &X3sð�$Ç043¶3�=M;DVR.1;IWX$',DO�;IOB?Èð�,D" Q ;I&2$��
04,/O¥)

� HN3�043sð�,DOB?È;DO1?ÈWXHN$'&2?È,IêiWXH13F0X3�;I&23�.10X3F?Èêî,/&Ë,D.N&Ë=>$Ç04.1;DVR$'÷F;IWX$',DOÈ"Ð3�WXHN,+?N0F)

É�Ê&Ë ÌvÍ@Î!Ï�Ð�ÍHÏ/Î!Ñ�Ò
Ó Î+ÔIÕ�Ö�Ò GÞ.1ðpHöëx,D&2C�H1;/0%ìB3F3�O ?+,DO13A,/O�Wcëx,�;IO1?�WX&23�3�?+$'"%3�O10X$',DO1;DVË3�"²ì 3F?1?+$RO1í
,Iêmí/&2; Q H10F87$ROÆWXHN3%êî,/&X" ,Iêmì ,IW2H ;DVRí/,D&2$ÉW2HN"Ñ0¶;IO1? WX,>,DVÇ0F870X3�3Ðêî,/&�3�õN;I" Q V'3AøRüD8FüHF18��E�N8
�;�!�~)×�Æ3 H1;9=D3 ?+3�=/3�V', Q 3F?Ø;�VR$'ìN&p;I&2éÜ.NO1?+3F&¦� � � êî,D&AíD&p; Q Hù=k$Ç0X.1;IV'$R÷s;MW2$R,/Ohø ���7�}043F3
Ø °�°^Ù?Ú�Û^Û�Ü�Ü�Ü?Ý¨�¯=Ý�Þ�ß�° Ø Ý�ß��Ý�®�àIÛ�á$·aâE·IÛ�ã^´Iß!Ù Ø ¯�Ý Ø °�²-ä ��) � ëm,%; QNQ &X,k;DðpHN3s0-W2,Ð=>$Ç04.B;IV'$R÷@�
$RONí<W2HN3\,D.+W Q .+W
,Iê7?N;MWp;�"%$'ON$RO1í<HB;9=D3\04,�ê¨;I&�ì 3�3�OÐ$'" Q VR3F"Ð3FOkWX3F?Ð.10X$'ONí�W2HN$Ç0�VR$'ìN&p;I&2éD)+JaO
WXHN3�51&p0cW\; QNQ &2,/;/ðpH¥8IW2HN3�V'$'ONC�;IO1;DVRé+0X$'0Ê$'0ÊWX&23F;IWX3s?�;D0x;²?+$'&23Fð�W23F?Ñí/&2; Q H¥) � HN$'0xí/&2; Q HÑ$'0
?+&2;9ëËOÔì>é�,Dì+Wp;I$'ON$RO1í¶;<0 Q ;IONO1$RONí�WX&23�3xêî,/&ÛW2HN3Ë.NO1?N3�&2VRé>$'ONí�í/&2; Q H¥89VÇ;9ék$'ONí�,D.+W�WXH1$'0iW2&X3F3
�î.10X$RO1í¯;Ñ=M;I&2$';IWX$',DO�,Iê�W2HN3²ð�,/ON3�W2&X3F3�V';9é/,D.+WË51&p04W Q &2, Q ,/0X3F?Aì>é	�Ë,/ìB3F&4Wp04,/O�3�W�;DVmø F!���
;IO1?%W2HN3�O¯&X3@��$'OkWX&2,>?N.1ð�$'ONí¶WXH13�ON,/Oa��WX&23�3#3s?+íD3s0�)^bN.N&XWXHN3F&x;IW4W2&X$'ìN.+W23F0-,/ì+W2;D$RO13F?Ñì>é%?N;MWp;
"Ð$'ON$'ONíÑð�;DO¯W2HN3�O�ì 3�04. Q 3�&2$'" Q ,/0X3F?È,DOÈWXH13<.1O1?+3�&2V'ék$'ONí%íD&p; Q HÈ04WX&2.1ð�W2.N&X3/8>êî,D&Ë3�õ+;D"7�
Q VR3<;D0Ê=9;D&X$Ç;Iì1VR3@��ëË$Ç?>WXH�WX.Nì 3F0x04H1,MëË$RONí Q ;I&XWX$Çð�.NVÇ;I&2V'éÔ04WX&2,DONí²;/ð�ð�3F020 Q ;IWXH10F) � H13�0X3Fð�,/O1?
; QNQ &2,/;/ðpH¶WX,�=k$Ç0X.1;IV'$R÷s;MW2$R,/O�$'0hWX,�W2;DCD3x;�0 Q ;IONO1$RONí�WX&23�3\;IO1?�.1043mWXH1$'0i$RW20X3�VRêB;D0hWXHN3x"Ñ;I$'O
=k$Ç0X.1;IV 3�V'3�"%3�OkWs8k0X. QNQ ,D&XWX3s?Ñì>é%ð�,DV',D&m"%; QNQ $'ONí²3s?+íD3s0Ê;DO1?ÑíDV'é Q HN$'ONí²O1,>?N3F0F)EJaO�3F$ÉW2HN3�&
ð�;D0X3¶=>$'0X.1;IV¥;IW4W2&X$'ìN.+W23F0Ë,DêiON,+?+3s0Ë;IO1?A3s?+íD3s0\H1;9=D3�?+$Rô 3F&X3FOkW#"%; QNQ $'ONí/0�U9"%3s;ION$'ONí/0mêî,/&
3F;DðpHñ,Iê<WXH13 ?+$Ç;IíD&p;I" ?+3F0X$Rí/ON3F?¥8�WXHN3 ?N3�W2;D$RVÇ0Ñ,Dê<ëËHN$ÇðpH ;I&23�?+$'02ð�.B0X0X3F?ñ$'OöW2HN3ÞON3�õ>W
043sð�WX$',DOh)

ÌcÍHÎ+Ñ�ÔIåÂæªÏ/ç8Ñ�Ò �-;I&2$';DìNV'31�~ëË$'?>W2H²W2.Nì 3F0Ê0XHN,MëË$'ONí¶;Dð�ð�3F020 Q ;MW2H10�ëË$RWXH�?+$Rô 3F&X3FOkW
WX&p;!`�ð
;I&23<$'OkWX&2,+?+.1ð�3s?A,DOAWX, Q ,IêiWXHN3�ëx3�ì�í/&2; Q HA04WX&2.1ð�WX.N&23D)N(�3�&23D81?+3 Q 3FO1?+$'ONí�,/OÈW2HN3�Wcé Q 3
,IêK=>$'0X.1;IV'$'÷F;MW2$R,/O�?+$Ç;IíD&p;I"�8 Q ;I&XWX$Çð�.NVÇ;I&-ëx3�$'íDHkWp0
3D) í1)k04. Q1Q ,/&4WÊ,Dêh;�0X$RONí/VR3�ð�V'$'ðpC^�a0cW2&X3s;I"�8
WX,IWp;IV
0X.N" ,Iê\04. QNQ ,/&4W¶,DO ;IV'V-ð�V'$'ðpC^�a0cW2&X3s;I"Ñ0F8B0X. QNQ ,D&XW¶3�õ>WX&p;Dð�W23F?Þêî&X,/" � &23�3%G�$'ON$RO1í
!#V'íD,D&2$RWXHN"ïø �^:+�1ð�;DO%ìB3Ë"Ñ; Q1Q 3s?%,DOkWX,<WXH13#ëË$'?+WXHè�î&p;D?N$R.10T�Û,Iê WXHN3�0cW2&X3s;I" W2.NìB3/)�<m,/VR,/&
"%; QNQ $'ONí�ð�,D.NVÇ?�ì 3x.1043s?�,/O�WXHN3xO>.N"²ì 3�&�,DêN.1043F&20ÛV'3F;9=>$RO1í#WXH13mëx3�ì10X$RWX3�¨,D&�;�ð�VR.B0cW23�&i,Iê
WXHN3s043�$RO¯;�÷�,>,D"%3F?�=k$'3�ëq��8k; Q &X, Q 3F&4WcéÐ,IêKW2HN3�í/&2; Q HÑ0cW2&X.Bð�WX.1&X37�¨0X.1ðpH¯;D0-WXHN3
,kWX&p;IH1VR3F&
=9;DVR.13$��81,D&#0X$R" Q V'éÑWXH13�Ok.1"²ì 3�&#,DêÛHN$RW20Ë,Dê�0X,D"%3¶ìN&p;IO1ðpHh)
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É�ÊYé ê	Ñ�ÒHë&ìVíKÔIí�îðï1åhÕ=ñ(Ñ�å�Ñ�í\ÍHÔIÍHë(ò-í�ò-ózê	ë(ÔIìVÎ!ÔIå�Ò

�m.1$RVÇ?+$'ONí ,/O�WXHN3È$ROkW2.N$ÉW2$R,/O�;IOB?�HN3�.1&X$Ç0cW2$'ðF0Ô0X3�WÐ,D.+WÐ;Iì ,M=D3D8Ûëm3ÈH1;9=D3�?N3F0X$Rí/ON3F?�O13�ë
=k$Ç0X.1;IV'$R÷s;MW2$R,/OÔ?+$Ç;Ií/&2;D"%0H��W2HN3F0X3Ë;I&23x0X.N"%"Ñ;I&2$R÷F3F?²ìB3FVR,Më�8M;MêLW23�&�ëËHN$ÇðpHÔëx3xëË$RV'VNð�,/O104$Ç?+3F&
$'0204.13F0\,Iê�.+W2$RV'$ÉWcé/)

¤ bi$Rí/.N&X3n�A$Ç0�;A=>$'0X.1;IV'$'÷F;MW2$R,/OÆ,DêmW2HN3Ñëx3�ìòíD&p; Q HÆêî,D&¶W2HN3	<m,/" Q .+WX3F&A,+ð�$'3�O1ð�3�?+31�
Q ;I&XWX"%3FO/WË,Dê=�Ë3FO102043FV';D3�&ËS�,DV'ékWX3FðpH1ON$'ðJaO104WX$RWX.+W23��îHkWXW Qv� U;UMëËëËëËë�) ðF0�) & Q $}) 3F?+.-��)

¤ bi$Rí/.N&X3¶þ%$Ç0#;��D: =>$Ç04.1;DVR$'÷F;IWX$',DOÈ,Iê�ëm3FìÈ.102;Ií/3<;DíDí/&X3Fí/;MW2$R,/OÑêî,D&\W2HN$Ç0#04$RWX3/)
¤ bi$Rí/.N&X3���$Ç0-&23 Q &23F0X3�OkW2;IWX$',DO%,IêKW2HN3�02;I"%3�0X$RWX3�$'O�ëËHN$ÇðpH�ð�,/VR,/&-"Ñ; QNQ $RONíÔ$'0Ê.10X3F?%W2,
HN$'íDHNV'$Rí/HkWxW2HN3�"Ñ;D020\,Iê
04.1&4êî3F&20\02ð�;MWXWX3F&X$'ONí%$RO�;IO>é¯ð�VR.B0cW23�&Ë"Ñ;IC>$'ONíÑ;4<m,/ON3�04HB; Q 3
;IO1?ÈVÇ;MWX3F&#ð�,/"Ð$'ONíÐì1;DðpC�WX,%"Ñ;I$'O Q ;DíD3s0m,Dêið�VR.104WX3F&20Ë;DO1?¯WX,ÐWXHN3<51&p04W Q ;IíD3<,IêiWXH13
ëm3Fì10X$ÉW23¯"Ñ;IC>$'ONíÆ;ÆbN.NONO13�V�)�!T.10X3�&%043s0X0X$R,/O ?+&2$RV'VR$'ONí ?+,MëËO $'O/W2,Æ;Æð�V'.10cW23�&Ð$ROö;
êî,D&2" ,Iê
;%043F"%$*�a?+$'&X3sð�WX3s?n�Bék$'ONí�?+3FìN&2$'0\$Ç0Ë;IVÇ04,%,/ì1043F&X=/3F?K)

¤ bi$Rí/.N&X3ñüFý�$'0�0X. Q 3�&2$R" Q ,/0X$ÉW2$R,/OØ,Iê²ëx3�ìÖ.102;IíD3Æ"%$RON$'ONíñ&X3s04.1VÉWp0��}?+é>O1;I"%$Çð .B043F&
;DðFð�3F020 Q ;MW4W23�&2O10T��,DO WX, Q ,Iê#W2HN3¯ëx3�ì í/&2; Q Hð�LW2HN3�0cWp;MWX$Çð�V'$'ONC 0cW2&X.Bð�WX.1&X3�,Dê#WXH13
ëm3Fì�04$RWX3+��)

! ëm3Fì%"%;/0cW23�&xð�;IOÐ51OB?Ñ,D.+W-ëËH13�&23ËWXHN3�VR,k;D?Ð,IêKHN$Ç0-ëx3�ì10X$RWX3�;DO1?%ì1;IOB?+ëË$'?+WXHÑíD,>3s0
ìkéÑ;�O/.1$'ðpC%V',k,/CÐ;IWÊW2HN$'0xC>$'O1?Ñ,Iêi?+$';DíD&p;I"Ñ0
3/) íB)D51í/.N&23#þÔ;DO1?�ð�V'$ÇðpCÐ,/O�íDV'é Q HN3s?ÑON,+?+3F0
ëËHN$'ðpH�&23 Q &X3s043FO/W�ëx3�ì Q ;DíD3s0¶WX, 0X3�3ÑëËH1$'ðpH Q ;DíD3Ñ3s;DðpHòON,+?+3�&23 Q &23F0X3�OkWp0n�¨0X3�3Ñ5BíD.N&23
ÿE��)/<m.1ìB3Ñí/VRé Q H10¶ëË$RWXH Q &2, Q ,D&XWX$',DOB;IV
04$'÷�3Ñ;D&X3 Q .+W�,/O W2, Q ,IêxON,+?+3F0<W2,�"Ñ;ICD3ÔWXH13�"
3F;D0X$'VRé�ð�V'$'ðpCM;DìNVR3/) U<V'é Q H 0X$R÷F3Ô;D?1?N0�;DON,IW2HN3�&�=k$Ç0X.1;IVi?+$R"%3FO104$',DO�W2H1;MW¶ð�;DOÞìB3Ô.10X3F?�êî,/&
3�O1ð�,>?N$RONí¶;MWXWX&2$Rì1.+WX3Ë?N;IW2;N) � HN3\3@`Ñð�$R3FO1ð�é�,Dê1W2HN3\.NO1?+3F&XV'é>$RONí�� � �ØíD&p; Q HN$Çð�0i$'OkWX3�&Xê¨;Dð�3
�î$'OÈW2.N&2OAì1.N$RVRW#,DO�;IOA$'O/W23�&Xê¨;Dð�3�W2,�_ Q 3FOBU¶óò,D&#G�3s0X;^�m$'0Ë0X.1ðpHÈWXH1;IW#.1043F&20ËðF;IOA3F;/04$'VRé
÷�,>,D"�8 Q ;DO�;IO1?�&2,IWp;MWX3<W2HN3F0X3²0 Q 3sð�$R5Bð�?+$Ç;IíD&p;I"Ñ0F8+3�=/3�O�,DO�"%,+?+3F04W�H1;D&2?+ë\;I&23��î3D) í1)B;
þE�;�/G�HN÷ÊS�3FOkWX$'.N"9J�J���) � H>.10Û.10X3�&p0hð�;DO�3�õ Q V',D&23Ê?+$Rô73�&23�OkW Q ;D&4Wp0h,Dê+WXHN3x0X;D" Q VR3mëm3Fì10X$ÉW23
$}) 3D)>HkW4W Qv� UMëËëËë�) ðF0�) & Q $}) 3F?N.¯;D0Ê3�õ>WX&p;Dð�WX3F?Ñêî&X,/" W2HN3<ëm3FìNVR,/í/0F)^,kW2&2;IWX3FíD$'3F0
êî,/&m&23F;DV*��WX$'"%3
$ROkWX3F&2;/ð�W2$R,/OÈëË$RWXH�"².BðpHÈVÇ;I&2íD3F&\?1;MW2;/043�W20Ë;D&X3¶;IV'&X3s;D?+éÑì 3�$'ONíÑ3�õ Q VR,/&X3s?K)

�Æ3FìA"%$'ON$'ONíÑ&X3s04.1VÉWp0Ë$RO Q ;IW4W23�&2O10\,Iê�"%,/04WËêî&X3$O/.13�OkW�;DðFð�3F020\ëËHN$ÇðpH�;I&23<=>$Ç04.B;IV'$R÷F3F?
$RO�:�;D0ÛëËHN$RWX3Ê3s?+íD3s0Û0X. Q 3�&2$R" Q ,/0X3F?¶,/O�WXHN3x&23�"Ñ;I$'O1?+3F&h,Iê+W2HN3-5BíD.N&23D)+bi$Rí/.N&X3mú#3�õ>W23�O1?N0
WXHN$Ç0Û; QNQ &2,/;/ðpH�ì>é<.104$'ONíËW2HN$ÇðpCkO13F020K,IêN04WX&23F;I"ÖWX.1ìB3s0¥W2,�;D?N?�;xêî.1&4W2HN3�&i=>$'0X.1;IV/?+$R"%3s04$',DO¥8
$ROAWXH1$'0#ðF;D0X3¶3�O1ð�,>?N$RONí%HN,Mëùêî&X3$Ok.N3�OkW\WXHN,k043�;/ð�ð�3s0X0 Q ;MW4W23�&2O10Ë;I&23D)

JaO 51í/.N&X3 üFýÆëx3AHB;9=D3¯=>$Ç04.B;IV'$R÷F3F?�W2HN3�0cWp;MW2$'ð�04WX&2.1ð�W2.N&X3A,Iê<ëm3Fì10X$ÉW23¯Wp;ICD3FO êî&2,D"
,D.N&xëm3FìNì ,IW��¨íD&p;9é^�~ð�,DV',D.N&23F?Ô3F?+í/3F0T��W2,Ô"Ñ;IC/3�;²ì1;D0X3�"%3�OkWx,DO�ëËHN$ÇðpH¯;/ð�WX.B;IV7?+é>O1;I"%$Çð
ìB3FH1;9=>$R,/&�,Iê
.10X3�&p0#$Ç0<04. Q 3�&2$'" Q ,/0X3F?ÞëË$ÉW2H¹�¨ð�,DV',D&23F?�3F?NíD3F0T��) � HN3�&23Ô;D&X3Ô;Iì ,D.+W�HB;IVRêÊ;
"Ð$'V'VR$',DO�=>$Ç04.1;DVR$'÷�3s? O1,>?N3F0F)Û! ëx3�ìN"Ñ;D04WX3F&�,D&�;�ëx3�ì ;DO1;IV'é>÷�3F&¶ðF;IOò3F;/04$'V'éÆ0X3�3ÑëËHN$ÇðpH
Q ;I&XW20m,IêKW2HN3�ëx3�ìB04$RWX3<;I&23 § ð�,DVÇ?cN Q ;I&XW20mëË$RWXH¯V',MëÜHN$RW\;DO1?�ëËHN$ÇðpH Q ;D&4Wp0m;D&X3 § HN,DWHN Q ;D&4Wp0
ëË$ÉW2H²HN$'íDHÔHN$ÉWs) � HN$'0�;DV'0X, Q ;9=/3F0¥WXHN3xëx;9é<êî,/&Û"Ñ;IC>$'ONí�3�õ Q VR,/&2;IWX,/&Xé<ðpH1;IONí/3F0h$ROÔëm3FìÔ0X$ÉW23
;IO1?Ô;IO1;DVRé>÷�3ÊWXHN3\ðpH1;DONíD3s0h$'O².10X3�&�;DðFð�3s0X0F)$b1,D&i$ROB0cWp;IO1ð�3x;�ëm3FìN"Ñ;D04WX3F&Ûð�;DOÔðpH1;DONíD3mVR$'ONC
0cW2&X.1ð�WX.N&23�3/) íB)>ìké�;/?N?+$'ONíÔ;ÔV'$RONCÑ,DêÛ;²ð�,DVÇ?¯ð�VR.104WX3F&\$RO¯51&204W Q ;IíD3<,Iê¥ëx3�ìB04$RWX3/)>!�ON,IW2HN3�&
3�õN;I" Q V'3#$Ç0mðpH1;DONíD3Ë,Dê¥ð�,DOkW23�OkWm3/) íB)Dì>éÔH1$Rí/HNVR$'íDHkW2$RONí²3�õ+$'04WX$'ONí²;DO1ðpHN,/&
WX3�õkWx,D& Q .+W4W2$RONí
$ÉW²,/O�;�"%,D&23Ñ=k$Ç0X$RìNV'3ÑV',>ðF;MW2,D$'O ,Dê#;�ëm3Fì Q ;IíD3Ñ,/&²;D?1?+$RO1íÞ;D?+=/3�&XWX$Ç043F"Ð3FOkW20�U9ì1;DONON3�&p0
;IO1?¯WXHN3FOÞ;IO1;DVRé>÷F3<ðpH1;DONíD3s0mWX,%WXH13�.1043F&ËìB3FH1;9=>$R,/&F)

!#VRWXHN,/.NíDH�W2HN3�=>$'0X.1;DVh$'"%;DíD3s0Ë&X3 Q &23F0X3�OkW Q &23�V'$R"%$'O1;I&2é¯&23F0X.NVRW20Ëêî&2,D"ï,D.1&Ëêî.10X$R,/O�,Iê
"Ð$'ON$'ONíÆ;DO1?�=>$Ç04.1;DVR$'÷F;IWX$',DO¥8Ûëm3ÈH1;9=D3¯3�O1?+3s;9=D,/.N&X3s?ÆWX, .B043A04.N$RW2;DìNV'3¯íD.1$'?+3FVR$'ON3s0Ô;DO1?
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HN3�.N&2$Ç0cW2$'ðF0Ëì1;D0X3F?A,/O Q 3�&pð�3 Q WX.B;IV�81ð�,/íDON$RWX$'=D3�;IOB?A;D3F04WXHN3�WX$Çð�ð�&2$ÉW23�&2$';18+êî,D&Ë3�õN;I" Q V'3�.10ô�
$RONí Q 0Xé>ðpH1,DV',DíD$Çð�;DVÊON,DWX$',DO10Ô,Iê�HN,IWÐ,D&%ð�,DVÇ? ð�,DV',D&ÔWX, í/.N$Ç?+3A;/0X0X$'íDON"%3�OkW²,Dê�ð�,/VR,/&�W2,
ON,+?+3F0¶;IOB?�3F?+í/3F0�H1;9=>$RO1í¯HN$'íDH-UMVR,Më O>.N"ÔìB3F&20�,IêmHN$ÉWp0�87&23F0 Q 3sð�W2$R=/3�V'éD)\Q�0X$RONí�?+$Rô 3F&X3FOkW
?+$';DíD&p;I"Ñ0Ñëx3ÆðF;IO êî,+ð�.B0¯,/O 3F;DðpHù,Iê�WXH1&X3F3 V'$RONC ð�V';/0X0X3F0Ñëx3Þ5BO1?Ø$'OkWX3�&23F04WX$'ONí � HN,DW
ON,+?+3F0�U93s?+íD3s0�8Ið�,DVÇ?ÔO1,>?N3F0�U93F?NíD3F0F8I;IOB?%3F?+í/3F0
ð�,/ONON3sð�WX$'ONí¶Wcëx,�?+$Rô 3F&X3FO/WÊWcé Q 3F0-,IêKð�V'.10ô�
WX3�&p0�$}) 3D)7HN,DW¶ð�VR.104WX3F&20�ëË$RWXH H1$Rí/HÞO>.N"²ì 3�&¶,IêmHN$ÉWp0�;/0�, QNQ ,/0X3F?�W2,Èð�,DVÇ?Þð�V'.104WX3�&p0�ëË$ÉW2H
VR,Më O>.N"ÔìB3F&m,Dê¥HN$ÉWp0�) � HN$Ç0m$'0m=M;IV'.1;IìNV'3#êî,/&mëx3�ì¯"%;/0cW23�&p0
W2,²"Ñ;IC/3�?+3Fð�$'0X$',DO10x;IO1?¯;IO1;��
VRé>÷�3�ðpH1;DONíD3s0x,Iê
?+é>O1;I"%$Çð�0\ì>é�$'O+êî,D&2"%3F?A,D&\3�õ Q V',D&p;MW2,D&2éÑ;D?N?+$RWX$',DO�,DêÛ3F?NíD3F0\ì 3�Wcëx3�3FO
WXHN3s043�Wcëm,Ôð�V'.10cW23�&p0�)�JaOÑêî.NWX.N&23�ëx,D&2CÐëm3<$ROkW23�O1?�WX,².B043�WX3sðpHNON$�O/.13F0x04.1ðpHÈ;D0x0 Q VÇ;MWXWX$'ONí18
0 Q ,IWÐON,D$Ç043/8Û;DO1?VU9,/&�51VRWX3F&X$'ONíÞ3s?+íD3s0TUMON,+?+3F0²ëËHN$ÇðpH ;I&23�VR3s0X0Ô$'" Q ,D&XW2;DOkWF8h$'O�,/&2?N3�&�W2,
&X3�51ON3�;IOB?Að�V';D&X$Rêîé�,/.N&#.NO1?N3�&p0cWp;IO1?+$'ONíB)N!�0#(�;I"%"%$RONíè�4üFÿ>û!�E�x02;I$Ç?K85B � HN3 Q .N& Q ,/0X3�,Iê
ð�,D" Q .NW2;MW2$R,/O $Ç0²$'O10X$Rí/H/WÔON,IWÐOk.1"²ì 3�&TDN)Ûóh$RC/3�ëË$Ç043VB � HN3 Q .N& Q ,k043�,Dê#=>$'0X.1;IV'$'÷F;MW2$R,/O�$'0
$RO10X$'íDHkWF8¥O1,IW Q $Çð�W2.N&X3s0�D�ø �+�~)¥! ?+3�W2;D$RV'3F?ò;D020X3F0204"%3�OkW�,IêxWXH13�.+WX$'V'$ÉWcéÆ,Iê\,D.N&²?N$';DíD&p;I"Ñ0
$'0�ì 3�é/,DO1?ÆW2HN3¯02ð�, Q 3Ñ,IêxWXH1$'0 Q ; Q 3�&�;DO1?òëm3%V'3F;9=/3Ð$RW�êî,/&�,D.N&¶êî.NWX.N&23�ëx,D&2C )v�#3Fð�3FOkW
0cW2.1?+$'3F0-V'3�OB?N0-0X. QNQ ,D&XW-WX,�,/.N&Ê; Q1Q &X,k;DðpHÔ,Iê¥?+$Ç0Xð�&X$'"%$RO1;IWX$'ONí�?+$Rô 3F&X3FOkW
Wcé Q 3F0Ê,IêKð�V'.104WX3�&
0cW2&X.1ð�WX.N&23F0�ø �/û+��)

õ {#æ#âNæ#ãIiLs äÊãI�

� HN3�&23m$Ç0
ð�,/O10X$'?+3F&2;DìNV'3Ê&2,k,/" êî,D&�$'" Q &X,M=>$'ONí�W2HN3\=>$'0X.1;IV'$'÷F;MW2$R,/O�,IêBWXHN3s043\&23F0X.NVRW20F)+bi$'&204WF8
;MW�W2HN3Ô;DVRí/,D&2$ÉW2HN"%$'ð¶V'3�=/3�V�8NW2HN3Ô02ð�;DVR3²;DO1?Þð�,D" Q V'3�õ+$ÉWcéA,Iê
W2HN3²í/&2; Q H10 Q &X,+?+.1ð�3F?Aêî&2,D"
WXHN3²?1;MW2;%"%$'ON$'ONí�0cWp;Ií/3�0cW2$RV'VhH1;9=/3<WXHN3 Q ,IW23�OkWX$Ç;IV¥WX,�3F"²ì1;D&X&p;D020\;9=9;D$RVÇ;Iì1VR3¶íD&p; Q HÈVÇ;9é^�
,D.+W¯;DVRí/,D&2$ÉW2HN"Ñ0�) � HN3F&X3�$Ç0%,IêLWX3FO ; W23�O10X$',DOñ$ROñWXH13Þ?+3F0X$Rí/Oö,Dê<;DVRí/,D&2$ÉW2HN"Ñ0Ôì 3�Wcëx3�3FO
;Dð�ð�,D"%"%,+?N;MW2$RONí�;�ëË$'?+3�&2;DONíD3Ë,Dê¥?N;MWp;N8k,D&Êð�.10cW2,D"%$'÷�$'ONí�WXH13�;IV'íD,/&X$RWXH1" WX,Ðð�; Q $ÉWp;IV'$R÷F3
,DOÞC>ON,MëËO ð�,DO104WX&p;I$'OkW20�,D&<&X3FíD.NVÇ;I&2$RWX$'3F0F8B;IOB?�$RO WXHN3%ð�;/043Ô,IêÊëx3�ì VR,/íÈ?N;IW2;N8 C>ON,MëË$'ONí
"Ð,/&X3Ð;Iì ,D.+W<WXH13ÔC>$'O1? ,DêÊíD&p; Q H�WXH1;IW¶$Ç0�WX,ÈìB3Ñ?+&p;9ëËOÞ"Ñ;9é�HN3�V Q $'OÆ0X$R" Q V'$Rêîék$'ONíAWXH13
V';9é/,D.+W Q &2,>ð�3F020�)v_�OÆWXHN3%H>.N"Ñ;IO 04$Ç?+3D87êî.1&4W2HN3�&¶W2HN,D.Ní/HkW<$Ç0¶ON3�3s?+3F?Æ,DO WXHN3%"Ñ; Q1Q $RO1í
êî&X,/"�?N;IW2;�;IW4W2&X$'ìN.+W23F0ÊWX,�=>$Ç04.1;DVB;IW4WX&2$'ìN.+WX3s0�8/$RO Q ;I&XWX$Çð�.NVÇ;I&ÊëËHN3�&23ËWXH13�=>$'0X.1;DVR$'÷F;IWX$',DO%$'0
04. Q 3�&2$'" Q ,/0X$'ONí�;DðFð�3F020 Q &2, Q 3�&XWX$'3F0Ê;Iì ,M=D3xWXHN3�ì1;D0X$'ðË0X$RWX3�04WX&2.1ð�W2.N&23D)DS
;D&4W-,DêBW2HN$'0Êëm,/&XC
ð�;IOÆ;IO1?Þ0XHN,/.NV'?ÞìB3Ôì1;D0X3F?�,/OÞC>ON,MëËOÞðpH1;D&2;/ð�WX3F&X$Ç04WX$Çð�0Ë,Dê Q 3F&2ð�3 Q W2$R,/O ;IO1? Q &X$'O1ð�$ Q V'3F0
,Iê\=k$Ç0X.1;IV'$R÷s;MW2$R,/O ?+3s04$'íDOh8KHN,Mëm3F=D3F&F8 WXH13Ñ.NVÉW2$R"Ñ;IWX3Ñ.+W2$RV'$ÉWcé ,IêmWXHN3¯&X3 Q &X3s043FOkW2;MW2$R,/O ëË$'VRV
,DONV'é ì 3Fð�,D"%3�; QNQ ;I&23�OkW�,DO1ð�3%$ÉW²$Ç0�;/0X0X3F02043s?ÞW2HN&2,D.Ní/Hòð�,DOkWX&2,DV'V'3F?Æ3�õ Q 3F&X$'"%3�OkW20F8h;DO1?
WXHN$Ç0ËëË$'VRV¥&23HOk.N$'&23�W2$R"%3�;IOB?A;Ð"%,D&23 Q ,/VR$Ç0XHN3F?È=D3F&20X$R,/O¯,DêÛW2HN3�.10X3�&Ë$'O/W23�&Xê¨;Dð�3D)

! O>.N"²ì 3�&È,Iê�êî.N&XWXH13�&�Wp;D0XC+0�H1;9=/3 ;IV'&X3s;D?+éöìB3F3�OØ"%3FO/W2$R,/ON3F?Ø$ROÜW2HN3 W23�õ>WF8mWXH13
êî,DV'VR,MëË$'ONíÑð�,/.NV'?Èì 3�;D?N?+3s? �

¤ ! Q 3F&2ð�3 Q W2.1;IV#;DO1?öVR,/íD$Çð�;IVË; QNQ &p;I$Ç0X;DVx,Dê�W2HN3�=>$'0X.1;IV'$'÷F;MW2$R,/O10Ð&X3FV';IWX$'=D3ÈWX,�ì 3�WXWX3�&
.NO1?+3F&204W2;DO1?+$'ONí%,Iê
0 Q 3Fð�$É5 ð�.B043F&\W2;D0XC+0�)

¤ � P " Q $R&2$'ðF;IVY�m.10X;DìN$'VR$RWcé�W23F04W20\,IêiWXH13�=k$Ç0X.1;IV'$R÷s;MW2$R,/O10�)
¤ :�3F"%,DO104WX&p;MW2$RONí¶W2HN3#.+W2$RV'$RWcéÔ,Dê ëx3�ì%"%$RO1$RONíÔð�;IO%ì 3�?+,/ON3Ëì>éÔ"Ñ;IC>$'ONí¶3�õ Q V',D&p;MW2,D&2é
ðpH1;IO1íD3F0ÛW2,�ëm3FìÐ0X$ÉW23F0�3/) íB)I;D?N?+$'ONí¶V'$RONC+0�êî&2,D" HN,IW Q ;D&4Wp0�,IêBëx3�ìÑ0X$ÉW23xWX,�ð�,/V'? Q ;D&4Wp0
;IO1?ÈW2HN3�O�3�õkWp;Dð�WX$'ONí18N=>$Ç04.B;IV'$R÷F$RONí�;DO1?A$ROkW23�& Q &X3�WX$'ONí�ðpH1;DONíD3s0\$RO�;DðFð�3s0X0 Q ;IW4W23�&2O10�)
� HN$Ç0Ñ"Ñ;9é�;IVÇ04,ò&23HOk.N$'&X3�&2.NONON$'ONíò,D.1&Ñ$R" Q V'3�"%3�OkWp;MWX$',DOÜ,/OñV',Dík0Ð,Dì+Wp;I$'ON3F?ñ,M=D3F&
VR,/ONíD3F& Q 3F&X$',+?È,DêÛW2$R"%3/)

¤ ��$Ç04.B;IV'$R÷F$RONíË,/.+W Q .+Wh,Iê>&23�VÇ;MWX3s?¶04é+04WX3�"Ñ0K3/) íB)�O1;9=>$'í/;MW2$R,/O Q &X3s?+$'ð�WX,/&20F8�&X3sð�,/"Ð"%3FO1?+3�&
04é+04WX3F"%0F8�ìN&2,Më#0X$RONíË0X$R"Ô.NVÇ;MWX,/&20F8�.10X3�&¥"%,+?+3FVR$'ONí�U Q &2,I51V'$RO1í1)�ó¥$'CD3FëË$'0X3-;\ìN&2,/;D?�&p;IONí/3
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,Iê7!zJ�;IV'íD,D&2$RWXHN3F"%0F89VR3s;I&2ON3�&p0F8 Q &2,DìB;IìN$'V'04WX$Çð\;IV'íD,/&X$RWXHN"Ñ0�;IOB?²"%,D&23\ð�;IOÐì 3Ë=k$Ç0X.1;IV'VRé
ð�,/&X&23�VÇ;MW23F?ÞëË$RWXH�&23F;DV�.1043F&�ìB3FH1;9=>$R,/&�$RO�;DOÆ.NO1$ROkWX&2.10X$R=/3%"%;DONON3F&F)v��$'0X.1;DVR$'÷F;IWX$',DO
,Iê#ON3Fëö�Ë3�VÇ;MW2$R,/O1;IVxS-&2,Dì1;DìN$'VR$Ç0cW2$'ðÑGÞ,>?N3�VÇ0²$Ç0�,Dê Q ;I&XWX$Çð�.NVÇ;I&²$ROkWX3F&X3s0cWÐìB3sð�;D.1043¯,Iê
$ROBð�V'.104$',DO�,DêÛ&23�VÇ;MWX$',DOB;IVK0cW2&X.Bð�WX.1&X3¶,Iê�ëx3�ì�04$RWX3s0Ë$RO�,/.N&xWX3FðpH1ON$POk.N3s0�)

¤ ��$Ç04.B;IV'$R÷s;MWX$',DO¶,Dê>óh$RONC¶;IOB;IV'é>0X$Ç0K;IO1?¶ð�,/" Q ;I&2$'0X,DO�,IêNS
;Ií/3H�#;DONC#;IOB?<(�.Nì-UI!#.+W2HN,D&2$ÉWcé
;Iík;I$'O10cW-;/ð�WX.B;IVNëx3�ìÑ.102;Ií/3\$ROÑV'$RO13#ëË$ÉW2H4�Æ3Fì�,kWX&2.1ð�WX.N&23#G�$'ON$RO1í1)/!�V'0X,�� 3�ì¦<m,DOI�
WX3FO/W¶G�$'ON$RO1í¯ð�;DO�ìB3�$'OkWX&2,+?+.1ð�3s?AWX,�,/.N&�;D&2ðpHN$RWX3sð�W2.N&X3�$'O Q ;D&X&p;IV'3�V7W2,n�����ØS
;IV
04.1$ÉW23D)

¤ �Æ3�&23�"%,M=/3�ëx3�ì�ì ,IWË&X3$Ok.N3F04WË$RO�3F;D&XV'é¯04W2;DíD3F0x,Dê Q $ Q V'$RO13D8N,/ON3¶$ROkWX3F&X3s0cW2$RO1í%; QNQ V'$*�
ð�;IWX$',DOA$'0\W2,%=k$Ç0X.1;IV'$R÷F3�;Dð�ð�3F020 Q ;MW2HA,DêÛW2HN,/0X3D)

÷ � ç��\á�ä�jKrôihåqyli�}~ihámâ

�Æ3<ëm,/.NVÇ?ÑVR$'CD3#WX,ÔWXH1;DONCÑS-&2,Iêc)/GÞ.NC>C9;D$\,K)��¶&2$Ç04HNOB;I"%,>,D&XWXH>é�êî,/&mHN$Ç0mHN3�V Q ,DOnø^ø�øaù ßaä
ø �^�+�~)

�l�P� ÂHú1Â w¥{k[2dkesb�[2d>^;ûkZx_coqvqvÉoqd/�ÔZ\e�Ä-d1r1giesd/[¶^FdkÌ4ükjkd/dk[pv ·k° ua[2_�ý uxÅD_ce�Ä-uaoÉd/�Ð^�npnp[puaux]>^�`a`c[X_cd
oquÊ^Fb�]/vqoÉ[pÌÔÅMy²npesvqeF_coqd/��^�`-`c{k[\Å+e�`a`cesb e�fK`c{k[\]/oÉnX`cj/_c[ ·
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�8��� ÂHþ1Â � Z ±Ioquaj>^�vqoÉÃp^�`coqesd%Ä-oz`c{�lM`a_4^F{kvq[2_xgieFvÉe�_coqdk� ·

�l�P� Â1ÿ Â |}dI`c[X_4^Fn2`coq±9[��FZ ±Doquajk^FvqoqÃ�^�`coqesd<eFf/Zx_coqvÉvqoqdk�mZ\e�Ä-dVûFgioz_cnpj/vR^�_¥Å>^�ua[pb�[pdM`7e�fk`c{k[hn2yDvq[pd>ÌD[2_
vqoqÙ9[�_c[puajkvz`Ôoqu%uaoqb�oÉvÉ^�_Ð`ce�Õ>�Fj/_c[��Dr-^FÌkÌDoÉd/��`c{koz_4Ì�Ì/oqb�[pd/uaoqesd�[pdk^FÅkvq[puÔjkuÔ±Doquajk^FvqoqÃp[Èb�e�_c[
oqdDfÇeF_cb�^�`coqesdÑ^�d>ÌÐnpvÉ^�_coqÕk[pu-jkua[2_ÊÅ+[p{k^�±Doqe�_moqdÑ^�d>Ì²Å+[2`�Äi[p[pdÐn2vÉj/u~`c[2_cu ·
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�l�P� Â��1Â Ò oquaj>^FvqoqÃ�^�`coÉeFd e�fËÏÐoqdk[pÌ�üD_c[�ÓMjk[pdM`<�B_c[p[pu��FlD[�ÓMjk[2dknp[puTû Î {koz`c[Ôvqoqdk[2u�^�_c[�_c[puajkvz`cu¶e�f
Ì/^�`4^<b�oqd/oÉd/�¶^�vÉ�FeF`coz`c{kb�u-o · [ · fR_c[�ÓMjk[pdM`-]k^�`a`c[2_cd/u ·

