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Abstract
Depth maps produced by consumer-grade sensors suffer from inaccurate measurements and missing data from either sys-
tem or scene-specific sources. Data-driven denoising algorithms can mitigate such problems; however, they require vast 
amounts of ground truth depth data. Recent research has tackled this limitation using self-supervised learning techniques, 
but it requires multiple RGB-D sensors. Moreover, most existing approaches focus on denoising single isolated depth maps 
or specific subjects of interest highlighting a need for methods that can effectively denoise depth maps in real-time dynamic 
environments. This paper extends state-of-the-art approaches for depth-denoising commodity depth devices, proposing 
SelfReDepth, a self-supervised deep learning technique for depth restoration, via denoising and hole-filling by inpainting of 
full-depth maps captured with RGB-D sensors. The algorithm targets depth data in video streams, utilizing multiple sequential 
depth frames coupled with color data to achieve high-quality depth videos with temporal coherence. Finally, SelfReDepth 
is designed to be compatible with various RGB-D sensors and usable in real-time scenarios as a pre-processing step before 
applying other depth-dependent algorithms. Our results demonstrate our approach’s real-time performance on real-world 
datasets shows that it outperforms state-of-the-art methods in denoising and restoration performance at over 30 fps on Com-
mercial Depth Cameras, with potential benefits for augmented and mixed-reality applications.
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1  Introduction

Depth information is pivotal in many applications, from 
digital entertainment to virtual and augmented reality [21]. 
It is the backbone for digital object and environment mode-
ling [8, 42] and cost-effective motion capture solutions [18].

Pose estimation derived from depth data finds util-
ity in diverse fields such as physiotherapy [5, 17], video 
surveillance [34, 63], and human–computer interaction 
[46]. Depth data also aids autonomous navigation [15] 
and enhances security measures through facial recogni-
tion [43].

Consumer depth devices, often employing low-cost 
LiDAR, structured light, or time-of-flight technologies, 
are instrumental in these applications. Among these, the 
Microsoft Kinect v2 stands out for its balance of quality, 
availability, and affordability. However, consumer-grade 
sensors like Kinect v2 still grapple with noisy and incom-
plete data issues.

Efforts to address these quality issues span traditional 
smoothing techniques to data-driven machine learning 
algorithms. Many adopt supervised learning with neural 
networks, training models on noisy-clean data pairs (x̂, y) 
to minimize empirical risk.

However, acquiring clean training data is non-trivial. 
Recent attention has thus shifted towards self-supervised 
techniques, such as Noise2Noise [27], which leverages 
noisy-noisy data pairs (x̂, ŷ) for training, and minimizing 
the cost function g(𝜃) = argmin𝜃

∑N

i
L
�
f𝜃
�
x̂i
�
, ŷi

�
 , where 

the network f𝜃
(
x̂i
)
 is parameterize by �.

Despite their efficacy in various domains, self-super-
vised methods for depth data restoration remain under-
explored, largely due to the intricate noise patterns in 
consumer-grade sensors.

Our paper introduces SelfReDepth (SReD), a novel 
self-supervised, real-time depth data restoration technique 
optimized for the Kinect v2. SelfReDepth introduces a 
convolutional autoencoder architecture inspired by U-Net, 
specifically designed to process sequential depth frames 
efficiently. This design choice directly responds to the need 
for maintaining temporal coherence in dynamic scenes, 
a gap often left unaddressed by traditional single-frame 
denoising approaches. Furthermore, SelfReDepth incor-
porates RGB data into the depth restoration process as 
an innovative way to enhance the accuracy of inpainting 
missing pixels by providing contextual color information. 
This method significantly improves the restoration qual-
ity by providing additional context that depth data alone 
lacks. Our contributions are fourfold: (1) We employ a 
convolutional autoencoder with an architecture akin to 
U-Net [47] to process sequential frames. (2) Our method 
achieves real-time performance and temporal coherence 

by adopting a video-centric approach. (3) We incorporate 
RGB data to guide an inpainting algorithm during training, 
enhancing the model’s ability to complete missing depth 
pixels. (4) Our approach maintains a 30 fps real-time rate 
while outperforming state-of-the-art techniques.