�l�P� Â��1Â ü/_c[�ÓMjk[pdM`hwK^�`a`c[2_cdkuh±IoÉuajk^FvqoqÃp[�Ì�^�u
lI`a_c[p^FbØ� j/Å+[puTû ° uaoÉd/�\`coqnXÙIdk[2uauÛe�fBlI`a_c[�^�bÖ�BjkÅ+[pupr
Äi[Ën�^Fd%^sÌkÌÔ^Fd/eF`c{k[X_xÌDoqb�[pdkuaoqesdÔo · [ · f'_c[pÓIj/[pdknXyÔe�fK]>^�`a`c[2_cdku
`ce<Õk�sjD_c[	� ·
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�8��� Â�
NÂ giesd/[��B_c[p[pu ·

�8��� Â�1Â ° uaoqd/�¶npvqoqnXÙ�u~`a_c[�^�b `cj/Å+[pu
esd%^<ÃpeMesb ±Ioq[2Ä ·
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�l�P� Â��1Â ° uaoÉd/���xvzyD]k{/uTû/gijkÅ+[mua{>^F]+[pÌ��Fvzy/]/{kuiÄ-oz`c{²]/_ceF]+eF_a`coqesdk^FvNuaoqÃp[\^�_c[x]kjD`�eFdÔd/eIÌ/[puif'eF_
[p^Fuaoq[2_mua[pvq[pn2`coqesdÑÅMy²b�esj/ua[ ·

�l�P� Â!���BÂ Î [pÅ ° uc^F�F[%lIjk]+[2_coqb�]+eFua[�ÌÈeFd Î [pÅ��m_4^�]k{�Ä-oz`c{Þ^FÅ+eFj/`�� �F� r �s�F� d/eIÌ/[pu · lD[pb�ozÝ
lM`4^�`coqn Î [pÅ��m_4^F]/{�[2ÍI`a_4^Fn2`c[pÌAÅMyÈÄi[pÅkÅ+e�`�b�^�Ù9[pu�^Ð��_4^�yAÅ>^�ua[pb�[pdM`ËfÇe�_<npeFvqeF_c[�Ì�f'_c[pÓIj/[pdM`
]k^�`c{/u�[2ÍI`a_4^Fn2`c[pÌ²f'_ceFb Î [2ÅÐÚ1es�su-j/uaoÉd/� Î [pÅÐÏÐoÉd/oqdk��´ÊvÉ�FeF_coz`c{kb�u · givqj/u~`c[2_cu
Ä-oq`c{���Ä-oz`c{keFj/`
fR_c[�ÓMjk[pdM`Ê^�npnp[puaum^�_c[Ë[�^�uaoqvqyÐoÉÌ/[pdM`cozÕ>[�Ì
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� i�k¨ihãIihá�ç\i/o

� · ZË^�±IoÉÌA´ÊjkÅ+[2_�r ° uaoÉd/��lI`a_4^�{kvq[2_#�mjkb<Å+[X_cumfÇe�_ t [�^�vi��oqb�[ Ò oquaj>^Fv � ÍD]kvqeF_4^�`coÉeFd�eFf��xjk�F[
�m_4^F]/{kupr/|�dM`c[2_cd>^�`coqesd>^�v��Fesj/_cdk^FvBeFf¥´Ê]k]kvqoq[�ÌÐÏ%^�`c{k[2b�^�`coqnpuÊ^FdkÌ%giesb�]/j/`c[2_mlInpoq[pdkn2[sr �F�s�s� ·

� · l · g�^�_4Ì1r�� · Ï%^�nXÙIoqdkvÉ^pyMrh^FdkÌ�³ · lD{kd/[poÉÌ/[2_cb�^�dBr t [�^FÌ/oqdk�Fu¶oqd�|�dDfÇeF_cb�^�`coqesd Ò oquaj>^�vqoÉÃp^�`coqesd�û
° uaoqdk� Ò oquaoqesdÐ`ce���{/oqdkÙ+rkÏÐeF_c�9^�d ¸ ^FjDfÇb�^Fd/dBrkl/^�d�ü/_4^�dknpoquanpeDr ������� ·

� · Z · � · ZxjkÙ9[sr¥ÏÐeIÌ/jkvÉ^�_�� [pn4{kd/oRÓMj/[pu<oqdÞ|�dDfÇeF_cb�^�`coqesd Ò oquaj>^�vÉoqÃ�^�`coqesdBrÛwK_ceMnp[p[�ÌDoqdk�su�e�fm`c{/[
� u~`�´mjku~`a_4^�vqoR^�dÔlIyDb�]+esuaoqjkbØeFd�|�d/f'eF_cb�^�`coÉeFd Ò oquaj>^�vÉoqÃ�^�`coqesdBr Ò esvqjkb�[ � e�fKgieFd/fÇ[X_c[pdknp[2u�oqd
t [2ua[�^�_cn4{²^Fd>Ì�wK_4^FnX`coÉn2[xoqd�|�d/f'eF_cb�^�`coÉeFd Ò oquaj>^�vÉoqÃ�^�`coqesdBr/w · � ^sÌD[pu
^�d>Ì�� · wK^�`a`coquaeFd� � Ì/u�!Xr
]k] · �F� Ý ��� r+´Êjku~`a_4^FvqoÉ^FdÑgiesb�]kjD`c[2_mlDeMn2oÉ[X`�yMr �F�s�I� ·

� · � · ÏÐj/dkÃpd/[2_�r>Zm_4^�Ä-oqd/�ÔÚB^�_c�F[��m_4^�]k{kuÊÄ-oz`c{"�#� Ò oq[2Ä�[2_\^FdkÌÑlDoz`c[�Ï%^�d>^F�F[2_�rNoqd�w¥_ceMn2[p[�ÌDÝ
oqdk�su-e�f$�m_4^F]k{ÔZx_4^pÄ-oqdk�Eý �F� r �%���s� ·

� · ZË^�dkoq[pvh´ ·N¸ [2oÉb%r>|�d/f'eF_cb�^�`coÉeFd Ò oquaj>^FvqoqÃ�^�`coÉeFd�^FdkÌ Ò oquaj>^Fv¥ZË^�`4^ÐÏÐoqd/oÉd/� · | �h�h� �B_4^�dku~Ý
^Fn2`coqeFdkuÊesd Ò oquaj>^FvqoqÃ�^�`coÉeFd¯^Fd>ÌÐgiesb�]/j/`c[2_&�m_4^�]k{koqnpu �  � !Xr ���s�s�

' · g · lD{k^F{k^FÅkoLrI´ · Ï ·)( ^�_cÙ9[pua{1r*� · ´mÅ/oRÌDoN^FdkÌ Ò�· lD{k^F{1r ¸ dke�Ä-vq[�Ì/�F[\Ì/oquanpe�±9[X_ay�f'_cesbÖjkua[2_�ý u
Ä�[pÅDÝ¨]>^F�F[
d>^�±Ioq�9^�`coqeFdBrIwK_ceMn · lI[p±9[pdM`c{�| �h�Û� |}dM`cv ·�Î e�_cÙIua{kes]�esd t [pua[�^�_cnX{�|}uauajk[pu¥oqd�ZË^�`4^
� d/�soqdk[2[2_coqdk�" t |�Z � !XrI]k] · ��� Ý ��� r �����9µ ·

µ · ³ · ´ · �mjkÅ+[2_cb�^�dBr�w · Ú · � · w¥oz_cesvqvqoLr+� · � · w¥oq`cÙse�ÄËrF^�d>Ì t#· Ï · Ú1jkÙ9eFua[ · lI`a_ceFdk�m_c[2�sjkvÉ^�_coq`coq[pu
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Abstract. For better interpretability of class structure in data we want
to use Support Vector Machines (SVM) for exploratory data analysis.
This is easier to do when data is linearly separable. However, when data
is not linearly separable, the results of SVM classifiers with non-linear
kernels are more difficult to understand, partly due to the mapping to a
higher dimensional space. In this paper, we design a method for weight-
ing linear support vector machine classifiers or random hyperplanes, to
obtain a classifier whose accuracy is comparable to the accuracy of a non-
linear support vector machine classifier, and whose results can be readily
visualized. We conduct a simulation study to examine how our weighted
linear classifiers behave in the presence of known structure, compared to
support vector machines with non-linear kernels. We describe the results
of our simulation study on 2-class non-linearly separable data, where the
data sets are generated by varying the shape of the clusters, and vary-
ing the number of variables. The results show that the weighted linear
classifiers might perform well compared to the non-linear support vector
machine classifiers, and they are more readily interpretable than the non-
linear classifiers. The normals to the separating hyperplanes are viewed
using rotations or tours of the data.

1 Introduction

For many data mining tasks understanding a classification rule is as important
as the accuracy of the rule itself. Going beyond the predictive accuracy to gain
an understanding of the way the classifier works, provides an analyst with a
deeper understanding of the processes leading to cluster structure.

Support vector machines (SVMs) [9] offer a theoretically well-founded ap-
proach to automated learning of pattern classifiers for mining labeled data sets.
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The mechanism for defining the classification is intuitively appealing: maximum
margin between classes, that is, put the separating hyperplane at the biggest
gap between the two groups. SVMs have been shown to build accurate rules in
complex classification problems, but the results often provide little insight into
the class structure in the data.

The primary goal of our investigation is to determine ways in which we
might de-tangle support vector machines and use visualization to obtain an
understanding about the distribution of the classes in the data space. That is,
to go beyond predictive accuracy to determine the nature of the separation
between classes, and provide insights into the nature of the processes generating
the cluster structure.

With SVM, we can understand the nature of the boundaries between classes
when the data is linearly separable, by looking at the separating hyperplane
or the normal to this hyperplane. In high-dimensional spaces the normal to
the separating hyperplane is visualized using tour methods [4, 5]. When data is
non-linearly separable, the visualization is more difficult because the boundaries
between classes are non-linear.

In this paper, we have designed a classifier based on weighting linear support
vector machines or random hyperplanes, whose results can be readily visual-
ized. The proposed method outputs classifiers that have accuracy comparable to
the accuracy of the support vector machines using non-linear kernels. We have
shown this by conducting a simulation study on artificially generated data sets,
three 2-dimensional data sets and three 5-dimensional data sets. We expect that
this approach will be useful for data with a relatively low number of variables
(features), less than 20, where it is possible to visually explore the space.

The paper is organized as follows: Section 2 gives more details about support
vector machines and visualization methods. Section 3 introduces the weight-
ing scheme and shows how to use it to generate weighted linear support vector
machines classifiers and weighted random hyperplanes classifiers. Section 4 com-
pares the results of the classifiers obtained using the weighting scheme to the
results of the SVM classifiers with non-linear kernels. We conclude in Section 5
with a summary and directions for future work.

2 Support Vector Machines and Visualization

Let E = {(x1, y1), (x2, y2), · · · , (xl, yl)}, where xi ∈ Rp and yi ∈ {−1, 1} be a
set of training examples for a 2-category classifier. Suppose the training data is
linearly separable. Then it is possible to find a hyperplane that partitions the
p-dimensional pattern space into two half-spaces R+ and R−. The set of such
hyperplanes (the solution space) is given by fw,b(x) = sign(w · x + b). SVM
selects among the hyperplanes that correctly classify the training set, the one
that minimizes ‖w‖2, which is the same as the hyperplane for which the margin
of separation between the two classes, measured along a line perpendicular to
the hyperplane, is maximized.
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Towards Simple, Easy-to-Understand, but Accurate Classifiers 3

If the goal of the classification problem is to find a linear classifier for a non-
separable training set, a new set of weights, called slack weights (measuring the
extent to which the constraints are violated) can be introduced. In this case the
margin is maximized, paying a penalty proportional to the cost of constraint
violation. The decision function is similar to the one for the linearly separable
problem.

If the training examples are not linearly separable, the SVM works by map-
ping the training set into a higher dimensional feature space using an appropriate
kernel function ψ. Therefore, the problem can be solved using linear decision sur-
faces in the higher dimensional space. Any consistent training set (i.e., one in
which no instance is assigned more than one class label) can be made separable
with an appropriate choice of a feature space of a sufficiently high dimension-
ality. However, in general, this can cause the learning algorithm to overfit the
training data resulting in poor generalization.

The output of the SVM classifier, using linear kernels, is the normal to the
separating hyperplane, which is itself a linear combination of the data. Thus
the natural way to examine the result is to look at the data projected into
this direction. It may also be interesting to explore the neighborhood of this
projection by changing the coefficients to the projection. This is available in a
visualization technique called a manually-controlled tour.

Generally, tours display projections of variables, x′A where A is a p×d(< p)-
dimensional projection matrix. The columns of A are orthonormal. Often d = 2
because the display space on a computer screen is 2-dimensional, but it can be
1 or 3, or any value between 1 and p. The earliest form of the tour presented
the data in a continuous movie-like manner [1], but recent developments have
provided guided tours [5] and manually controlled tours [4]. Here we are going
to use a d = 2-dimensional manually-controlled tour to recreate the separating
boundary between two groups in the data space. Figure 1 illustrates the tour
approach.

3 Weighted Linear SVMs

Our goal is to gain insights into the operation of the SVM algorithm (i.e., the
way it chooses the separating hyperplanes). Since linear classifiers can be easily
visualized, we design a method for combining linear classifiers generated using
the SVM algorithm on subsamples of data, then use this method to classify
non-linearly separable data. We assume that a training set E of size l is given
and N hyperplanes h1, h2, · · · , hN are generated using the SVM algorithm. To
generate a hyperplane hi, we randomly divide the training set into two subsets.
One subset is used for generating the linear classifier and the other is used for
estimating its error, error(hi).

If x is a new data example that needs to be classified, we estimate the “prob-
ability” P (+1|x) that x belongs to the positive class, and the “probability”
P (−1|x) that x belongs to the negative class, as follows, and then we assign to
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Fig. 1. Three tour projections of a (p=)5-dimensional data set where the two groups
are readily separated. The normal to the separating hyperplane is shown as a vector in
the space. The separating hyperplane is (p-1=)4-dimensional making it more awkward
to view than the normal that defines it. The axes at bottom left and right represent
the projection coordinates. The left plot shows a projection where the groups are well-
separated, and the plot at right shows a projection where they are less separated.
The magnitude of the projection coefficients indicate variable importance, the larger
the coefficient - in the direction of separation - the more important the variable. For
example, the left plot shows −0.169

5.34
V1− 0.803

4.71
V2− 0.366

20
V3+ 0.269

20
V4+ 0.346

20
V5 horizontally,

and 0.006
5.34

V1 + 0.120
4.71

V2 + 0.618
20

V3 + 0.642
20

V4 + 0.438
20

V5 vertically. The separation between
groups is in the vertical direction which is primarily variables 4,5,6. The normal is
effectively the direction that yields the predicted classes when the data is projected in
this direction. If we were to run the SVM on multiple samples of this data we would
get a set of separating hyperplanes and their respective normals. We would expect
these to be distributed (like a bundle of sticks) around the normal calculated on all the
data. They should be most elongated when the separation between the two groups is
greatest, and oriented across the separation.

x the class with larger “probability”:

P (+1|x) =
N∑

i=1

P (+1|x, hi) ∗ 2error(hi),

P (−1|x) =
N∑

i=1

P (−1|x, hi) ∗ 2error(hi).

In order to estimate the probabilities P (+1|x, hi) and P (−1|x, hi), we use the
method described in [6], which is based on binning the training examples accord-
ing to their scores computed by SVM (i.e., the distances from the points to the
separating hyperplane). More exactly, the training examples are ranked accord-
ing to their scores with respect to a hypothesis hi and then they are grouped
in b subsets of equal size. A new test example x is placed in the correspond-
ing subset j according to the score that hi assigns to it. The probability that
x belongs to the positive class is estimated as the fraction of positive training
examples that fall into the subset j, while the probability that x belongs to the
negative class is given by the fraction of negative training examples that fall into
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Towards Simple, Easy-to-Understand, but Accurate Classifiers 5

j. Our simulation study is meant to show that the weighted linear SVM clas-
sifiers described above give results comparable to the results obtained with the
SVM classifiers with non-linear kernels, while they are easier to understand and
visualize. However, one may ask why we need to use hyperplanes generated with
SVM algorithm instead of using randomly generated hyperplanes. The advan-
tage of using the hyperplanes generated by SVM is that they are guided toward
a reasonable solution for the given data, while the random hyperplanes can be
arbitrarily good or bad. So, in general, we expect that a larger number of random
hyperplanes is needed compared to the number of SVM hyperplanes, especially
for higher dimensional data. To check this out, we design a similar method as
the one described above for randomly generated hyperplanes. We generate N
random hyperplanes and we assign scores to the test examples based on the dis-
tances from those examples to the random hyperplanes. The same subsamples as
in the case of SVM hyperplanes are used for estimating the probabilities above
and the error of a hyperplane. The results of the two methods are compared. We
also compare them with the non-linear SVM classifier results.

4 Examining SVM Behavior Through Simulation

For the experiments in this paper, we used SVMlight3.50 [8] implementation
(svmlight.joachims.org) of SVM algorithm. The parameters used were chosen
by trying various values and choosing the ones that gave the best results in terms
of accuracy. We also used the tour methods available in the data visualization
package GGobi (www.ggobi.org).

The data sets used were generated by varying the shape of clusters and the
number of variables. Three of the data sets (plotted in Figure 2) contain 2 classes,
and 2 variables, and the other three contain 2 classes and 5 variables. There are
500 instances in each data set.

Fig. 2. Simulated Data Sets: 2-Dimensional data sets used to examine the SVM be-
havior under different distributions
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6 Doina Caragea et al.

Data set 1 contains two non-linearly separable clusters. It is motivated by
previous observations [3]. Data sets 2 and 3 exhibit classes that are linearly
non separable. One data set contains two ellipses that intersect in their centers
(normals with the same mean). The other contains one cluster nested inside the
other (generated from normal distributions with the same mean, but different
variance). Data sets 4, 5 have the same first two variables and then three addi-
tional variables containing noise. Data set 6 is similar to the third data set with
two nested spherical clusters but in 5 dimensions. It is very difficult to classify
them using linear boundaries.

We perform two sets of experiments for all three methods we want to compare
(i.e., non-linear SVM, weighted linear SVM and weighted random hyperplanes).
The first set of experiments is meant to compare the performance of the three
methods, while the second set is meant to show how we can visualize the results
of the methods used.

For each run of the three methods we compare, we randomly divide the
data set into a training set containing 400 example and a test set containing
100 examples. The non-linear SVM uses these sets as training and test sets.
For the weighted linear SVM and the random hyperplanes methods, we split
the training set further into a set containing 300 examples, (used to train the
individual linear SVMs) and a set containing 100 examples (used to estimate
the probabilities corresponding to the test examples, and also the error of each
linear classifier generated). The number of bins is 5, so the size of each bin is 20.
The same test set as in the case of non-linear SVM is used for the weighted linear
SVM and weighted random hyperplanes methods. In what follows we denote the
non-linear kernel SVM by Non-Lin SVM, weighted linear SVM hyperplanes by
Lin SVM, and the weighted random hyperplanes by Rnd Hyp.

What do we expect to see? For the 5-dimensional non-linear data (data set
4) we would expect to see the best separating hyperplanes similar to the solution
for the 2-dimensional non-linear data. That is, the normals would point across
the separation in the first two variables. We’d expect that these separating hy-
perplanes would have the highest weights. For the 5-dimensional cross data (data
set 5) we’d expect that results to be similar to the 2-dimensional cross data. For
the 5-dimensional nested data (data set 6) there is no good single solution, the
normals will be oriented in all directions.

4.1 Results

Simulation 1: The goal of the first set of experiments is to show how the three
methods used in the paper perform compared to each other. To do that, we ran
each of the three methods 100 times and recorded the accuracy on the test set.
The average test accuracy over 100 runs for the six simulated data sets is shown
in the Table 1.

We notice that in general the non-linear kernel SVM performs better than
the other two methods, but the difference is not always significant. The use of
the kernel brings a gain over the other two linear methods in terms of accuracy,
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Towards Simple, Easy-to-Understand, but Accurate Classifiers 7

however it pays off in terms of the understanding of the separation between
classes.

The performance of the Lin SVM and Rnd Hyp is comparable for Cross and
Two Nested data sets. Rnd Hyp performs better in some cases due to the fact
that there is a good chance that the Rnd Hyp finds hyperplanes that are not
very accurate by themselves, but they contribute to the global accuracy when
they are used in combination with other hyperplanes (in case that the number of
hyperplanes generated is large enough). This is not the case with the hyperplanes
obtained with SVM that are biased toward the best hyperplane given the data.

Table 1. The average test accuracy over 100 runs for the four simulated data sets

Data Set Non-Lin SVM Lin-SVM Rnd Hyp

Non-Linear 0.9989 0.8915 0.9215

Cross 0.8509 0.8281 0.8201

Two Nested 0.7654 0.7044 0.7192

5d Non-Linear 0.9947 0.8828 0.8728

5d Cross 0.8038 0.8382 0.7500

5d Nested 0.8200 0.6795 0.7707

Simulation 2: The goal of the second set of experiments is to show how
we can visualize the results of the methods designed. We performed 8 runs for
each 2-dimensional data set, using h=2, 5, 10, 20, 25, 50, 75, 100 hyperplanes for
each run, respectively. The graphical results for h=100 for the 2-dimenssional
data sets are shown in Figures 3, 4, 5 for Non Linear data set, Cross data set
and Two Nested data set, respectively. The training and test sets used in each
run are the same for the three methods, but differ from one run to another.
We generated a grid over each of the 2-dimensional data sets. The grid color
corresponds to the predicted class, and thus we can see the boundaries of the
prediction. The lines are the separating hyperplanes, not the normals for this
simple 2-dimensional data. The (Left) plot in each of these figures shows the
results for the non-linear SVM. The (Middle) plot shows the results of the Lin-
SVM. The hyperplanes’ width is proportional to their weights. You can see that
the separating hyperplanes are concentrated in a very local region, and that
together they do produce a slightly non-linear prediction. The (Right) plot shows
the results of the Rnd Hyp. The first 10 most accurate random hyperplanes are
shown (if we plot all 100 hyperplanes the separation boundaries cannot be easily
seen). The hyperplanes’ width is also proportional to their weights. You can see
that these random hyperplanes together produce a more non-linear prediction
that matches the class structure than the Lin-SVM method.

Figure 6 shows the results for the Non Linear 5-dimensional data set (data
set 4): (Left column) SVM results, (right column) random hyperplanes. There
are some big differences between the results for hyperplanes generated by SVM
and for random hyperplanes. The distribution of weights (top row of plots) is
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8 Doina Caragea et al.

Fig. 3. Visual Results for the 2-D Non-Lin Data: In these plots there is multiple in-
formation: (1) the grid color corresponds to the predicted class, and thus we can see
the boundaries of the prediction; (2) the lines are the separating hyperplanes, not the
normals for this simple 2-dimensional data. (Left) The results for the non-linear SVM.
(Middle) The results of the Lin-SVM. The hyperplanes’ width is proportional to their
weights. You can see that the separating hyperplanes are concentrated in a very local
region, and that together they do produce a slightly non-linear prediction. (Right) The
results of the Rnd Hyp (the first 10 most accurate random hyperplanes are shown).
The hyperplanes’ width is also proportional to their weights. You can see that these
random hyperplanes together produce a more non-linear prediction that matches the
class structure than the Lin-SVM method.

Fig. 4. Visual Results for the 2-D Cross Data: (Left) The results for the Non-Lin SVM.
(Middle) The results of the Lin SVM on the grid and the SVM hyperplanes used to
derive these results. (Right) The results of the Rnd Hyp on the grid and the random
hyperplanes used to derive these results (the 10 most accurate hyperplanes). Again, you
can see that these random hyperplanes together produce a more non-linear prediction
that matches the class structure than the Lin-SVM method.
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Fig. 5. Visual Results for the 2-D Two Nested Data: (Left) The results for the Non-Lin
SVM. (Middle) The results of the Lin-SVM on the grid and the SVM hyperplanes used
to derive these results. (Right) The results of the Rnd Hyp on the grid and the random
hyperplanes used to derive these results (the 10 most accurate hyperplanes).

quite different: the weights for SVM are very similar for all hyperplanes so all
hyperplanes are almost equally as good, but for the random hyperplanes the
distribution of weights runs from 0 to 1, with closer to 1 being the hyperplanes
with better separating power. The bottom two rows show the plots of the first
two variables and one tour projection with the normals to the separating hy-
perplanes represented as vectors. The hyperplanes from SVM are also much less
varied than for the random hyperplanes, which is as expected because SVM
will produce the best separating hyperplane. For the random hyperplanes, the
best are more varied than those produced by SVM, but they angle around the
nonlinear boundary between the two groups. It would be possible to view the
prediction areas by generating a grid over the 5 variables and predicting the
class at each grid point much like was done for the 2-dimensional data.

Figure 7 shows the graphical results for the Nested 5-dimensional data (data
set 6). The appropriate boundary separating the two groups is a sphere in 5
dimensions, thus the normals to the separating hyperplanes should reflect this,
they should be oriented randomly in any direction. This is observed for the best
random hyperplanes but not the SVM hyperplanes. It looks like there is some
systematic bias to the SVM implementation. The other observation to note is
that the distribution of weights is similar in both methods, and this reflects the
fact that every plane is essentially as equally as good as any other plane.

5 Summary and Discussion

This paper presented new approaches to understanding class structure in high-
dimensions using an ensemble algorithm building on linear separators and graph-
ics for viewing the high-dimensional space. These approaches allow the analyst
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10 Doina Caragea et al.

Fig. 6. Visual Results for the 5-D Non-Linear Data: (Left column) SVM Lin results,
(Right column) Rnd Hyp. There are some big differences between the results for hy-
perplanes generated by SVM and for random hyperplanes. The distribution of weights
(top row of plots) is quite different: the weights for SVM are very similar for all hyper-
planes so all hyperplanes are almost equally as good, but for the random hyperplanes
the distribution of weights runs from 0 to 1, with closer to 1 being the hyperplanes with
better separating power. The bottom two rows show the plots of the first two variables
and one tour projection with the normals to the separating hyperplanes represented
as vectors. The hyperplanes from SVM are also much less varied than for the random
hyperplanes, which is as expected because SVM will produce the best separating hy-
perplane. For the random hyperplanes, the best are more varied than those produced
by SVM, but they angle around the nonlinear boundary between the two groups.
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Fig. 7. Visual Results for the 5-D Nested Data: (Left column) Lin-SVM results, (Right
column) Rnd Hyp. The most obvious pattern is that the SVM separating hyperplanes
are not so varied, and there is no reason for this to happen. It suggests that there is some
systematic bias in the implementation of the SVM algorithm. The random hyperplanes
that have the highest weights are spread throughout all possible directions, which is
as we’d expect. There is no one best solution for this data because the true boundary
between the two groups should be a sphere in 5 dimensions.
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to gain more insight into the nature of the cluster structure in relation to class,
and understand the behavior of classification algorithms. The most dramatic
finding we uncovered is that the SVM algorithm we used seems to have a sys-
tematic bias in its choice of separating hyperplanes. This was most obvious in
the 5-dimensional nested data where every direction should be equally likely to
be chosen as the best separating hyperplane, but the planes concentrated in a
small area of the 5-dimensional space. So this says that the implementation of
SVM we used here would not be a good candidate to build into an ensemble
classifier.

The new algorithm for combining linear classifiers outperforms SVM using
non-linear kernels in some cases. Even in cases where SVM with non-linear kernel
outperforms the weighted combination of linear classifiers, the loss in accuracy
is compensated by the better understanding of the results available through
visualization.

More simulations are needed to understand better the dependence of the
accuracy of the proposed methods on the number of hyperplanes generated,
as well as the correlation between the number of hyperplanes needed for good
accuracy and the number of dimensions of the data. The number of hyperplanes
needed by Rnd Hyp to match the performance of Lin-SVM increases with the
dimensionality of the space, so in general this can’t be a good approach.

Various weighting schemes for combining classifiers exist in the literature
[2, 7]. Many of them are similar in spirit to the scheme we used. However, our
purpose was not to design another weighting scheme that would outperform
existing ensemble methods, but to design/choose one particular scheme that can
be easily visualized. The same visualization methods can be applied for any other
weighting scheme based on linear classifier.

In conclusion, the results we present in this paper represent a first step toward
achieving our goal of constructing simple and easy to understand SVM classifiers,
that can be used for exploratory data analysis.
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Abstract. Visualization of information on a graph has two aspects that are 
equally important in many settings:  Visualization of graph connectivity and 
visualization of node information.  We introduce GlyphNet, a tool that displays 
node-related information graphically, using small icons or glyphs.  Our goal is 
to assist researchers who are applying data mining techniques to relational data, 
and have a need to identify patterns that involve node attribute values of 
interconnected nodes.  GlyphNet represents node data as glyphs, analogously to 
the symbols on a weather map.  Rather than placing glyphs in a spatial context, 
as is the case for weather symbols, GlyphNet displays node information in its 
graph context.  We demonstrate the use of GlyphNet for the example of a data 
mining task that involves yeast gene and protein properties within the 
corresponding protein-protein interaction network. 

1   Introduction 

Information visualization on a graph is important for many subject areas.  Social 
networks, the link structure of the World Wide Web, and biological networks, such as 
protein-protein interaction graphs and biochemical pathways, are examples of data 
that are commonly represented as graphs.  Many techniques exist to display such 
graphs [1].  Most of them do, however, focus on connectivity.  Node data, if displayed 
at all, is usually included in textual form, such as in class diagrams and entity-
relationship diagrams that are common in software engineering.  Computer-based 
tools often also provide probe functionality to display node details in a separate 
window, based on selections made by the user [2].  Although this is an efficient 
solution to the problem of retrieving information from a network of nodes, it is not 
suitable to typical data mining tasks such as the identification of interesting patterns.  

1.1   Data Mining Uses of Traditional Graph Visualization Tools  

Visual data mining can be seen as a hypothesis generation process [3].  We will, 
therefore, now look at possible hypotheses that can be generated from different graph 
visualization tools.  Traditional graph drawing techniques that display nothing but 
connectivity allow investigating hypotheses on the distribution of edges.  Many 
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interesting results can come from such studies, e.g., the identification of different 
types of networks [4], including scale-free networks and random networks.  Graph 
visualization tools with probe functionality allow generating hypotheses that go 
beyond connectivity alone.  A particular node can be viewed within the nodes in its 
network neighborhood, which can, for example, allow generating hypothesis 
regarding relationships between edge distribution and node importance.  Google’s 
PageRank [5] algorithm that relates the importance of a Web page to the distribution 
of incoming links would be accessible to such analysis.  Much work is still being 
done to improve on importance measures [6], and a graph visualization tool with 
probe functionality could be used productively in this context. 

Much current work in the area of data mining involving relational data does, 
however, go beyond the issues addressed so far [7].  The term relational data refers to 
data in which a relationship exists between data records that can be represented by a 
graph.  Typical questions of interest are how relational neighbors can or should be 
used in classification and clustering [8].  Such questions require access to node data of 
not only one node but of all nodes for which a hypothesis is to be made.  In very small 
graphs one may try to resolve the problem by including a textual representation of the 
node data into the graph, as is done in class diagrams and entity relationship 
diagrams.  When this strategy is used many problems of textual representations recur 
that were supposed to be addressed by the visualization: Textual information has to be 
interpreted and patterns are, therefore, hard to see.  Text also uses up a significant 
amount of space, which limits the number of nodes that can be displayed 
simultaneously. 

1.2   Data Mining Uses of GlyphNet  

In this paper we introduce GlyphNet, a tool to visualize node data through glyphs, 
small graphical representations of the node attribute values.  We thereby provide a 
valuable aid for the visual exploration of data that is characterized by graph 
connectivity as well as node data.  Our tool is intended to generate hypotheses that 
involve attributes in multiple, connected nodes.  Hypotheses may then be validated 
through numerical techniques.  Why couldn’t one find all interesting patterns 
numerically?  For relational data the search space of interesting patterns is very large.  
Not only is it possible that attributes within one record affect each other, rather all the 
attributes of a neighbor, a neighbor’s neighbor etc. can affect the properties of a given 
node.  Although it may be hard to specify how an interesting pattern should look like, 
a human may still be able to detect it. There is, furthermore, still a lack of data mining 
techniques that are suitable to the relational setting, although some progress has been 
made recently [7].  Many traditional data mining techniques exist that were developed 
for data in a simple tabular form.  Making use of the richness and sophistication of 
these techniques in a relational setting is possible if the characteristics of the data can 
be handled through preprocessing techniques, in particular, feature extraction.  
Feature extraction refers to the process of identifying relevant patterns that can then 
be included into a tabular format.  A relevant feature in the relational setting could be 
the number of neighbors of a node for which a particular Boolean property is “true”.  
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Section 4 discusses an example use of GlyphNet in which this type of feature 
extraction is used in conjunction with a classification algorithm [9]. 

The paper is organized as follows:  Section 2 summarizes existing graph 
visualization techniques, and discusses the concepts and common uses of glyphs.  
Section 3 introduces GlyphNet and explains how graph visualization and attribute 
representation through glyphs are combined in this tool.  Section 4 gives an example 
of a use of GlyphNet as a visual data mining tool for the purpose of identifying 
candidates for feature extraction in a classification task.  Section 5 concludes the 
paper. 

2   Previous Work 

GlyphNet borrows from two existing concepts, graph visualization as discussed in 
section 2.1 and the concept of glyphs as discussed in section 2.2. 

2.1   Graph Visualization 

Graph drawing is an old topic and many techniques exist for its purpose [10].  One 
main goal in traditional graph drawing, planarity, consists in avoiding crossing edges.  
Other aesthetic rules have been formulated, including the goal that edges should be 
represented by straight lines, all edges should have the same length, and isomorphic 
structures should be displayed equivalently.  Many layouts have been described in the 
literature, including top-down layouts like the Reingold and Tilford layout [11], the 
H-tree layout [12], and the balloon tree layout [13].  The layout used in GlyphNet is 
based on a Force-Directed Method [14], in which nodes are modeled as physical 
bodies with the edges representing springs that hold them together.  The 
corresponding mathematical optimization problem is known to produce well-balanced 
graphs with a small number of edge crossings [15].  Time complexity of force-
directed algorithms makes them mainly suitable to small graphs, which is acceptable 
in a graph navigation system that only displays a small part of the graph at any one 
time.   

Many current problems involve graphs that are too large to display in such a way 
that all nodes can be simultaneously viewed with sufficient detail.  Traditional 
techniques are therefore often combined with graph navigation features that allow 
displaying only those nodes that are within a predefined distance of a central node.  
Alternatively the plane may be distorted using either hyperbolic geometry [16] or a 
fisheye view [17] to provide detail in the vicinity of a selected node.  More distant 
nodes are displayed with less detail and serve the purpose of providing a context.  In 
either case, navigation is achieved by letting the user select a central node, and 
calculating a new layout for each new choice.  GlyphNet uses the former strategy of 
displaying a limited number of nodes.  This avoids confusion that could come from 
distorting glyph information. 

Adding node information to graph layouts can be done in several ways.  A 
common strategy consists in representing nodes through text boxes as in class 
diagrams and entity relationship diagrams.  In this paper we will focus on techniques 
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that add node information in graphical form, since they are most closely related to 
GlyphNet.  Some existing approaches represent one or two items of information in 
graphical form using node size and/or node color.  These approaches commonly use 
textual information as well as possibly probe capability to represent the majority of 
node content.  An example of a tree visualization that uses node size to represent one 
item of information in graphical form is the SGI File System Navigator [1] in which 
file size is represented as the size of buildings in the virtual landscape.  Other tree 
visualizations represent two items of information.  A cone tree is a two-dimensional 
view of a three-dimensional representation of a tree [18], for which both node size 
and color may be used to represent node data [19].  Tree maps have leaf nodes laid 
out as rectangles in a plane [20].  Internal nodes are identified either through choice of 
a common color for lower level nodes or through boundaries surrounding lower level 
nodes.  In the latter case color may be used to represent node information as well as 
size of the rectangles.  In a practical application of a tree map, a map visualizing stock 
performance [21], color represents performance of stock, and size represents volume.  
Both cone trees and tree maps are limited to trees and cannot be generalized to 
graphs.  

In section 2.2 we discuss glyphs as a way of representing multiple items of 
information.  A concept that is related to glyphs is used in graph clustering [22].  
Complex graph structures can be made accessible by grouping related nodes into 
clusters.  These clusters may then be represented in a summarized fashion at a higher 
level.  The process may be iterated to result in a hierarchical structure of graph 
clusterings.  In some cases [22] a polygon is used to represent each lower level cluster 
at a higher level.  The shape of polygon is chosen such that it matches the shape of the 
lower-level cluster by some criteria.  This use of glyphs differs from ours in its goal of 
representing connectivity information only.  A summarized view of connectivity 
information can assist in understanding the structural properties of a graph but does 
not solve the problem of representing independent node information. 

2.2   Visualization of Attributes Using Glyphs 

A glyph is a graphical object used to display one or more dimensions of information 
[23]. Each glyph represents one record of data.  Many or all records can be displayed 
simultaneously.  Interesting properties of the data can then be identified as graphical 
patterns within the glyph without a need to refer to the actual data.  Relationships 
between different records can be explored through comparison of different glyphs.  
Glyphs are designed to have several parts that can be modified individually.  Each 
part is used to display an attribute or dimension of the information. Well known types 
of multidimensional glyphs are cartoon faces that use one variable to select the eyes, 
another to select the nose and so on [24]. These are commonly known as Chernoff 
faces. A motivation for using Chernoff faces is that human viewers are particularly 
familiar with facial features.  Frequent attribute combinations can thereby be 
identified as a particular kind of face.   

Another well-known data representation is a star glyph [25].  Star glyphs arrange 
attributes in a circular fashion with scales for each variable extending from a center 
outward.  Points on neighboring scales are connected.  This produces a closed pattern 
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that allows seeing proportional relationships between variables [26].  See Figure 1, 
left side, for an example of a star glyph.  It is important for the usefulness of this 
design to place attributes in such a way that within most records attributes with a large 
value tend to be neighbors of attributes with a small value.  This results in a 
particularly star-like shape.  Based on guidance from Tufte [27] the display should be 
as simple and clean as possible, so we do not show the scaling marks or other items, 
just the data values.  

So far, we have discussed differences between glyph patterns but have not yet 
looked at differences in how glyphs may be arranged.  In some but not all cases the 
arrangement of glyphs on the plane may come naturally.  Weather maps represent 
information that has been collected from particular spatial locations, and weather 
glyphs are therefore represented within spatial dimensions.  Sometimes the 
information collection may be inherently one-dimensional, such when drilling for raw 
materials [25].  Finally there may be no “natural” dimensions for the organization of 
glyphs at all.  In that case placement can be chosen to be convenient for the data 
mining process, such as ordering by attributes of the represented records.  In our case 
the glyph placement is determined by the graph layout, leading to additional 
challenges.  We will now discuss how GlyphNet combines and modifies existing 
techniques to allow visual data mining of content information on a network. 

3   Description of GlyphNet 

The design of GlyphNet is based on public domain software, Touchgraph [2] that is 
available from the SourceForge open source software development web site.  The 
goal of the Touchgraph project is to provide a user interface for the exploration of 
web pages.  The graph layout algorithm used in the project is based on a force-
directed layout [14], and large graphs are made accessible through navigation [1].  
Nodes that exceed a predefined number of edges from a selected central node are 
hidden.  A new central node is selected through mouse click.  The subset of nodes that 
are displayed is automatically adjusted.  The maximum distance from the central node 
can be selected by the user.  It is furthermore possible to move a node around by 
dragging the mouse.  The remaining nodes follow according to the force laws that 
determine the layout.  

3.1  Design of Suitable Glyphs for GlyphNet 

Glyphs in GlyphNet are loosely based on the star glyph concept [25].  We did, 
however have to modify the design to avoid confusion that could come from close 
neighboring nodes or interference between nodes and lines that represent edges.  
These problems are not commonly encountered with spatially organized data such as 
weather data, which is usually collected at locations that are sufficiently separate.  In 
graph layout algorithms separation of nodes and equal length of edges are a goal that 
may not be perfectly satisfied.   

We choose to embed each glyph in a circle that clearly identifies the node.  The 
area within the circle is reserved for the node, and edges are hidden behind it.  We 
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found that this concept works well, provided the design of the glyph is adapted to the 
new setting.  It can be seen in Figure 1 (left) that a star glyph does not fill the circle 
well, and much space is wasted.  We therefore designed a glyph shape such that it fills 
the circle fully if all attributes have their maximum value.  The circle is divided 
evenly into wedges or pie-slices, one for each attribute, with the radius representing 
the attribute value Figure 1 (right).  It should be noted that the area of a wedge 
increases as the square of the radius.  We did not use glyphs for quantitative analysis 
and chose the scaling of attributes entirely based on how clearly values could be 
distinguished.  For quantitative analysis it would be necessary to take a decision on 
whether radius or area should be used as a measure of the attribute value and the 
scaling would have to be chosen accordingly.  

 

   

Fig. 1. Comparison between star (left) and wedge glyph (right). 

The glyph design offers other degrees of freedom, in particular color, which can be 
included in the visualization process.  For the current purpose the overall color was 
chosen as the only relevant item of information.  Section 4 will discuss the use of 
color in more detail. 

3.2   Adapting Navigation Features to the GlyphNet Setting 

Several versions of the Touchgraph software [2] exist, featuring different aspects of 
the graph exploration task.  All versions use textual information to identify nodes.  
Colors are used to distinguish nodes that have a special role in the navigation 
algorithm, such as the central node and the node or edge that the mouse currently 
points to.  This is particularly important for implementations that use probe 
functionality, i.e., display web page content of the currently selected node in a 
separate window.  Additional labels are attached to nodes for which neighboring 
nodes are omitted because of their distance to the central node.  These labels show the 
number of omitted nodes and have yet another color in the original implementation.  
This gives an indication as to the intention of color use in previous implementations.  
Following the goal of simplifying navigation in a network of web pages, color has 
been exclusively used to simplify navigational tasks and summarizing structural 
properties of hidden parts of the graph.  We will see later how the use of colors for 
navigational purposes had to be limited in GlyphNet so as to minimize confusion with 
data mining goals. 
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GlyphNet represents node information in graphical form for all nodes within the 
displayed range.  Figure 2 shows a snapshot of GlyphNet for a graph that represents 
protein-protein interactions in yeast.  Node data includes properties of yeast genes and 
of their corresponding proteins.  Details of the underlying biological system will be 
given in Section 4.  In the example in Figure 2 the maximum distance of nodes from 
the central node is two.  Nodes that are further away than two edges are hidden but 
may be exposed by selecting a different central node or increasing the range of 
displayed nodes.  GlyphNet was derived from other graph visualization tools by 
replacing node identifiers with glyphs that visualize node attributes through shape and 
color.   Displaying node identifiers as well as glyphs for all nodes was considered too 
confusing.  Node identifiers are, however, displayed when the mouse is placed over a 
node, following the probe concept.  For the current implementation, the probe 
mechanism is limited to the display of node identifiers, but an extension to a more 
extensive textual display of node content would be straight-forward.   
 

 

Fig. 2. Snapshot of GlyphNet for yeast gene and protein data within the graph of 
protein-protein interactions. 

We had to reduce the use of color for navigational purposes in order to limit 
confusion with color choices that represent node data.  We chose to use the same, 
blue, color for all structural information that is static, including the labels that 
summarize the number of hidden neighbors, such as, for example, the number 1 in the 
top right corner of the lower red node.  If that red node is selected as central node it 
shows an additional edge that is currently hidden, as well as neighbors to the newly 
exposed node.   Color changes that are related to mouse movement were kept since 
the user can easily get an undisturbed image by moving the mouse off the graph 
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display area.  In particular, the highlighting of the node to which the mouse currently 
points was kept.  Notice the gray background of the node that is identified through the 
node label “YBR155W”.  Maintaining this aspect of the navigation-related color 
information was possible due to the fact that the color that fills the circle is redundant 
in our color scheme if the color of wedges is known.  

Section 4 gives details on the node and interaction data in this particular example.  
Six attributes are encoded in each node.  One attribute of special interest determines 
the color, with the three color choices being green, red and yellow.  Five other 
attributes determine the size of the pie slices. The background color within each node 
is chosen as a brighter version of the pie slice color.  More color information could be 
used but didn’ t lend itself to the particular data mining task described in section 4.  
The edges don’ t contain directional information since the yeast interaction data is 
undirected.  Directional information can easily be included through use of wedges for 
links.  This representation is implemented in the TouchGraph web visualizations [2] 
that have to distinguish between incoming and outgoing links to web pages. 

4   Example Use of GlyphNet for Yeast Data 

Visualizations are as good as the insights they can give.  For the purpose of visual 
data mining we are interested in hypotheses regarding patterns within the data.  We 
used GlyphNet as part of a data mining task in bioinformatics.   

4.1   Finding Particular Genes 

The goal was the identification of yeast genes that were involved in a particular 
pathway, the Aryl Hydrocarbon Receptor (AHR) pathway.  In data mining terms this 
is considered a classification task:  Genes that are part of the AHR pathway were 
classified as “change”, genes that were not part of the pathway, or for which no 
experiment had been performed, as “no change”, and genes that responded to a 
control experiment as well as to the AHR-related experiment were “control” [28].  
The classes were determined in a high-throughput gene deletion experiment.  5000 
strains of yeast, each of which was the result of the deletion of a specific gene, were 
simultaneously treated in micro-array experiment.  The overwhelming majority, 97%, 
of genes belonged to the “no change” class.  In Figure 2 “change” genes are identified 
by their red color and “no change” genes by their green color.  Yellow was picked as 
color for “control” genes and can be seen in Figure 5.   

Figure 3 provides a summary of the information that was encoded in each node.  
The pie slice at the top indicates whether a gene is essential.  If a gene is essential the 
organism will die if that gene is deleted.  Gene deletion experiments can therefore not 
be used to gain information for essential genes.  The property “essential” is Boolean, 
i.e., the pie slice is either filled fully or not at all.  The same applies to the “pseudo 
gene” property in the lower left of the glyph.  A pseudo gene is a gene that is known 
not to produce a functioning protein.   

All other properties are numerical.  The distance of a gene from the center of the 
chromosome (top right) was estimated as follows:  Genes are numbered sequentially, 
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starting from the center of the gene, and this number is part of their name, i.e., the 
gene “ YBR155W”  in Figure 2 has the number 155, which is taken as distance from 
the center of the chromosome.  The number of amino acids of a gene was taken as its 
length (top left).  Finally we counted the items of information that are given for the 
protein that a gene produces.  Items of information were functions, localizations, and 
some other quantities that were provided for the KDD cup 2002 [28] and are also 
available from the Comprehensive Yeast Genome Database at the Munich 
Information Center for Protein Sequences, MIPS [29]. 

 

 

Fig. 3. Meaning of attributes for the glyphs used in Figure 2. 

4.2   Use of Neighbor Information 

For the evaluation of our visualization tool we will focus on the property 
“ essential”  that is displayed at the top of the glyph since it leads to the clearest 
hypothesis with respect to the AHR pathway property.   

 
 
 

                              

Fig. 4. Left: example of a pattern we identified; right: typical pattern that standard 
algorithms could find but that cannot be present in the current data. 

but not  
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Looking at Figure 2 it can be seen that the red, “ change”  gene at the center has two 
out of four neighbors with the property essential.  The “ change”  gene in the bottom 
right only has a single neighbor which also has property “ essential” .  Over the entire 
range of nodes only four out of a total of 22 “ no change”  genes have the property 
“ essential” .  Note that “ change”  genes cannot be “ essential”  since the deletion 
experiment cannot be performed on “ essential”  genes.  Figure 4 highlights the unusual 
aspect of our hypothesis.   

The navigation capability of GlyphNet allows us to systematically follow patterns 
that could be interesting.  After identifying the potential pattern of an “ essential”  gene 
that interacts with a “ change”  gene we may want to investigate the neighborhood of 
further “ essential”  and “ change”  genes to support our observation.  Figure 2 shows 
one “ essential”  gene in the top half.  Although that gene does not have hidden 
neighbors we may want to investigate its further neighborhood and therefore make it 
the central node.  Figure 5 shows the result of that selection.  It can be seen that at a 
distance of two hops (next nearest neighbor) there is a “ control”  gene (yellow) that 
has also an “ essential”  neighbor.  This suggests that “ essential”  may be an indication 
of either “ change”  or “ control” . 

 

Fig. 5. Snapshot suggesting an impact of “ essential”  in a neighbor on the prediction of 
a “ control”  gene. 

It is important to note that such hypotheses do not have to mean anything by 
themselves since we are only investigating a small part of the full graph of several 
thousand genes.  Visual exploration should be considered a part of a more extensive 
data mining strategy that includes verification of hypotheses through quantitative 
numerical methods.  A classification algorithm was used for this purpose as described 
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in [9].  The pattern in Figure 4 entered the classification algorithm in the shape of an 
additional attribute that represented the number of interacting “ essential”  genes.  A 
genetic algorithm was used to determine attribute importance, and 
“ essential” /” change”  pattern was shown to improve classification significantly.  The 
validity of the visual exploration results was thus verified.  Improvement of 
classification results is particularly clear when “ change”  and “ control”  are considered 
together as one class and “ no change”  as the other class, supporting the visual 
exploration result that “ essential”  is an indication for both “ change”  and “ control”  in a 
neighbor.  

This shows the potential of employing GlyphNet in a visual exploration process as 
part of a comprehensive data mining strategy.  Given the prevalence of relational data 
in current data mining tasks and the difficulty of handling it with current data mining 
techniques, GlyphNet is an important tool to provide leads on interesting patterns.   

5   Conclusions 

We have introduced a tool, GlyphNet, that assists in the data mining of relational data 
by combining the concept of glyphs with graph visualization and navigation.  
Relational data provides particular challenges to the data mining process due to the 
complexity of potential patterns.  Patterns in relational data can involve attributes of 
multiple interconnected nodes, making traditional data mining and visualization 
techniques hard to apply.  Our tool is designed specifically to assist in the discovery 
of such patterns.  An example of a data mining task for genomics data was presented.  
We demonstrated how a hypothesis involving attributes of neighboring nodes was 
generated through GlyphNet.  The usefulness of the hypothesis was verified by a 
quantitative data mining algorithm.  We have therefore demonstrated the potential of 
GlyphNet to assist in a data mining process involving relational data.  Many further 
applications can be envisioned since pattern discovery is a central part of most areas 
of data mining. 
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Michael H. Böhlen1, Algimantas Juozapavicius2, Eilverijus Kondratas3,
Arturas Mazeika1, and Aleksej Struk3

1 Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark
{boehlen,arturas}@cs.auc.dk

2 Department of Computer Science II, Vilnius University, Naugarduko 24, LT-2600 Vilnius, Lithuania
Algimantas.Juozapavicius@mif.vu.lt

3 Department of Computer Science II, Vilnius University, Naugarduko 24, LT-2600 Vilnius, Lithuania
{eiko1275,alst1204}@uosis.mif.vu.lt

Abstract. In this paper we introduce a new, fast, simple visualization solution of
Density Surfaces (DSes). We introduce the MSP (m-ary space partitioning) tree
to partition the input data into slices. The organization of data allows efficient
reconstruction of the triangular mesh and reduces the overall complexity of the
algorithm to O(N logN). The experimental evaluation shows the complexity of
the algorithm is reasonable and the algorithm is applicable in real time interactive
settings. The solution supports visual data mining. It improves the visual quality
and eases interpretation of DSes.

Keywords: Surface Reconstruction, Density Surfaces.

1 Introduction

The continued hard- and software advances during the last few years make it possible
to employ highly advanced visualization techniques for the purpose of data mining.
Specifically, it has become possible to do explorative data analysis in fully 3D immer-
sive environments (or use advanced animations to simulate 3D immersive worlds).

Visual data mining aims to discover something new from the facts recorded in a
database. Standard approach to search for interesting relationships in the database is (i)
to build a model of the data, and (ii) visualize the model. Figure 1 illustrates the visual
data mining process for Density Surfaces (DSes).

The DS method takes a three-dimensional dataset as an input (cf. Figure 1(a)) and
calculates the non-parametric density model of the data. The result of the method is
a frame of surface points, which enclose the data whose density is higher than α (cf.
Figure 1(b)) [8, 10, 9]. Figure 1(c) shows the solution developed in this paper. The solu-
tion takes a frame of surface points as input and calculates a mesh of triangular surface
points (triangularization).

The DS module is implemented and integrated into the 3D Visual Data Mining
system (3DVDM), which is a visual data mining system used to interactively explore
data on computer monitors and in advanced VR environments (Panorama, 6-sided Cave,
etc). Figure 2 illustrates the DS module — the part of the 3DVDM system that deals
with the calculation and visualization of DSes. First, the module takes a 3D dataset as
input, estimates density of the dataset and stores the density information in an APDF
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(a) Dataset (b) Frame of
Surface Points

(c) Triangular-
ized Surface

Fig. 1. Calculation steps of a Density Surface

tree (arrowA, Figure 2). Given an APDF tree and a density level α the density surface is
calculated in two steps: (i) a frame of points on the surface is identified (arrowB1), and
(ii) a mesh of triangular surface is calculated (arrow B2). The user of the system can
provide feedback to the system and control the current data selection (arrow F1), the
precision of the density estimation (arrow F2), and the density level (arrow F3). The
very tight integration of the calculation of the visualization of density surface solutions
is essential in order to ensure interaction with the system in real time. The visualization
of the triangles is done with a help of the visualization module of the 3DVDM system.
The module visualizes triangles in rectangular coordinate system. The module supports
standard visualization and coloring of triangles like transparency and shading.

On the technical level the paper makes the following contributions:

– We present a new, fast, simple, and general visualization solution of DSes. We orga-
nize the input frame of surface points into an MSP tree (m-ary space partitioning)
– a generalization of the binary space partitioning (BSP) tree data structure [11,
12] . The partitioning decreases the exponential complexity of the triangularization
(brute-force approach) to O(N logN) and enables investigation of DSes in real
time interactive settings.

APDF
tree

frame of
points

Triangu−
larization

Scatter Plot

DS Calculation

F1 F2 F3

A B1 B2
Density Surface

Fig. 2. The DS module
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– We provide an evaluation of our triangularization. The numerical evaluation con-
firms that MSP is a suitable data structure for real time visualization of DSes. The
visual evaluation displays selected snapshots of DSes of different shapes and forms.
The analysis shows that the calculation time of the triangularization solution is al-
most invariant with respect to the shape of the surface.

– The solution supports interpretation of DSes. It is easier to perceive triangular sur-
faces than a frame of surface points (cf. Figure 1(b) and 1(c)). In addition, number
of triangles in a triangular surfaces is much lower compared to the number of tri-
angles of the same quality of the frame of surface points. It decreases the load of
the visualization and rendering module as well as enables investigations of DSes at
higher precisions.

The problem of surface reconstruction from a given set of points is a classical prob-
lem and occurs in many and diverse areas of computer graphics, robotics, data mining,
etc. [2–7]. Many surface reconstruction algorithms were presented and implemented.
Most of the algorithms (CSG, boundary representation, oct-tree) assumes the input data
to be in a specific form (like vertices, edges, faces, simple geometric primitives, sets of
control points) [1]. Our solution does not assume the input dataset to be in any specific
form.

The problem of triangularization is investigated on theoretical level also. An exam-
ple is the Delaunay algorithm with a number of its generalizations for multidimensional
spaces [13]. There has been done little research in implementations and performance
evaluations of such algorithms. Also, more naive methods easily outperforms theoreti-
cally better algorithms in most practical settings.

The paper is organized as follows. In Section 2 we define the MSP tree and give the
triangularization algorithm. Section 3 evaluates our approach numerically and visually.
Conclusions and Future Work is offered in Section 4.

2 The Surface Reconstruction

Given a 3D set of input points, and estimation error, the 3DVDM system estimates
density information of the dataset and calculates a surface frame of points. The task of
surface reconstruction is to calculate a triangular mesh from the surface frame of points.

Basically, the algorithm calculates set S — the mesh of triangles iteratively. It starts
with a random triangle and calculates the smallest triangles having a common edge with
the first one (see Figures 3(b) and 3(c) for an illustration). As this iteration is completed,
at most four triangles can be in set S. The algorithm iteratively adds the smallest trian-
gles into S having a common edge with any triangle from set S (see Figures 3(c)). The
iterative process stops when no more triangles are added into set S.

Computationally, the most expensive step of the algorithm is the calculation of the
smallest triangles having a common edge with a triangle from set S. To reduce the
complexity of the algorithm we introduce the MSP (m-ary space partitioning) tree —
a hierarchical data structure. The tree data structure partitions the input dataset into
a group of sets based on the coordinates of points and speeds up the computation of
the triangular mesh. Once such a tree is built, the triangularization step finishes the
reconstruction surface.

simeon
47



(a) Input
dataset

(b) The
initial
step

(c) The
first
iteration

(d) The
second
iteration

Fig. 3. The idea of the Surface Recognition Algorithm

The rest of the section is organized as follows. We define the MSP tree, analyze its
properties, and give examples of the data structure in Section 2.1. Surface reconstruc-
tion of the frame of points once such a tree is given, is presented in Section 2.2. The
complexity of the algorithm as well as the creation of the tree data structure is given in
Section 2.3.

2.1 The M-ary Space Partitioning Tree (MSP) Data Structure

M-ary pace partitioning tree is a generalization of the binary space partitioning (BSP)
tree data structure. The data structure partitions three-dimensional data into non over-
lapping group of sets according to coordinates. Intuitively, first, all the data points
(x, y, z) are partitioned into sets according to x value (the first level of the tree), then
each set is further partitioned according to y value (the second level), the third level of
the tree consists of the database points (cf. Figure 4). The cardinality of the root node is
the number of different database values of the attribute x. The cardinality of the second
level node accessed from x0 is equal to the number of different y values of database
points, whose x coordinate is x0,

y1 y2y0 y2 y3 y0y1 y3

x1 x2 x3x0

y0 y5 y6

z0z3z2z0 z1 z2 ...

Fig. 4. MSP tree
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In order to define the tree precisely, we first introduce a set of operators to partition
the dataset according to axes (GX , GY , GZ ).

Definition 1. (Group G·(A, v)). Group GX(A, v), (GY (A, v), GZ(A, v)) for a given
set of surface frame points A, is a set of points, satisfying

GX(A, v) = {(x, y, z) ∈ A : x = v}

(GY (A, v) = {(x, y, z) ∈ A : y = v},

GZ(A, v) = {(x, y, z) ∈ A : z = v}).

The set of all possible groups we will define as G·(A):

G·(A) = {G·(A, v) : v ∈ <}

To simplify mathematical expressions, we will allow expressions of the type:G·(H)
and G·(H, v), where H is a group (a set of sets), and v ∈ < in the following way:

G·(H) = {G·(A) : A ∈ H},

G·(H, v) = {G·(A, v) : A ∈ H}.

Example 1. (Group GX ) For simplicity lets consider a two dimensional example pre-
sented in Figure 5, with A = {(1,1), (2,1), (3,1), (4,1), (5, 1), (1, 2), (5, 2), (1, 3), (3, 3),
(4, 3), (5, 3), (2, 4), (3, 4)}. In this case: GX(A, 3) = {(3, 1), (3, 3), (3, 4)}.

For a given surface of frame points, let’s define partition sets:

MSPXZY (A) = GX(GZ(GY ((A))),

MSPY XZ(A) = GY (GX(GZ((A))),

MSPZY X(A) = GZ(GY (GX((A))).

Groups MSPXY Z , MSPY XZ , and MSPZYX represent three different partitions
of surface frame points A into MSP tree. For example, MSPZYX groups the surface
frame points according to the following order of coordinates: X , Y , and then Z.

Example 2. (MSPY X tree.) An example of MSPY X tree for Example 1 is given in
Figure 5(d). More specifically,

MSPY X =
{
{(1, 1), (1, 2), (1, 3)},
{(2, 1), (2, 4)},
{(3, 1), (3, 3), (3, 4)},
{(4, 1), (4, 3)},
{(5, 1), (5, 2), (5, 3)}

}
.
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(d) MSPX Tree of set A

Fig. 5. Example of groups

On the implementation level, the data partitions (MSP···) are implemented with
a help of sorted arrays, i.e., the nodes are sorted (for example, x0 < x1 < x2 <
x3 in Figure 4). We also define DXZY (DY XZ , DZYX ) and LXZY (LY XZ , LZYX )
look-up functions on a given treeMSPXZY (MSPY XZ ,MSPZYX ). FunctionDXZY

(address function) takes an input data point as a parameter and returns indexes of the
coordinates in the sorted arrays (nodes). Function LXZY (look-up function) takes a
triple of indexes and returns the point the indexes are pointing to in the tree. We will
use letters (i, j, k) to denote the address of point p and (x, y, z) to denote the value of p
at address (i, j, k).

Example 3. (DZY X , LZY X functions). Let p = (x0, y3, z2), and MSPZYX , as in
Figure 4. Then DZY X(p) = (0, 2, 1). Also, LZY X

(
(0, 1, 0)

)
= (x0, y2, z0).

Functions D· and L· allows efficient neighborhood queries. In the triangularization
step we will search for the following type of queries. Given a point p = (x, y, z) we
will query the database for points of the form (x ± x±, y ± y±, z ± z±), where x+

(x−) represents the smallest x database value, which is greater (smaller) than x. More
specifically, we first query for the address of the point: (d1·, d2·, d3·) = D·(p) and then
query for its neighbors: L·(d1· ± 1, d2· ± 1, d3· ± 1).

Definition 2. (Nearest Slice Neighborhood (NSN) of surface point p ∈ A). Let p ∈ A.
The nearest slice neighborhood of p is set NSN(p), satisfying:
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(i) (d1X , d2X , d3X) = DXZY (p);
(d1Y , d2Y , d3Y ) = DY XZ(p);
(d1Z , d2Z , d3Z) = DZYX(p),

(ii)
NSN(p) = LXZY (d1X ± 1, d2X ± 1, d3X ± 1)∪

LY XZ(d1Y ± 1, d2Y ± 1, d3Y ± 1)∪
LZYX(d1Z ± 1, d2Z ± 1, d3Z ± 1).

We define the NSN of edge (p0, p1) as the union of the NSNs of the vertexes of the
edge: NSN

(
(p0, p1)

)
= NSN

(
p0) ∪NSN(p1).

Example 4. (Nearest Slice Neighborhood). Let’s continue Example1. NSN
(
(1, 1)

)
=

{(1, 1), (1, 2), (2, 1)}.
Note, that the NSN neighborhood of point p0 can contain at most 27 points (cf.

Figure 6).

i

j

k

Fig. 6. The largest possible NSN of a point

2.2 Triangularization

The triangularization is done by combining closest three points into triangles based on
Euclidean distance. The algorithm of triangularization consists of two steps:

– calculation of the first triangle,
– iterative addition of the remaining triangles.

The first triangle must satisfy the following three properties:

– the triangle consists of three points p0, p1, p2 from surface frame of points A,
– p0, p1, p2 are not on a line,
– there is no other point p ∈ A such that p ∈ 4(p0, p1, p2), unless p is one of p0, p1,

or p2.

We find such a triangle in the following way. We choose a random surface point
p0 = (x0, y0, z0) ∈ A, and scan for a set of the NSN points NSN(p). Any two points
p1, p2 ∈ NSN(p) will form a triangle with p0, so there will be no other points inside
4(p0, p1, p2), provided that there is not point p′ ∈ NSN(p) such that p′ on the edge
(p0, p1). Mathematically, the idea can be expressed in the following way:
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1. Select a random point p0 ∈ A.
2. Calculating the NSN set of point p0: N = NSN(p0) (cf. Definition 2).
3. Let p1, p2 ∈ N be such that p1, p2, p3 are not on a line and there is no NSN(p)

points in between p0 and p1 on the line. Then4(p0, p1, p2) is the first triangle.

During the iterative addition of the remaining triangles we maintain the list of tri-
angles M introduced in the last step. For each edge e of a triangle t from list M we
search for the candidate point of surface frame A to form a new triangle. The candidate
point is the closest point in the NSN of edge e to the direction “opposite” to triangle t
(cf. Figure 7). Mathematically, the idea can be expressed in the following way:

1. Let M be the list of the triangles introduced in the last step of the iterative process.
2. For each triangle4 ∈M and new edge e ∈ 4 do

2.1 Calculate NSN(e) (cf. Definition 2).
2.2 Calculate the dividing plane P = P (x, y, z) of NSN(e) (cf. Figure 7):

∣∣∣∣∣∣∣∣

x y z 1
x0 y0 z0 1
a b c 0
l m n 0

∣∣∣∣∣∣∣∣
= 0,

where: (x0, y0, z0) is a point on edge e, (l,m, n) = (x2−x1, y2− y1, z2− z1)
is a vector of edge e,

(a, b, c) =

(∣∣∣∣
(y1 − y2) (z1 − z2)
(y1 − y3) (z1 − z3)

∣∣∣∣ ,−
∣∣∣∣
(x1 − x2) (z1 − z2)
(x1 − x3) (z1 − z3)

∣∣∣∣ ,

∣∣∣∣
(x1 − x2) (y1 − y2)
(x1 − x3) (y1 − y3)

∣∣∣∣

)
,

is a normal vector of the triangle. The expression of the plane enables us to
divide the three–dimensional space into two sub-spaces: a sub-space of the
space to the “left” of the plane ({(x, y, z) ∈ <3 : P (x, y, z) < 0}), and the
“right sub-space” ({(x, y, z) ∈ <3 : P (x, y, z) > 0}).

2.3 Calculate the neighborhood points, “opposite” to4:

NSN◦ = {(x, y, z) ∈ NSN : sgn(P (x, y, z)) 6= sgn(P (xo, yo, zo))},
where (x′, y′, z′) is the “opposite” point of the triangle:

(xo, yo, zo) = {(x, y, z) ∈ 4, (x, y, z) /∈ e}.
2.4 Find the closest point from NSN ◦ to edge e. The middle point of the edge e:

pM = (xM , yM , zM ) =
(
(x1 + x2)/2, (y1 + y2)/2, (z1 + z2)/2

)
.

The closest point to edge e then is

pmin = min
(x,y,z)∈NSN◦

(
ρ
(
(x, y, z), (xM , yM , zM )

))
,

where ρ
(
·, ·
)

is the Euclidean distance.
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In step 2.4, the algorithm calculates all NSN points of point p with the help of
the MSP tree. The computational results, therefore, are invariant to the order of the
partitioning coordinates. That is, the order of partitioning coordinates: X, then Y, then
Z is invariant for the computational results compared to the order, for e.g., Y, then Z,
then X.

t
e

P

Fig. 7. The search direction for the candidate points

2.3 Complexity of the Triangularization Solution

In this section we give the worst-case complexity of the algorithm.
The triangularization algorithm consists of two steps: the data preparation step and

the triangularization step, once the data is prepared. Next, we investigate the complexity
of the steps separately.

In the data preparation step, three MSP tree data structures:MSPXZY ,MSPYXZ ,
and MSPZYX must be created. In the database with attributes x, y, and z it can be
done in O(N logN) complexity with a help of the sorting algorithm, where N is the
database size. Note, that a look-up for the address of a three-dimensional point, once
such the trees are given, is O(logN) (the complexity of finding an element in a sorted
list).

The triangularization step consists of the search of the first triangle and the itera-
tive process, where the list triangles M introduced in the last step is maintained. The
calculation of the first triangle involves the following steps:

– random selection of a surface point p (constant time),
– calculation of neighborhood NSN(p) (27 look-ups — O(logN) complexity),
– calculation of the triangle from set NSN(p) (constant time).

Therefore, the complexity of the step is O(logN). The iterative process involves the
following steps:

– calculation of the neighborhood for a triangle4 (O(logN) complexity),
– calculation of a set of triangles for the triangle4 (constant time).

The above two steps are iterated until no new triangles are produced. The number of
iteration in this step is O(N), since a triangle cannot be included into list M more
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than once. Therefore, the overall complexity of the step is O(N logN). Hence, we just
proved the following theorem:

Theorem 1. The worst-case complexity of our triangularization algorithm is
O(N logN).

3 Experimental Section

In this section we evaluate our triangularization algorithm numerically and visually. All
the experiments were run on Intel P4 2.4GHZ machine with Mandrake Linux 9.1 OS.

The algorithm is tightly integrated with the 3DVDM system: it gets a frame of sur-
face points data as an input from the Frame of Surface Points (FSP) module and outputs
the list of triangles to the visualization module (cf. Figure 2). The current implemen-
tation of the FSP module outputs frame of surface points on a three-dimensional grid.
This have two implications on the evaluation of the surfaces:

– the number of triangles produced is linear with respect to the input dataset (cf.
Figure 8(a)).

– the orientation of the produced triangles are limited to 0◦, 45◦, and 90◦ degrees of
fixed sizes (two different sizes) of triangles. That produces locally angular surfaces
(cf. Figure 9(a)).

Figure 8(b) shows experimental time complexity for different sizes of inputs sets
for the spiral surface (cf. Figure 9). We use the spiral surface as a comparison point,
because spiral is a visually complex structure and represents a worst-case scenario.

Two main parameters influence the calculated time and visual quality of the trian-
gularization: the number of input frame of surface points and the number of triangles
produced.

The experimental complexity of the algorithm is linear wrt the size of input dataset,
what complies with the theoretical complexity of the algorithm for relatively small N .
The evaluation also shows that the MSP tree does not deteriorate as number of input
data points increases.

Figure 9 shows triangular density surfaces for different sizes of input sets. Fig-
ure 9(a) shows that it is possible to get a rough (but already informatory!) density sur-
face very fast. As the size of the input set increases, the visual quality improves very
quickly (cf. Figure 9(b) – 9(c)).

We evaluate the impact of visual complexity of density surfaces to the computa-
tional time in Figure 10. In order to get robust timings we increased the sizes of input
sets to extreme values. The processed number of input points a second (cf. rate param-
eter in Figure 10) shows that our approach is almost invariant to the complexity of the
input frame surface points.

The points of the input datasets in Figure 10 are distributed on a regular grid. Be-
cause of a very fined grid, the 0◦, 45◦, and 90◦ triangles of fixed sizes approximates
the surfaces very nicely. However, the number of triangles in the surfaces can be dra-
matically reduced by allowing more possible angles and shapes without the trade for
accuracy.
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Fig. 8. Numerical Evaluation of our triangularization method

4 Conclusions

In this paper we introduce a new, fast, simple, and general triangularization solution of
Density Surfaces. We organize the input set of points into the MSP tree and achieve the
overall O(N logN) complexity of the method. We test the method experimentally on
a number of artificially generated datasets. The experiments confirmed that the method
is applicable in real-time settings. The rendering rate shows that the method is almost
invariant to the visual complexity.

In the future it will be interesting to generalize the method and calculate triangular
density surfaces directly from the APDF tree. This is attractive, since the APDF repre-
sents linear regions of density optimally. We expect to further decrease triangularization
time and size of the surface. This will allow to investigate DSes at higher precisions and
decrease the load of the visualization module.
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Surface size:110’000 pts
Rate:7’200 pts/sec

(a)

Surface size:103’000 pts
Rate:8’500 pts/sec

(b)

Surface size:246’000 pts
Rate:6’800 pts/sec

(c)

Surface size:65’000 pts
Rate:7’500 pts/sec

(d)

Surface size:98’000 pts
Rate:8’000 pts/sec

(e)

Surface size:199’000 pts
Rate:7’700 pts/sec

(f)

Fig. 10. Impact of the complexity of the surface on the performance
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Abstract

In this paper, a software application, Limn Matrix, is developed to interactively display a densityplot matrix
for large, distributed data. A density plot is used to alleviate overplotting of points to more accurately
represent the distribution of data points. To efficiently exchange large amounts of information through the
network, we propose a hierarchical indexing system, by which the information volume transferring via
network only depends on the number of plots and plot window size rather than data size. In addition, Limn
Matrix provides several interactive features, including subset brushing and density transformation controls,
to provide users extra insight about the large data set. An application on forest cover type data and future
improvements of the software are also discussed.

1. Introduction

Scatter plots are widely used for data visualization. By plotting one variable against the other in a 2D space,
the patterns of dependence and deviations from dependence between a variable pair can be easily
identified. A scatter plot matrix is a neat layout of multiple scatter plots when there are more than two
variables involved. The plots are arranged into a matrix format which actually matches the form of the
correlation matrix. An N-dimensional data set will form a matrix of N*(N-1)/2 scatter plots. Laying out
scatter plots of any two variables in a matrix helps to reveal the relationships between the variable pairs. In
addition, user interactions, like brushing and subset coloring, provide users extra insights on the
relationship between more than two variables (Becker and Cleveland 1987a).

A scatterplot can display a small set of data without problems. However, viewing large data sets with
scatterplots brings two major challenges:

1) Massive overplotting of points
Plotting large data set into a scatterplot matrix, in which each plot has a fixed dimension, will result in
many data points crowded in the same region. Displaying such a scatter plot on a computer screen is
especially hard because of the limited area of screen real estate. Many close neighbors will fall in the same
screen pixel. For instance, if we have random uniformly distributed data with one million cases and want to
plot it into a matrix that consists of 100*100-pixel scatterplots. On average, there will be
1,00,000/10,000=100 data points each screen pixel in a scatterplot. The levels of overplotting at different
pixels are varied if the data set has some other patterns. This results in some pixels having substantial
overplotting points, while others have less. Such massive overplotting points and varied overplotting
patterns can easily overwhelm a simple scatterplot matrix, and make trends and relationship between
variables hard to identify.

2) Distributed data
A large data set requires a great amount of storage space, and frequently is distributed to several locations.
Exploring and retrieving data remotely is expensive. When data sets get really large, shipping the full data
around network is impossible. Moreover, even subset transferring through the network becomes infeasible
for some large data set. Network traffic will definitely slow down the feedback speed and affect user
interactions.
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There has been some prior work on using density plots to solve the overplotting problem. Scott (1982) used
a 3D bivariate histogram to represent the frequency of overlapping points in heights of 3D bars. Histograms
generated in this way are usually not smooth, making it difficult to grasp the true structure of the data
(Silverman 1986). Averaged shifted histograms smooth the shape of bivariate histograms (Stigler, 1986 and
Scott 1992). Perspective views or contour plots of density estimation constructed from continuous kernels
are also believed to provide a better picture of the data distribution (Silverman 1986). Flattened histogram
with grayscale density or contour plot is another approach to solve the overplotting problem. Cleveland and
McGill introduced the sunflower plot to encode the count of overplotting points in a bin to number of petals
of a sunflower (Cleveland and McGill 1984). Motivated by the sunflower plot, Carr et al (1987) proposed
hexagonal bins which reduce density estimate bias compared to square bins. In addition they suggested
using gray scale and colors to represent data density. Huang et al (1997) proposed a similar idea in their
variable-resolution bivariate plot. In 2003 Dupont and Plummer proposed a variant of sunflower plot,
density distribution sunflower plot, by providing size and color controls over the sunflower (Dupont 2003).
All of these approaches focus on static plots only. Huang’s Varebi plots displayed 65,536 cases only in a
static way. Dupont’s density distribution sunflower plot provides control over sunflowers’ size and color,
but handled only thousands of cases.

For data analysis interaction in a plot is critical, brushing is a common interaction technique for scatterplot
(Becker and Cleveland 1987a). The user paints a subset of a data and the other plots are updated
accordingly. While brushing may be easy for small data sets, there are difficulties in applying this
technique for large data set. Even with today’s powerful computation devices, tools supporting interactively
brushing of large data are still very few. We tested some traditional statistical analysis software, Microsoft
Excel, JMP and R, with a simulated data set which has 500,000 cases and 5 variables. It turned out that
Excel cannot load more than 65,536 rows (cases). JMP took several minutes to display the scatterplot
matrix and allows no brushing interaction. R also took long time to load the data and display the scatterplot
matrix. Similar to JMP, R doesn’t’ have brushing interaction either.

In this paper, we present a system, Limn Matrix, which interactively displays large distributed data in
densityplot matrix. We use a flattened 2D histogram to solve the overplotting problem, and use gray scale
to represent data density. Power transformations are applied to transform density to grayscale value.
Controls over transformation parameters, power and intercept, provides users the flexibility to focus on
different density levels.

Limn Matrix uses a hierarchical indexing technique to link scatterplot points and distributed data sets.
Instead of shipping the full data set or subset of the whole data around, Limn Matrix let subservers retrieve
data locally and transfer only pixel positions and density counts through network. This technique highly
improves interaction performance since information volume transferred through network depends only on
plot image’s dimension rather than on size of data set.

Limn Matrix provides multiple user interactions, including subset brushing, and density transformation
controlling. With these interactive functions, users will be able to view more details and hence acquire
better understanding of the data.

2. A Solution – Density Matrix

2.1 Flattened 2D Histogram

Limn Matrix uses flattened 2D histogram to display the data density, and considers both Scott’s (Scott
1979) and Freedman-Diaconis’s (Freedman and Diaconis 1981) rules for choosing the default bin number.
Scott proposed the optimal bin width as

where h is the bin size, σ is the standard deviation of the distribution, and n is the data size. Freedman and
Diaconis replaced the standard deviation of Scott’s rule by the interquartile range (IQ)

^ ^
h = 3.5 σ n -1/3,^ ^ (1)
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Scott (1992) applied formula (1) and (2) to calculate bin number assuming that the data is standard normal,
N(0, 1), and the range is (-3, 3). The bin number calculations were applied to data with size n, which was
from 50 to 100,000. In this paper, we extended Scott’s calculations to data with larger size, 500,000 to
10,000,000, and the result is shown in Table 1.

Both Scott and Freedman-Diaconis rules suggest hundreds of bins per variable for large data set. A
standard computer screen has only 1280*1024 pixels. To fully display a matrix for all variables, we can use
as few as one pixel for each bin. Balancing the optimal bin number suggested by theory and the physical
limitation of the screen, we chose 200 pixels (bins) as Limn Matrix’s default bin number per variable.

2.2 Density Transformation

A plot window of size 200 * 200 pixels gives a total of 40,000 bins. Any data set with 40,000 cases will
result in overplotting. When there is dependence between variables, substantial overplotting occurs even
with small sample size. It is common to see data which has many more than 40,000 cases. An ordinary
scatterplot shows only two states of a screen pixel: existence or non-existence of a data point. This strategy
doesn’t work so well with large data due to loss of information on overplotting amount.

Limn solves this problem by using a density plot matrix to display large data set. Density level of each bin
(pixel) is transferred to a grayscale value. The transformation function we applied is

where intercept is between 0 – 255 and power is between 0.0 – 1.0.

This transformation distinguishes pixels with different density counts from each other by assigning
different gray values to them. For instance in a transformation with intercept = 255 and power = 0.2, pixels
with low count will have a gray value as small as 0, which is almost black; whereas high count pixels’ gray
value will be approximately 255, which is nearly white. Figure 1 compares a scatterplot and a densityplot
for a one million cases data. Densityplot in b gives a more accurate description of the data distribution
compared to an ordinary scatterplot in a.

n Scott Rule Freedman-Diaconis Rule

500,000

1,000,000

10,000,000

136

171

369

223

479

177

Table 1:  Number of bin size for large data set

a. ordinary scatterplot gives
no overlapping information

b. densityplot distinguishes low and
high density pixels

Figure 1:  (left) ordinary scatterplot and (right) density plot for a
data with one million cases

h = 2 IQ n -1/3.^ (2)

grayscale = intercept × (                                                     )power,
maximal overplotting count

overplotting count (3)
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2.3 Hierarchical Index to Handle Large and Distributed Data

It is common that large data is stored over several places. The network delay is a main factor that affects
the communication speed between a plot’s data points and distributed data sets. Shipping whole or even a
subset of large data is practically infeasible. To solve this problem, we designed and implemented a
hierarchical indexing system, which builds fast links between distributed data sets and scatterplot points, as
well as points between plots of a matrix.

The goal of this system is to speed up data to plot communication by communicating only position and
density count of a plot’s pixels through network. Consider a remote data set with 5 variables and one
million cases, the total network information amount will be 5 million numbers if the whole data set is
requested. However, the information needed to construct a scatterplot matrix for these 5 variables could be
less than 5 million numbers. There are only 10 different plots in the matrix. If the size of each plot is 200
by 200 pixels, the whole plot matrix can be represented by 200*200*10 = 400,000 pixels. Using two
integers, pixels position and density count, for each nonempty pixel, our indexing system needs to move at
most 800,000 integers through network for the entire matrix. The load is approximately 1/6 compare to the
whole remote data set. This example illustrates that, with our indexing system, information volume moved
through the network is not decided by data size but only number of plot and size of the window in a matrix.
In other words, given a matrix with fixed plot number and size, the network transferred information will not
exceed a constant amount with our indexing system.

There are two layers of indexes contained in our indexing system: a subserver layer indexes distributed data
sets locally; a server layer links these subserver indexes to scatterplot points. The structure of the indexing
system is illustrated in Figure 2.

Figure 2:  Structure of the hierarchical indexing system

Density Matrix Server Index Files

Subserver 1

Subserver 2

Subserver k

Sub Index
Files 1

Sub Index
Files 2

Sub Index
Files k

Data Set 1

Data Set 2

Data Set k
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The subserver plots its own data set into a scatterplot matrix. This data set is indexed through three files for
each scatterplot in the matrix. The structure of the subserver index files is shown in Figure 3.

• Subserver X index file stores x coordinates of those non-empty screen pixels of a scatterplot.
These x coordinates, denoted as SSx, are recorded in increasing order. Each Sx points to a block of
y coordinate in a subserver Y index file.

• Subserver Y index file stores y coordinates, denoted as SSy, in blocks. Y coordinates of those non-
empty screen pixels are also recorded in increasing order in a block if they share a same Sx. Each
Sy points to a list of ID numbers in a subserver ID index file.

• Subserver ID index files stores lists of ID numbers that points to a distributed set of raw data. Raw
data tuples have distinct ID numbers. Those tuples projected into the same screen pixel will have
their ID numbers recorded in increasing order in the same ID list.