2 � Background and related work

In recent years, depth-sensing technology has emerged 
as a pivotal tool in various applications, from gaming to 
augmented reality and robotics. The promise of capturing 
the third dimension, depth, has opened up new horizons in 
computer vision, augmented reality, and human–computer 
interaction. Next, we introduce some concepts and method-
ologies related to the present work.

Denoising vs. inpainting: The distinction between denois-
ing and inpainting is important to be stressed, as these terms 
will be used throughout this work constituting important 
stages of the proposed methodology. Denoising and inpaint-
ing are two core image processing problems. As the name 
suggests, denoising removes noise from an observed noisy 
image, while inpainting aims to estimate missing image 
pixels. Both denoising and inpainting are inverse prob-
lems: the common goal is to infer an underlying image 
from incomplete/imperfect observations. Formally, in both 
problems the observed image Y ∈ ℝ

M�×N� is modeled as 
Y = F(X) + � where X ∈ ℝ

𝕄×ℕ is the unknown (original) 
image and � is the observed noise. The difference between 
the denoising and the inpainting emerges from the mapping 
F ∶ ℝ

M×N
↦ ℝ

M�×N� that expresses a linear degradation 
operator that could represent a convolution or a masking 
process. In concrete, the denoising process means that F  
is an identity projector, having F = H , such that H = I , 
(with I the identity matrix). In the inpainting process, F  is 
a selection operator. In practice, this corresponds to having 
the same H as before. However, this matrix only contains 
a subset of the rows of I , accounting for the loss of pixels.

Having formally defined the two concepts, we stress that 
both are used in restoration problems, as we propose in this 
work. It follows that, in this paper, two major contributions 
are offered for restoration, concretely: (i) a new denoising 
method. Contrasting with Noise2Noise [27] that applies 
denoising in traditional images, we extending the framework 
to depth images that requires a new learning strategy to han-
dle depth information (see top branch in Fig. 2 and Sect. 3.2), 
and (ii) inpainting approach where we integrate a newtwo-
stage pipeline comprising a RGB-Depth registration and a 
fast marching method stages (see bottom branch in Fig. 2).

Problems with low-quality depth: Despite all the progress 
made in in-depth sensing hardware for consumer devices, 
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depth cameras (such as the Kinect v2) still suffer from 
many of the same problems that previous iterations also did, 
namely, noisy measurements and depth holes [38].

These depth holes typical of time-of-flight (ToF) devices 
have multiple causes [20, 50] including: (1) measuring 
regions that are outside the distance range of the sensor, 
(2) highly reflective objects in the scene, (3) measurements 
near the edges of the camera’s field-of-view (FoV). Smaller 
holes, on the other hand, can appear in one of two types: (1) 
isolated points caused by physical and lighting interferences 
on the sensor, (2) thin outlines around objects due to the 
scattering of infrared rays at shallow angles and sharp edges.

Besides missing depth values, the measurement inac-
curacy in the successfully captured points is a concerning 
issue, leading to noisy depth maps. The noise produced 
by Kinect v2 is significantly less severe than in the previ-
ous generation. Nevertheless, it is still very much present. 
Experimental analysis [26, 54, 61] has shown that there is a 
direct correlation between the noise observed in Kinect v2’s 
depth maps and various physical factors, including distance, 
angle, material, color, warm-up time, to quote a few. Fur-
thermore, there is a general consensus [1, 12, 25] that this 
noise can be described as the sum of two different sources 
of noise: (1) random noise, associated with pixel-based local 
distortions caused by physical factors like color and others 
mentioned above, (2) systematic bias, associated with the 
wiggling error that radially increases as the measurements 
get closer to the edges of the sensor’s FoV.