The server layer consists of index files merged from subserver. Merged index files have very similar format
as those at subservers. For each scatterplot in a matrix there are also three index files in the server layer.
The structure of the server index files is given in Figure 4.

• Server X index file merges corresponding subserver X files. X coordinates in server X file,
denoted as Sx, represents x position of the non-empty screen pixels in a merged scatterplot. These
x coordinates are recorded in increasing order. Each Sx points to a block of y coordinates in a
server Y index file.

• Server Y index file merges corresponding subserver Y files by block. A block of y coordinates
consists of y positions of those non-empty screen pixels having the same x position. Y

Screen      Pointer to
   X screen Y

SSx1 pY1

SSx 2 pY2
  :   :
  :   :
SSx m pYm

Screen              Pointer to
    Y                   tuple ID

(SSx1)SSy1      pIDSSx1SSy1

        :            :
(SSx1)SSyk         pIDSSx1SSyk
        :            :

(SSxm)SSy1’    pIDSSxmSSy1’
        :            :
(SSxm)SSyk’    pIDSSxmSSyk’

Pointer to raw
data tuples

(SSx1SSy1)pTuple1

           :
(SSx1SSy1)pTupleh

           :

(SSxmSSyk’)pTuple1’

           :
(SSxmSSyk’)pTupleh’

Raw data file

Tuple1
:

Tuplei
:

Tuplej

:
Tuplen

Subserver X index file Subserver Y index file Subserver ID index file

Subserver Raw Data

Figure 3: Structure of subserver index files
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coordinates, denoted as Sy, are also recorded in increasing order in a block. Each Sy points to a
block of ID numbers in a server ID index file.

• Server ID index file does not directly link to raw data sets anymore. Instead, the linking is made
through subserver ID files. Each non-empty screen pixel in a scatterplot is represented by a block
of ID numbers in the server ID file. These numbers are the IDs of those subservers in which some
of their raw data tuples project into this pixel. These tuples’ ID numbers have already been
recorded as a list in the subserver ID file. Server can thus link a screen pixel to data sets by
pointing the subserver ID number recorded in a block to the corresponding list of tuple IDs in a
subserver ID file.

Screen      Pointer to
   X screen Y

Sx1 pY1

Sx 2 pY2
  :   :
  :   :
Sx m pYm

Screen         Pointer to
    Y               tuple ID

(Sx1)Sy1 pIDSx1Sy1

    :     :
(Sx1)Syk      pIDSx1Syk
    :     :

(Sxm)Sy1’ pIDSxmSy1’
    :     :
(Sxm)Syk’ pIDSxmSyk’

Subserver ID        Pointer to     
    number       subserver ID file

(Sx1Sy1)ID1           pIDSx1Sy1ID1

         : :
(Sx1Sy1)IDh            pIDSx1Sy1IDh

         : :

(SxmSyk’)ID1          pIDSx1Sy1ID1

         : :
(SxmSyk’)IDh          pIDSx1Sy1IDh

Pointer to raw
data tuples

(SSx1SSy1)pTuple1
           :
(SSx1SSy1)pTupleh

           :

(SSxmSSyk’)pTuple1’
           :
(SSxmSSyk’)pTupleh’

Server X index file Server Y index file Server ID index file

Subserver1 ID file

Figure 4: Structure of server index files
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:
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:
Tuplej

:
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Subserver2 raw data

Subserverh ID file

Pointer to raw
data tuples

(SSx1SSy1)pTuple1
           :
(SSx1SSy1)pTupleh

           :

(SSxmSSyk’)pTuple1’
           :
(SSxmSSyk’)pTupleh’

Raw data file

Tuple1
:

Tuplei

:
Tuplej

:
Tuplen’

Pointer to raw
data tuples

(SSx1SSy1)pTuple1
           :
(SSx1SSy1)pTupleh

           :

(SSxmSSyk’)pTuple1’
           :
(SSxmSSyk’)pTupleh’

Raw data file

Tuple1
:

Tuplei

:
Tuplej

:
Tuplen’’

Subserver3 raw data
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2.4 Interactions

Several user interactions are permitted in Limn Matrix to display more data details.

2.4.1 Transfer Function Controls

Limn Matrix uses a grayscale transformation to visually distinguish pixels with different density counts.
Base on formula (3) in section 2.2, the transformation formula contains two parameters, power and
intercept. Users are allowed to control these two parameters to focus on regions with different density
levels. Intercept, ranging from 0 to 255, controls the maximal gray difference allows to display. Power,
ranging from 0.0 to 1.0, regulates visual difference of pixels with varied overplotting amounts. Figure 5
shows a series of power value adjustments on a single plot: a linear transformation (power = 1) equally
separates all pixels in different density level; and a transformation with lower power value (power = 0.2)
can distinguish density pixels even for small density difference. More details of the power value adjustment
will be discussed in the application section.

In addition to controlling power and intercept values of the transfer function, users can also apply contour
control on the curve display of the transfer function. By sliding the choosing bars across the function curve,
users can choose a certain gray value or a gray value range from the spectrum. Data with corresponding
density value or density range will be highlighted to give a contour view of the data distribution. In Figure
6 a gray value range is defined by the two bars crossing the function curve, and pixels in corresponding
density level are highlighted in light blue.

Figure 5: Sequence views demonstrating power value adjusting.

a. power = 1 b. power = 0.4 c. power = 0.2

Figure 6: Contour control highlights pixels within a chosen density range. A density range is
chosen by sliding two bars crossing the transfer function curve (left). Corresponding plot
pixels are highlighted in light color (right). In the plot, the highlighted pixels form a contour
around the most high density area.
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2.4.2 Density Brushing

Subset brushing is a commonly used technique to link matrix plots. Ordinary brushing lets users select a
rectangle area from a plot and have subsets drawn correspondingly on the other linked plots (Becker
1987b). This strategy displays only the shape of subset on each plot, which as Wegman (1999) pointed out
is potentially confusing and misleading when there is considerable overplotting.

Limn Matrix supports real time brushing interaction and provides users two optional views to understand
the whole data density and subset density. The two options are transparent shape view and proportional
density view.

1. Like ordinary brushing, the shape view shows the shape of subset data on top of base plots. However,
instead of obscuring the underlying image areas, Limn Matrix allows viewers to control the top subset’s
transparency. Users can see through top subset by adjusting its transparency level. In this way viewers
can learn the shapes of brushed subsets without losing distribution information of the whole data. As an
example in Figure 7, a and b show distribution of two of matrix plots, that is four of the variables.
Brushing happens in the first two variables, where a rectangle area is brushed in the top plots (c, e). Plot
d and f show the results of the shape representation of the subset, as opaque and transparent
respectively. In the plot f both the data density and the shape of the subset can be seen.

a c e

b d f

Figure 7: Transparency shape view permits users to see through the top subset, and
get an understanding of both the subset shape and full data distribution.

(a) full data distribution of var0(x) and var1(y)
(b) full data distribution of var3 (x) and var4 (y).
(c), (d) subset shape is opaque
(e), (f) subset shape is transparent

Without transparent control, (d) displays only the shape of the subset. (f) displays
the subset in a transparent color. High density points from the underneath data
distribution can be observed by seeing through the transparent top subset.
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2.  Proportional density view displays more overplotting details of brushed subset. The count at each subset
pixel is transferred to a transparency value based on its proportion to this pixel’s whole data
overplotting amount.

The transferred transparency value is between 0-255. A subset pixel containing few points will be
drawn in nearly transparent, whereas a pixel covering most points will be displayed in an almost opaque
color. As an example in figure 8, a shows the shape of the subset distribution, and b displays the heavy
density subset area in red color darker than the light density subset area’s color.

3. Application

This application uses forest cover type data which is obtained from the UCI Knowledge Discovery in
Databases Archive online. The data set was submitted on August 1998 by Jock A. Blackard and Colorado
State University. The primary purpose of the data is to examine the relationship between forest cover type
and some effective environment factors. There are 54 attributes for a given observation (30 × 30 meters
spatial grid point) in the original data. For this application we chose only 7 variables which including 1
categorical variable and 6 quantitative variables:

covertype   categorical forest cover type designation
elevation    quantitative elevation in meters
aspect      quantitative aspect in degrees azimuth
slope      quantitative slope in degrees
dist.water   quantitative vertical distance to nearest surface water features in meters
dist.road     quantitative horizontal distance to nearest roadway in meters
dist.fire     quantitative horizontal distance to nearest wildfire ignition points in meters

Forest cover type was determined from US Forest Service (USFS) Region 2 Resource Information System
(RIS) data. Seven cover types are designated:

α-channel value = (                                                 ) × 255
subset density count

whole data density count

Figure 8: Proportional density view displays more overlapping details of subset data
by transferring overlapping proportion to transparency value.

(a) shape view displays only shape of a subset.
(b) proportional density view displays light density subset areas in
      light red, whereas heavy density subset areas in dark red.

a b

(4)
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1 Spruce/Fir
2 Lodgepole pine
3 Ponderosa pine
4 Cottonwood/Willow
5 Aspen
6 Douglas-fir
7 Krummholz

We randomly split the 581012 cases of the data into two files with each contains 290506 cases. The two
split files are stored in two different machines.

Figure 9 displays the density matrix for the forest cover type data. Two forest cover types are brushed.
Cover type 4, which is cottonwood or willow, is brushed in pink; and the cover type 5, which is aspen, is
brushed in light blue. In the black-and-white printout, cottonwood/willow subset is in medium gray, and
aspen subset is in light gray. There is an obvious difference in elevation, where aspen always has higher
elevation value than cottonwood/willow. In addition, the two subsets form different clusters in several
plots. For example in the dist.road and elevation plot (5th row, 2nd plot), cottonwood/willow accumulate in
a low elevation and low dist.road area, whereas aspen forms a few small clusters, especially with one
having relatively high dist.road values.

Figure 5 shows a series of power value adjusting on a single plot, the plot of dist.water and elevation.
Figure 5a is the plot with power value equals to 1. The high power value plot displays the shape of the data
distribution and stripes of light density that persist into the center of the distribution. The power value is
changed to be 0.4 in Figure 5b. With this value, high density points, which are in light color, are centered
around a horizontal line with lower vertical distance water. Further checking on the gray value reveals that
this distance is between -10 to +10 meters. Figure 5c is the plot with power value of 0.2. This plot shows
not only the centering trend of the high density area, but also another interesting point: direction of the high
density bands is consistent with the stripe direction of the data distribution.

4. Conclusion and Future Improvements

Limn Matrix is a system that interactively display density plots for large, distributed data. To solve the
overplotting problem, Limn Matrix uniquely combines existing approaches from various fields. Large data
is visualized in flat 2D histograms, and grey scale is used to represent the data density. Real time
interactions are supported by Limn Matrix. Use of α-channel in highlighting gains Limn Matrix the
capability to display data subsets with more distribution details. The novel hierarchical indexing system
Limn Matrix proposed dramatically reduces the delay through network, and is used to handle large
distributed data.

Future improvements on Limn Matrix’s performance will focus on two aspects: multithread execution and
random data sampling. Staley and Bahrami pointed out that splitting task between multiple threads of
execution can speed up a task significantly (Staley and Bahrami 2003). Our future plan is to integrate
multithread execution into our software, and use multiple threads to parallel process responses from
distributed data. Using random sampling to reduce data cases is the other focus of our future work. The
indexing system Limn Matrix used has already reduced large data cases into bins induced by screen real
estate (Cook et al 2002). Our strategy is to apply random sampling on the basis of each bin. This strategy
leaves us with a new question for proportional subseting. In a proportional subset view, each subset pixel’s
overplotting amount is transferred to a transparency value according to its proportion to this pixel’s whole
data overplotting amount. A fixed sampling size will make the proportion become a fraction of a constant
over a pixel’s whole data overplotting count. In that way a proportional subset view represents information
only of the whole data but not the subset. Using a different sampling size strategy will be our future
approach for applying random sampling to our software.
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Figure 9: Density matrix with two cover types, cottonwood/willow (pink      ) and aspen (light blue      )
brushed.
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Abstract.  We describe an interactive, graphic interface using brushed, parallel 
histograms that allows the user to discover patterns in multi-dimensional feature 
space and write rules that predict outcomes or classifications of interest.  Previously 
generated rules, whether originated by the user, by a human expert, or by a machine 
learner, can be evaluated, generalized, and improved.  Within a single display, the 
interface accommodates temporal, binary, categorical, and continuous type features, 
as well as outcomes after multiple temporal lags.  The interface also displays 
conditional interdependencies of features and segments of feature values. 

1 Introduction 

There are many challenges in understanding and predicting behavior or classification 
when more than two variables are involved.  Humans can work effectively in some multi-
variate domains, for example intuitively applying rules to distinguish voices, where both 
biological evolution and life-time experience support expertise.  However, humans can be 
overwhelmed in other multi-variate situations where the domain is relatively unfamiliar, 
such as economics.  

Over the past 50 years, machine learners and mathematical models for prediction and 
classification have materially advanced understanding in multi-variate domains and the 
ability to write effective rules for those domains.  More recently, interactive visualization 
techniques using computers provide a supplemental route to understanding multi-variate 
information. 

The technique described here, brushed, parallel histograms, offers a novel interface 
between visualization and rule making.  Specifically, it offers the ability to: 

•  State a rule directly by interacting with a visualization of multi-variate feature 
space.  

• Evaluate a multi-variate rule that has been asserted by a human expert or by a 
machine learner such as a decision tree. 
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• Test the fragility of a rule with regard to any feature on which the rule depends 
by interactively relaxing constraints. 

• Find opportunities to generalize a rule that was too narrowly stated. 
• Specialize rules for sub-populations. 
• Investigate reasons for rule failure. 
• Track rule lifespans. 
• Monitor multi-feature conditional dependencies. 
• Observe time-lagged state or outcome differences. 
• Work with mixed data types, including time, binary, categorical (un-ordered), 

and continuous types. 
A primary benefit of brushed, parallel histograms is the ability to “see inside the box.”  

The user can interact with rules and adjust their components to gain intuition into the 
nature of the rules and interdependencies of features, and to gain confidence that the rules 
are effective.  This is an advantage over blackbox machine learners such as neural nets 
where rules are not intelligibly stated, and over greybox learners such as decision trees, 
where the robustness of a rule is difficult to ascertain. 

A second benefit is easy recognition of dependence and independence among features 
without relying on sometimes fragile correlation measures.  If brushing a segment of a 
feature results in the brushed histogram of another feature not looking like the population 
histogram of that feature, there is dependence.  The dependence that is visually detected 
may be non-linear or non-continuous or not describable with a function (because, for 
example, a projection of clusters or branches in the higher dimensional space is 
occurring). 

We demonstrate the interactive graphic interface on a set of recent stock market data 
detailed below.  The goal of this paper is to demonstrate the capabilities of the technique, 
not to provide substantive rules for stock investment decisions. 

Fig. 1 shows an example of the use of brushed, parallel histograms in eight dimensional 
feature space.  The eight dimensional space is projected onto eight histograms placed on 
parallel axes.  The histograms of the population of 12,870 points appear in red on each 
axis.  The histograms of the brushed sub-population are shown in black to the left of the 
axes. The rule, stated beneath the graph, uses two features - market capitalization and 
institutional ownership.  The outcomes of applying the rule, after four weeks and eight 
weeks, are shown on the two right axes.  Statistics, mean and median, are shown below 
each axis for the population, in red, and for the brushed sub-population, in blue.  The 
support for the rule, both in number of examples or percent of the population, is shown 
above the graph. 

We will describe prior work in the field of high dimensional data visualization, 
introduce the brushed parallel histogram techniques, describe the interactive interface, and 
then describe demonstrative experiments on an eight dimensional set of stock market data.  
We conclude with thoughts on future directions. 
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Fig. 1.  Evaluation of a rule.  The rule is, “Stocks with low market capitalization (axis 2) and low 
institutional ownership (axis 4) provide above average returns in the short run and long run (axis 6 
and 7).”  The rightmost axis shows the eight-week outcome: the histogram of the brushed set in 
black is similar to the population shown in red, the brushed mean (0.21) is higher than for the 
population (0.16), but the median (0.11) is lower.  Conclusion: discard the rule as insignificant. 

 
As with all interactive computer visualization tools, the capabilities of brushed parallel 

histograms are better understood with a live, interactive demonstration.  The static figures 
here make dynamic changes from brushing less obvious. 

2 Prior Work 

There are many ways to visualize data in high dimensional feature spaces [1, 8, 9, 12].  
More common approaches are the grand tour [2] of lower dimensional scatter graphs, star 
(also called hub and spoke) graphs, and parallel coordinate graphs.   Parallel coordinate 
graphs originated more than 100 years ago.   In 1899, d’Ocagne [16] proved the duality of 
a Cartesian point to a line in parallel coordinates.  Friendly [8] illustrates that parallel 
coordinates were used in 1928 to display the relation of fourteen features of chemical 
concentration in blood.  In the past twenty-five years, parallel coordinate graphs have re-
appeared [4, 13, 14, 19], aided by computer graphics. 

Interactive brushing helps identify points of interest and visualize connections of the 
values of different features [4, 15].  Hierarchical organization has been used to help 
interpret large parallel coordinate data sets [10].  When data points bundle together in 
visual “ropes” in a parallel coordinate graph, they can be analyzed as stating rules or 
clusters [21, 3]. 

When a parallel coordinate graph is used to display many data points, the overplotting 
of lines obscures the frequency and linkages represented by those lines, making analysis 
difficult [21].  Wegman [20] proposed creating density surfaces of parallel coordinate 
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graph lines to handle overplotting.  The disadvantage of density surfaces is that they 
obscure the individual linkages and bundles of linkages between values or sets of values 
on adjoining axes. Berthold [3] displayed distribution using visual shading to indicate 
convex or plateau-type cluster centers.  Our use of parallel histograms preserves the 
ability to see the links, while at the same time seeing the density distribution at the axis.  
The combination of histograms with brushing enables more complete viewing of 
interactions among features and relations to outcomes.  [3, 11] suggested multi-
dimensional brushing as a future approach to fuzzy rule discovery. 

 In prior work, we have proposed brushed, parallel histograms as a technique for 
visualizing concept drift [17], and for providing decision makers insight into how they 
might interevene in social processes to effect desired outcomes [18].  In this paper, we 
describe the more general capabilities of the technique. 

3 Visualization by Brushed, Parallel Histograms 

A parallel histogram graph consists of a parallel coordinate graph with a histogram 
superimposed on each axis.  The histogram describes the frequency distribution of the 
points of the data set projected on that axis.  Parallel coordinate graphs can be used to 
display up to a few hundred axes, although computer aided navigation is important where 
there are more than about twenty axes. 

A point on a parallel coordinate graph is a set of connected line segments crossing all 
axes.  The set of line segments is the dual of a point in Cartesian-Euclidean space of equal 
dimensionality.  Because axes are parallel, visualization can escape the three axis 
constraint imposed by the orthogonality of Euclidean physical space. 

The ordering of the axes in a parallel coordinate graph is arbitrary.  The custom we 
follow puts the axis for the temporal feature to the left and axes for outcomes to the right.  
The user may re-order axes. 

“Brushing” is the selection of a value or range of values on an axis.  The user “brushes” 
by manipulating the mouse like a paint-brush applied to a canvas.   The values included in 
the brushing are highlighted with color, or circled, and the user can view all linked values 
of all other features on the remaining axes.  A sequence of brushing can constrain multiple 
features.  Thus, it offers a visualization of conditional probabilities or nodes in a Bayesian 
network. 

Because constraining the range of values on one (or more) features is the selection of a 
sub-sample of the data population, the frequency distribution of the brushed points on the 
other unconstrained axes may change.  We display the histogram of the brushed points in 
black adjacent to the red histogram of the original population so that the user can see the 
changes that may occur. 

For display, we normalize all data to the range 0 to 1(top of graph). An input mask 
distinguishes date, continuous, categorical, and binary data.  Histograms for continuous 
feature values use an optimal bin width according to the normal bin width reference rule, 
without skew adjustment [19].  Thus, bin width = 3.5 σ n -1/3, where σ is the standard 
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deviation and n is the number of points in the sample.  While the brushed sub-sample 
often needs fewer bins under the normal bin width reference rule, users were visually 
confused by the variation in the bin width of the brushed histogram from the bin width of 
the histogram of the population.  We use the same bin width for both.  

4 Interactive Interface 

The prototype tool containing the interactive interface is made of a settings panel (not 
shown here) and an interactive graphics panel.  The settings panel permits re-sizing and 
zooming the graphics display and re-ordering axes.  It also allows inspection of extensive 
statistics on the data, and viewing of scatter plots.  Thus, the user can toggle between the 
brushed, parallel histogram view of the data and two and three dimensional (rotatable) 
brushed, scatter graphs for any pairs or triples of features. 

The interactive graphics panel permits user interaction with the data.  The user may 
brush any set of values of a feature, and any features, in any order.  Simultaneously, the 
rule that describes the brushing appears below the graph.  Statistical information is also 
simultaneously displayed. 

The rule statement includes the axis number, the feature caption, the visual values on 
the axis (in the range of 0 to 1), and the underlying values from the original data. The rule 
states a description of a sub-population of the data set, based on an intersection of the 
brushed values of features.   The user may remove portions of a rule, or entirely clear a 
rule statement.  The user can apply and amend rules obtained from other sources, and thus 
can judge rules from subject matter experts or machine learning systems, based on the 
universe of historical data across all features. 

In order to validate the visualization of the data, the prototype tool also displays 
supporting statistics. 

• Population size 
• Number of examples that support for the rule 
• Fractional size of the brushed sub-population 
• Mean and median of each feature for the population 
• Mean and median of each feature for the brushed sub-population 

Users find these statistics valuable in order to immediately recognize situations where 
the sample size is too small to be reliable, and to identify outcomes overly affected by 
outlying values.  The stock outcomes shown below exemplify the potentially misleading 
nature of means.  The medians shown below each mean may better indicate expected 
outcomes. 

The parallel histogram graph tool was implemented in Java 1.4 using a data-view 
architecture that separates the view from the data tables.  The architecture allows rapid 
switching from the brushed, parallel histogram graph to scatter plots or statistics.  We use 
the scatter plots to drill down to bi- or tri-variate relationships implicated from the parallel 
histograms. 
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On a Windows XP operating system using a 1.7 GHz Pentium processor with 768 MB 
of RAM, window rendering after brushing takes less than one second on the stock data set 
of 13,000 points described below.  We see similar performance on 9,000 data points in 
eighteen dimensions or 2,000 data points in fifty dimensions (not shown here). 

5 Demonstrative Experiments 

We apply brushed parallel histograms to gain insight into stock market returns and 
interactions of causative or descriptive features.  Our goal is to demonstrate various uses 
of brushed parallel histograms.   

We use data for the 500 Standard and Poor’s listed stocks during the first half of 2003 
(12,870 data points) across eight feature dimensions.  The features are week, listing on the 
New York Stock Exchange, capitalization, market sector, institutional ownership, relative 
price, and return after four and eight weeks. Each feature, and its axis, is described in 
Table 1.  The market sectors appear in Table 2. 

 
Table 1.  Axes used in graphs 

Axis 
number 

Caption Data type Explanation 

0 Week Temporal Number of week of 2003.  Week 0 = week 
ending January 3, 2003. 

1 NYSE Binary 0 = not listed on New York Stock Exchange; 1= 
listed on NYSE. 

2 Cap Categorical 
(ordered) 

1 = market capitalization < $5B; 2 = between 
$5B and $10B; 3 = more than $10B  

3 Sector Categorical 
(un-ordered) 

Twelve market sectors.  See Table 2. 

4 Inst Continuous % of shares owned by institutional investors at 
end of the 26 week period. 

5 %P100 Continuous Share price this week relative to the range of the 
share price over the past 100 days. 

6 R-28 da Continuous Relative change in share price after four weeks 
(in percent per day units). 

7 R-56 da Continuous Relative change in share price after eight weeks 
(in percent per day units). 
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Table 2.  Market Sectors 
 Sector Name  Sector Name 
1 Basic Materials 7 Financial 

2 Capital Goods 8 Health Care 

3 Conglomerates 9 Services 

4 Consumer Cyclical 10 Technology 

5 Consumer Non-Cyc. 11 Transport 

6 Energy 12 Utilities 
 
We demonstrate interactive visualization of these activities: 
• Rule evaluation 
• Feature identification 
• Hypothesis testing and rule writing 
• Temporal change 
• Lifespan of a rule 
• Improvement of a rule for a sub-population 
 
Fig. 1 demonstrates evaluation of a rule.  The rule is, “Stocks with lower market 

capitalization (axis 2) and lower institutional ownership (axis 4) provide above average 
returns in the short run and long run (axis 6 and 7).”  We brush the appropriate values on 
axes 2 and axis 4.  After viewing the results, we conclude there is adequate support for the 
rule (338 examples), and the outcome means (0.14 and 0.21) are above the population 
means (0.12 and 0.16).  Thus, our first impression is that the rule is valid and significant.  
However, the medians (0.09 and 0.11) are less than the population medians (0.11 and 
0.14), and visual inspection of the outcome distributions on axis 6 and 7 shows no 
significant difference from the population distributions.  Thus, we ultimately conclude the 
rule is not significant. 

Fig. 2 demonstrates identifying features. “What are the characteristics of stocks having 
very low 8 week returns?”  We brushed eight week returns below -0.33 (axis 7), and 
observe changes in the histograms on the other axes.  We observe that the temporal 
distribution (axis 0) is strongly episodic, that the consumer sectors (Sector 4 and 5) are 
over-represented, the energy sector (Sector 6) is under-represented (axis 3), and that the 
lowest price range (axis 5) is underrepresented. We also note that institutional ownership 
in low return stocks is about the same as institutional ownership in all stocks.  This 
exploration may help us write a future predictive rule in the next figure. 

Fig. 3 shows testing a hypothesis derived from inspecting Fig. 2.  The hypothesis is, 
“By selecting Sector 4 and 5 (axis 3) and high relative price (axis 5), we should obtain 
very low four week returns.”  After brushing, we conclude the hypothesis is correct.  
There are 417 examples supporting the conclusion that returns will be less than half the 
population returns, as shown by visually inspecting the outcome histograms, and 
comparing the outcome statistics for both mean and median below axes 6 and 7. 
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We can evaluate the differences of rule results across several time periods, as shown in 
Fig. 4.  The rule is “Select stocks in the services sector (sector 9 on axis 3) that have a 
relative price below 30%.”  We condition the rule by a time frame, brushing a set of 
weeks on axis 0.  The figure displays the variation in outcome of the rule for the first eight 
weeks of 2003 (Fig. 4, top), for the second eight weeks of 2003 (Fig. 4, middle) and for 
the third third weeks of 2003 (Fig. 4, bottom).  The rule produces drastically different 
eight-week mean outcomes, ranging from 0.08 to 0.46 (axis 7). 

Fig. 5 demonstrates visualization of the lifespan of a rule.  We answer, “When did 
choosing stocks on the basis of relative price between 25 and 50% (axis 5) produce four 
week returns of over 0.76 (axis 6)?”  We observe in axis 0 that the rule had a short 
lifespan.  Its usage rose and fell during the middle weeks (axis 0) of the data set. 

In Fig. 6, we find a rule that is much more effective for a sub-population.  A rule that 
chooses stocks with relative price below 12% has mild effect on the four week return (axis 
6) (Fig. 6, top).  Perhaps surprisingly, the rule quadruples returns (axis 6) when applied to 
the non-NYSE sub-population (axis 1) (Fig. 6, bottom). 

In addition to the experiments here, we have used brushed, parallel histograms to study 
the interaction of 18 features affecting stock market return, on a data set of 8000 points.  
In that instance, a year of weekly sets of approximately 140 stocks each were selected 
using filters on fundamental and technical information.  We observed unexpected non-
linear correlations among features, appearance and disappearance of modes in features 
during the year, and slow swings of behavior.  We have also applied brushed, parallel 
histograms toward understanding how 44 morphological features of geologic material 
could predict mineral composition. 

Brushed parallel histograms suffer from two common high-dimensional visualization 
limitations: difficulty in organizing axes and information loss by projection to lower 
dimensional space.  We address organizing axes with options for manual axis ordering, 
ordering by Pearson correlation, chaining correlations, and ordering by axis modality 
counts, both respect to the population outcome, and the brushed outcome.  Each ordering 
approach provides different insights about the relation of features.  Information loss is 
unsolved.  We observed new relationships in three dimensional scatter plots that we had 
not seen in the brushed parallel histograms. 
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Fig. 2. Identify features.  We explore, “What are the characteristics of stocks having very low 8 
week returns?”  We brushed returns below -0.33 on axis 7 (R-56 da), and observed changes in the 
histograms on the other axes.  We observe that the temporal distribution (axis 0) is strongly 
episodic, that the consumer sectors (Sector 4 and 5) are overrepresented, the energy sector (Sector 6) 
is underrepresented (axis 3) and that the lowest price range (axis 5) is underrepresented. We also 
note that institutional ownership (axis 4) in low return stocks is about the same as institutional 
ownership in all stocks.   

 

 
 

Fig. 3. Hypothesis Testing.  Hypothesis: “By selecting Sector 4 and 5 (axis 3) and high relative 
price (axis 5), we should obtain very low four week returns.”  We conclude the hypothesis is correct.  
There are 417 examples supporting the conclusion that returns will be less than half the population 
returns, as shown by visually inspecting the outcome histograms, and comparing the outcome 
statistics for both mean and median below axes 6 and 7.  (The visual comparison is largely lost in 
this small figure, but is clearer on the full size screen of the tool). 
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Fig. 4.  Temporal change.  The rule is, “Select stocks in sector 9 that have a relative price below 
30%.”  We brush time periods on axis 0 to show the significant variation in outcome of the rule for 
the first 8 weeks of 2003 (top), for the second 8 weeks of 2003 (middle), for the third 8 weeks of 
2003 (bottom). 
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Fig. 5. Rule Lifespan.  We answer, “When did choosing stocks on the basis of relative price 
between 25 and 50% (axis 5) produce 4 week returns of over 0.76 (axis 6)?”  We observe in axis 0 
that the rule was applicable only during the middle weeks of the data set. 

6 Conclusion 

We find that developing visualization techniques is a like sequence of turning corners 
into dark corridors.  At each turn we find we need new tools to illuminate the path ahead. 
From experience with this tool, we find we need computer aid on where to brush to write 
the most effective rules.  How to order axes in high dimensional space continues to be a 
common issue in all high dimensional visualization methods.   

Data Sources 
Stock price information was downloaded from Yahoo! Finance website.  We calculated 

the relative price and return.  We got information on membership in the Standard and 
Poors’ 500 and market sectors from the Standard and Poors website.  Information on 
exchange listing, market capitalization, and institutional share ownership came from Stock 
Investor Pro, a subscription software package obtained from the American Association for 
Individual Investors.   
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Fig. 6.  Rules for sub-populations.  A rule that chooses stocks with relative price below 12% has 
little effect on the four-week return (axis 6) (top), but quadruples returns (axis 6) for the non-NYSE 
sub-population (axis 1) (bottom). 
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Abstract. Frequent itemsets are characterized by a border in itemset
lattice which separates the frequent itemsets from infrequent ones. Vi-
sualizing this long border is a challenge. This paper introduces another
border, the display border, in the itemset lattice which tells whether an
itemset is displayable or not. The display border specifies another set
of itemsets which have downward closure property. Only those itemsets
that are within the interaction of the sets of itemsets specified by these
two borders are considered to be visualized. Unlike the border of fre-
quent itemsets, the display border can be changed by user interaction.
This approach is capable of visualizing a large number of frequent item-
sets and association rules by displaying only those ones whose items are
interesting to the user.

1 Introduction

For years, researchers have developed many tools to visualize association rules.
However, few of these tools can handle more than dozens of rules, and none
of them can effectively manage many-to-many rules. Association rules are dif-
ficult to visualize. The difficulty of this problem comes from the following two
fundamental challenges of association rules to information visualization:

Challenge 1 Association rules are defined on elements of the power set of the
set of items that reflect many-to-many relationships among these items. With
the absence of an effective visual metaphor to represent many-to-many re-
lationships, association rules pose fundamental challenges to information vi-
sualization.

Challenge 2 Frequent itemsets, from which association rules are derived, are
identified by a border of support in the itemset lattice which separates fre-
quent itemsets from infrequent ones. Depending on the support factor and
total number of items, this border could become very long. This raises the
concern that the limited space of computer screen may not give enough
perceptual places so that each frequent itemset or association rule can be
properly displayed.

This paper presents our approaches to solve these problems and discusses
topics for future research. For the first challenge, we have evaluated the major
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visual metaphors and found that parallel coordinates give a good approach to
handle many-to-many relationships. Parallel coordinates have been used in [1]
for the visualization of sequential patterns. In a similar way, an association rule
can be visualized by connecting its items, one on each parallel coordinate, with
polynomial curves. In the presence of item taxonomy, furthermore, an item tax-
onomy tree can be used to replace each coordinate. In this way, we can visualize
generalized association rules with item taxonomy.

For the second challenge, our solution is to introduce a display border in
the itemset lattice. Figure 1 illustrates the borders on the itemset lattice. The
same as the frequent itemsets, the set of itemsets specified by the display bor-
der is downward closed, that is, an itemset within the border implies that its
subsets are also within the border. It is thus theoretically straightforward that
the intersection of the set of itemsets specified by the display border and the set
of frequent itemsets is also downward closed. Therefore, we can visualize only
frequent itemsets that are within the display border. By changing the display
border through user interaction, we can selectively visualize frequent itemsets
and association rules.

 {}

Border of

Frequent 

Itemsets

Display

Border 

The full itemset

Fig. 1. The two borders in the itemset lattice.

In this paper, we show that a display border can be changed by interactive
expanding or shrinking the displayed item taxonomy tree. The result 3D visual-
ization has following features: (1) it is capable of visualizing large itemsets and
many-to-many association rules; (2) it is capable of visualizing a large number
of frequent itemsets and association rules by displaying only those ones whose
items are selected by the user; (3) the closure properties of frequent itemsets
and association rules are inherently supported by this visualization such that
the implied ones are not visualized.
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2 Using Parallel Coordinates for Challenge 1

Parallel coordinates [2–6] represent a simple way to visualize high dimensional
data. It has also been used to visualize classification rules[7]. Although its ma-
jor application so far is to visualize relational records all with equal number of
attributes, it could be used to visualize data with variable lengths such as fre-
quent itemsets and association rules. This paper proposes the visualization in
the following way: first, all items are listed along a vertical coordinate; then the
result coordinate is repeated evenly in the horizontal direction so that there are
enough coordinates to host the longest frequent itemset or the longest associa-
tion rule. An itemset or an association rule can then be visualized as a polygonal
line connecting all items in the itemset or the rule.

One important feature of this visualization is that it provides a way to vi-
sualize only the maximum frequent itemsets. Their subsets are implied and not
displayed. As an example, Figure 2(a) illustrates the visualization of three fre-
quent itemsets adbe, cdb and fg as polygonal lines. Figure 2(b) illustrates the
visualization of an association rule ab → cd in a similar way. An association rule
is visualized as one polygonal line representing items on its left-hand side (LHS),
followed by an arrow connecting another polygonal line representing items on
its right-hand side (RHS).
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Fig. 2. Visualizing frequent itemsets(a) and an association rule(b) using polylines, and
association rules using Bezier curves (c).

A problem with polygonal line representation of itemsets is that, if two or
more itemsets have parts in common, there is no way to distinguish one from
the other. For example, cdb and cdbe in Figure 2(a) are not distinguishable. This
problem can be solved by using polynomial curves, for example, cubic Bezier
curves, instead of polygonal lines to represent itemsets. Figure 2(c) visualizes
the rule ab → ce by using three Bezier curves. We display these Bezier curves
in such a way that they together offer C1 continuity of the visualization at
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all coordinates. Another association rule illustrated in Figure 2(c) is db → ce,
which shares three items with the rule ab → ce. To keep C1 continuity at the
position of the first shared item b, the bc segments in the two association rules are
visualized in two different Bezier curves. However, the second shared segments ce

in the two rules coincide completely with each other. We think this is acceptable
to distinguish two association rules with parts in common while keeping the
display reasonably clean.

Another problem is that the visualization can easily become messy because
these curves intersect with each other. We can minimize the intersection of these
curves by organizing items along a coordinate in the following way: First, items
are arranged by item groups so that the items belonging to the same group are
displayed together. Since item groups do not share items, Bezier curves of item-
sets in different item groups will never intersect with each other. In this way, the
curves are organized into “horizontal bands” according to item groups. Second,
items within the same group are arranged upward in descending order according
to their supports. In the same way, items in an itemset are also arranged in
descending order according to their supports. In this way, we make sure that the
slopes of a polygonal line are always positive. This helps to reduce the chance of
tangled intersection with other polygonal lines.

We tested this approach by using a supermarket transaction data set in the
IBM DB2 Intelligent Miner software. Figure 3 visualizes discovered association
rules when the minimum support is set to 2% and the minimum confidence is
set to 30%. In the figure, the left coordinate represents the LHSs (one item only)
of the rules, the right three coordinates represent the RHSs of the rules. The
slopes of curves between the right three coordinates are always positive. There
are totally 57 association rules displayed, which represent 340 association rules
discovered from the data set. The visualization is interactive such that each
displayed rule is selectable by clicking mouse. The selected rules and all of its
implied rules will be displayed on the right side of the window together with
their parameters.

3 Introducing the Display Border in the Itemset Lattice

for Challenge 2

It is well known that the power set P(I) of the set I of all items is a lat-
tice structure < P(I),⊆> where the subset relationship ⊆ gives a partial or-
der. Because the support factor is monotonic to the subset relationship, that is,
supp(A) ≥ supp(B) if A ⊆ B, frequent itemsets are located in the upper part of
the lattice whereas infrequent ones are located in the lower part of the lattice.
Therefore, there is a border which separates the frequent itemsets from the in-
frequent ones [8]. Frequent itemsets on the border are maximum and have the
property that every itemset above (and include) them is frequent, while every
itemset below any of them is not. The existence of such a border is guaranteed
by the lattice structure and the downward closure property. It is independent of
any particular database or minimum support value.
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Fig. 3. Visualizing many-to-many association rules.

Depending on the minimum support value and the total number of items,
the frequent itemset border may become very long and thus difficult to visualize.
An idea to deal with this problem is to introduce another border in the itemset
lattice, which specifies whether an itemset is displayable or not. Only those
frequent itemsets that are within this border are considered for visualization.
This border should be able to change by user interaction. By changing the border,
we hope that we can visualize a large number of frequent itemsets and association
rules by displaying only those ones that the user is interested in.

The only requirement on the border is that it must satisfy the downward
closure property, that is, all subsets of an itemset within the border must also
be within the border. One possible such border that we can introduce is through
item taxonomy. Let I be a set of all items and IT an item taxonomy on I [9]. De-
fine the generalized power set GP(I, IT ) so that it contains all itemsets and their

ancestor itemsets, i.e., GP(I, IT ) = P(I) ∪ {all ancestor itemsets Â of A|∀A ∈

P(I)}. Define a partial order ¹ as: (1) A ¹ B if A ⊆ B; (2) Â ¹ A. Then
< GP(I, IT ),¹> is a lattice, a generalized itemset lattice. It is easy to ver-
ify that the support factor is monotonic to ¹. Therefore, there is a border in
< GP(I, IT ),¹> which separates frequent itemsets from infrequent ones. For
example, Figure 5 shows the generalized itemset lattice < GP(I, IT ),¹> over
the items I = {a, b, c, d} under the item taxonomy tree IT shown in Figure 4. In
Figure 5, we use straight lines to denote subset relationships and arcs to denote
ancestor relationships.
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a b c d

e f

Fig. 4. A simple item taxonomy tree.
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ac adab bc bd cd

acdabc abd bcd

abcd

ecdabf

ec edaf bf ef

ef

Support
border

Displayable
itemset
border

Fig. 5. A generalized itemset lattice < GP(I, IT ),¹>.

We can visualize frequent itemsets with item taxonomy by replacing each
coordinate with a visualization of taxonomy tree. A taxonomy tree can be visu-
alized by starting from its root and stopping at any internal nodes or leaf nodes.
One possible user interaction is to expand or shrink the displayed taxonomy tree.
This interaction introduces another border in the generalized itemset lattice.

An itemset is called displayable if all items in the itemset are shown in the
visualization of the taxonomy tree. The displayable property is downward closed
in the generalized itemset lattice < GP,¹>: if an itemset A is displayable,
any itemset B such that B ¹ A is also displayable. Therefore we have now
two borders in the generalized itemset lattice < GP,¹>: one border separates
frequent itemsets from infrequent ones; the other border separates displayable
itemsets from un-displayable ones. For example, let us assume that only the
items c, d, e, f are displayable in the item taxonomy in Figure 4, this specifies a
border of displayable itemsets in the generalized itemset lattice, which is marked
by a dashed line in Figure 5.