Deterministic denoisers, or manual denoising algorithms 
that do not rely on machine learning were the first noise 
reduction techniques to be developed targeting depth data 
[14]. These can generally be divided into three main cat-
egories: (i) filter-based denoisers, (ii) outlier removal tech-
niques, and (iii) calibration methods.

Filter-based denoisers work by applying smoothing and 
sharpening filters, such as bilateral filters [37, 62], joint 
bilateral filters [9, 10], anisotropic filters [35] and zero block 
filters [35], to leverage spatial pixel neighborhoods through 
sliding pixel windows (i.e. kernels). The preservation of 
edge sharpness is particularly difficult to achieve using fil-
ters; thus, some denoisers introduce specialized techniques, 
such as RGB-D alignment [10] and contextual image par-
titioning [9].

Other works, instead, focus exclusively on removing 
incorrect or low-quality depth points rather than correcting 
them. This can be seen, for instance, in Ref. [12] for cleaning 
hand depth scans and in Ref. [57] for cleaning body scans, 
later merged to form a complete body point cloud. Finally, 
some works tackle the denoising problem from a calibration 
standpoint, focusing on alleviating systematic errors affect-
ing consumer-grade sensors by fitting planes or splines to the 

raw measurements [25, 26] or generating specialized noise 
correction maps [1].

Self-supervised denoisers: Noise2Noise [27] pioneered 
self-supervised image denoising, showing that a denois-
ing model trained with only noisy data can achieve qual-
ity results on par with supervised learning strategies. The 
shift in the learning method from supervision to self-
supervision resides primarily in the training data. Specifi-
cally, Noise2Noise [27] uses input-target pairs of the form 
(x̂, ŷ) =

(
x + n1, x + n2

)
 , where x is the base signal (the 

undamaged data that we want to uncover) and n1 and n2 are 
two independent noise instances following the same statisti-
cal distribution. From the above, the Noise2Noise strategy 
differs from the noise-clean data pairs (x̂, y) used in super-
vised learning and has the advantage of not requiring clean 
target images.

Nonetheless, Noise2Noise [27] has some data limitations, 
encouraging subsequent works to propose further improve-
ments. Towards this challenge, [4] proposes two data per-
mutation techniques to increase the number of noisy training 
pairs. On the other hand, Noise2Void [23] eliminates the 
need for quasi-similar input-target pairs (not always easy 
to obtain) by training the model to predict a central pixel 
using noisy-void training pairs (x̂,−) and a blind-spot mask 
to avoid learning the identity. Noise2Self [2] later expanded 
on this by proposing a more generalized model.

Going further, some works, namely Probabilistic Noi-
se2Void [24], SURE [39], Noisier2Noise [41] and Noise-
Breaker [28], managed to improve denoising for specific 
distributions. On the other hand, GAN2GAN [6] combines 
a generative model, Self2Self [45] introduces training with 
a single data sample, and GainTuning [40] proposes an ever-
adapting model.

Spatio-temporal denoisers are an extension of image 
denoising where the coherence of temporal locality is also 
considered to provide visual continuity in the final denoised 
videos. Likewise, clean data may also not be easy to obtain 
for this task, and thus, blind training comes with great 
interest. A simple multi-frame self-supervised strategy for 
denoising can be extrapolated from Noise2Stack [44], in 
which a self-supervised approach is proposed to denoise 
MRI data using adjacent sets from a stack of layered MRI 
brain scans.

Self-supervised denoising techniques targeting color vid-
eos have also been developed, using the multi-frame input 
concept described in Noise2Stack [44] combined with 
additional self-supervision techniques. Multi-Frame-to-
Frame (MF2F) [13] (see Fig. 1) takes the FastDVDNet [52] 
supervised video denoising network, composed by cascaded 
U-Net [47] autoencoders, and applies its own self-supervised 
loss.
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Similarly, UDVD [48] uses a cascaded structure akin to 
FastDVDNet [52] but performs the network pass 4-fold, each 
with the input frames at a different rotation ( 0◦ , 90◦ , 180◦ and 
270◦ ). The four outputs generated, one for each of the four 
rotations, are then rotated back to 0 ◦ and combined to form 
the final production.

Depth completion: Alongside inaccurate data points, 
low-quality depth maps also suffer from missing or inva-
lid data. Depth completion, also known as hole-filling, is a 
well-known and vastly researched area that falls under the 
umbrella of image inpainting [32, 59, 60].

The effect of using Noise2Noise and similar algorithms 
over images with missing data without any prior inpainting 
is that the majority of depth holes remain untreated in the 
final images, and even in methods that deal with multiple 
consecutive frames, there is insufficient data to fill these 
gaps in most cases.

As in-depth denoising, depth completion has been 
approached using traditional and deep neural methodologies. 
Traditional techniques typically rely on either filtering algo-
rithms, which classify the holes and apply dedicated filters, 
such as PDJB, DJBF, and FCRN, or boundary-extending algo-
rithms, based on FMM or the Navier–Stokes equation [3].

The fast marching method (FMM) inpainting, in particu-
lar, was originally proposed for color image inpainting [53] 
and works by progressively shrinking the boundaries of hole 

regions inwards, until all pixels have been filled, using the 
equation

where p is the pixel being inpainted, N(p) is a neighborhood 
pixels of p, w(p, q) is a function that determines how much 
pixel q contributes to the inpainting of p, I, and ∇I represent 
the image and discrete gradient of the image, respectively. 
This algorithm was extended to depth completion, introduc-
ing improvements like the use of aligned color as a guid-
ing factor for the weight function and to define the order of 
computations [33], and the use of a pixel-wise confidence 
factor [30].

Sparse depth maps, generally captured with LiDAR 
sensors, suffer especially from large patches of missing 
depth data and have particular time limitations, as they are 
commonly linked with autonomous driving. Thus, more 
advanced techniques have been developed, relying on both 
supervised [29] and self-supervised [11, 16, 36] deep con-
volutional neural networks assisted by color information to 
fill large depth gaps.

(1)I(p) =

∑
q∈N(p) w(p, q) ⋅

�
I(q) + ∇I(q) ⋅ (p − q)

�
∑

q∈N(p) w(p, q)

(a) training (b) inference

Fig. 1   Multi-frame-to-frame (MF2F) [13] architecture with distinct strategies from the training and inference steps

(a) training (b) Inference

Fig. 2   Full overview of SelfReDepth’s architecture



Journal of Real-Time Image Processing (2024) 21:124	 Page 5 of 14  124

3 � Our approach

Building upon recent advancements in self-supervised 
data denoising research, the proposed SReD offers a novel 
approach for denoising and inpainting low-quality depth 
maps. It leverages the flexibility and adaptability of deep 
learning models while eliminating the need for reference 
data - a highly desirable feature also found in deterministic 
denoisers. SReD was designed with a specific practical 
use case in mind, incorporating several additional require-
ments during its design and development. Specifically, our 
technique aims to: (i) denoise and restore as much of the 
initial depth maps as possible, (ii) operate with a single 
RGB-D device, (iii) facilitate direct sensor data stream-
ing, and (iv) strive for temporal coherence and real-time 
performance.

Naturally, these requirements posed challenges that influ-
enced the architectural decisions. For example, to achieve 
depth video denoising with temporal coherence, it is logical 
to design a method that utilizes multiple sequential frames, 
similar to MF2F [13]. However, given real-time constraints, 
only frames up to the most recent one are considered. This 
contrasts with MF2F, which incorporates two subsequent 
frames at the cost of adding considerable lag. Additionally, 
an architecture with faster inference is preferable over a 
more complex one to meet real-time performance criteria.