As we expand or shrink the displayed item taxonomy tree, the border of
displayable itemsets will change. This gives us a way to selectively visualize the
frequent itemsets whose items are among those that we are interested in. A visu-
alization system is designed such that only the maximum, displayable, frequent

itemsets are displayed. Other displayable frequent itemsets are implied by the
visualized frequent itemsets. In the generalized itemset lattice < GP,¹>, these
maximum displayable frequent itemsets must reside on the border of intersection
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of the set of frequent itemsets and the set of displayable itemsets. Taking the
two borders in Figure 5 as example, ec and ed are the two displayable frequent
itemsets that should be visualized. The other displayable frequent itemsets are
implied by these two itemsets.

Closure Properties of Association Rules. If we consider the sub-lattice formed
by a frequent itemset, all association rules generated from the frequent itemset
have also a closure property. This happens when we consider association rules
that have more than one items in the RHSs. For example, if c → ab is a rule that
can pass support and confidence tests, then bc → a and ac → b are also associ-
ation rules that can pass the same support and the same confidence tests. This
means that the association rules generated from a frequent itemset are downward
closed according to their RHSs in the sub-lattice formed by the frequent itemset
using the subset relationship as a partial order. Figure 6 illustrates a border
of RHSs of association rules generated from a frequent itemset {a, b, c, d}. The
border shows that ab and ac are two maximum RHSs which means cd → ab and
bd → ac are two non-redundant association rules.

{ }

ca b d

ac adab bc bd cd

acdabc abd bcd

abcd

RHS

border

Fig. 6. The border of RHSs of association rules generated from a frequent itemset
{a, b, c, d}.

4 Visualizing Frequent Itemsets and Association Rules

Frequent itemsets and association rules with item taxonomy can be visualized
by replacing each parallel coordinate with an item taxonomy tree. The displayed
taxonomy tree can be expanded or shrunk by user interaction. To keep the visu-
alization clean, we choose to display only maximum frequent itemsets. Frequent
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Fig. 7. Visualization of non-redundant frequent itemsets on the displayed item nodes.

itemsets are visualized so that a frequent itemset is displayed if the itemset is on
the border in the generalized itemset lattice < GP(I, IT ),¹> which separates
displayable frequent itemsets from the rest ones. Specifically, a frequent itemset
is displayed if and only if:

1. the frequent itemset is displayable; and
2. the frequent itemset is not the subset of any other displayable frequent item-

sets; and
3. the frequent itemset is not the ancestor itemset of any other displayable

frequent itemsets.

By interactively expanding or shrinking the displayed taxonomy tree, therefore,
we can change the display border and thus visualize those frequent itemsets that
we are interested in.

The test data we use contain 80 items which are leaf nodes of a 4-level
taxonomy tree. 496 frequent itemsets are discovered when the minimum support
is set to 5%. Figure 7 visualizes some of these frequent itemsets on the expanded
taxonomy tree. The color of the name of each item or item category represents
its support. Displayable frequent itemsets are visualized as smooth connections
of Bezier curves. The line-width of a curve represent the support value of the
corresponding itemset. Only non-redundant displayable frequent itemsets are
visualized. Panning and zooming can be applied to the 3D visualization.

Similarly, a set of association rules can be visually explored by displaying
only those ones whose items are shown in the displayed item taxonomy tree.
However, association rules do not have those closure properties of frequent item-
sets. Pruning redundant association rules has been reported in [10]. It is also
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reported [10–12] that frequent itemsets are more fundamental than association
rules in data mining. Instead of directly visualizing association rules, therefore,
we may prefer to visualize frequent itemsets. However, we can generate and dis-
play association rules generated from a frequent itemset in a separate window
if the user select the frequent itemset through interaction. Since the association
rules generated from a frequent itemset have the downward closure property
according to their RHSs, we may check for rule redundancy so that only those
rules which have the maximum RHSs are displayed. In this way, we keep our
visualization of association rules readable by reducing the number of rules dis-
played to only those ones that are produced from a frequent itemset and are
representative of the other rules.

For example, the user can pick up an itemset shown in Figure 7 by clicking
anywhere on its curve segments. The association rules generated from the item-
set could then be visualized in a separate window. Figure 8 gives an example of
visualizing discovered association rules with item taxonomy. Association rules
are aligned according to where the RHSs separate from the LHSs. In this exam-
ple, the left two coordinates represent the LHSs of the rules and the right two
coordinates represent the RHSs of the rules. Support of a rule is represented by
line width. Confidence of a rule is represented by color.

Fig. 8. Visualizing association rules.

In summary, we have introduced two kinds of interactions in our visualiza-
tion: First, the displayed taxonomy tree can be expanded or shrunk by clicking a
node in the tree. This interaction will change the display border in the general-
ized itemset lattice and, consequently, select another set of frequent itemsets to
display. By interactively selecting items to display, we visualize only a minimal
set of frequent itemsets whose items are among those that we are interested in.
Second, when we click a displayed frequent itemset, the association rules gener-
ated from the frequent itemset could be visualized in a separate window. Among
those rules, only those rules with the maximum RHSs are displayed.

An experimental software system has been developed to visualize frequent
itemsets and association rules. We use IBM DB2 Intelligent Miner to generate
frequent itemsets. Because Intelligent Miner does not produce association rules
with multiple items on the RHS, the experimental system reads item taxonomy
and frequent itemsets produced by Intelligent Miner and generates association
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rules in real time as it visualizes these rules. Because each mouse click changes
the displayed item taxonomy tree and the set of rules to display, the gener-
ated association rules are pruned each time the displayed item taxonomy tree is
changed.

5 Discussion and Future Work

We have shown how to visualize many many-to-many association rules by taking
advantage of the underlying properties of these relationships and by mapping
them into visual elements of a particular visualization metaphor. Parallel coor-
dinates offer a good support for the partial order properties of frequent itemsets
and those of association rules. We further use interactively expandable taxon-
omy tree to deal with the problem of large number of items. Two kinds of user
interactions are allowed: First, a user can expand or shrink the displayed taxon-
omy tree, and consequently, select frequent itemsets or rules to display. Second,
each displayed frequent itemset is selectable to visualize the association rules
generated from the frequent itemset. Basically, the first interaction introduces
another border in the generalized item lattice, which separates displayable item-
sets from non-displayable ones. Only those frequent itemsets on this border are
displayed. By changing this border, we can selectively visualize frequent itemsets
and association rules that we are interested in.

This approach of visualization brings topics for future research on how inter-
action and redundancy might be exploited. One research topic is how to explore
more effective closure properties and introduce borders to selectively visualize
itemsets or rules. The changes of these borders should be associated with mean-
ingful user interaction. Another research topic is how to prune uninteresting
itemsets and rules. The topic comes from the fact that some redundant itemsets
or rules may be more practically interesting than their respective displayed ones.

Redundancies exist in our visualization. For example, the rules generated
from A may be redundant if A is a subset or an ancestor itemset of another
frequent itemset. For example, if a → bc is a rule, then a → b, a → c, a → b̂c,
and a → bĉ are all valid rules. These association rules are displayed by the
experimental system if the user select the corresponding frequent itemsets.

This visualization approach is fundamentally different to the original use of
parallel coordinates that was designed to visualize relational data. The origi-
nal use of parallel coordinates enables the detection of plane patterns in high
dimensional space through the structure of displayed polygonal lines based on
point-line duality. It would be interesting to establish some similar dualities in
the visualization of frequent itemsets and association rules. Furthermore, par-
allel coordinates offer several freedoms that have not been exploited yet. For
example, the proposed visualization does not allow the item taxonomy tree for
each coordinate be manipulated individually; the quality of the visualization of
frequent itemsets depends on the ordering of items. These freedoms should be
exploited to develop a better visualization technique.
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Finally, this paper presents only the principles of using parallel coordinates
for association rule visualization without further considering visualization de-
tails. For example, should the support and confidence values be represented by
color, line width, or dashed line? Validation of the effectiveness of the proposed
approach needs a usability study. In addition, usability study would be needed
to have a better strategy of rule pruning because interestingness is a subjective
matter. It is one thing to say that we can visualize association rules. It is an-
other thing to confirm that the visualization is useful. Assessing the usability
of visualization entails carrying out formal user studies which is part of future
work.
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Abstract. The challenge in the Information Visualization (Infovis) field  is two-fold: the

exploration of raw data with intuitive visualization techniques and the discover of new techniques

to enhance the visualization power of well-known infovis approaches, improving the synergy

between the user and the mining tools. This work pursues the second goal, presenting the use of

interactive automatic analysis combined with visual presentation. To demonstrate such ideas, we

present three approaches aiming to improve multi-variate visualizations. The first approach, named

Frequency Plot, combines frequencies of data occurrences with interactive filtering to identify

clusters and trends in subsets of the database. The second approach, called Relevance Plot,

corresponds to assign different shades of color to visual elements according to their relevance to

a user’s specified set of data properties. The third approach makes use of basic statistical analysis

presented in a visual format, to assist the analyst in discovering useful information. The three

approaches were implemented in a tool enabled with refined versions of four well-known existent

visualization techniques, and the results show an improvement in the usability of

visualization techniques employed.

1. Introduction

The volume of digital data generated by worldwide enterprises are increasing

exponentially.  Therefore, together with concerns about efficient storage and fast and

effective retrieval of information, comes concerns about how to get the right information

at the right time. That is, companies can gain market space by knowing more about their

clients’ preferences, usual transactions, and trends. Well-organized information is a

valuable and strategic asset, providing competitive advantage on business activities.

The Information Visualization (Infovis) techniques aim to take advantage of the fact

that humans can understand graphical presentations much more easily and quickly,

helping users to absorb the inherent behavior of the data and to recognize relationships

among the data elements. As a consequence, such techniques are becoming more and

more important during data exploration and analysis.

Besides being voluminous, the data sets managed by the information systems are

frequently multidimensional. Thus, the process of analyzing that data is cumbersome, as

this type of information is constituted by many features and properties that are hard to be

apprehended by the use as a whole. Therefore, in order to bypass the intricate task of

analyzing complex data sets, we propose an alternative course for the visualization tasks,

bringing together automatic data analysis and the presentation of the results of this
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Fig. 1. - Examples of databases with too concentrated data (a), and

with too spread data (b)

analysis in intuitive graphical formats.  Following this direction we implemented three

ideas in a single interactive tool.

The first proposed technique, the Frequency Plot, intends to tackle two problems

derived from the increasing in the amount of data observed in most of the existing

visualization techniques. The problems are the overlapping of graphical elements, and the

excessive population of the visualization scene. The first one prevents the visualizations

to present information implicit in the “lost” elements overlapped in the scene. The second

one is responsible for determining unintelligible visualizations since, due to the over-

population, no tendency or evidence can be perceived.

These cases are exemplified in figure 1, using the Parallel Coordinates visualization

technique [1]. Figure 1(a) shows a common database where some ranges are so massively

populated that only blots can be seen in the visualization scene. Therefore, the hidden

elements cannot contribute for investigation. Figure 1(b) shows a hypothetical database

where values in every dimension are uniformly distributed between the dimensions’

range, so the corresponding visualization becomes a meaningless rectangle.

To deal with the issues pointed above, the Frequency Plot intends to increase the

analytical power of visualization techniques, allowing to weight the data to be analyzed.

The analysis, based on the frequency of data occurrence, can demonstrate the areas where

the database is most populated, while its interactive characteristic allows the user to

choose the most interesting subsets where this analysis shall take place.

The second technique proposed, the Relevance Plot, describes a way to analyze and

to present the behavior of a data set based on a interactively defined set of properties. In

this approach, the data elements are confronted with the set of properties defined by the

user in order to determine their importance according to what is more relevant to the user.

This procedure permits the verification, discovering and validation of hypothesis,

providing a data insight capable of revealing the essential features of the data.

The third idea is the visual presentation of basic statistical analysis along with the

visualization of a given technique. The statistical summarizations used are the average,

standard deviation, median and mode.

The remainder of the paper is structured as follows. Section 2 gives an overview of

the related work and Section 3 describes the data set used in the tests presented in this
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work. Sections 4 and 5 present the Frequency Plot and Relevance Plot approaches

respectively. Section 6 shows techniques to present results of statical analysis performed

over visual scenes. The tool integrating the proposed techniques is described in Section

7, and the conclusions and the future works are discussed in the Section 8.

2. Background and Related Work

Nowadays, information visualization and visual data mining researchers face two facts:

exhibition devices are physically limited, while data sets are inherently unlimited both in

size and complexity. In this scenario, the Infovis researches must improve visualization

techniques, besides finding new ones that should target large datasets. We propose

improvements based on both interaction and automatic analysis, so their  combination

might assist the user in exploring bigger data sets, more efficiently.

According to [3], conventional multivariate visualization techniques do not scale well

with respect to the number of objects in the data set, resulting in displays with

unacceptable cluttering. In [4], it is asserted that the maximum number of elements that

the Parallel Coordinates technique can present is around a thousand. In fact, most of the

existing  visualization techniques do not sustain interestingness when dealing with much

more than this number, either due to space limitations inherent to current display devices,

or due to data sets whose elements tend to be too spread over the data domain. Therefore,

conventional visualization techniques often generate scenes with a reduced number of

noticeable differences.

Many limitation from visualization methods can be considered inevitable because

largely populated databases often exhibit many overlapping values, or a too spread

distribution of data. These shortcomings lead many multi-variate visualization techniques

to degenerate. However, some limitations have been dealt by the computer science

community in many works, as explained following.

A very efficient method to bypass the limitations of overplotting visualization areas

is using hierarchical clustering to generate the visualization expressing aggregation

information. The work in [6] proposes a complete navigation system to allow the user to

achieve the intended level of details in the areas of interest. That technique was initially

developed for use with Parallel Coordinates, but implementations that comprises many

other multivariate visualization schemes are available, as for example in the Xmdv Tool

[3]. The drawback of this system is its complex navigation interface and the high

processing power required by the constant re-clustering of data, according to user’s

redefinition.

Another approach, worth to mention, is described in [7], which uses wavelets to

present data in lower resolutions without losing the aspects of its overall behavior. This

technique takes advantage of the wavelets’ intrinsic property of image details reduction.

Although there is a predicted data loss that might degrade the analysis capabilities, the

use of this tool can enhance the dynamic filtering activity.

However, the most known and used alternative to perceive peculiarities in massive

data sets is finding ways to visually highlight subsets of data instead of the whole

database. The “interactive filtering principle” claims that in exploring large data sets, it

is important to interactively partition the dataset into segments and focus on interesting

subsets [8]. Following this principle, many authors developed tools aiming the interactive

filtering principle, as the Magic Lenses [9] and the Dynamic Queries [10]. The selective
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focus on the visualization is fundamental in interaction mechanisms, since it enriches the

user participation during the visualization process, allowing users to explore the more

interesting partitions in order to find more relevant information.

An interesting approach in selective exploration is presented in the VisdB tool [11],

which provides a complete interface to specify a query whose results will be the basis for

the visualization scene. The presentation of the data items use the relevance of items to

determine the color of the corresponding graphical elements. The color scheme

determines the hue of the data items according to their similarity to the data items

returned by the query. The multi-variate technique used is pixel oriented, and the

interaction occurs based on a query form positioned alongside the visualization window.

The analysis depends on the user ability to join information originating from one window

per attribute, since each attribute is visualized in a separate scene.

Another approach is the direct manipulation interaction technique applied to

Information Visualization [12], that is, techniques that improve the  ability of the user to

interact with a visualization scene in such a way that the reaction of the system to the

user’s activity occurs within an period short enough to the user to establish a correlation

between their action and what happen in the scene [13]. Known as the “cause and effect

time limit” [12], this time is approximately 0.1 second, the maximum accepted time

before action and reaction seems disjointed. Our work was oriented by this principle, so

that the tool developed satisfies this human-computer interaction requisite.

3. The Breast Cancer Data Set

In the rest of this work, we present some guiding examples to illustrate the presentation.

The examples use a well-known data set of breast cancer exams [2], which was built by

Dr. William H. Wolberg and Olvi Mangasarian from the University of Wisconsin, and

is available at the University of California at Irvine Machine Learning Laboratory:

(ftp://ftp.cs.wisc.edu /math-prog/cpo-dataset/machine-learn/WDBC).  It comprises 457

records from patients whose identities were removed. Each data item is described by 9

fact attributes (dimensions), plus a numeric identifier (attribute 0), and a classifier

(attribute 11) which indicates the tumor type (0 for benign and 1 for malign). The fact

attributes (from the 2nd to the 10th attributes) are results of analytical tests on patients'

tissue samples. They might indicate the malignity degree of the breast cancer and are

respectively named ClumpThickness, UniforSize, UniforShape, MargAdhes,

SingleEpithSize, BareNuclei, BlandChromatin, NormalNucleoli and Mitoses. These

names are meaningfull in medical domain, but do not influence the visualizations

interpretation. Noise data was removed from the original source.

4. The Frequency Plot with Interactive Filtering

Now we present a new enhancement for infovis techniques, intended not only to bypass

the limits of visualization techniques previously pointed out in this text, but also to

provide a way to enhance the analytical power of every visualization technique embodied

in an interaction mechanism. It combines interactive filtering with direct manipulation in
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an analytical-based presentation schema - that is, selective visualization enhanced by

further filtering of the selected portions of the data set is followed by an automatic

analysis step. We named this presentation technique as the Frequency Plot.

Here we describe the idea in general terms, reserving an example for later detailing.

By frequency, we mean how common (frequent) is a given value inside the dataset.

Formally, given a set of values V = {v0, v1, ..., vk-1}, let q(v,V)��N be a function which

counts how many times v ��  V appears in the set V. Also, let m(V) be a function that

returns the statistical mode of the set V. The frequency coefficient of a value v ��  V is

given by:

                              (1)

The function f(v,V) returns a real number between 0 and 1 that indicates how

frequently the value v is found inside the set V.  In our work, this function is applied to

every value of every dimension in the range under analysis. Given a dataset C with n

elements and k dimensions, its values might be interpreted as a set D with k subsets, one

subset for each dimension.  That is, D = {{D0},{D1},...,{Dk-1}}, having |Dx| = n. Given

a k-dimensional data item cj = (cj
0, cj

1, ..., cj
k-1) belonging to set C, its corresponding

k-dimensional frequency vector Fj is given by:

                    (2)

Using Equation 2, we can calculate the frequency of any k-dimensional element.

Once calculated the corresponding frequencies, each object is exhibited through visual

effects as color and size modulated by its frequency. This is shown in our implementation

in the following way.  Using the Parallel Coordinates technique, the frequencies are

expressed by color, and using the Scatter Plots technique, the frequencies are expressed

by both color and size. This implementation uses a single color for each data item, a

white background for the scene, and the high frequency values are exhibited with more

saturated tones, in contrast with the low frequency ones, whose visualizations were based

on less visible graphical elements determined by smooth saturations, that tend to

disappear in the white background.

Combining the interactive filtering with this idea, our proposed visualization

technique is not based on the whole data set, but on selected partitions specified by the

user.  These partitions are acquired by the manipulation stated by the interactive filtering

principles, embodying AND, OR and XOR  logical operators, in a way that enables the

user to select data through logical combinations of ranges in the chosen dimensions.

Therefore, only the data items that satisfy the visual queries are used to perform the

frequency analysis. Hence, subsets of the database can be selected to better demonstrate

particular properties in the dataset.

An illustrative example is given in figure 2. In this figure, the Frequency Plot of  the

complete dataset and the traditional range query approach are contrasted with a

visualization comprising a range query with the Frequency plot. The data set under

analysis is the breast cancer database described in section 3. The analysis process is

illustrated intending to clarify what is the difference between malign and benign breast

cancer based on laboratory tests. 
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Fig. 2 -  Parallel Coordinates with Frequency Plot. (a) The frequency analysis of the whole data

set; (b) the traditional visualization of the malign class 1; (c) the benign class 0 visualization.  (d)

Frequency Plot of (b);  (e) the correspondent Frequency Plot of (c)

In figure 2(a), the overall data distribution can be seen through the use of a global

frequency analysis. The figure indicates the presence of more low values in most of the

dimensions.  Figures 2(b) and 2(c) presents the malign and benign records respectively,

using the ordinary filtering technique, where no color differentiates the data items. It is

clear that these three scenes contribute little to cancer characterization, as the

visualization should do. None of them can partition nor analyze data simultaneously and,

consequently, they are incapable of supporting a consistent parsing of the problem.

In contrast, figures 2(d) and 2(e) better demonstrate the characteristics relative to the

laboratory tests and cancer nature. In these figures, the attribute 1, class, is used to

determine frequency, considering value 0 (benign) in figures 2(d)  and value 1 (malign)

in figure 2(e). By highlighting the most populated areas of the selections, malign and

benign cancer turns out to be identified more easily by searching for patterns alike those

that are made explicit by the Frequency Plot. Therefore, the analyst is enabled to
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Fig. 3 - (a) The Scatter Plot Matrix with Frequency Plot showing the benign cancer autopsies.

Note the zoom of the “BlandChromation” attribute.  (b) Correspondente visualization of the

malign cancer autopsies and the zoom of the “SingleEpithSize” attribute

conclude what results he/she needs to search for in order to make the characterization of

the cancer nature more precise. The data distribution is visually noticeable and can be

separately appreciated due to the interactive filtering.

Figure 3 shows the same visualizations as were presented in figure 2, but in a Scatter

Plots Matrix enhanced by the Frequency Plot analysis. The Scatter Plots visualization

corroborates what has been already seen in the Parallel Coordinates scenes and it further

clarifies the fact that the “BlandChromation” and the “SingleEpithSize” attributes are the

less discriminative in cancer nature classification.
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The data presentation with frequency plot is a powerful tool because it can determine

more easely the subset of interest for the analysis. Also, it points that cluster identification

is not limited to the whole data set, nor to predefined manipulated data records. Instead,

it might occur guided by a single value. One might choose a dense populated area

belonging to one of the dimensions and questions the reason of that behavior. The

frequency plot technique will present the most frequent values of the other dimensions

that are correlated to the region of interest; correlation goes straight along with partial

cluster identification.

5. The Relevance Plot

The second technique described in this work is based on the concept of data relevance,

showing the information according to the user’s needs or sensibility. Therefore, we intend

to reduce the amount of information presented by drawing data items using visual graphic

patterns in accordance to their relevance to the analysis. That is, if the data has a strong

impact on the information under analysis, their visualization shall stress this fact, and the

opposite must happen to data that is not relevant to the user. To this intent, the Relevance

Plot benefits from computer graphic techniques applied to depict automatic data analysis

through color, size, position and selective brightness.

The proposed interaction does not depend on a query stated on a Structured Query

Language (SQL) command, thus it is not based on a set of range values, but rather, it is

based on a set of values considered interesting by the user. These values are used to

determine how relevant is each data item. Once the relevant characteristics are set,

automatic analysis proceeds through calculation of data relevance relative to what was

chosen by the user to be more interesting.

The mechanism is exemplified in Figure 4.  It requires the analyst to choose values,

or Relevance Points, from the dimensions being visualized. Hence, given a set of data

items C with n elements and k dimensions, and assuming that these values were previously

normalized so that each dimension ranges from 0.0 to 1.0, the following definitions hold:

Definition 1: the Relevance Point (RP) of the i-th dimension, or RPi, is the chosen

value belonging to the i-th dimension domain that must be considered to

determine the data relevance in that dimension. 

For illustration purposes, let us first consider only one RP per dimension. Once the

Relevance Points are set for every dimension, the data items belonging to the database

must be analyzed considering their similarity to these points of relevance. That is, for each

dimension with a chosen RP, all the values of every tuple is computed considering their

Euclidean distance to the respective relevance value.

Definition 2: for the j-th k-dimensional data record cj = (cj
0, cj

1 ,..., cj
k-1), the

distance of its i-th attribute to the i-th RP, or Dj
i(cj

i, RPi), is given by:

                               (3)

We use the Euclidean distance due to its simplicity, but other distances, such as any

member of the Minkowski family, can also be employed. For each dimension of the

k-dimensional database, a maximum acceptance distance can be defined. These thresholds

are called Max Relevance Distances, or MRDs, and are used in the relevance analysis.
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Definition 3: the Max Relevance Distance of the i-th dimension, or MRDi, is the

maximum distance Dj
i(cj

i, RPi) that a data attribute can assume, before its

relevance assume negative values during relevance analysis. The MRDs take

values within the range [0.0, 1.0].

Based on the MRDs and on the calculated distances Dj
i(cj

i, RPi), a value named

Attribute Relevance (AR) is computed for each attribute of the k-dimensional data items.

Thus, a total of k ARs are computed for each of the n k-dimensional data items in the

database.

Definition 4: the value determining the contribution of the i-th attribute of the j-th

data item, cj
i in the relevance analysis is called the Attribute Relevance, and is

given by:

                          (4)

Equation 4 states that: 

• For distances D(c,RP) smaller or equal the MRD, the equation has been settled to

assign values ranging from 1 (where the distances D(c,RP) are null) to 0 (for distances

equal the MRD);

• For distances D(c,RP) bigger than the MRD, the equation linearly assigns values

ranging from 0 to -1;

•  In dimensions without a chosen RP, the AR assumes a value 0 and does not affect

analysis.

Finally, after processing every value of the dataset, each of the k-dimensional item

will have a value computed, that is called Data Relevance (DR) and stands for the

relevance of a complete information element (an tuple with k attributes).

Definition 5: the Data Relevance (DR) is the computed value that describes how

relevant a determined data item is, based on the Attribute Relevancies. So, for a

given data item, the DR is the average of its correspondent Attribute Relevancies.

For the j-th k-dimensional element of a data set, the DRj is given by:

                                             (5)

where #R is the number of Relevance Points that were defined for the analysis.

The Data Relevance value directly denotes the importance of its corresponding data

element, according to the user defined Relevance Points. To visually explicit this fact, we

use the DRs to determine the color and size of each graphic elements. Hence, a lower  DR

stands for weaker saturations and smaller sizes, while higher ones stand for more stressed
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Fig. 4 - The Relevance Plot schema is demonstrated here through the calculus of the

relevance for a 4-dimensional  sample record visualized in the Parallel Coordinates

technique

saturations and bigger sizes.  In our implementation we benefit from the fact that only the

saturation component is necessary to denote relevance, leaving the other visual attributes

(colors, hue and size) available to depict other associated information. In this sense, we

projected a way to denote, along with the relevance analysis, the aforementioned

frequency analysis.

That is, while the saturation of color and the size of the graphical elements denote

relevance, the hue component of color presents the frequency analysis of the data set.

More precisely, the highest frequencies are presented in red (hot) tones, and the lowest

frequencies in blue (cold) tones, varying linearly passing through magenta.

Figure 5 presents the usage of the Relevance Plot technique over the Parallel

Coordinates technique using the breast cancer dataset. In the three scenes we have defined

9 Relevance Points for dimensions 2 to 10. For illustration purposes in Figure 5(a), the

points are set to the smallest values of each dimension, in Figure 5(b) they are set to the

maximum values of each dimension, and in Figure 5(c) they are to the middle points.

However, each dimension can have its RP defined at the user’s discretion.

In figure 5(a) the choice of the Relevance Points and their correspondent visualization

leads to conclude that the lowest values of the dimensions’ domains indicate class 0

(benign cancer) records. It also warns that this is not a final conclusion since the

visualization reveals some records, in lower concentration, which are classified as 1

(malign cancer). It can be said that false negative cancer analysis can occur considering

a clinical approach based on this condition.
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Fig 5 - The Relevance Plot over a Parallel Coordinates scene. In (a) all the

relevance points are set to the smallest values of their dimensions. In (b)

they are set to the maximum values and in (c) middle points are set

In figure 5(b) the opposite can be observed, as the highest values indicate the records

of class 1. It can be seen that false positive cancer analysis can also occur, but they are less

common that the false negative cases, since just a thin shadow of pixels heads to class 0

in the 11th (right most) dimension.
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Fig. 6 - In (a) the median of the malign cancer exams presented over the Star Coordinates; in (b)

the median of the benign exams. In (c) the average line of the malign cancer exams over the

Parallel Coordinates and in (d) the average of the benign exams

Finally, in figure 5(c) the Relevance Points were set to middle points in order to make

an intermediate analysis. In this visualization, one can conclude that this kind of

laboratory analysis is quite categorical, since just one record is positioned in the middle

of the space determined by the dimensions’ domains. But, in such cases, it is wise to

classify the analysis as a malign cancer or, otherwise, to proceed with more exams.

6. Basic Statistics Presentation

The statistical analysis has been  successfully applied in practically every research field

and its use in Infovis naturally improves data summarization. So, defending our idea that

information visualization techniques must be improved by automatic analysis, this paper

describe how our visualization tool makes use of basic statistics to complement the

revealing power of traditional visualization mechanisms.

The statistical properties we used take advantage of are the average, standard

deviation,  median and mode values, and the method for visualizing them is

straightforward. The raw visualization scene is rendered, and the statistical

summarizations are used to draw an extra graphical element over the image. The extra

graphic elements are the summarizations which are exhibited with a different color for

visual emphasis.

The four statistical summarizations are available in each of the four visualization

techniques implemented in the GBDIView tool, which will be presented in the next

section.  As an example, figure 6 presents the breast cancer dataset drawn using the Star

Coordinates technique together with a polygon over the scene indicating the median

values of the malign cancer exams (figure 6.a) and of the benign cancer exams (figure
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Fig. 7 - The GBDIView tool presenting a Table Lens visualization with Relevance Plot

6.b). Also in figure 6, we can see the same data set drawn using the Parallel Coordinates

technique together with a polyline indicating the average values of the malign cancer

exams (figure 6.c) and of the benign cancer exams (figure 6.d).  The possibilities of these

visualization schemes are very promising, being more powerful than their respective  raw

visualizations using the Star Coordinates and Parallel Coordinates techniques. In a short

analysis, the presented statistical visualization stress the conclusions addressed by the

examples shown in sections 4 and 5.

7. The GBDIView Tool

In order to experiment our ideas, we have implemented a tool whose snapshot is presented

in figure 7, that fully encompass the theory presented in this paper. The GBDIView tool

consists of 4 well-known visualization techniques enhanced by the proposed approaches

we have developed. The tool is built in C++, and was designed following the software

reuse paradigm, therefore, being idealized as a set of visualization methods implemented

as software components that can be totally tailored to any software that uses Infovis

concepts.

The techniques included in the tool are the Parallel Coordinates, the Scatter Plots

Matrix [5], the Star Coordinates [14] and the Table Lens [15]. The four visual schemes

are integrated by the Link & Brush [16] technique and every one is also enabled with the

Frequency Plot, with the Relevance Plot and with the statistical data analysis (average,

standard deviation, median and mode values), what can be presented graphically over the

rendered scenes.
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A fully functional version of the tool, along with its user's guide and some sample

datasets can be obtained at http://gbdi.icmc.usp.br/~junio/GBDIViewTool.htm.

8. Conclusions and Future Work

We believe that both the Frequency Plot and the Relevance Plot techniques can strongly

contribute to improve the effectiveness of databases exploration, specially the relevance

visualization, which is a way to focus on interesting parts of a data set without losing the

overall sight. We also argue that this contribution is applicable to other multi-variate

visualization techniques beyond the Parallel Coordinates, the Scatter Plots, the Star

Coordinates and the Table Lens, some of which are already implemented in the

GBDIView tool.

It is important to observe that the contributions of this work are not limited to the

techniques themselves, but also to the innovative orientation in the development of

visualization mechanisms. Here, we do not strive to discover better visualization schemes,

instead, we focus on enhancing existent ones by promoting the automatic analysis of the

data according to the user previous interaction.

As future works, the relevance visualization demands a certain processing power to

be used interactively, and the described model does not embody optimization nor

scalability. Thus, a better model should be pursued. Also, the relevance mechanism can

be carried out in many different ways, as using other distance functions, defining more

than one  relevance point per dimension and/or setting weights to the dimensions to be

analyzed. A user interface to hold all these possibilities must also be conceived,

maintaining a user friendly and easy of use environment.

We considered that the frequency analysis is evaluated counting the values in the

dataset. This assumption is valid for many datasets, but not always. Consequently, as a

future work, improved ways should be studied to reach good results with continuous

attributes or attributes that does not have categorical values. A natural option is to use the

values clustered in a given way, or process the data set to define probabilistic functions,

which is a more adequate alternative to deal with attributes consisting of high precision

data types.

Acknowledgment

This work has been supported in part, by the Sao Paulo State Research Foundation

(FAPESP) under grants 01/11287-1 and 02/07318-1, and by the Brazilian National

Research Council (CNPq) under grants 52.1267/96-0, 52.1685/98-6 and 860.068/00-7.

References

1. Inselberg, A. and B. Dimsdale. Parallel Coordinates: A Tool for Visualizing Multidimensional

Geometry. in IEEE Visualization. 1990: IEEE Computer Press. p. 361-370

simeon
110



2. Bennett, k.P. and O.L. Mangasarian, Robust linear programming discrimination of two linearly

inseparable sets, in Optimization Methods and Software. 1992, Gordon & Breach Science

Publishers. p. 23-34.

3. Rundensteiner, A., et al. Xmdv Tool: Visual Interactive Data Exploration and Trend Discovery

of High Dimensional Data Sets. in Proceedings of the 2002 ACM SIGMOD international

conference on Management of data. 2002. Madison, Wisconsin, USA: ACM Press. p. 631

4. Keim, D.A. and H.-P. Kriegel, Visualization Techniques for Mining Large Databases: A

Comparison. IEEE Transactions in Knowledge and Data Engineering, 1996. 8(6): p. 923-938.

5. Ward, M.O. XmdvTool: Integrating Multiple Methods for Visualizing Multivariate Data. in

Proceedings of IEEE Conference on Visualization. 1994. p. 326-333

6. Fua, Y.-H., M.O. Ward, and A. Rundensteiner, Hierarchical Parallel Coordinates for Exploration

of Large Datasets. Proc. IEEE Visualization'99, 1999.

7. Wong, P.C. and R.D. Bergeron. Multiresolution multidimensional wavelet brushing. in

Proceedings of IEEE Wsualization. 1995. Los Alamitos, CA: IEEE Computer Society Press.

p. 184-191

8. Keim, D.A., Information Visualization and Visual Data Mining. IEEE Transactions on

Visualization and Computer Graphics, 2002. 8(1): p. 1-8.

9. Bier, E.A., et al. Toolglass and Magic Lenses: The See-Through Interface. in SIGGRAPH '93.

1993.

10. Ahlberg, C. and B. Shneiderman. Visual Information Seeking: Tight coupling of Dynamic

Query Filters with Starfield Displays. in Proc. Human Factors in Computing Systems CHI '94.

1994. p. 313-317

11. Keim, D.A. and H.-P. Kriegel, VisDB: Database Exploration Using Multidimensional

Visualization. IEEE Computer Graphics and Applications, 1994. 14(5): p. 16-19.

12. Card, S.K., J.D. Mackinlay, and B. Shneiderman, Using Vision to Think. Readings in

Information Visualization. 1999, San Francisco, CA: Morgan Kaufmann Publishers.

13. Siirtola, H. Direct Manipulation of Parallel Coordinates. in International Conference on

Information Visualization. 2000.

14. Kandogan, E. Star Coordinates: A Multi-dimensional Visualization Technique with Uniform

Treatment of Dimensions. in IEEE Symposium on Information Visualization 2000. 2000. Salt

Lake City, Utah. p. 4-8

15. Rao, R. and S.K. Card. The Table Lens: Merging Graphical and Symbolic Representation in

an Interactive Focus+Context Visualization for Tabular Information. in Proc. Human Factors

in Computing Systems. 1994. p. 318-322

16. Wegman, E.J. and Q. Luo, High Dimensional Clustering Using Parallel Coordinates and the

Grand Tour. Computing Science and Statistics, 1997. 28: p. 352–360. 

simeon
111



 



DataJewel: Tightly Integrating Visualization with 

Temporal Data Mining 

Mihael Ankerst, David H. Jones, Anne Kao, Changzhou Wang 

Boeing Phantom Works,
P.O. Box 3707 MC 7L-70, Seattle, WA 98124-2207 
[mihael.ankerst | david.h.jones | anne.kao

| changzhou.wang]@boeing.com

Abstract.  In this paper we describe DataJewel, a new architecture designed for 

temporal data mining. It tightly integrates a visualization component, an algo-

rithmic component and a database component. We introduce a new visualiza-

tion technique called CalendarView as an implementation of the visualization 

component. We show how algorithms can be tightly integrated with the visuali-

zation component and that most existing temporal data mining algorithms can 

be leveraged by embedding them into our architecture. This integration is 

achieved by an interface that is used by the user and the algorithm to assign 

colors to events. The user assigns colors to interactively incorporate domain 

knowledge or to formulate hypotheses. The algorithm assigns colors based on 

the discovered patterns. Using the same visualization technique for both data 

and patterns makes it more intuitive for the user to select useful patterns from 

those returned by the algorithm. We also present a data structure that supports 

temporal mining of very large databases. In the experiments, we apply our ap-

proach to several large datasets from the airplane maintenance domain and dis-

cuss its applicability to domains like homeland security, market basket analysis 

and web mining. 

1   Introduction 

In recent years, there has been a lot of interest in the KDD community in mining tem-

poral data. Temporal datasets have a dedicated attribute storing a time stamp for each 

record. This time stamp usually refers to the date an event has happened or some kind 

of data has been measured and collected. Examples for temporal datasets include 

stock market data, manufacturing or production data, maintenance data, web mining 

and point-of-sale records.  Due to the importance and complexity of the time attribute, 

a lot of different kind of patterns are of interest. An overview is provided in [2]. Typi-

cally, in different domains different kind of temporal patterns are of interest. This is 

one aspect motivating our architecture, which provides access to many temporal data 

mining algorithms and an easy way to add new ones.  

When dealing with temporal databases a second but very substantial aspect becomes 

an important challenge. In large enterprises, databases evolve as a consequence of an 
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organizational need. They are designed to serve a specific (e.g. operational) purpose. 

Often databases from different organizations can be linked together to serve a new 

purpose, e.g. to provide a platform for data mining. However, the task of linking data-

bases together is far from trivial; the field of information integration deals with chal-

lenging and laborious problems of maintaining data integrity, schema mapping, and 

resolving duplication. Often, there is no common attribute at all except the timestamp. 

By linking tables together to explore a subset of the union of the attributes with re-

spect to time, a powerful view upon the data is obtained. E.g. intelligence agencies can 

link tables together that correspond to news, credit card histories, travel itineraries to 

detect suspicious activities. An enterprise can link together helpdesk data about com-

puter problems with a completely independent table from the procurement department 

and a labor database. The detected patterns might reveal insights into causes of com-

puter problems and might form a new purchasing strategy.  

In this paper, we address both aspects of temporal data mining. On the one hand, our 

approach is applicable to a variety of domains because it leverages existing algo-

rithms. On the other hand, it offers a means of linking tables together that have no 

primary key – foreign key relationship. All they are required to have is an attribute 

with a timestamp. 

In addition, our new architecture for temporal data mining also makes the following 

contribution. Traditionally, algorithmic approaches are introduced by one research 

community and some of them also focus on scalability aspects. However, for most of 

the papers, the visualization component is omitted, either because the authors do not 

feel comfortable in this area or because they think a graphical user interface alone 

should be sufficient and that is not a research task. On the other hand, the visualization 

community focuses most often just on the visualization aspect, i.e. how to represent 

data, but does not investigate algorithmic approaches [5]. With this paper, we would 

like to make a contribution towards a closer collaboration of these fields. We show 

that a system that is designed to tightly integrate components from various disciplines 

can substantially improve the functionality of loosely coupled components. 

The rest of the paper is organized as follows. In Section 2, we summarize related 

work. Section 3 describes a user-centric data mining process and the DataJewel archi-

tecture. Section 4 presents the visual component of our architecture and describes in 

detail our new visualization technique called CalendarView. Section 5 outlines how 

temporal data mining algorithms can be tightly integrated into DataJewel. Section 6 

reports how to handle large datasets. In section 7, we describe several experiments 

with large datasets. We conclude the paper with section 8 and discuss some future 

directions. 
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2   Related Work 

Our main contribution is to tightly integrate a visual, an algorithmic and a database 

component for temporal data mining. To our knowledge no such architecture has been 

proposed so far. Most of the work in temporal data mining deals with either just an 

algorithmic approach, a way to visualize data over time or an approach to scale up to 

large datasets. We review these areas in the following paragraphs. 

Many approaches for visualizing data over time have been proposed. Typically, visu-

alization techniques represent temporal data either as a sequence along an axis, or as  

animations where data at different times is represented in different frames. A recent 

approach which treats data as a sequence is ThemeRiver [6]; it employs the metaphor 

of a current and maps histograms of document keywords to the height of a wave at a 

particular time. Mackinlay et. al. [11] uses a spiral for calendar visualization, how-

ever, calendar days are just used as reference points. Hierarchical pixel bar charts [8] 

are not aimed at visualizing temporal data but it can be used as an alternative pixel 

representation within a day. 

Several algorithms for mining temporal datasets have been proposed. According to a 

recent overview [2], contributions have been made in the areas of how to model a 

temporal sequence, how to define a suitable similarity measure for sequences and what 

kind of mining operations can be performed. We will show in section 5 that many of 

the existing algorithms can be leveraged by our architecture.   

Tightly integrated architectures have been proposed, but are only partially comparable 

to our approach. In [1], the authors describe an approach called cooperative classifica-

tion, where the visualization and the algorithmic component are tightly integrated. 

This approach however, was specifically designed for decision tree classification and 

does not elaborate on scalability issues. Similarly, HD-eye [8] and n23Tool [15] inte-

grate visualization with algorithms but are applicable just to clustering methods. [14] 

represents clusters of time series data which contain a pattern spanning one day and 

relating them to days with similar patterns. In contrast to our approach, it does not 

represent the data for each day nor does it cover scalability issues. Tightly integrating 

algorithms with databases or incorporating scalability considerations into data mining 

algorithms has been recognized and studied more extensively. A comprehensive sur-

vey is presented in [10]. Proposed ways to achieve scalability are falling in one of the 

three categories: design of a fast algorithm (e.g. by restricting the model space or 

parallelization), partitioning of the data (instance/feature selection methods) and rela-

tional representations (e.g. integration of data mining functionality in database sys-

tems). Recent approaches include the computation of sufficient statistics, like Rainfor-

est [4] does for decision trees. [12] describes an in-depth analysis of different level of 

integration of an association mining algorithm into database systems. CONTROL [7] 

aims at a database-centric interactive analysis of large datasets focusing on online 

query processing. All these approaches, however, are not directly applicable to tempo-

ral data. 
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3   User-centric Data Mining 

One design goal of our user-centric architecture is its intuitive use by a domain ex-

pert as opposed to data mining experts. As a result, the user can steer the exploration 

of temporal data, invoke algorithms to automatically discover patterns, incorporate his 

domain knowledge, hypothesize on the fly and use his perception to detect patterns of 

interest. In figure 1, we outline the mining process with DataJewel.  

First, the user selects the tables and attributes for analysis. Then the data is loaded 

and 

visualized. The user has the option of invoking an algorithm and visualizing the result-

ing patterns using the current settings. Alternatively, the user can interact with the 

visualization to incorporate his domain knowledge or discover some patterns based on 

his perception. In either case, the user hopefully discovers some pattern of interest. 

Then he selects a date range of interest and visualizes it with the same or another visu-

alization technique. Another visualization technique might be picked to represent the 

data in a different way or because it is more suitable due to the reduced size after the 

selection. After the user has iterated this loop several times, he might be interested in 

“drilling down” to the raw data to see all attributes. The corresponding tables are 

accessed, the data is retrieved and presented. Note that this approach facilitates 

extensions by incorporating new algorithms and visualizations. 

In the following, we introduce some terminology and state assumptions for our ar-

chitecture. Let us assume, the data sources consist of a set of tables. Each table con-

tains r records, with each record consisting of d attributes a1,…,ad. At least one attrib-

ute contains a timestamp for each record. We refer to the timestamp attribute as the 

Raw data 

is shown

User selects data sources/ attributes

Data is loaded

Data is visualized

User invokes 

an algorithm

User selects  

date range

User interacts 

with visualization

User selects visualiza-

tion technique

Figure 1. The mining process with DataJewel
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Figure 2. Data flow versus design of DataJewel

event date, all categorical1 attributes that should be incorporated in the analysis are 

event attributes and the attribute values of these event attributes are events. In this 

paper, we will focus on event attributes (categorical attributes only) for which the 

following assumptions hold: 

a) The number of event attributes is low. (< 10) 

b) The number of different events of one event attribute is moderate. (< 200) 

c) The smallest time unit of interest in the event dates is one day 

Assumption a) restricts the number of event attributes used during the analysis. As 

opposed to high-dimensional feature vectors for which some mining tasks are per-

formed, event attributes usually have a clear meaning. Often, in one given analysis, the 

analyst selects a small number of event attributes, which can be associated with each 

other in the particular domain. Using domain knowledge, the remaining attributes are 

omitted from the analysis because they would just add noise. 

Assumption b) limits the number of events of an event attribute to a moderate size. 

In case, where this is not true for the initial dataset, a concept hierarchy can be defined 

for the event attribute to reduce the total number of events. 

With assumption c) we focus on the most common time unit of interest in business 

domains. Note that days are just the smallest unit of interest and the discovery of 

weekly or monthly patterns is also supported. Obviously, for intrusion detection sys-

tems, our proposed unit of time would have to be refined to reflect finer grained time 

units. 

In figure 2, a simplified view of the DataJewel architecture is depicted consisting of 

three layer. Although the data flows from the data source to the visualization layer, we 

have designed our system from the opposite direction to better support a user-centric 

process. Corresponding to each one of these layers, we will describe the visualization, 

the algorithmic and the database component. We will present just one instance of the 

visualization and the algorithmic component, but new ones can be easily integrated. 

                                                          
1 Continuous attributes can be transformed into categorical attributes by discretization.  
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4   The Visualization Component 

The visualization component contains visualization techniques suitable for repre-

senting temporal data. We present a new visualization technique, which represents 

temporal data on a daily basis. 

4.1   CalendarView 

Our architecture is primarily designed for domain experts not just for data mining 

experts. Thus the visualization component has to be intuitive as well as versatile. Cal-

endarView, our new visualization technique, is motivated by what the human is al-

ready very familiar with. First, the representation of event dates is designed following 

the visual metaphor of a calendar. Second, the structure of the data that is represented 

along the event dates is the frequency of events. Its representation is based on the 

familiarity of humans with histograms. 

In simpler linear representations, time is greatly simplified by modeling it as a se-

quence of dates. In contrast, we have selected the calendar metaphor because it re-

flects the rich temporal structure more effectively than typical simplified representa-

tions. From a calendar, the human preattentively extracts the notion of weekends, 

weekly repetitions, seasons, days with a special meaning in his domain, etc.  

Whereas the calendar metaphor is used to represent the event dates on a daily basis, 

an extended version of histograms reflects the distribution of events for a single day. 

To enable the user to compare different event attributes with each other, each event 

attribute is represented by a separate calendar. In the final visualization all calendars 

are drawn one above the other. 

Table 1. Example of a temporal dataset
Event 

Date

Event Attribute: 

Page hit 

Event Attribute: 

Browser 

Event 

Attribute: 

…

1/1/2002 Index.html MS IE … 

1/1/2002 Dep1/contacts.htm Netscape … 

… … … … 

Table 1 depicts an example of a temporal dataset. Each event has an associated event 

date, so we can count the frequency of this event occurring on a single day. If we do 

that for each event of one event attribute we can display the distribution by a histo-

gram for this event attribute. We can initially assign a different color to each event of 

one event attribute. The default color map is the PBC color map [1] which has been 

developed to map distinct values to distinct colors. As illustrated2 in figure 3, for each 

day the frequency distribution of the events is represented within the corresponding 

day in the calendar. 

                                                          
2 Note that the color mapping in this paper is not the original color assignment. It has been 

changed to optimize for grayscale printing. 
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Instead of using colored histograms where frequency is depicted by the height of 

the bins, the events are represented pixel by pixel to account for more categories than 

are usually depicted by a histogram. In particular each day is filled with pixels in the 

following way: 

Each day is represented by a constant size square of nn×  pixels. If the number of 

events of this event attribute on the corresponding day is less or equal to 2n , we can 

use one pixel per event. The pixel arrangement starts in the lower left corner of the 

day square. It goes up (n-1) times, goes one pixel to the right, then goes (n-1) pixel 

down, one pixel to the right, and so forth. Following the illustration in figure 3, let us 

assume we have four events e1, e2, e3 and e4. The frequency of the occurrence of e1 on 

a particular day is denoted by f(e1, date). Then we draw the first f(e1,date) pixels with 

the color assigned to e1. Following the described pixel arrangement, the next f(e2,

date) pixels are drawn in the color of event e2, and so forth. We can distinguish be-

tween the following three cases: 

1) If =

e

dateefn ),(2  then we fill up the complete day square and each pixel repre-

sents one event by its color.  

2) If >

e

dateefn ),(2 then each pixel represents one event by its color but all pixels do 

not fill up the entire space in the day square. The remaining pixels are drawn with a 

separate (background) color. 

3) If <

e

dateefn ),(2 we fill up the complete day square by the algorithm above after 

substituting f(e, date) with ⋅
2

),(

),(
n

dateef

dateef

e

. (formula 1) 

The order of the events can greatly contribute to perception of their distribution. By 

reordering the events for each day preattentive processing can be improved. The rea-

Figure 3. Illustration of CalendarView

S     M     T    W    T    F    S 

Distribution of

events  

e1, e2, e3, e4

January 1st, 2002

e1   e2   e3  e4
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son becomes clear with the following example. Let us assume the daily distribution of 

ten events over one year is very similar and even within each day the number of events 

does not differ largely. Let us further assume there is exactly one day where the least 

frequent event suddenly happens more often. At that day it is the second most frequent 

event. Then in addition to representing this event with more pixels than at other days, 

the reordering yields a better perception of this distribution change. Thus, the reorder-

ing improves the perception of distribution changes (cf. figure 4 where the 4
th

 day is 

reordered). Note that the daily reordering is done in real time, since computation is 

negligible, due to our assumptions in section 3.  

Our default setting which we use throughout the paper is n = 10. The size of the day 

square 2n  is a tradeoff between representing each event by one pixel and the size of 

the (virtual) screen. 

4.2   Interaction with CalendarView 

In the following, we will describe the main interaction capabilities of Calendar-

View: 

- Selection 

As described in section 3, one essential feature of the visualization component is to 

select a subset of dates. The user is enabled to interactively select a set of consecutive 

days. The subset corresponding to the selected event dates can again be visualized 

following the iterative process outlined in section 3.  

- Ascending/descending order 

The decision if the events should be ordered ascending or descending by frequency is 

just important for the case where we have less pixels in a day square than events. If the 

frequency distribution on a particular day is very skewed, some events might not be 

represented at all because the drawing algorithm with formula 1 might have already 

filled up the complete day square. We think, in most cases the user is either interested 

in outlier events which happen very rarely as opposed to others or he is interested in 

the overall distribution of the “main” events. Therefore we enable the user to switch 

between ascending or descending order in real time. In case the ascending order has 

been selected, the drawing of the pixels starts with the rarest events and thus uncovers 

them possible at the expense of cutting off the largest event at the end. If the descend-

ing order is selected, the most frequent events are drawn first. 

without reordering 

with reordering

Figure 4. Ordering events daily by frequency
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- Interactive color assignment  

Initially, colors are assigned to events based on the PBC color map. Thus missing 

values can be elegantly treated as a distinct event and are assigned to a certain color 

(background by default).  A dialog window enables the user to interactively assign 

colors to events. With manual color assignment the user can specify his domain 

knowledge, can formulate and test an hypothesis on-the-fly or steer the exploration in 

a meaningful way. The notion of color assignment is implemented as follows: If the 

user changes several events to have the same color, he indicates a conceptual generali-

zation of the events. As a result, all events which are assigned to the same color are 

referred to as the same event when the visualization is redrawn. Thus, for each day, 

the events with the same color are grouped together before the drawing algorithm is 

invoked. For example, following the web mining dataset from table 1, let us assume 

we are recording web page hits on a particular day. These events can be generalized 

by the user by assigning color c1 to all pages of the main website which have been 

visited. Color c2 refers to the dep1/ subdirectory, c3 to the dep2/ subdirectory and 

color c4 is used for all other web pages. The interface is depicted in figure 5, also 

enabling the user to sort by event name or frequency. Each event attribute has a sepa-

rate color assignment.  

In figure 6, two event attributes from our example dataset are visualized from January 

1
st
, 2002 to February 18

th
, 2002. For the “page hits” event attribute, the user has as-

signed colors to four different groups of web pages as described above. We see page 

hits on January 1
st
 but no more until Saturday, January 12

th
. Maybe the web server was 

down for 11 days? Also the event attribute “browser” has its first event on Sunday, 

January 20
th

. Maybe the web server did not recognize the browser type until that day? 

Just two different browsers have been recognized. One browser has being used more 

often throughout the whole time period. 

-Zooming 

The user can zoom in or zoom out. 

Figure 6.  

Calendarview with web mining dataset 

Figure 5.  

Interactive color assignment 
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- Detail on Demand  

The event corresponding to the pixel of the current mouse pointer position is dis-

played. 

5   The Temporal Mining Component 

Building the visualization component, we have introduced a visualization technique 

called CalendarView, which maps different events to distinct colors. In the case there 

are just a few events the visualization itself is very powerful since human’s preatten-

tive perception is very efficient in looking for variety of patterns. If the number of 

different events is larger, the usefulness of the default color assignment decreases 

because colors are not perceived as being distinct any more.  

Nevertheless the visualization technique might reveal patterns since changes in the 

event distribution might still be perceived. With the interface for interactive color 

assignment, we have introduced one concept for handling a larger number of events. 

However, if focus is not on a certain known event, manually changing a random se-

quence of colors can quickly become tedious. This realization has led us to consider a 

tight integration of the temporal mining algorithms to the visualization. Coming from 

this perspective, we would like to have algorithms that discover patterns, determine 

the events involved in the patterns and use this information to automatically select 

colors based on the patterns that will be revealed. This automatic color selection can 

be used to compute a reasonable default color assignment or it can be invoked at any 

time during the exploration.  

In summary, two aspects of our architecture contribute to the intuitive cooperative 

exploration of the data by the user and the algorithms. First, CalendarView visualizes 

not just the data but also the patterns. Second, the same color assignment interface is 

used by both the user and the algorithm. We now will focus on how the following 

three classes of algorithms use color assignment:  

• Discover one single event of one event attribute that shows an interesting pattern 

• Discover multiple events of one event attribute that show an interesting pattern 

• Discover one event for each event attribute such that these events together show 

an interesting pattern (an extension is that the user selects one event and lets the al-

gorithm detects events of other event attributes which show some relation to the se-

lected event, e.g. similarity, correlation, etc.) 

Discover one event of one event attribute 

Many existing algorithms calculate one single event based on some measure of in-

terest [2]. These measures can range from basic statistical methods like highest vari-

ance to more computationally expensive ones like “most interesting trend”. No matter 

how the algorithms compute the single event of interest, our approach encapsulates it 

and changes the colors of the events accordingly. This means all colors but one are 

changed to one light color, whereas the event for which the pattern was found is 
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changed to have a unique dark color. Thus the user can focus on the distribution of 

this single event in relation to the overall frequency of all events. 

We have included the following implementation of such an algorithm called 

LongestStreak, which is based upon the idea of stabilized p charts from the statistical 

field control charting [13]: 

1. For each event e, compute a sequence of relative frequencies as follows: For each 

day, compute the percentage of occurrences of event e based on all events occur-

ring on the same day. 

2. Compute the weighted mean and standard deviation of each sequence. Consider 

just the days that are event dates. 

3. Label each day where event e is significantly below or above its mean as signifi-

cant day with respect to event e.
4. Return the event with the longest streak of consecutive significant days. Break ties by re-

turning the first one found. 

Alternatively, we could also modify step 4 to return the event with the most signifi-

cant days. After the visualization is updated based on the discovered event the user 

can continue the exploration process.  

Discover multiple events of one event attribute 

Again, many algorithms have been proposed which compute this class of patterns 

[2], e.g. discovery of similar events. The algorithm returns a set of events which to-

gether represent a pattern. Our architecture changes the color assignment such that 

each event that is part of the pattern is assigned a distinct color, and all other events 

are assigned to one color. 

Our implemented instance of this class of algorithms called MatchingEvents ex-

tends LongestStreak described above: 

1. For each event, compute significant days and record a bit sequence having a ‘1’ for 

each a significant day and a ‘0’ otherwise 

2. Take LongestStreak as the baseline event 

3. Compare the bit sequence of the LongestStreak event with all others to find the 

closest match. This is determined by a bit-wise comparison and each match of a ‘1’ 

in both sequences increments the match counter by one. The event whose bit se-

quence has the highest match counter is the correlated event.

4. Return the LongestStreak event and the correlated event. 

Discover one event for each event attribute 

The two previous algorithms have looked for patterns in one single event attribute. 

In contrast, this class of algorithms looks for patterns relating event attributes to each 

other, instead of analyzing them separately. Many proposed algorithms fall into this 

class, e.g. finding similar events across different event attributes. The resulting pattern 

is visualized by updating the color assignments of each event attribute accordingly.  

We implemented an instance of this class very similar to MatchingEvents. But in-

stead of comparing the LongestStreak of the first event attribute to other events of the 

same attribute, it is compared to all events of the other event attributes. The algorithm 

returns the LongestStreak of the first event attribute and for each other event attribute 

the event that is correlated. In the experimental section, we refer to this algorithm as 

MatchingEvents2.
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6  The Database Component 

In this paper, we assume the datasets reside in tables from one or more relational 

databases. The integration of a database component should provide access to the data, 

a mechanism to scale up to large datasets and the capability to access the raw data of 

all attributes associated with the patterns found.  

The critical part of the database component is to scale up to large databases. For 

our architecture, scalability entails a visualization and a memory aspect. The first 

aspect, namely how to visualize large datasets is addressed by visualizing the relative 

frequency of events on a single day as described in section 4. In this section, we de-

scribe how large datasets are processed. The fundamental idea is to compute an ag-

gregated version of the dataset such that it fits in main memory. The aggregated data-

set contains sufficient statistics similar to e.g. [4] for decision trees, and we show the 

upper bound of the main memory requirements based on our assumptions stated in 

section 3. 

Let us pick up our example dataset from table 1. This dataset might consist of mil-

lions of rows since each occurrence of an event is typically stored as one record. If we 

use the aggregation capabilities of the database, the number of records that are loaded 

can be significantly reduced. Instead of storing each occurrence of an event, we count 

for each day the number of occurrences for each event. E.g. the sufficient statistics for 

event attribute “page hits” can be computed by submitting the following SQL query: 

SELECT Event_date, page_hits, count(*) as Frequency 

FROM example_table 

GROUP BY Event_date, page_hits 

ORDER BY Event_date, page_hits; 

The resulting table is sketched in table 2.  The amount of compression achieved by 

aggregation depends on the number of distinct event dates, the number of distinct 

events and how distinct events are distributed across the dates. 

Table 2. Sufficient statistics for event attribute "page_hits" 

Event date 
Event attribute  

(page_hits) 
Frequency 

1/1/2002 Index.html 1934 

1/1/2002 Dep1/contacts.html 36 

… … … 

The memory requirement for our initial dataset is proportional to the number of en-

tries in a relational table. For one event attribute, event dates and events of this attrib-

ute have the memory requirements 
init

mem , with 

∝
init

mem number of days ⋅  average number of events per day

In contrast, the memory requirements 
new

mem for the computed sufficient statistics 

table (table 2) is 
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∝
new

mem number of days ⋅  average of the number of distinct 

 events per day 

The difference in memory usage is the ratio between the average number of events 

per day and the average number of distinct events per day. This ratio will vary with 

the domain and the event attribute. For example, in the aircraft maintenance domain 

for one airline we had: 

Average number of events per day: 402 

Average number of distinct events per day: 32 

The ratio in this example is 12.5:1. Whereas the number of records grows linearly for 

the initial dataset with every new event, our new table typically just increments a 

counter. This is most useful in domains where the number of events per day is very 

high, like web page accesses, items in market baskets across departments, phone calls, 

etc.

Given our assumptions from section 3, the worst case memory requirements 

worst
mem for the sufficient statistics table of one event attribute can be computed for e.g. 

15 years: 

∝
worst

mem 15 ⋅  365 days ⋅  200 distinct events = 1,095,000

In this case, every event happens every day at least once during a period of fifteen 

years. We can store each event with one byte (next to a small lookup table) and the 

days and frequency as integers with 4 bytes. The sufficient statistics table would re-

quire: 1,095,000 ⋅  (1 + 4 + 4) = about 9.8 Megabytes. Together with our assumption 

that the number of event attributes is low, we can conclude the sufficient statistics 

tables fit in main memory for many domains. 

To summarize, the database component is integrated in two ways: First, the rele-

vant event attributes of the original tables are compressed by computing the summary 

statistics offline. Second, database access is provided in a straight forward way: Since 

the user basically selects subsets of the initial time period during the exploration proc-

ess, he can decide to retrieve the records with all attributes corresponding to the se-

lected time period. Then a range query over the time period returns the raw data of 

interest. In our experiments, the computed summary statistics always fit in main mem-

ory and the computation of the proposed algorithms is efficient. Both, we believe is 

true for most datasets which fulfill our assumptions in section 3.  

However, if more attributes are involved in an algorithmic run, or the integrated al-

gorithms are more complex, then a tighter integration with the database component 

might be necessary. E.g. algorithms might be decomposed and leveraged by SQL 

extensions or user-defined functions could be used. If the algorithmic run is pushed 

back to the database, the user can continue to explore the data and get notified after 

the computation is finished. 
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7  Experiments 

In our experiments, we investigate several real-world datasets from the airplane 

maintenance domain. We think the scenario we describe in this section is similarly 

applicable to many other domains like homeland security, web mining, market basket 

analysis or intrusion detection. The datasets are tables from a database containing 

maintenance events of different airlines for different airplane models3. Maintenance 

events range from negligible ones like coffee spills on the seat to major ones like 

problems with a landing gear. Each record has information about the date a mainte-

nance problem has occurred, the airport where it was recorded, who discovered it, the 

written complaint, the maintenance action taken, the system and subsystems affected 

by the problem, etc… We will focus on the affected systems, which will be our event 

attribute. A system is a set of related parts that work together to perform a function 

such as communication, engine, flight control, doors, etc. 

Table 3. Datasets 
Dataset Event dates Nr. of 

events 

Nr of records 

(originally) 

Nr. of 

records 

(suff stat) 

A
3/6/89- 

12/31/02
37 350,772   87,030 

B
5/12/90- 

12/31/02
39 1,165,881 117,441 

C
1/30/89- 

12/31/02
41 1,405,582 133,116 

D
3/6/89- 

12/31/02
28 350,772   78,802 

E
11/12/89

- 12/31/02 
41 2,051,269 162,918 

F
1/12/89- 

12/31/02
182 2,051,269 574,071 

G
12/27/89

- 12/31/02 
40 17,499 11,547 

Table 4. Runtime (in seconds) of algorithms 

Dataset LongestStreak MatchingEvents MatchingEvents2 

A 0.27 0.31 0.53 (with B) 

B 0.31 0.30 0.62 (with C) 

C 0.35 0.36 0.54 (with D) 

D 0.28 0.26 0.63 (with E) 

E 0.37 0.36 0.9 (with F) 

F 0.71 0.68 0.87 (with G) 

G 0.23 0.22 0.47 (with A) 

                                                          
3 An airplane model is e.g. 747, 767, etc. 
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Metadata about the various datasets we explored is depicted in table 3. The re-

corded maintenance datasets span time periods between twelve and fourteen years.  

Table 4 shows the runtime of our implemented algorithms on the datasets. For the 

algorithm MatchingEvents2, we also indicate in brackets which other dataset has been 

the second event attribute. We ran all experiments on a PC with a Pentium III/ 800 

Mhz processor and 1 GB main memory. For all datasets, we achieve an acceptable 

runtime. 

7.1   Mining Airplane Maintenance Datasets 

We describe a typical scenario which shows how our approach can be used. We 

start our investigation by selecting a dataset from one airline and one model. The 

chosen event attribute which we analyze over time is the system of the airplanes. Since 

there are a lot of different systems, we select the algorithm LongestStreak to compute 

one interesting system (it found engine fuel) which updates the color assignment. 

Figure 7 top row shows a small range of the resulting visualization. Especially during 

the last five days of July 2000, we perceive many events, indicating problems with 

engine fuel. Next, we add several datasets to compare this finding with patterns for 

different airlines. For each airline and the same model, we manually change the color 

assignment of the systems. We color every system except engine fuel with one light 

color and assign a dark color to all engine fuel related events. When we compare these 

airlines (two more airlines are shown in figure 7), we see the other airlines do not 

show a specific pattern. Even though just a small time range is shown, it is the case for 

all event dates. So we might decide to further investigate the first airline. Now we add 

to the first dataset another dataset which aggregates individual airplane id’s of the 

same airline and model over time. The event attribute of the newly added dataset is the 

airplane id and we would like to find a correlation between the events we identified 

concerning engine fuel and maintenance events of individual airplanes. We run the 

algorithm MatchingEvents2 to single out one airplane. This airplane is shown in figure 

8 and we see e.g. that a lot of maintenance events for this single airplane have oc-

curred on December 3
rd

, 1997. Note that for brevity we have omitted a screenshot of 

the corresponding time range of figure 7.  

Finally, we select a dataset with maintenance events of just this airplane. The event 

attribute is again airplane systems. We run the algorithm MatchingEvents to see if two 

events frequently co-occur. A part of the resulting visualization is shown in figure 9. 

The two correlated events returned are fuel and communications indicated by the 

black and light gray color. E.g. on Monday 18
th

 November, both events co-occur. 

With this knowledge we drill down to the raw data to further investigate the findings. 
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Figure 7. Focusing on maintenance events with the same subsystem for three different airlines

Figure 8. CalendarView focusing on maintenance events for one airplane 

Figure 9. CalendarView focusing on maintenance events with two subsystems for 

one airplane
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7.2 The DataJewel System 

We have implemented the DataJewel system based on the architecture proposed in 

this paper. It can quickly be adapted to new domains since it is designed to be extensi-

ble for new visualization techniques and new algorithms. In the figure 10 two useful 

features are shown. First, the raw data can be accessed, displayed, saved or printed. 

Whereas the temporal analysis is based on just a few event attributes from possibly 

different tables, the user typically is interested in other attributes of the records corre-

sponding the pattern found. As the data has been distilled and narrowed down during 

the exploration, the current range of event dates represents the dataset of interest. Thus 

just one range query is submitted against the database(s) to retrieve the attributes of 

interest. Second, an optional tree on the right side depicts the exploration process. The 

simplified temporal mining process presented in section 3, focuses on the iterative 

process of reducing the dataset. However, at some points the user may like to return to 

a previous stage, either because he found something of interest or not. Therefore, the 

tree on the right side shows a node for each subset of data explored so far. The user 

can either return to a node or annotate a node. 

The algorithmic component can be used in three ways. It can be used to determine 

the default color mapping, it can be invoked at any time during the exploration proc-

ess or it can run as a background process in parallel to the user’s exploration and no-

tify him upon discovery of some patterns. In addition to updating the color assignment 

after patterns have been found, the event dates not covering the patterns can be grayed 

out. Alternatively, the patterns can be displayed in a textual form. 

Figure 10. Screenshots of DataJewel 

7.3 Discussion 

We think the DataJewel architecture is also well adapted to areas like homeland se-

curity, market basket analysis or intrusion detection. Homeland security tasks like 

identifying suspicious behavior can be supported by our architecture in several power-

ful ways. For example, different event attributes can be associated with each other 

even though their events take place at different dates, months or possibly years. For 

intrusion detection, data may be aggregated hourly instead of daily, therefore an addi-

tional visualization technique would need to be added to the visualization component. 
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In the context of market basket analysis, many algorithms have already been proposed 

and successfully used to find patterns. The discovered rules look like: If a customer 

buys bread and sugar then she is likely to buy beer as well.

These algorithms look for items that are frequently bought together, however, they 

do not make use of the time that is associated with each transaction. Analyzing market 

basket databases over time can reveal a new set of patterns like: Customers are likely 

to buy cereal and fruits in the beginning of the week and alcohol and candies at the 

end of the week.

Note that our approach would be suitable for these datasets even though the dimen-

sionality of market basket databases is typically very high (hundreds or thousands of 

items). Each item is usually modeled as one attribute and a record corresponds to all 

items purchased by one customer. Instead, for our approach we would map all items to 

different events of one attribute and store the frequency of the corresponding items 

bought per day. If the number of items is very large, a concept hierarchy could be used 

to generalize to fewer items, as outlined in section 3. 

8   Conclusions 

Visualization, mining algorithms and databases are main areas in the field of KDD. 

Most research concentrates in just one of these areas. Our work is based on an inte-

grated approach that we believe can significantly improve the discovery of useful and 

understandable patterns. We present a novel user-centric architecture for temporal 

data mining, tightly integrating a visualization, an algorithmic and a database compo-

nent. We introduce a new visualization technique called CalendarView for represent-

ing temporal data. One main contribution is the use of the same visualization for the 

data and for the computed patterns. In addition, we designed an interface of assigning 

colors to categories, which is used by both the user and the algorithms. On the one 

hand, the user can steer the exploration or incorporate his domain knowledge, on the 

other hand, the algorithm can suggest meaningful color mappings based on the pattern 

discovered. By precomputing sufficient statistics from the initial datasets, our ap-

proach scales up to very large databases.  

In our future work, we will apply DataJewel to different areas, using the extensible 

architecture to add new visualization and algorithmic components. We will investigate 

how our approach can be extended to fit different data types like text or multimedia 

data.  
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Abstract. A software system has been developed for the study of static
and dynamic data visualization in the context of Visual Data Mining in
Virtual Reality. We use a specific data set to illustrate how the visual-
ization tools of the 3D Visual Data Mining (3DVDM) system can assist
in detecting potentially interesting non-linear data relationships that are
hard to discover using traditional statistical methods of analysis. These
detected data structures can form a basis for specification of further ex-
planatory statistical analysis. The visualization tools are shown to reveal
many interesting patterns and in particular the dynamic data visualiza-
tion appears to have a very promising potential. The results encourage
further developments of the current and new tools in the context of prac-
tical applications.

1 Introduction

Most Visual Data Mining (VDM) methods have been designed for PC hardware
using 2D graphics or 3D graphics on a monitor. VDM in immersive 3D Virtual
Reality (VR) systems using CAVE [1] or Panorama1 arenas for visualization has
so far been dependent on special and expensive hardware, in order to achieve
real-time response to user interaction and navigation.

With the continuous improvements in computer technology, it is now possi-
ble with standard high-end PCs to drive VR systems. They can visualize many
objects while simultaneously navigating among them and perform intensive back-
ground calculations, all in real-time.

However, while the main principle behind the design of traditional VDM
methods is that e.g. 3D Scatter Plots are viewed from the “outside-in”, the
immersed VR users can navigate around inside a 3D Virtual World (VW), which
may then also be viewed from the “inside-out”. VR applications provide more
comprehensive input to the human senses and can therefore make more efficient
use of the human perceptual skills, when exploring large datasets.

The potential benefit of immersive VR for VDM has been debated [2]. Our
hypothesis is that a complementary and valuable benefit is achievable concerning

1 A stereo display wall with 1600 field of view, a diameter of 7,50 meters and a height
of 3,50 meters
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the detection of e.g. non-linear relationships in data, which are most likely to
escape traditional methods of data analysis.

To support our hypothesis, this paper presents the visualization tools for
exploring data in VR, which are available in a new version of the 3D Visual
Data Mining (3DVDM) system [3].

We study an example case with the visualizations tools, and we show how
they can help discovering special relationships in data that may warrant further
statistical analysis, by e.g. domain experts.

We will not derive conclusions with respect to practical nor statistical impor-
tance of the phenomena detected in the data, as this is outside the scope of this
paper. We also appreciate that the benefit of immersive VR is hard to illustrate
in a paper. All illustrations presented here are snapshots dumped from a mono
display on a monitor.

2 Previous Work

VDM methods, such as “The Grand Tour”, have been implemented in VR in
several occasions [4, 5], as well as the traditional method for data exploration
called “Brushing and Linking” [2].

A well known approach for visualizing multivariate data is to map data vari-
ables to visual object properties, such as position, size, shape, color, orientation,
etc. Such visual objects are called glyphs [6–8], and can be in both 2D and 3D.
Glyphs are efficient due to the ability of the human brain to discover patterns
within and among objects, as well as to recognize objects that do not “fit” into
a discovered pattern.

An example of the use of glyphs is “Chernoff Faces” [9], in which each ob-
servation in a dataset is represented by a cartoon face of which features, such as
length of nose, curvature of mouth, size of eyes, and even the shape of the face
itself, correspond to variables of an observation. Colored texture has also been
used to visualize multivariate data elements arranged on an underlying height
field [10]. Using volume visualizations of 3D scatter plots with glyphs represent-
ing data point [11], it is possible to use procedural shape generation techniques.
These techniques allow from 1 to 14 additional data dimensions to be visualized
using glyph shape.

It is important to note that the target is dependent on the success of the user
comprehension of multivariate data. Thus it is not necessarily a goal in itself to
visualize as many variables as possible simultaneously, but to make it possible for
analysts and domain experts to get a useful impression of relationships between
multiple variables.

3 The 3DVDM System and Tools

The 3DVDM system presented in this paper is the second generation of a soft-
ware system for exploring data in VR. While the first generation of the soft-
ware [3] pre-rendered visualizations of data in a time-consuming process, this
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second generation of the software renders visualizations of data in real-time,
while users are watching. This, potentially, opens up for many new possibilities,
of which some are mentioned in this paper.

The second generation of the 3DVDM system is based on a separate VR
software framework called VR++ [12, 13], which currently runs on Linux as
well as Irix. While VR++ provides functionality for e.g. parallel-processing,
communication, parameter control, and visualization of geometric objects, the
3DVDM system provides specialized VDM tasks. VDM tools are created by
connecting suitable tasks from both VR++ and the 3DVDM system. Current
PCs are sufficiently powerful to run the system for display on standard monitors,
or if networked, drive our CAVE or Panorama visualization arenas.

3.1 Data Pipeline

Figure 1 shows the general approach adopted in this research for visualizing
representations of data from databases.

Statistical Transform
Processing(sub)set

of the data

Extract
to visual

controlcontrol
Alternative statistical processing

Data extraction processing control

processing

structures

Visualization CAVE

VisualizationVisualization

DB

Fig. 1. The 3DVDM Data flow and interaction patterns

The system contains different data processing modules in a pipeline with the
possibility of feedback from users to each module. This has been achieved by
adding a control panel, which in real-time and with visual feedback allows for
modification of parameters on which a visualization is based.

First, a relevant subset of the data in a database is extracted and stored
as an easy accessible, internal database, which is passed on for processing to
later stages of the pipeline. The 3DVDM system has specially designed software
for loading “comma-separated-values” (CSV) files, in an efficient way. This is
accomplished by performing a complete analysis of the data the first time they
are loaded. The result of this analysis is stored along with the data in binary
format, beside the original data file. When the dataset is loaded again, the
result of the analysis phase is loaded instead of the original data. This allows
fast loading of large datasets, once initially analyzed.

The data handling part of the 3DVDM system is designed with real-time
rendering in mind, rather than with handling of large databases in mind. This
means that emphasis has been put on efficient storage of data in memory (RAM),
and efficient extraction of data from memory, rather than on, e.g. on-line access
to data from harddisks.
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The next stage in the pipeline is statistical processing. The 3DVDM system
has only simple facilities for statistical computations and manipulations. While
this topic is in general very important, the research reported in this paper, has
emphasis on visualization facilities. Off-line statistical analysis to prepare for use
of the 3DVDM system is recommended.

Data is subsequently transformed into an equivalent symbolic graphical rep-
resentation. This data format is independent of specific hardware and software
requirements. Last step is to transform this data to polygons, which are rendered
in a 3D space for visualization.

3.2 On Explorative Data Visualizations

The 3DVDM approach to data visualization is built around the possibility to
navigate around in a visual world (VW) - an “Extended 3D Scatter Plot” - to
explore arbitrary view directions from arbitrary view points. “Extended” means
that data points are visualized as objects, which may have different visual prop-
erties.

The ease, with which navigation occurs, highly depends on the frame-rate
and therefore the number of visual objects in the VW and on the complexity
of each visual object. It is an advantage to be able to visualize many objects
as possible, and this means that the complexity of each visual object must be
reduced as discussed in [3].

Another consequence of exploring data in the above VW is that attention
must be paid to the distance between VR users and 3D visual objects currently
observed. This is discussed in [14], where it is suggested that object size is kept
constant to allow the perceived size to support depth perception. Object size is
also the reference for a spatial distance perception in the general, and for design
and evaluation of perceptual conditions. Some properties like surface texture
should be observed at close range (measured in object size units) to support a
perceptual grouping, object shape still works at “medium” range, while color is
much more dominant perceptually and can be seen to define cluster structures
also at long range distances of observation.

3.3 Dynamic Data Visualizations

Dynamic Visualization (DV) of data is a new feature of the 3DVDM system. It
can be implemented in several ways, e.g. precomputed animations and real-time
computed animations. For each of these two cases, there are two possibilities of
interest: few frames shown for several seconds each, or many frames shown for
a fraction of a second each.

VR++ is a software framework specialized for creating VR applications with
real-time computed animations with many frames per second. This animation
form requires data visualizations to change so frequently, in response to changes
in both data and user input, that users experience a smooth animation, which
also reacts appropriately to real-time interaction, such as head movement.
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4 Preparing a Demonstration Case

To demonstrate the facilities and the potential of the 3DVDM system we first
outline a typical procedure for its use. A specific dataset used to illustrate the
3DVDM tools is then described, followed by a pre-analysis, which allows us to
directly make use of 3DVDM.

4.1 Typical use of 3DVDM

The basic principle is that statistical observations are visualized as objects in
a 3D scatter plot. Three (preferably quantitative and continuous) variables are
used to define the 3D coordinate system, and other statistical variables may be
represented as object properties, and be encoded as surface color and texture,
object shape, orientation etc.

The initial problem is to find and select one or more sets of three suitable
variables (triplets) to define the coordinate system and hence the spatial layout
of the objects in the 3D space.

Simple uni- and bi-variable analyses using a standard statistical package are
useful for a start. Continuous variables with “regular” distributions are candi-
dates for a triplet, and variables in a triplet should have “low” correlation in
order to exploit (populate) the 3D space efficiently.

When a set of candidates is selected, a “scatter plot tour” facility of the
3DVDM system allows systematic inspection of all unique combinations of triplets.
Using a control variable encoded as object color, each candidate triplet may be
investigated in as much detail as desired, but given the typical number of candi-
date variables, a first run through may be used to eliminate the least interesting
variables/triplets.

Having selected one or some triplets of interest, a more detailed 3D scatter
plot analysis and visual exploration can take place. Alternative sets of the other
variables can be assigned to object properties, and the user can navigate around
and observe the visual world from “inside-out” or “outside-in” as he or she
pleases. Being observant throughout the above process, it is very likely that
interesting (sub)structures in the data will be observed.

While the above relies on a static visual world within which the user can
navigate around, the system now also allows dynamic visualizations of data.
Color scales can cycle with real-time feedback, and a “Macro Dynamics” facility
allows a window sliding through a sorted data base, such that a sort-variable in
a sense is mapped to a time scale. A “Micro Dynamics” facility allows statistical
variables to control movement of all objects individually.

Another new facility in 3DVDM allowing the use of sound to support and
complement the visual analysis is described in a separate paper [15].
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4.2 Data Preparation

A publicly available dataset called “Forest Cover Data” is used2. The dataset
was used to predict the forest cover type for 30 × 30 meter cells on the basis
of cartographic variables obtained from the US Forest Service (USFS) Region 2
Resource Information System (RIS) data [16].

Data Summary

From the dataset documentation the following basic information is extracted:

Number of observations: 581012
Attribute breakdown: 10 quantitative variables, 1 categorical (wilder-

ness areas, 4 categories) and 1 categorical (soil
type comprising 40 binary variables)

Independent variable: Forest Cover Type (7 categories)
Missing Values: None

Name Index Values Range

Elevation 1 1978 1859 – 3858 meters

Aspect 2 361 0 – 360 azimuth

Slope 3 67 0 – 66 degrees

Horizontal Hydrology Distance 4 551 0 – 1397 meters

Vertical Hydrology Distance 5 700 -173 – 601 meters

Horizontal Roadways Distance 6 5785 0 – 7117 meters

9am Hill-shade 7 207 0 – 255

Noon Hill-shade 8 185 0 – 255

3pm Hill-shade 9 255 0 – 255

Horizontal Fire Points Distance 10 5827 0 – 7173 meters

Wilderness Area 11 4 Cache la Poudre, Comanche Peak,
Neota, Rawah

Soil Type 12 40 1 – 40

Forest Cover Type 13 7 Aspen, Cottonwood/Willow, Douglas-
fir, Krummholz, Lodgepole Pine, Pon-
derosa Pine, Spruce-Fir

Table 1. Basic information about the variables in the Forest Cover dataset

The dataset is not balanced with respect to the dependent variable, where
the number of observations range from 2747 to 283301 for the individual forest
cover types; refer to the web-site for more information and description of the
variables and basic statistics.

Data Conversion

There are 13 variables of which the last three are categorical (qualitative), that

2 http://kdd.ics.uci.edu/databases/covertype/covertype.html
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is, without any meaningful ordinal order. The categorical variable Forest Cover
Type, index 13, is encoded numerically as 1 to 7 and can directly be used.
Index 11 and 12 are encoded as 44 binary variables (4 mutually exclusive values
from Wilderness Area and 40 from Soil Type) were converted to two numerical
variables, as seen for index 11 and 12 in table 1.

The variable “Soil Type” is generally excluded from further consideration in
this study due to interpretation ambiguities.

4.3 Basic Statistical Analysis

A standard statistical package is used to provide basic information of the data
set. All histograms are uni-modal and most have skew distribution. Index 5 and
7 have very narrow distributions compared to the range, and may not have a lot
to offer. Index 2 (Azimuth, 00-3600) has a “circular” distribution peaking at 500

and minimum at 2300.

Correlation Analysis

Figure 2 shows a color encoding of the correlation coefficients σxy for the 10
quantitative variables of the dataset. Keep in mind that a correlation coefficient
σxy of −1 is just as strong as a correlation coefficient of 1.
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Fig. 2. Correlation coefficients σxy for the variables, index 1-10

Strongest (positive or negative) correlation coefficients are found between
Hill-shades, σ79 = −0.78 (9am/3pm Hill-shade), and σ89 = 0.59 (Noon/3pm
Hill-shade), while σ78 = 0.01 (9am/Noon Hill-shade) is surprisingly weak. Other
strong correlations are σ45 = 0.60 (Horizontal/Vertical Hydrology Distance) and
σ29 = 0.65 (Aspect/3pm Hill-shade).

If the estimation of the linear correlation is too strong, one of the involved
variables could be discarded in order to avoid redundancy. However, non-linear
relationships may underly the computed correlations.

2D Histograms

The 3DVDM system can illustrate 2D histograms for all unique combinations
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of two variables of the data set, where the color is mapped to the number of
records. This is shown in figure 3.

Fig. 3. An auto-scaled 2D histogram for all combinations of two variables

The 2D histograms reveals both linear and non-linear relationships. As the
number of variables is relatively low, we retain all 10 quantitative variables as
potential candidates for mapping to the coordinate axes in “interesting” triplets.
Soil Type, index 12 is discarded from further investigation here, while index 11
and 13 may serve as “dependent” variables in our investigations below.

5 Visual Exploration of Static Worlds

In its simple form, a 3D scatter plot in 3DVDM can visualize four variables -
three variables are assigned to the axes, and a fourth (dependent) variable is
assigned to color representation.

We will here discuss a “tour” facility of 3DVDM, and how to use the results
from this “tour” to the best of its account.

5.1 3D Scatter Plot Tour

We have retained all 10 quantitative variables as candidates for “spatial” triplets.
There are, in general, many possible combinations of mappings of variables to

simeon
140



the axes of a 3D scatter plot. In our example, the combinatorics leaves us with
the following number of unique triplets:

10 × 9 × 8

1 × 2 × 3
= 120 (1)

By discarding one variable we would have 84 unique combinations, and discard-
ing two variables would leave 56 and so forth.

The “3D Scatter Plot Tour” tool displays step by step a 3D scatter plot
visualization of all these triplets. With this tool one can e.g. watch a sequence
of 3D scatter plot visualizations, where the mappings to the three axes of the
coordinate system change at regular intervals, while the color represents the
dependent variable. The tool can also be used as an ”Object Property Tour” by
assigning fixed mappings to variables for the three axes of the coordinate system,
and letting the mappings to the other object properties change regularly.

3DVDM allows the user to rank the visualizations according to how “inter-
esting” they look, by manually assigning a score from 0 to 9 to the individual
combinations. These combinations, together with their score and basic statistical
information, are stored in a log-file for easy access and analysis.

Patiently watching the “tour” with color representing Forest Cover Type we
find many interesting visualizations, see figure 4 for a few interesting triplets.

All of the 10 variables were involved in “interestings” visualizations, but
variables 1, 3, 4, 6, 7, 8, 9, and 10 were dominating. Conclusion of the tour
is to continue with closer analysis of the triplets 1, 4, 6 (Elevation, Horizontal
Hydrology Distance, and Horizontal Roadways Distance) and 7, 8, 9 (9am, Noon,
and 3pm Hill-shade).

5.2 3D Scatter Plots and Object Properties

Once interesting triplets have been found, further analysis can be performed in
VR. This section briefly describes navigation and how to use some of the scatter
plot features of 3DVDM, e.g. the programmable dynamic color scales.

Exploring the Space

Navigation in the virtual 3D space means here to control both the viewpoint
and view direction as one pleases. Hence one may “fly” around and within the
visualized coordinate system and observe the objects.

The navigation interface and display of the current view are all dependent
on the visualization system used. When using the CAVE stereo visualizations
are provided and all view directions are available for the user, when he moves
his head.

The Panorama is a popular visualization system for our VDM, and navigation
is controlled according to the direction of a “Wanda”, i.e. a device that is tracked
with 6 degrees of freedom (position and orientation). Here view direction is fixed
to the (forward) “motion” of the navigation. View direction is also fixed in the
case when using a monitor, and here the arrow keys may control the movement
of view point.
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(a) (b)

(c) (d)

Fig. 4. Examples from 3D scatter plot tour with color representing Forest Cover Type

The most important feature in the context of VDM in VR is the real-time
response to user movement while intensive background processing is being per-
formed, - something that cannot be done with traditional desktop VDM software.

Extended 3D Scatter Plot Analysis

We choose two triplets after the tour, and starting with (figure 4(b)) we can
now experiment with different use of color mappings. It may be of interest to
see how the Wilderness Area variable is distributed when using this triplet, and
we therefore choose to map this variable to color instead of Forest Cover Type.
This situation is shown from two different viewpoints in figure 5.

For this triplet, two of them (elevation, horizontal roadways distance) show
relevance for the 2D distribution of Wilderness Area, while the third (horizontal
hydrology distance) drags out some specific substructures.
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Fig. 5. Same mapping to axes as in figure 4(b), but with Wilderness Area mapped to
color. The figure is seen from two different viewpoints.

Taking the visualization further, we can explore relationships between more
variables, e.g. by mapping other variables to object properties like object shape,
orientation, brightness, opacity, etc. Figure 6 shows a closeup on the marked
area in figure 5, again seen from two different viewpoints.

Fig. 6. 3D scatter plots with Noon Hill-shade mapped to color and slope mapped to
shape. This figure is a close-up on the marked substructure in figure 5.

These sub-figures have same spatial mapping as in figure 5, but this time
with Noon Hill-shade mapped to color and Slope mapped to shape. The snap-
shots are seen from “inside-out”, in contrast to earlier figures which were viewed
from an “outside-in” point of view.

Exploring Color Mappings

Now we will use figure 4(c) for further visual data exploration. Figure 7 is a
scatter plot of the variables 9am, Noon and 3pm Hill-shade (index 7, 8 and 9)
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mapped to the axes, now with slope (index 3) mapped to color. It is now very
clear that a correlation does exists, although σ78 was computed to be only 0.01
(figure 2 in section 4.3).

Fig. 7. Studying a selected situation using a different color scale

The scatter plots in figure 7 gives us knowledge of the dataset, which in turn
can be used in a partial correlation analysis to compute the partial correlation
coefficient σ78|9 (that is, σ78 given σ9), which yields

σ78|9 =
σ78 − σ79σ89

√

(1 − σ
2

79
)(1 − σ

2

89
)

= 0.94 (2)

Thus, according to equation 2 there indeed exists a strong relationship be-
tween variables with index 7 and 8 (9am and Noon Hill-shade) - which is intu-
itively expected given their names, and seen in the plot. This clearly suggests
that 3pm Hill-shade (index 9) should be taken into account.

Programmable Color Scales

Color is a very important object property, and until now we have used the “linear
rainbow” color scale in two different versions - a discrete color scale (figure 6)
and a continuous scale (figure 7). 3DVDM allows the user to define new color
scales, or to select from a set of predefined scales - and also inversing, reversing
or cycling them in order to enhance spatial structures.

The importance of using an appropriate color scale is illustrated. As an ex-
ample azimuth (in degrees, from 00 to 3600) is mapped to color, in figure 8(a).
Notice that the cathegorical variable Forest Cover Type is mapped to one of the
axes, which results in seven planes along this axis.

Using any of the so far presented color scales is not feasible as 00 and 3600 will
be mapped to widely different colors, in spite of the fact that they describe the
same direction. A “wrap-around” color scale as presented in figure 8(b) solves
this problem.
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(a) Inappropriate color scale (b) Appropriate color scale

Fig. 8. Same figure shown using two different color scales

6 Visual Exploration of Dynamic Worlds

We consider two kinds of Dynamic Visualizations (DV), which one might distin-
guish between by using the terms “macro” and “micro” DV.

6.1 Macro Dynamic Visualization

In macro DV, data is sorted according to one of the variables of the database.
The system then visualizes data from a “data window” which is sliding through
the database. These kinds of animated visualizations therefore facilitate an al-
ternative understanding of global trends in data, by using the time scale.

Fig. 9. Three snapshots of a macro dynamic visualization

Figure 9 shows snapshots of a dynamic visualization made with the macro

tool, provided with the 3DVDM system.
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The same triplet as used in figure 4(d) is used for this illustration, and el-
evation is mapped to the time axis. The sub-figures show not only how Forest
Cover Type (mapped to color) changes as we “walk up the mountains”, but also
how Fire Points Distance, Hydrology Distance and Roadways Distance change
according to altitude (all horizontal). The sub-figures cannot show the smooth,
continuous behavior of the “snakes”, which we see in VR and real-time animation
in the “real” virtual world. However, we hope the point is made that potentially
interesting substructures may be detected with this facility.

If we instead choose to map azimuth to the time axis, we can walk around
the mountains, giving us an impression of how Forest Cover Type is influenced
by this variable given the triplet. Also, some cover types may prefer very steep
slopes; this may be revealed by mapping the slope variable to the time axis, and
so forth.

6.2 Micro Dynamic Visualization

In micro DV, the visual objects in a data visualization may change visual prop-
erties and/or position according to a rule that may be unique to each visual ob-
ject and controlled by its statistical variable. The visual objects can e.g. change
their visual properties arbitrarily with respect to position, color and shape. This
makes it theoretically possible to distinguish between visual objects by their dy-
namic behavior. It attracts attention when a subgroup of visual objects behave
similarly. Microscopic DV can be used also for detecting clusters in datasets.

(a) Frame 0/40 (b) Frame 10/40 (c) Frame 20/40

Fig. 10. Objects ”vibrating” in a micro dynamics visualization

Figure 10 shows a sequence of snapshots of a micro dynamic visualization
made with the 3DVDM micro tool. A limited number of objects are viewed with
a fixed camera for illustration purposes, and the objects move individually. Vari-
ables can e.g be mapped to amplitude, frequency and phase in all three directions
of the Cartesian coordinate system. It is, with this tool, for instance possible to
make some objects move in circles, while other objects move in straight lines.
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This tool is being developed and tested at the time of writing, so no further
presentation will be given here.

7 Discussion

We aimed at demonstrating the potential benefit of immersive VR for Visual
Data Mining, using a new version of our 3DVDM system and a new version of
the VR++ framework upon which it is based. The system is capable of providing
real-time user response and navigation as well as showing dynamic visualizations
of large amounts of data.

Although we find the real-time performance of the system very adequate, we
have not included any tests to support this claim.

Instead we have put emphasis on illustrative support of our hypothesis that
a complementary and valuable benefit of using the system’s visualization tools
is achievable concerning the detection of e.g. non-linear relationships and sub-
structures in data, which are most likely to escape traditional methods of data
analysis.

An investigation of a data set starts with simple uni- and bi-variate analyses
to become familiar with data and possibly reduce the number of variables to a
reasonable number. In the case study presented we had 10 quantitative variables,
and they were all forwarded to an evaluation of which combinations of three could
be most interesting for defining the three spatial axes in the “Extended Scatter
Plots”, where more detailed visual inspection could take place.

A “Scatter Plot Tour” presented systematically the 120 unique “triplets”
of the 10 variables with the dependent variable (Forest Cover Type) mapped
as color of the data points (visualized as small objects). The criteria for “in-
teresting” is entirely based on the user’s subjective evaluations when observing
data in 3D space. This is potentially a weakness, but the point is to comple-
ment the algorithmic methods with the power of human perception and pattern
recognition.

Several interesting triplets were observed and a few were illustrated and se-
lected for further investigation. One triplet was used to demonstrate that the
objects might encode multiple visual properties representing more statistical
variables simultaneously, while another demonstrated the use of flexible and con-
trollable color scales. Eventually the Macro Dynamic visualization was demon-
strated and revealed most surprising substructures in the data.

The full benefit of the 3DVDM tools assumes 3D VR visualization systems
like a CAVE or a Panorama, where the user can navigate around also inside and
pursue intriguing views. Such benefit can only be experienced “in situ”, and for
this paper we are left with the means of mono illustrations as presented on a
monitor.

However, we hope that the major points of the approach and its potential
do come through via the many illustrations provided and their organization as
a successively progressing use of the visualization tools. Several peculiar data
structures were detected through the visual inspection, and they could possibly
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warrant a more detailed statistical analysis to explain the phenomena as valuable
information or otherwise.

The visualizations presented are all selected on the basis of their perceptual
particularities, without any claims whatsoever about practical and/or statistical
significance.

8 Conclusion

Concerning the potential benefit of immersive VR for VDM, our hypothesis was
that a complementary and valuable benefit is achievable concerning the detection
of e.g. non-linear relationships in data, which are most likely to escape traditional
methods of data analysis.

We have not presented tests that verify explicitly the benefit of navigation
and real-time user response in immersive VR system, but we have illustrated
the usefulness of the 3DVDM framework designed for VR through a series of
examples. The VDM tools do help in discovering remarkable non-linear data
relations and substructures in the dataset used, which it would have been very
difficult or impossible to detect using more traditional methods of analysis. In
particular the Macro Dynamic Visualization revealed unexpected substructures.

Commenting on the actual practical and statistical significance of the dis-
covered data structures is beyond the scope of the paper. No statistical nor
conclusive analysis is aimed at with the system. The output is specification of
phenomena, that may warrant follow-up of proper statistical analysis.

The 3DVDM facilities for VDM seems promising, and encourage further de-
velopments of and experiments with the current and new tools in the context of
various practical applications of VDM.
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Abstract. Similarity search in database systems is becoming an increasingly im-

portant task in modern application domains such as multimedia, molecular biology,

medical imaging, computer aided engineering, marketing and purchasing assist-

ance as well as many others. In this paper, we show how visualizing the hierarchi-

cal clustering structure of a database of objects can aid the user in his time

consuming task to find similar objects. We present related work and explain its

shortcomings which led to the development of our new methods. Based on reach-

ability plots, we introduce approaches which automatically extract the significant

clusters in a hierarchical cluster representation along with suitable cluster repre-

sentatives. These techniques can be used as a basis for visual data mining. We im-

plemented our algorithms resulting in an industrial prototype which we used for the

experimental evaluation. This evaluation is based on real world test data sets and

points out that our new approaches to automatic cluster recognition and extraction

of cluster representatives create meaningful and useful results in comparatively

short time.

1 Introduction

In the last ten years, an increasing number of database applications has emerged for

which efficient and effective support for similarity search is substantial. The importance

of similarity search grows in application areas such as multi-media, medical imaging,

molecular biology, computer aided engineering, marketing and purchasing assistance,

etc. [10], [1],[8],[9],[2],[5],[6],[11].

Particularly, the task of finding similar shapes in 2-D and 3-D becomes more and more

important. Examples for new applications that require the retrieval of similar 3D objects

include databases for molecular biology, medical imaging and computer aided design.

Hierarchical clustering was shown to be effective for evaluating similarity models

[12],[13]. Especially, the reachability plot generated by OPTICS [4] is suitable for assess-

ing the quality of a similarity model. Furthermore, visually analyzing cluster hierarchies

helps the user, e.g. an engineer, to find and group similar objects. Solid cluster extraction

and meaningful cluster representatives form the foundation for providing the user with

significant and quick information.

In this paper, we introduce algorithms for automatically detecting hierarchical clusters

along with their corresponding representatives. In order to evaluate our ideas, we devel-

oped a prototype called BOSS (Browsing OPTICS-Plots for Similarity Search). BOSS is
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based on techniques related to visual data mining. It helps to visually analyze cluster hi-

erarchies by providing meaningful cluster representatives.

The remainder of the paper is organized as follows: After briefly introducing reacha-

bility plots, we present in Section 2 the application areas of hierarchical clustering along

with the corresponding requirements in the industrial and in the scientific community

which motivated the development of BOSS. In Sections 3 and 4, we introduce the notions

of cluster recognition and cluster representatives respectively, which form the theoretical

foundations of BOSS. In Section 5, we describe the actual industrial prototype we devel-

oped and evaluate its usefulness in Section 6. The paper concludes in Section 7 with a

short summary and a few remarks on future work.

2 Hierarchical Clustering

In this section, we outline the application ranges which led to the development of our

interactive browsing tool, called BOSS. In order to understand the connection between

BOSS and the application requirements we first introduce the reachability plots comput-

ed by OPTICS, which served as a starting point for BOSS. The technical aspects related

to BOSS are described later in Section 5.

2.1 Reachability Plots

The key idea of density-based clustering is that for each object of a cluster the neigh-

borhood of a given radius ε has to contain at least a minimum number MinPts of objects.

Using the density-based hierarchical clustering algorithm OPTICS yields several advan-

tages due to the following reasons.

• OPTICS is -in contrast to most other algorithms- relatively insensitive to its two

input parameters, ε and MinPts. The authors in [4] state that the input parameters

just have to be large enough to produce good results.

• OPTICS is a hierarchical clustering method which yields more information about the

cluster structure than a method that computes a flat partitioning of the data (e.g. k-

means [15]).

• There exist a very efficient variant of the OPTICS algorithm which is based on data

bubbles [7], where we have to trade only very little quality of the clustering result for

a great increase in performance.

• There exist an efficient incremental version of the OPTICS algorithm [13].

The reachability plots computed by OPTICS help the user to get a meaningful and

quick overview over a large data set. The output of OPTICS is a linear ordering of the

database objects minimizing a binary relation called reachability which is in most cases

equal to the minimum distance of each database object to one of its predecessors in the

ordering. Instead of a dendrogram, which is the common representation of hierarchical

clusterings, the resulting reachability plot is much easier to analyse. The reachability val-

ues can be plotted for each object of the cluster-ordering computed by OPTICS. Valleys

in this plot indicate clusters: objects having a small reachability value are closer and thus

more similar to their predecessor objects than objects having a higher reachability value.
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The reachability plot generated by OPTICS can be cut at any level εcut parallel to the

abscissa. It represents the density-based clusters according to the density threshold εcut:

A consecutive subsequence of objects having a smaller reachability value than εcut be-

longs to the same cluster. An example is presented in Figure 1: For a cut at the level ε1

we find two clusters denoted as A and B. Compared to this clustering, a cut at level ε2

would yield three clusters. The cluster A is split into two smaller clusters denoted by A1

and A2 and cluster B decreased its size. Usually, for evaluation purposes, a good value

for εcut would yield as many clusters as possible.

Application Ranges . BOSS was designed for three different purposes: visual data min-

ing, similarity search and evaluation of similarity models. For the first two applications,

the choice of the representative objects of a cluster is the key step. It helps the user to get

a meaningful and quick overview over a large existing data set. Furthermore, BOSS helps

scientists to evaluate new similarity models.

Visual Data Mining. As defined in [3], visual data mining is a step in the KDD process

that utilizes visualization as a communication channel between the computer and the user

to produce novel and interpretable patterns. Based on the balance and sequence of the au-

tomatic and the interactive (visual) part of the KDD process, three classes of visual data

mining can be identified.

• Visualization of the data mining result:

An algorithm extracts patterns from the data. These patterns are visualized to make

them interpretable. Based on the visualization, the user may want to return to the data

mining algorithm and run it again with different input parameters (cf. Figure 2a).

• Visualization of an intermediate result:

An algorithm performs an analysis of the data not producing the final patterns but an

intermediate result which can be visualized. Then the user retrieves the interesting

patterns in the visualization of the intermediate result (cf. Figure 2b).

• Visualization of the data:

Data is visualized immediately without running a sophisticated algorithm before. Pat-

terns are obtained by the user by exploring the visualized data (cf. Figure 2c).

The approach presented in this paper belongs to the second class. A hierarchical clus-

tering algorithm is applied to the data, which extracts the clustering structure as an inter-

mediate result. There is no meaning associated with the generated clusters. However, our

approach allows the user to visually analyze the contents of the clusters. The clustering

algorithm used in the algorithmic part is independent from an application. It performs the

Fig.1: Reachability plots computed by optics (right) for a 2D dataset (left)
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core part of the data mining process and its result serves as a multi-purpose basis for fur-

ther analysis directed by the user. This way the user may obtain novel information which

was not even known to exist in the data set. This is in contrast to similarity search where

the user is restricted to find similar parts respective to a query object and a predetermined

similarity measure.

Similarity Search. The development, design, manufacturing and maintenance of mod-

ern engineering products is a very expensive and complex task. Effective similarity mod-

els are required for two- and three-dimensional CAD applications to cope with rapidly

growing amounts of data. Shorter product cycles and a greater diversity of models are be-

coming decisive competitive factors in the hard-fought automobile and aircraft market.

These demands can only be met if the engineers have an overview of already existing

CAD parts. It would be desirable to have an interactive data browsing tool which depicts

the reachability plot computed by OPTICS in a user friendly way together with appropri-

ate representatives of the clusters. This clear illustration would support the user in his

time-consuming task to find similar parts. From the industrial user's point of view, this

browsing tool should meet the following two requirements:

• The hierarchical clustering structure of the dataset is revealed at a glance. The reach-

ability plot is an intuitive visualization of the clustering hierarchy which helps to

assign each object to its corresponding cluster or to noise. Furthermore, the hierar-

chical representation of the clusters using the reachability plot helps the user to get a

quick overview over all clusters and their relation to each other. As each entry in the

reachability plot is assigned to one object, we can easily illustrate some representa-

tives of the clusters belonging to the current density threshold εcut (cf. Figure 3) .

• The user is not only interested in the shape and the number of the clusters, but also in

the specific parts building up a cluster. As for large clusters it is rather difficult to

depict all objects, representatives of each cluster should be displayed. To follow up a

first idea, these representatives could be simply constructed by superimposing all

parts belonging to the regarded cluster (cf. Figure 4). We can browse through the

hierarchy of the representatives in the same way as through the OPTICS plots.

This way, the cost of developing and producing new parts could be reduced by maxi-

mizing the reuse of existing parts, because the user can browse through the hierarchical
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Fig.2: Different approaches to visual data mining
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structure of the clusters in a top-down way. Thus the engineers get an overview of already

existing parts and are able to navigate their way through the diversity of existing variants

of products, such as cars.

Evaluation of Similarity Models. In general, similarity models can be evaluated by

computing k-nearest neighbor queries (k-nn queries). As shown in [14], this evaluation

approach is subjective and error-prone because the quality measure of the similarity mod-

el depends on the results of a few similarity queries and, therefore, on the choice of the

query objects. A model may perfectly reflect the intuitive similarity according to the cho-

sen query objects and would be evaluated as “good” although it produces disastrous re-

sults for other query objects.

A better way to evaluate and compare several similarity models is to apply a clustering

algorithm. Clustering groups a set of objects into classes where objects within one class

are similar and objects of different classes are dissimilar to each other. The result can be

used to evaluate which model is best suited for which kind of objects. It is more objective

since each object of the data set is taken into account to evaluate the data models.

3 Cluster Recognition

In this section, we address the first task of automatically extracting clusters from the

reachability plots. After a brief discussion of recent work in that area, we propose a new

approach for hierarchical cluster recognition based on reachability plots.

Fig.3: Browsing through reachability plots with different density thresholds εcut

Fig.4: Hierarchically ordered representatives
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3.1 Recent Work

To the best of our knowledge, there are only two methods for automatic cluster extrac-

tion from hierarchical representations such as reachability plots or dendrograms which

are both based on reachability plots. Since clusters are represented as valleys (or dents)

in the reachability plot, the task of automatic cluster extraction is to identify significant

valleys.

The first approach proposed in [4] called ξ−clustering is based on the steepness of the

valleys in the reachability plot. The steepness is defined by means of an input parameter

ξ. The method suffers from the fact that this input parameter is difficult to understand and

hard to determine. Rather small variations of the value ξ often lead to drastic changes of

the resulting clustering hierarchy. As a consequence, this method is unsuitable for our

purpose of automatic cluster extraction.

The second approach was proposed recently by Sander et al. [16]. The authors de-

scribe an algorithm called cluster_tree that automatically extracts a hierarchical cluster-

ing from a reachability plot and computes a cluster tree. It is based on the idea that

significant local maxima in the reachability plot separate clusters. Two parameters are in-

troduced to decide whether a local maximum is significant: The first parameter specifies

the minimum cluster size, i.e. how many objects must be located between two significant

local maxima. The second parameter specifies the ratio between the reachability of a sig-

nificant local maximum m and the average reachabilities of the regions to the left and to

the right of m. The authors in [16] propose to set the minimum cluster size to 0.5% of the

data set size and the second parameter to 0.75. They empirically show, that this default

setting approximately represents the requirements of a typical user.

Although the second method is rather suitable for automatic cluster extraction from

reachability plots, it has one major drawback. Many real-world data sets consist of nar-

rowing clusters, i.e. clusters consisting of exactly one smaller sub-cluster (cf. Figure 5).

Since the algorithm cluster_tree runs through a list of all local maxima (sorted in de-

scending order of reachability) and decides at each local maximum m, whether m is sig-

nificant to split the objects to the left of m and to the right of m into two clusters, the

algorithm cannot detect such narrowing clusters. These clusters cannot be split by a sig-

nificant maximum. Figure 5 illustrates this fact. The narrowing cluster A consists of one

cluster B which is itself narrowing consisting of one cluster C. The algorithm cluster_tree

Fig.5: Sample narrowing clusters

a) data space, b) reachability plot and c) cluster hierarchy

a) b) c)
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will only find cluster A since there are no local maxima to split clusters B and C. The ξ−
clustering will detect only one of the clusters A, B or C dependent on the ξ−parameter but

also fails to detect the cluster hierarchy.

3.2 Drop-Down Clustering

This new cluster recognition algorithm is based on the novel concept of inflexion

points which allow the detection of narrowing subclusters. A point o is an inflexion point

iff the gradient of the reachability values changes considerably (cf. Figure 6b).

Since our method works in a top-down fashion, we call it Drop-Down Clustering. The

idea behind is the successive use of the visual interpretation of the cluster ordering -as

described in Figure 1- which is based on the fact that the reachability plot can be cut by

any level εcut to the abscissa to extract a clustering. Starting from an initial clustering we

simply drop the εcut-value in order to find substructures. Since it is not practical to test

each possible εcut-value, we have to extract interesting values for a cut from the reacha-

bility values of the objects.

The Drop-Down Clustering algorithm starts by generating an initial root clustering

(cf. Figure 6a). This does not contain all elements of the plot, as clusters separated by

noise are assumed to be not related. Basically, a set of clusters forms the basis for a set

of hierarchical clusters. This initial clustering is generated as follows: The objects in the

reachability plot are sorted by descending reachability distance while retaining relative

order among equal elements. The sorted list is now scanned until two objects are found

whose indices are more than MinPts apart, indicating that every element in-between these

Fig.6: Drop-Down-Clustering

a) detection of root clusters, b) detection of subclusters

a)

b)
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two is smaller than either, thus constituting a dip in the graph. A top level cluster has been

found, and all elements included in this cluster are removed from the sorted list. The scan

can now continue until all elements have been removed or viewed.

The second part of the algorithm now separately analyzes each cluster found during

the initial clustering (cf. Figure 6b). The extraction of further (sub-)clusters is a recursive

procedure. The procedure starts with a set of elements from the reachability graph which

is sorted by descending reachability values where elements having the same reachability

value are arranged according to the cluster ordering. This list is sequentially tested for an

object which is an inflexion point. An inflexion point can either indicate the start or end

of a narrowing subcluster, or be responsible for two new subclusters.

Should a subcluster be found, it may be added to the resulting cluster hierarchy, after

which it is then recursively processed to discover potential substructures. All discovered

subclusters must conform to the following constraints:

• The minimum cluster size constraint of MinPts objects must be satisfied, i.e. there

are at least MinPts objects located between the start point and the end point of the

cluster (e.g. Cluster B in Figure 5 must contain at least MinPts objects).

• The current cluster has at least MinPts objects less than the cluster of its parent node

in the hierarchy (e.g. Cluster B in Figure 5 must have at least MinPts objects less

than cluster A).

Let us note, that we could also claim a minimum ratio of reachabilities at the boundary

of a cluster and inside a cluster as postulated in [16] or increment/decrement the required

minimum cluster size.

Obviously, the Drop-Down algorithm is able to extract narrowing clusters. Experi-

mental comparisons with the methods in [16] and [4] are presented in Section 6.

4 Cluster Representatives

In this section, we present different approaches to determine representatives for clus-

ters computed by OPTICS. A simple approach could be to superimpose all objects of a

cluster to build the representative as it is depicted in Figure 4. However, this approach

has the huge drawback that the representatives on a higher level of the cluster hierarchy

become rather unclear. Therefore, we choose real objects of the data set as cluster repre-

sentatives.

In the following, we assume that DB is a database of multimedia objects, dist: DB ×
DB → IR is a metric distance function on objects in DB and Nε(o) := {q ∈ DB | dist(o,q)

≤ ε } where o ∈ DB and ε ∈ IR. A cluster C ⊆ DB is represented by a set of k objects of

the cluster, denoted as REP(C). The number of representatives k can be a user defined

number or a number which depends on the size and data distribution of the cluster C.

4.1 The Extended Medoid Approach

Many partitioning clustering algorithms are known to use medoids as cluster repre-

sentatives. The medoid of a cluster C is the closest object to the mean of all objects in C.
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The mean of C is also called centroid. For k >1 we could choose the k closest objects to

the centroid of C as representatives.

The choice of medoids as cluster representative is somehow questionable. Obviously,

if C is not of convex shape, the medoid is not really meaningful.

An extension of this approach coping with the problems of clusters with non-convex

shape is the computation of k medoids by applying a k-medoid clustering algorithm to the

objects in C. The clustering using a k-medoid algorithm is rather efficient due to the ex-

pectation that the clusters are much smaller than the whole data set. This approach can

also be easily extended to cluster hierarchies. At any level we can apply the k-medoid

clustering algorithm to the merged set of objects from the child clusters or -due to per-

formance reasons- merge the medoids of child clusters and apply k-medoid clustering on

this merged set of medoids.

4.2 The Minimum Core-Distance Approach

The second approach to choose representative objects of hierarchical clusters uses the

density-based clustering notion of OPTICS. To compute the reachability, OPTICS deter-

mines for each object the so called core-distance:

Definition 1 (Core-distance).

Let o be an object from a database DB, let ε be a distance value, let Nε(o) be the ε-

neighborhood of o, let MinPts be a natural number and let MinPts-distance(o) be the dis-

tance from o to its MinPts-nearest neighbor. Then, the core-distance of o is defined as:

core-distance(o) =

The core-distance of an object indicates the density of the surrounding region. The

smaller the core-distance of an object o, the denser the region surrounding o. This obser-

vation led us to the choice of the object having the minimum core-distance as represent-

ative of the respective cluster. Formally, REP(C) can be computed as:

REP(C) := {o ∈ C | ∀x∈C : core-distance(o) ≤ core-distance(x)}.

We choose the k objects with the minimum core-distances of the cluster as represent-

atives.

The straightforward extension for cluster hierarchies is to choose the k objects from

the merged child clusters having the minimum core-distances.

4.3 The Maximum Successor Approach

Based on the core-distance, the reachability-distance (or short: reachability) is defined

as:

Definition 2 (Reachability-Distance).

Let o ∈ DB, let Nε(o) be the ε-neighborhood of o, let MinPts be a natural number. Then,

the reachability-distance of p ∈ DB with respect to o is defined as:

reachability-distance (p,o)= max (core-distance(o), distance(p,o))

Nε o( ) MinPts<�� �
MinPts-distance(o), otherwise

∞, if
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The result of OPTICS is an ordering of the database minimizing the reachability rela-

tion. At each step of the ordering, the object p having the minimum reachability wrt. the

already processed objects occurring before p in the ordering is chosen. Thus, if the reach-

ability of object p is not ∞, it is determined by reachability-distance(p,o) where o is an

object located before p in the cluster ordering. We call o the predecessor of p.

Definition 3 (Successors).

Let o ∈ DB. Then, the set of successors is defined as S(o) := {s ∈ DB | o is predecessor of

s}.

Let us note, that objects may have no predecessor, e.g. each object having a reachabil-

ity of ∞ does not have a predecessor, including the first object in the ordering. On the oth-

er hand, some objects may have more than one successor. In that case, some other objects

have no successors.

We can model this successor-relationship within each cluster as a directed successor

graph where the nodes are the objects of one cluster and a directed edge from object o to

s represents the relationship s∈S(o). Each edge (x,y) can further be labeled by reachabil-

ity-distance (x,y). A sample successor graph is illustrated in Figure 7.

For the purpose of computing representatives of a cluster, the objects having many

successors are interesting. Roughly speaking, these objects are responsible for the most

density-connections within a cluster. The reachability values of these “connections” fur-

ther indicate the distance between the objects.

Our third strategy selects the representatives of clusters by maximizing the number of

successors and minimizing the according reachabilities. For this purpose, we compute for

each object o of a cluster C, the Sum of the Inverse Reachability distances of the succes-

sors of o within C, denoted by SIRC(o):

SIRC(o) =

We add 1 to reachability-distance (s,o) in the denominator to weight the impact of the

number of successors over the significance of the reachability values. Based on SIR(o),

the representatives can be computed as follows:

REP(C) := {o ∈ C | ∀x∈C : SIRC(o) ≥ SIRC(x)}.

Fig.7: Sample successor graph for a cluster of seven objects
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If we want to select k representatives for C we simply have to choose the k objects with

the maximum SIRC values.

5 System Architecture

The development of the industrial prototype BOSS is a first step towards developing

a comprehensive, scalable and distributed computing solution designed to make the effi-

ciency of OPTICS and the analytical capabilities of BOSS available to a broader audi-

ence. BOSS is a client/server system allowing users to provide their own data locally,

along with an appropriate similarity model (cf. Figure 8).

The data provided by the user will be comprised of the objects to be clustered, as well

as a data set to visualize these objects, e.g. VRML files for CAD data (cf. Figure 9) or

JPEG images for multi-media data. Since this data resides on the user's local computer

and is not transmitted to the server heavy network traffic can be avoided. In order for

Fig.8: BOSS distributed architecture

OPTICS

Cluster Recognition

Cluster Representation

Similarity Model

BOSS Client
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Browser
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Fig.9: BOSS screenshot
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BOSS to be able to interpret this data, the user must supply his own similarity model with

which the reachability data can be calculated.

The independence of the data processing and the data specification enables maximum

flexibility. Further flexibility is introduced through the support of external visual repre-

sentation. As long as the user is capable of displaying the visualization data in a browser,

e.g. by means of a suitable plug-in, the browser will then load web pages generated by

BOSS displaying the appropriate data. Thus, multimedia data such as images or VRML

files can easily be displayed (cf. Figure 9). By externalizing the visualization procedure

we can resort to approved software components, which have been specifically developed

for displaying objects which are of the same type as the objects within our clusters.

6 Evaluation

We evaluated both the effectiveness and efficiency of our approaches using two real-

world test data sets. The first one contains approximately 200 CAD objects from a Ger-

man car manufacturer, the second one 5000 CAD objects from an American aircraft pro-

ducer. We tested on a workstation with a 1.7 GHz CPU and 2 GB RAM.

In the following, three cluster recognition algorithms will vie among themselves, after

which the three approaches for generating representatives will be evaluated.

Cluster Recognition. Automatic cluster recognition is clearly very desirable when ana-

lyzing large sets of data. In this case, we will be looking at a subset of a database of CAD

objects representing car parts. The results are depicted in Figure 10.

This data exhibits the commonly seen quality of unpronounced but nevertheless to the

observer clearly visible clusters. The Tree-Clustering algorithm does not find any clus-

ters at all, whereas the ξ-clustering approach successfully recognizes some clusters while

missing out on significant subclusters. On the other hand, our new Drop-Down-Algo-

rithm detects many clusters. Furthermore, it detects a lot of meaningful cluster hierar-

Fig.10: Sample Clustering of CAR Parts

a) Drop-Down-Clustering, b) ξ-Clustering and c) Tree-Clustering

a)

b)

c)
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chies, consisting of narrowing subclusters. To sum up, in all our tests the Drop-Down-

algorithm detected much more clusters than the other two approaches, without producing

any redundant and unnecessary cluster information.

The overall runtime for the three different cluster recognition algorithms is depicted

in Figure 11. Our new Drop-Down clustering algorithm does not only produce the most

meaningful results, but also in the shortest time. It seems to be the only algorithm which

is suitable for interactive use, if the data sets contain several thousand elements.

Cluster Representation . After a cluster recognition algorithm has analyzed the data, al-

gorithms for cluster representation can help to get a quick visual overview of the data.

With the help of representatives, large sets of objects may be characterized through a sin-

gle object of the data set. We extract a sample cluster from the plot depicted in Figure 10a

in order to evaluate the different approaches for cluster representatives. In our first tests,

we set the number of representatives k to 1.

The objects of one cluster are displayed in Figure 12. The three annotated objects are

the representatives computed by the respective algorithms. Both the Maximum Successor

and the Minimum Core Distance approaches give good results. Despite the slight inho-

mogeneity of the cluster, both representatives sum up the majority of elements within this

cluster. This cannot be said of the representative computed by the commonly used me-

doid method, which selects an object from the trailing end of the cluster.

Summary. The results of our experiments show, that our new approaches for the auto-

matic cluster extraction and for the determination of representative objects outperform

CAR

(200 parts)

PLANE

(5000 parts)

x-clustering 0.348 s 9.714 s

cluster_tree 0.130 s 3.019 s

Drop-Down clustering 0.104 s 0.707 s

Fig.11: CPU time for cluster recognition

Fig.12: Representatives displayed by the BOSS object viewer

simeon
163



existing methods. It theoretically and empirically turned out, that our Drop-Down-Clus-

tering algorithm seems to be more practical than recent work for automatic cluster extrac-

tion from hierarchical cluster representations. We also empirically showed that our

approaches for the determination of cluster representatives is most likely more suitable

than the simple (extended) medoid approach.

7 Conclusions

In this paper, we proposed hierarchical clustering combined with automatic cluster

recognition and selection of representatives as a promising visualization technique. Its ar-

eas of application include visual data mining, similarity search and evaluation of similar-

ity models. We surveyed three approaches for automatic extraction of clusters. The first

method, ξ-clustering, fails to detect some clusters present in the clustering structure and

suffers from the sensitivity concerning the choice of its input parameter. The algorithm

cluster_tree is obviously unsuitable in the presence of narrowing clusters. To overcome

these shortcomings, we proposed a new method, called Drop-Down-Clustering. The ex-

perimental evaluation showed that this algorithm is able to extract narrowing clusters.

The cluster hierarchies produced by the Drop-Down-Algorithm are similar to the cluster-

ing structures which an experienced user would manually extract.

Furthermore, we presented three different approaches to determine representative ob-

jects for clusters. The commonly known medoid approach is shown to be unsuitable for

real-world data, while the approaches minimizing the core-distance and maximizing the

successors both deliver good results.

Finally, we described our industrial prototype, called BOSS, that implements the al-

gorithms presented in this paper.

In our future work we will concentrate on efficient algorithms for incremental hierar-

chical clustering. These new cluster algorithms should allow an easy determination of the

cluster hierarchy together with an easy extraction of meaningful representatives.
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Abstract. Data Mining in Virtual Reality (VR) has, for good reasons,
been focused on facilitating visual inspection and analysis. As the amount
and complexity of data is overwhelming, it is worthwhile to consider a
further exploration of the human perceptual faculties, and it seems nat-
ural to consider sound as a possible perceptual cue. Current technology
enables us to create advanced real-time 3D soundscapes, which may prove
useful since the human ears’ field of hearing is larger than the eyes’ field
of view, and thus is able to inform us on events happening in areas that
we do no see at a given time. This paper presents methods for gener-
ating 3D soundscapes from statistical information. Through a series of
investigations, we present and discuss the effectiveness of these methods
in situations where sound acts as support for visual cues, as well as the
use of sound as a separate cue for analyzing data in VR.

1 Introduction

The 3D Visual Data Mining system (3DVDM) presented by Nagel et al. [1] and
[2] provides a flexible system for doing explorative Visual Data Mining (VDM)
in VR using super computers. The optimal VR system for this purpose (such
as the six-sided CAVE1) provides technology allowing us to create an immersive
environment of surrounding 3D visual cues, as well as the possibility of creating
immersive 3D soundscapes.

The 3DVDM task is perceptual representation of statistical data and the ref-
erence is a virtual visual world, where statistical observations are represented in
a 3D scatter plot. Each data point in the plot is shown as a visual object, such
that statistical variables may also control various visual object properties like
object shape, orientation, color, and surface texture. The aim is to present data
from within and to allow the human observer as a visual explorer to navigate
around in the visual world, in order to inspect data in arbitrary view directions
and from arbitrary viewpoints. To supplement what ordinary statistical analysis
of data can provide, the observer will look for special structures in data. He
may search systematically and/or hope for the talent of serendipity [3] to help

1 http://www.ncsa.uiuc.edu/VR/VR/VRHomePage.html
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detect the interesting and unexpected. The technological challenge is to provide
facilities as convenient as possible for such search to be successful. Part of this
challenge is to enable us to represent simultaneously as many statistical vari-
ables as possible to exploit the perceptual bandwidth, while avoiding perceptual
“overflow”.

When we choose to visualize large amount of data in a 3D Cartesian coordi-
nate system we create an artificial world that is an artificial world in more than
one sense: It is “an artificially created artificial world”. The user will find himself
floating in infinite space surrounded by the graphical objects representing entries
in a database, and may loose sense of orientation.

1.1 Motivation

The intentions of using sound in data mining is derived from the underlying
idea of the 3DVDM project, which is to encode as much information as the
human perceptual system can cope with [3]. The idea is to create a 3D sound
interpretation of the data that can serve either as a support for a visualization
parameter such as color or as an independent audio representation of one or more
data dimensions. A main motivation for this approach is that the human ears’
field of hearing is larger than the eyes’ field of view, and thus is able to inform
us on events happening in areas that we do not see at a given time. It may then
be possible to create sound cues that will draw the listener’s attention towards
part of the visualization that is out of visual range. In VR, the user will then
be able navigate using sound cues and perform a more detailed investigation of
areas of interest. Likewise a soundscape may help the user to maintain a sense
of orientation while navigating in arbitrary directions.

Our aim is to create a soundscape that in some way represents the surround-
ing visual world, and may be of assistance to the user in several ways. This paper
will describe some examples of how sound can be helpful for performing VDM,
and in addition support orientation and navigation in the artificial worlds that
we deal with.

The examples in this paper are created using a “Forest Cover Type” database,
see table 1. The database is available with description online2.

1.2 Sonification of Statistical Values

The methods described in this paper only aim at encoding one level of statistical
information into the soundscape. It is possible to add more levels using e.g. differ-
ent types of instruments/timbres or different persons speaking, much like using
different shapes, orientations and textures on graphical objects. It is important
to note that the target is dependent on the success of the user comprehension of
a multivariate soundscape. Thus it is not necessarily a goal it self to sonificate
as many variables as possible simultaneously, but to make it possible for analyst

2 http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
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and domain experts to get a useful impression of relationships between multiple
variables.

Listening to a soundscape rendering based on statistical data can be an over-
whelming sensation for beginners, and it may be difficult to extract just one level
of information. It takes some time to learn how to interpret the information, and
before this is mastered the soundscape should be kept simple. If the possibility
of encoding more level is made available, it should be up to the user to add more
levels to the soundscape, as he/she gets used the sensation. Still, adding more
levels may just deteriorate the the information held in the existing level(s).

2 Previous Work

It is well known that color provides a powerful tool for categorizing visual objects,
e.g. when performing visual data mining[1]. Some research have been focused on
using auditory patterns to present complex information and combining visual
and auditory information to facilitate the processing of information [4]. It is
concluded that for some types of information, the auditory modality works just
as well as the visual modality. In particular, auditory information can be used
as effectively as visual information for a visual search task when speed is not
crucial. Furthermore it is suggested that humans can rapidly extract more than
one aspect of information from a sound, and then act on the information.

These observations indirectly suggest that it will be possible to create a
useful 3D soundscape, that in some way represent a visual world and yields
further information about this.

Much research has been focused on creating auditory displays using different
artificial cues for simulating direction and distance. [5] provides a useful overview
of things to consider when implementing a 3D sound system, especially regarding
distance perception and implementation. Also [6] is a useful source when dealing
with the human auditory system.

Some specific research regarding data analysis has previously been done [7].
This article describes different aspects and methods for rendering data as sound
and provides a good overview of different possibilities within this scope.

3 Rendering Value as Sound in Virtual Spaces

The 3DVDM system provides tools for using 3D sound to perform general and
detailed investigation of data visualized in a 3D scatter plot. A sound engine is
designed and integrated into the VR++ system (VR++ is the software frame-
work, which hosts the 3DVDM software [8]). With this, it is possible to place
sampled sounds or synthesized sounds at any point in the virtual world. It is thus
possible to attach sounds representing statistical values to selected objects, or
add sound representation to groups of objects, such as density clusters or mea-
surements of density in solid angles around the users current position. Adding
sound to this infinite visual space with thousands of generators and with no ma-
jor solid structures to influence with reverberation, as in the natural world, has
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appeared to be a rather complicated task with a large number of possibilities
and constraints, respectively.

Databases of concern typically have many thousands of observations, and our
current software can handle 32 simultaneous sound generators (voices). Even if
this may seem insufficient for creating an interpretation of thousands of obser-
vations, we need to consider that a soundscape created from thousands of si-
multaneous sounds will not necessarily yield useful information (it is more likely
that it will not). One possible solution to this problem is to create a soundscape
that changes in time (and space), allowing the listener to be able to pinpoint
locations in space, which may be interesting to explore even further. For this
purpose, the number of voices is sufficient. The change in time can either be an
automated process, or controlled by the user in ways that will be described in
more detail later.

The limitation of 32 voices is not a finite number, but can easily be expanded
to whatever number of voices the host computer that runs the sound engine is
capable of.

The sound system can produce an audible 3D sound field generated with 2,
4, 5.1 (Dolby Digital positions) and 8 speakers in different configurations. The
optimal 3D sound field is generated with 8 speakers placed in each corner of a
cube, because this creates an even placement of the speakers in all directions of
the listener, and represents all three directions in the 3D world. The 8 speaker
configuration is widely used with the CAVEs.

4 Sound Schemes

The human auditory system is capable of pinpointing and maintaining focus of
perception on a single sound source in an otherwise complicated soundscape.
This is referred to as the “cocktail party effect”[6]. This means that we can en-
code much information into the soundscape and expect the listener to be able
to decode a single source, as long as it is distinguishable from the rest of the
sound sources. This may be achieved by dynamicly changing the soundscape
- a side effect that will happen automaticly if the data base samples are se-
lected as a function of time (only requiring that the database contains different
observations).

Likewise [6] speaks of the “ventriloquism effect”. This phenomenon indicates
that, if there is a visual cue and a sound is located close to this object, the sound
is automatically perceived as being where the visual object is. This means that
if we visualize the currently sampled objects, the listener will perceive the sound
as originating from this object. This may compensate for possible shortcomings
in the 3D sound rendering system.

When placing sound cues at different distances one should consider that the
human auditory system perceives distance far more accurate when using familiar
sounds rather than unfamiliar sounds. [9].

Based on this we propose two ways of mapping statistical values to sound
events: Samples and synthesized sound.
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– Using sampled sounds where an exchangeable sound bank consists of selected
samples that may (or may not) be related in a way that makes them yield
some kind of numerical information. The samples should be short (i.e. less
than 500ms) to avoid a clouded soundscape. The sounds used in the sound-
scape should (ideally) represent some kind of numerical information making
the listener able to distinguish between these. It is clear that rendering a few
categorical (Nominal or Ordinal) values such as the four Wilderness Areas or
the seven Cover Types in the Forest Cover Type database (see table 1) will
create a more interpretable soundscape than 9am Hill-shade which ranges
from 0 to 255. With a few n categorical values it is then suitable to use
a sound bank with a few easy distinguishable sounds, e.g. recordings of n
different musical instruments or a spoken voice saying the numbers from 1
to n.

– Using synthesized sounds generated with a simple sawtooth waveform with
musically tuned pitch. Low value can correspond to a low pitch and visa
versa. When using the synthesized scales the soundscape will most likely
have some kind of musical content. Since we have chosen pitch as value it is
our hope that listeners with a minimum of musical training will be able to
hear and interpret the steps in pitch as values. The sounds are created with a
relatively short envelope time consisting of a short attack around 30ms and
decay around 100ms. The resulting sounds are short musical sounds with
a noticeable onset, that should create sufficient attention for the listener
in order to locate it’s position and perceive its encoded value. In the non-
categorical case it may be more difficult to define the ideal sound sample
bank. For this purpose it may be more suitable to use these synthesized
sounds and achieve value information by mapping the values to musical pitch.
The pitches are chosen in predefined scales, which have different spacing
between the pitches and different tonal content. The software has a few of
these scales to which values can be mapped. The scales are: Pentatonic,
Aeolic, Major Chord, Chromatic, Melodic (Ionic) and Tritone (Boolean). In
some scales the tones are close to each other (Melodic/Chromatic) while the
others have more or less spread (3-5 semi-tones between them). The Tritone
scale only has two tones placed in the distance of six semi-tones. All scales
are placed musically in the mid range (not too low, nor too high notes).

Our wish to encode easy understandable numerical information into the sound-
scape introduces a problem that we need to consider. Under normal conditions
the auditory system is exposed to many different sound sources. In our case the
soundscape will be created from many similar sources. This means that events
are more sensible to masking, which means that sounds with higher intensity
“eats” the weaker ones. We may overcome this to some degree by choosing
many different sounds or by lowering the number of simultaneous sounds.

In practice the software has control options to adjust such parameters. These
settings can be applied in real-time depending on what the listener may find
useful in the specific situation.
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4.1 Tools for Rendering a Soundscape

The 3DVDM sound tools consist of two major methods which both operate on
visual 3D scatter plots:

– A render tool, which can be used for rendering a 3D soundscape around
the user representing either statistical values or density measured in a user
definable cubic grid. The soundscape rendering can be of the whole data
set with random sampling, sliding windowed data sampling, or rendering a
sweeping plane along a specified axis in time, where sound is triggered when
the plane intersects with objects. The database is sampled several times each
predefined time interval, e.g. each 100ms, and if the threshold conditions for
a sample are met a sound will play. Each sampling period a specified number
of voices (1-32) will be triggered on this basis.

– A torch tool, which is placed in the hand of the user. In VR, the user can
point this virtual torch in arbitrary directions towards objects in space and
get sound responses from these representing statistical values of objects or
local area densities (see Figure 1).

Fig. 1. Auditory data mining with the “virtual torch”. In VR the torch cone originates
from the hand of the observer, and can be pointed in any direction.

For all render methods the same rule apply: When a data sample is set to play
it is rendered at its actual position in 3D space. Ideally the listener will be able
to locate the origin of the sound (position and distance). For all methods it is
possible to apply density thresholds in order to concentrate the attention on
higher populated areas. Likewise the user may define a distance threshold and
discard records placed in virtual space beyond this threshold.
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5 A Case Study: Forest Cover Type

The following presents three example series using the Forest Cover Type dataset
mentioned in section 5.

The dataset contains the forest cover type for 30 × 30 meter cells obtained
from the US Forest Service (USFS) Region 2 Resource Information System (RIS)
data.

Independent variables were derived from data originally obtained from US
Geological Survey (USGS) and USFS data. Data is in raw form (not scaled) and
contains binary (0 or 1) columns of data for qualitative independent variables
wilderness area and soil type).

The dataset is not balanced; refer to the web-site for description of the vari-
ables and basic statistics3. .

Data summary

From the dataset documentation the following basic information was obtained:

Number of observations: 581012
Number of Attributes: 54
Attribute breakdown: 12 measures, but 54 columns of data (10 quanti-

tative variables, 4 binary wilderness areas and 40
binary soil type variables)

Missing Values: None

Name Index Values Range

Elevation 1 1978 1859 – 3858 meters

Aspect 2 361 0 – 360 azimuth

Slope 3 67 0 – 66 degrees

Horizontal Hydrology Distance 4 551 0 – 1397 meters

Vertical Hydrology Distance 5 700 -173 – 601 meters

Horizontal Roadways Distance 6 5785 0 – 7117 meters

9am Hill-shade 7 207 0 – 255

Noon Hill-shade 8 185 0 – 255

3pm Hill-shade 9 255 0 – 255

Horizontal Fire Points Distance 10 5827 0 – 7173 meters

Wilderness Area 11 4 Cache la Poudre, Comanche Peak,
Neota, Rawah

Soil Type 12 40 1 – 40

Forest Cover Type 13 7 Aspen, Cottonwood/Willow, Douglas-
fir, Krummholz, Lodgepole Pine, Pon-
derosa Pine, Spruce-Fir

Table 1. Basic information about the variables in the Forest Cover dataset

3 http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
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This dataset, see table 1, was originally used in a classification exercise, with
12 independent variables for classifying the cover type, and one control variable,
Forest Cover Type. It was also used in [10] where the cover type was classified
using different methods.

Data conversion

There are 13 variables of which the last three are categorical; that is, without
any meaningful ordinal order. The categorical variable Forest Cover Type, index
13, can directly be used, but it is difficult to use the two categorical variables
Wilderness Area and Soil Type in a 3D visualization as they are stored as mu-
tually exclusive binary values.

These 44 binary variables (4 mutually exclusive values from Wilderness Area
and 40 from Soil Type) were therefore converted to two quantitative variables;
see index 11 and 12 in table 1.

5.1 The Examples

We will now present three different investigations:

– The first case will investigate usage of soundscapes in a situation where
sound acts as a support for color, which represents Forest Cover Type.

– The second will investigate the same dataset but with sound used to repre-
sent Wilderness Area (categorical data).

– In the third example we will attempt to map Vertical Hydrology Distance to
sound (continuous data).

For all cases the axes in the coordinate system indicate Elevation, Horizontal
Roadways Distance and Horizontal Hydrology Distance. This combination does
not receive particular high score when we calculate the partial correlation coef-
ficient (see [2]). Interesting shapes appear as “tongues” stretching towards two
of the axes’ higher ends, Horizontal Hydrology Distance in particular. Figure 2
shows a 3D scatter plot of the dataset used for these examples. The two pictures
show the same scatter plot from different viewpoints.

As it is difficult to present a soundscape in time in a document of this type,
we will try to make a description of the soundscapes that occur. Black cubes in
screen shots indicate currently sampled data entries.

The investigation of the dataset is not meant to be conclusive in any way,
but should only serve as an example of how these tools can be used. Some of the
information revealed by these examples are obvious and can be found simply by
looking at the data. These are used for cross-reference.

During the tests the distance threshold is adjusted to investigate how this
function affects the soundscape and the listeners perception of the content. We
also try different rendering methods: Rendering the whole set and rendering a
sweeping plane along each of the three axes. When applicable we bring out the
virtual torch to test this on areas on high interest.
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Fig. 2. 3D scatter plot from different viewpoints. Elevation, Horizontal Roadways Dis-

tance and Horizontal Hydrology Distance are mapped to the axes. Color shows Cover

Type.

5.2 Sound Supporting Color

The main objective in this test is to investigate how the use of dynamic 3D
soundscapes works as support for a visual parameter, in this case: Color. We
will also investigate if it is possible to navigate the soundscape, so that we can
locate areas of high concentration. Finally, we will will investigate the possibility
of locating interesting areas that will not be visible to the eye.

The database is sampled every 120ms, and 8 entries are randomly picked
and mapped to sound samples of spoken numbers 1 to 7 representing the seven
Cover Types. Initially, all thresholds are set to maximum values, so that all
observations are potential sources. The listener is placed in the middle of the
coordinate system, and starts navigating the soundscape from there. It is allowed
to adjust distance threshold.

– The immediate overall impression is a soundscape consisting of the numbers
5 and 7, which are the two dominant types of cover type: Lodgepole Pine
and Spruce Fir. It is difficult to hear other types.

Distance threshold is lowered to 10 (graphical) units4. This allows the listener
to investigate close range areas further by navigating through the data.

– It does not reveal anything straight away, but closing in on the area around
the middle of the elevation axis increases the number of Aspen (Type 1)
to a noticeable level. It reveals what can be seen from the color: That the
number of Aspen are few compared to Lodgepole Pine and Spruce Fir at
that elevation point (and they are close to roads in general).

4 For reference: The coordinate system is 100 × 100 × 100 graphical units
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Next, the Elevation Axis is rendered in time. Data sampling is done using a slid-
ing window (Figure 3) and distance threshold reset to maximum. The objective
is then to navigate around in the soundscape and listen for interesting things.

– This gives the impression of gradually changing Cover Type as the Elevation
increases. After several passes it also reveals that there still are types that we
cannot see in the scatter plot when Lodgepole Pine and Spruce Fir become
visually dominant (primarily Aspen).

Rendering the other axes does not reveal anything that can not be seen from the
colors. Using the torch to make close-up investigation of statistical values does
not really make sense in this case where sound acts as support for color.

Fig. 3. Sampling along the Elevation axis. Black cubes mark the current samples.

5.3 Sound Representing Categorical Data

The main objective in this test is to investigate how the use of dynamic 3D
soundscapes works for data mining when the there is no visual reference, and
the data variable that is used for rendering the soundscape consists of a few
(four) categorical values. We will see if it is possible to get an idea of how the
selected variable is distributed. We will also investigate if it is possible to navigate
through the soundscape, letting us locate areas of interest.

The database is sampled every 120ms, and 8 entries are randomly picked and
mapped to sound samples of spoken numbers 1 to 4 representing the four Wilder-
ness areas. Color still shows Cover Type. Initially all thresholds are set to maxi-
mum values, so that all observations are potential sources. The listener is placed
in the middle of the coordinate system, and starts navigating the soundscape
from there. It is allowed to adjust distance threshold. Doing a bit of “cheating”
by changing color to represent Wilderness Area shows the layout (See figure 4).
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– The initial experience when sampling the whole set randomly is an over-
weight of area 2 and 4. This is expected from the layout of the database.

We choose to render the 3 axes one by one while navigating the dataset to get
a picture of the Wilderness Area distribution.

– It becomes clear that the large tongue stretching out the Horizontal Road-
ways Distance axis is area 4. About half the maximum distance area 2 grad-
ually increases. The slim tongues that reach out the Horizontal Hydrology
Distance axis are primarily area 2 with some representation of area 4. Data
from area 3 seems to be located at high Elevation with low Roadway Dis-
tance and area 1 is located at low Elevation and low Hydrology and Roadway
Distances.

Fig. 4. A “sneak peak” at Wilderness Area distribution using color.

We then choose to try to identify what kind of Forest Cover that is in different
Wilderness Areas. By looking at the colors one can see that Cottonwood/Willow,
Douglas fir and Ponderosa Pine are grouped in one corner of the scatter plot.
Distance threshold is set to 10 and the area is investigated further (by navigating
into this area).

– This reveals that all these Cover Types are in area 1 until the Elevation
reaches a certain level.

– This area also has a few Lodgepole Pines.

It now seems feasible to bring out the torch and point it where area 1 seems to
stop (figure 5) to see how these Cover Types are distributed in the Wilderness
Areas.
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– Closer investigation with the torch reveals that area 1 has a few observations
around Elevation 2600 where it seems to stop. Areas 2 and 4 take over and
have a few Douglas-fir and Ponderosa Pine but no Cottonwood/Willow.

– Moving a bit upwards along the Elevation axis with the torch aimed at Aspen
confirms that this only exist in area 4.

Fig. 5. Investigating area 1 maximum elevation area.

5.4 Sound Representing Continuous Data

The main objective in this test is to investigate how the use of dynamic 3D
soundscapes works for data mining when the there is no visual reference, and
the data variable that is selected for rendering the soundscape consists of many
different observations. We will see if it is possible to get an idea of how the
selected variable is distributed. We will also investigate if it is possible to navigate
through the soundscape, so that we can locate areas of interest.

The database is sampled every 120ms, and 8 entries are randomly picked
and mapped to synthesized waveforms spaced on a Ionic scale over two octaves.
The values in the chosen scale (Vertical Hydrology Distance) are normalized and
mapped to this scale so that low values become low pitch and visa versa. Color
still shows Cover Type. Initially all thresholds are set to maximum values so that
all observations are potential sources. The listener is placed in the middle of the
coordinate system starts navigating the soundscape from there. It is allowed to
adjust distance threshold.

– The immediate overall impression is a soundscape with many different values
but with high concentration of mid range values and very few in the ultimate
high and low region.
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Distance threshold is again lowered to 10 units allowing closer inspection of local
areas by navigation.

– There is a noticeable change in the soundscape along the Horizontal Hydrol-
ogy Distance axis. At low distance the values seem concentrated on a value
in the middle of the lower octave (i.e. around 1/4th of the maximum Vertical
Distance, i.e. around 0 meters, since this data variable has both negative and
positive values). There does not seem to be any very low or high values.

– Moving in the direction of high Horizontal Hydrology Distance creates a
more distributed soundscape with many notes of different pitch. Sounds seem
concentrated around middle values with a larger spread than initially, but
there are definitely some very low and high values in this area.

It seems feasible to try to render along the three axes, especially Horizontal
Hydrology Distance should be interesting.

– This confirms what was indicated rendering the whole scatter plot. There is
a strong representation of a level about 1/4th as mentioned above

– This spreads out as Horizontal Hydrology Distance increases.
– When Horizontal Hydrology Distance is 0 Vertical Hydrology Distance is also

0 provided that the pitch value we hear as about 1/4th of the total tonal
range is equal to the value of 0. (This correlation between the two distances
would be expected for e.g. trees close to lakes and rivers).

Mapping Vertical Hydrology Distance to color (Figure 6) gives a clearer view
of how the distribution of this value changes as Horizontal Hydrology Distance
increases. The red tongue was not detected during the test, but was only hearable
as a few high pitched sounds, which was difficult to locate.

Fig. 6. Mapping Vertical Hydrology Distance to color. Notice the red tongue (marked).
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6 Discussion

The tools and methods presented above are only few of many possibilities of
this system. There are virtually unlimited ways to construct a soundscape using
different sounds and settings.

In general, sound seems to support a visual parameter like color quite well.
It does not reveal much new information; but can be useful if a data structure
occludes other interesting observations. If certain clusters are out of visual range
it will create sound cluster in that direction, provided that there is sufficient
data in that cluster.

Mapping statistical values to a few different sound events works with success
when the data values are a few categorical values. If the data values are con-
tinuous it is more difficult to suggest a soundscape with the same informational
value, though using the synthesized sounds may still yield some information
about relative values.

Sampling of the whole 3D scatter plot randomly and especially along the
three axes in time gives us a soundscape that is much similar to the one we will
get by choosing color rather than sound. The real strength of this method ap-
pears when comparing color and sound information to investigate the correlation
between these.

The virtual torch proves quite useful for finding the direct statistical value
of a given observation as long as the statistical values are few and preferably
categorical. When this is not the case it will still provide information on relative
values.

An important parameter to consider is the distance threshold that enables
the listener to concentrate on the local area, because this also seems to eliminate
most of the potential background noise created from distant objects. However,
this also eliminates the ability to navigate towards distant areas on basis of the
auditory cue from these. This was especially true for the last test where the
synthesizer was used. In the second test it was possible to work with a higher
distance threshold, probably because of the few different sounds.

6.1 Navigation Using Sound

When the user becomes familiar with the current properties of a 3D soundscape
it may become possible to navigate supported by sound cues, given that there
are clusters that provide sufficient positional cues. In cases where there are no
apparent clusters or other patterns in the soundscape it may just confuse the
user. In this case it is probably a better solution not to use the sound tools.

In any case, using soundscapes does hold enough information to give a strong
indication of the distribution of a given statistical value. This information is also
significant enough to trigger a closer investigation in most cases.
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7 Conclusion and Future Work

This project intended creating software tools that allowed us to use sound to
assist us in performing VDM in VR. This paper presented two basic sound tools
developed for this purpose, and our aim was to present and test these tools, in
various ways.

Our work has shown that it is possible to use sound for data mining in VR as
either a support for visual parameters or as a stand-alone method, and especially
using different exchangeable sample banks to represent statistical values proves
to be a useful way of locating data values in VR. The success will depend on
which type of data we wish to investigate, since keeping a simple soundscape is
crucial for precise perception of value. Still it is possible to encode some kind of
information about level for data that is more complicated.

Future tests should try to investigate the threshold of complexity for sound-
scapes that are useful for data mining (i.e. holds some kind of numerical value).
This is important in order to avoid listener fatigue and information overload
which was a common problem during this work.
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Abstract. Visual data-mining strategy lies in tightly coupling the visualizations
and analytical processes into one data-mining tool that takes advantage of the
assets from multiple sources. This paper presents two graphical interactive
decision tree construction algorithms able to deal either with (usual) continuous
data or with interval and taxonomical data. They are the extensions of two
existing algorithms: CIAD [1] and PBC [2]. Both CIAD and PBC algorithms
can be used in an interactive or cooperative mode (with an automatic algorithm
to find the best split of the current tree node). We have modified the
corresponding help mechanisms to allow them to deal with interval-valued
attributes. Some of the results obtained on interval-valued and taxonomical data
sets are presented with the methods we have used to create these data sets.

1 Introduction

Knowledge Discovery in Databases (or KDD) can be defined [3] as the non-trivial
process of identifying patterns in the data that are valid, novel, potentially useful and
understandable. In most existing data mining tools, visualization is only used during
two particular steps of the data mining process: in the first step to view the original
data, and in the last step to view the final results. Between these two steps, an
automatic algorithm is used to perform the data-mining task. The user has only to tune
some parameters before running the algorithm and waiting for its results.

Some new methods have recently appeared [4], [5], [6], trying to involve more
significantly the user in the data mining process and using more intensively the
visualization [7], [8], this new kind of approach is called visual data mining. In this
paper we present some tools we have developed, which integrate automatic
algorithms, interactive algorithms and visualization tools. These tools are two
interactive classification algorithms. The classification algorithms use both human
pattern recognition faciliti es and computer calculus power to perform an efficient
user-centered classification. This paper is organized as follows.

In section 2 we briefly describe some existing interactive decision tree algorithms
and then we focus on the two algorithms we will use for interval-valued data and
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taxonomical data. The first one is an interactive decision tree algorithm called CIAD
(Interactive Decision Tree Construction) using support vector machine (SVM) and the
second is PBC (Perception Based Classifier).

In section 3 we present the interval-valued data: how they can be sorted, what
graphical representation can be used and how we perform the graphical classification
of these data with our decision tree algorithms.

The section 4 presents the same information as section 3 but concerning the
taxonomical data. Then we present some of the results we have obtained in section 5
before the conclusion and future work.

2 Interactive decision tree construction

Some new user-centered manual (i.e. interactive or non-automatic) algorithms
inducing decision trees have appeared recently: Perception Based Classification
(PBC) [9], Decision Tree Visualization (DTViz) [10], [11] or CIAD [12]. All of them
try to involve the user more intensively in the data-mining process. They are intended
to be used by a domain expert and not the usual statistician or data-analysis expert.
This new kind of approach has the following advantages:

- the quality of the results is improved by the use of human pattern recognition
capabiliti es,

- using the domain knowledge during the whole process (and not only for the
interpretation of the results) allows a guided search for patterns,

- the confidence in the results is improved, the KDD process is not just a "black
box" giving more or less comprehensible results.

The technical part of these algorithms are somewhat different: PBC and DTViz use
an univariate decision tree by choosing split points on numeric attributes in an
interactive visualization. They use a bar visualization of the data: within a bar, the
attribute values are sorted and mapped to pixels in a line-by-line fashion according to
their order. Each attribute is visualized in an independent bar (cf. fig.1). The first step
is to sort the pairs (attri, class) according to attribute values, and then to map to lines
colored according to class values. When the data set number of items is too large,
each pair (attri, class) of the data set is represented with a pixel instead of a line. Once
all the bars have been created, the interactive algorithm can start. The classification
algorithm performs univariate splits and allows binary splits as well as n-ary splits.

Only PBC and CIAD provide the user with an automatic algorithm to help him
choose the best split i n a given tree node. The other algorithms can only be run in a
100% manual interactive way.

CIAD is a bivariate decision tree using line drawing in a set of two-dimensional
matrices (like scatter plot matrices [13]). The first step of the algorithm is the creation
of a set of (n-1)2/2 two-dimensional matrices (n being the number of attributes). These
matrices are the two dimensional projections of all possible pairs of attributes, the
color of the point corresponds to the class value. This is a very effective way to
graphically discover relationships between two quantitative attributes. One particular
matrix can be selected and displayed in a larger size in the bottom right of the view
(as shown in figure 2 using the Segment data set from the UCI repository [14], it is
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made of 19 continuous attributes, 7 classes and 2310 instances). Then the user can
start the interactive decision tree construction by drawing a line in the selected matrix
and performing thus a binary, univariate or bi-variate split i n the current node of the
tree. The strategy used to find the best split i s the following. We try to find a split
giving the largest pure partition, the splitti ng line (parallel to the axis or oblique) is
interactively drawn on the screen with the mouse. The pure partition is then removed
from all the projections. If a single split i s not enough to get a pure partition, each
half-space created by the first split will be treated alternately in a recursive way (the
alternate half-space is hidden during the current one's treatment).

Attr.1 Attr.2 Class Attr.1 Class
1 5 A 1 A
5 7 A 2 B
2 1 B 3 A Attr.1
9 3 B 5 A
3 2 A 6 B
6 9 B 9 B Class A

Attr.2 Class Class B
1 B
2 A
3 B Attr.2
5 A
7 A
9 B

Fig. 1. Creation of the visualization bars with PBC

At each step of the classification, some additional information can be provided to
the user like the size of the resulting nodes, the quality of the split (purity of the
resulting partition) or overall purity. Some other interactions are available to help the
user: it is possible to hide, show or highlight one class, one element or a group of
elements.

A help mechanism is also provided to the user. It can be used to optimize the
location of the line drawn (the line becomes the best separating line) or to
automatically find the best separating line for the current tree node or for the whole
tree construction. In the latter case, the line is drawn on the screen (for each step of
the algorithm if the help mechanism is used for the whole tree construction). They are
based on a support vector machine algorithm, modified to find the best separating line
(in two dimensions) instead of the best separating hyperplane (in n-1 dimensions for a
n-dimensional dataset). The SVM algorithms are only able to deal with two classes,
when we have more than two classes we use the once-against-all approach.
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Fig. 2. The Segment data set displayed with CIAD

3 Interval data

Decision trees usually deal with qualitative or quantitative values. Here we are
interested in interval-valued data. This kind of data is often used in polls (for example
for income or age). We only consider the particular case of f inite intervals.

3.1 Ordering interval data

To be able to use this new kind of data with PBC, we need to define an order on these
data. There are mainly three different orders we can use [15]: according to the
minimum values, the maximum values or the mean values. Let us consider two
interval data: I1=[l1,r1] (mean=m1) and I2=[l2,r2] (mean=m2).
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If the data are sorted according to the minimum values, then:
if l1= l2, then I1 < I2 <=> r1< r2; if l1≠ l2, then I1 < I2 <=> l1< l2.

If the data are sorted according to the maximum values, then:
if r1= r2, then I1 < I2 <=> l1< l2; if r1≠ r2, then I1 < I2 <=> r1< r2.

And finally, if the data are sorted according to the mean values, then I1<I2 <=>
m1<m2.

We can choose any of these three functions to create the bar in the first step of the
PBC algorithm in order to sort the data according to the values of the current attribute.

3.2 Graphical representation of interval data

In order to use interval data with CIAD+, we must find what kind of graphical
representation can be used in the scatter plot matrices for two interval attributes and
for one interval attribute with a continuous one. In the latter case, a segment (colored
according to the class) is an obvious solution.

To represent two interval attributes in a scatter plot matrix, we need a two
dimensional graphical primitive allowing us to map two different values on its two
dimensions, the color being the class. Among the possible choices, there are a
rectangle, an elli pse, a diamond, a segment or a cross as shown in figure 3. To avoid
occlusion, we must use the outline of the rectangle, the diamond and the elli pse.

Fig. 3. How to visualize interval x interval data in 2 dimensions?

The rectangle and the diamond will i ntroduce some bias when two rectangles
(diamonds) are overlapping, it is impossible to know if there are two or three
rectangles (diamonds) drawn as shown in figure 4.

Fig. 4. Are there three or two rectangles and diamonds?

And this can become considerably more complicated if we increase the number of
overlapping rectangles or diamonds. For example, in the figure 5, we have drawn 3
rectangles and three diamonds, but it is possible to see between 3 and 6 diamonds and
between 3 and at least 19 rectangles!
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Fig. 5. Three rectangles and three diamonds

So we cannot use rectangles or diamonds; the elli pse, segment and cross do not
have the same drawbacks. Concerning the segments, they have another kind of
disadvantage: they are drawn from the minimum to the maximum of the two intervals,
so they are all i n the first quadrant (or third one). When using such a representation,
people always try first to find a separating line in the same quadrant, even if a larger
pure partition exists but requires a cut in the second (or fourth) quadrant. That is why
we have rejected this choice. The only remaining graphical representations are the
elli pses and the crosses. The cross being of a lower cost to display, it is the graphical
primitive we have chosen.

3.3 Classifying interval data with PBC

We have explained how the interval data can be sorted in section 3.1. This method is
used in the first step of the PBC algorithm to create the bar charts. Once this task has
been performed for each attribute, the classification algorithm is exactly the same as
for continuous data (when it is used in its 100% manual mode).

3.4 Classifying interval data with CIAD

As explained in section 2, the first step of CIAD is to display a set of two-dimensional
matrices being the two-dimensional projections of all possible pairs of attributes, the
color corresponding to the class value. This first step will be the same for the interval
data, but using crosses instead of points. Once all the matrices have been drawn, the
algorithm is exactly the same as the continuous version. We try to find the best pure
partition, etc.

For the time being, the help mechanism is the same too. We use a SVM algorithm
based on the cross centers (a point equal to the middle of the interval).

4 Taxonomical data

A taxonomical variable [16] can be defined as a mapping of the original data on a set
of ordered values. It is equivalent to a structured or hierarchical variable. For
example, a geographical description can be made with the town or with the county or
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the country. The taxonomical variable describing the location will use any level of the
description (town, county or country). In the data set we can find items with a location
given by a town name and other ones with a county or country name. From the
hierarchical description, we get a set of ordered values by using a tree traversal (either
depth-first or breadth-first). Let us show the results on a very simple example of
geographical location. The location is defined by the binary tree described in figure 6.
The leaves correspond to town, and the upper levels to county and country.

Fig. 6. Hierarchical description of the location

In the data set, the location attribute can take any value of this tree (except the root
value). An example of such a data set is given in table 1, the a priori class has two
possible values: 1 and 2. The two columns on the left correspond to the original data,
the two columns in the middle are the same data set sorted according to a depth-first
traversal of the tree (T1, c1, T2, C1, T3, c2, T4, etc.) and the two columns on the right
are the same data set sorted according to a breadth-first traversal of the tree (C1, C2,
c1, c2, c3, c4, T1, etc.).

Location Class Location
(depth-1st)

Class Location
(breadth-1st)

Class

T1 1 T1 1 C1 2
T2 2 c1 2 c1 2
T3 1 T2 2 c3 2
T3 1 C1 2 T1 1
c1 2 T3 1 T2 2
C1 2 T3 1 T3 1
T5 1 T5 1 T3 1
c3 2 c3 2 T5 1
T7 1 T7 1 T7 1

Table 1. An example of taxonomical data set

T1 T2 T3 T4 T5 T6 T7 T8

c3 c4c2c1

C1 C2

Location
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4.1 Graphical representation of a taxonomical variable

Once the data have been sorted (whatever the tree traversal is), a taxonomical variable
can be seen as an interval variable. When the variable is not a leaf of the tree (for
example C1 or c3 in figure 6), it is graphically equivalent to the interval made of all
the leaves of the corresponding sub-tree (C1=[T1,T4] and c3=[T5,T6]). In a two
dimensional representation, we will use exactly the same graphical primitive as for
the interval data: a cross for (taxonomical x taxonomical) or (taxonomical x interval)
representation and a segment for (taxonomical x continuous) or (interval x
continuous) representation.

Fig. 7. Interval-valued version of the iris data set
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4.2 Interactive taxonomical data classification

Here again, the way PBC is used is exactly the same as for interval or continuous data
(when it is used in 100% manual mode). There is an order for the taxonomical data, it
is used in the first step of the PBC algorithm, to sort the data according to the attribute
value.

CIAD is also used the same way as for interval data. The help mechanisms can be
used if we consider only the center of the interval (corresponding to the taxonomical
data treated).

5 Some results

First of all , we must underline that we have not found any result of a decision tree
algorithm dealing with interval and taxonomical data and there was no available
interval-valued data sets in existing machine learning repositories when we wrote this
paper (the only one we knew was unavailable [17]). We present in this section some
of the results we have obtained and we start with the description of the data sets we
have created. We have used existing data sets with continuous variables to create the
interval-valued data sets. The first data set used is the well -known iris data set from
the UCI Machine Learning Repository [12]. First, a new attribute has been added to
data set: the petal surface. Then the data set has been sorted according to this new
attribute (it nearly perfectly sorts the iris types) and we have computed (for each
attribute) the minimum and the maximum values of each group of f ive consecutive
items. And so we obtain a data set made of four interval-valued attributes and 30
items (10 for each class).

The resulting display with the CIAD set of 2D scatter plot matrices is shown in
figure 7 (the petal surface attribute has been removed). The original data set has one
class linearly separable from the other two, and the other two not linearly separable
from each other. The interval data have three linearly separable classes. Some of the
data set items are represented with a segment because the minimum and maximum
have the same value according to the second attribute used in the matrix.

The second data set we have created is an interval-valued version of the shuttle
data set (which also comes from the UCI Machine Learning repository). This data set
is made of nine continuous attributes, 43500 items and seven classes. Four of them
have very few items and for these four classes we have only created one interval-
valued item with the average value plus and minus the standard deviation for each
attribute. The three remaining classes have more items, we wanted to have nearly one
hundred interval-valued items, so we created a number of interval-valued items in
proportion to the original number of continuous items. These items have been
computed by a clustering algorithm (k-means) to get similar continuous elements in
an interval-valued one (then the average value plus and minus the standard deviation
are computed in each cluster for all the attributes). The same method has been used
for both the training set and the test set. The graphical display of the shuttle-interval
training set is shown in figure 8.

Once these data are displayed, we perform the interactive creation of the decision
tree. The accuracy obtained on the training set is 100% with a 10-leaf tree (99.7% on
the test set with a ten-fold cross-validation). On the continuous data set, the accuracy
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obtained with CIAD was 99.9% on the test set with a tree size of nine leaves. As we
can see, the tree size of the interval-valued data set is larger than the continuous one
and the accuracy is lower. This is because the interval-valued data set has only one
hundred elements compared to the 43500 elements of the original data set. One
misclassified element has an accuracy loss of 1% on the training set and 3% on the
test set in the first case and 0.002% (and 0.006%) in the later one. To get a similar
accuracy, the interval-valued tree needs more splits (and more leaves) to avoid any
misclassification when the continuous version allow tens of misclassification errors
while keeping the accuracy greater than 99.9%.

Fig. 8. Interval version of the shuttle data set

To evaluate the accuracy on the test set, our decision tree algorithm gives as output
the source code of a C program we only need to compile and run it to compute the
accuracy on the test set. We had not enough time to manage other large datasets, we
are working on a software program being able to automatically create an interval-
valued data set from a continuous one.
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6 Conclusion and future work

Before concluding, some words about the implementation. All these tools have been
developed using C/C++ and three open source libraries: OpenGL, Open-Motif and
Open-Inventor. OpenGL is used to easily manipulate 3D objects, Open-Motif for the
graphical user interface (menus, dialogs, buttons, etc.) and Open-Inventor to manage
the 3D scene. These tools are included in a 3D environment, described in [18], where
each tool can be linked to other tools and be added or removed as needed. Figure 9
shows an example with CIAD set of 2D scatter plot matrices, PBC bar charts and
parallel coordinates. The element selected in a bar chart appeared selected too in the
set of scatter plot matrices and in the parallel coordinates (in bold white). The
software program can be run on any platform using X-Window, it only needs to be
compiled with a standard C++ compiler. Currently, the software program is
developed on SGI O2 and PCs with Linux.

Fig. 9. Three linked representation of the drug data set

In this paper we have presented two new interactive classification tools able to deal
with interval-valued and taxonomical data. The classification tools are intended to
involve the user in the whole classification task in order to:

- take into account the domain knowledge,
- improve the result comprehensibilit y, and the confidence in the results (because

the user has taken part in the model construction),
- exploit human capabiliti es in graphical analysis and pattern recognition.
A forthcoming improvement will be to use the method we have described to create

interval-valued data sets as a pre-processing to reduce the number of item in very
large data sets.
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