3.1 � SelfReDepth’s architecture

SReD’s architecture, particularly its neural network and 
learning method, takes inspiration from previous self-
supervised denoisers, mainly Noise2Noise [27], MF2F [13] 
and Noise2Stack [44], adapting their proposed denoising 
models to the specific case of online denoising in depth 
map sequences. As depicted in Fig. 2, the architecture dif-
fers between its training and inference stages. The model 
uses a dilated input during the training stage, as proposed 
in MF2F [13]. The autoencoder is trained with noisy pairs 
(x̂, ŷ) = ([dt−4, dt−2, dt], dt−1) , where dt−k is the depth frame 
at time instant t − k , with k ∈ {0, 1, 2, 4} . This technique 
improves the denoising results during inference and pre-
vents the network from learning the identity by hiding frame 
dt−1 from the input. Since dt and dt−1 are consecutive time 
frames, it is also plausible to assume they are similar in con-
tent while having different instances of noise, making them a 
suitable image pair for the Noise2Noise-style training.

Moreover, noisy depth frames frequently have regions 
persistently composed of depth holes in both the input and 
target frames, making these regions impossible to “denoise” 
using a standalone denoising network. As such, during 
training, the target frame dt−1 is inpainted with an FMM 

inpainting algorithm guided by the registered color frame 
RGBt−1 , providing a way for the denoiser to learn how to 
fill depth-holes.

In summary, SReD’s training architecture has two 
distinct main blocks, depicted in Fig. 2a: (i) a denoising 
convolutional autoencoder with dilated input; and (ii) a 
target generation pipeline responsible for creating inpainted 
targets. During inference (Fig. 2b), the target generation 
is removed, contributing to faster performance and the 
denoiser shifts to non-dilated input (i.e., taking the frames 
[dt−2, dt−1, dt] ), estimating a denoised/inpainted instance of 
the frame dt.

3.2 � Target generation

The denoiser requires a learning strategy to handle depth 
holes. To achieve this, SReD generates target frames through 
deterministic inpainting. This deterministic approach consists 
of two stages: (i) computing a registered RGB image and (ii) 
using the previous result to apply guided inpainting to the 
damaged depth frame. The selection of this strategy rests on 
three primary reasons: (1) The prevalence of depth holes in 
general consumer depth data is sufficiently low for a deter-
ministic approach to yield acceptable inpainting results. (2) It 
avoids the need for reference data. (3) From a temporal per-
formance perspective, it only introduces computational time 
during training.

RGB-D registration: RGB-D devices collect color and depth 
with physically separate sensors/cameras, and often also dif-
ferent resolutions and FoV. Therefore, aligning the RGB and 
depth frames simultaneously captured must be done with a 
registration algorithm and requires acquiring the extrinsic and 
intrinsic parameters of the device, namely:

–	 Focal length fd =
[
fd,x fd,y

]⊤ and principal point 
cd =

[
cd,x cd,y

]⊤ of the depth/IR sensor,
–	 Focal length frgb =

[
frgb,x frgb,y

]⊤ and principal point 
crgb =

[
crgb,x crgb,y

]⊤ of the RGB sensor,
–	 Rotation matrix R, which encodes the rotation from the 

RGB sensor view to the depth/IR sensor,
–	 Translation vector T translates from the RGB sensor’s posi-

tion to the depth/IR sensor’s position.

Following [64], RGB-D registration is performed through 
a series of coordinate transformations that map depth val-
ues captured from the depth sensor’s point-of-view to color 
values in the RGB camera’s point-of-view. To achieve this, 
the depth data, given as a depth map, is first converted to a 
point format where for each pixel coordinate 

[
xd yd

]⊤ exists a 
3-d point Xd =

[
xd yd zd

]⊤ with zd = depth(xd, yd) , and then 
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transformed from Depth Image Coordinate Space to RGB 
Image Coordinate Space, Xrgb , using the following equalities:

Points Xrgb in (4) can then be mapped to a 2D Wrgb × Hrgb 
size image, forming a registered depth image. This process 
summarizes the standard registration algorithm. However, 
the computation of registered RGB images is needed for 
target generation. So the RGB ↦ D mappings produced by 
Eqs. (2)–(4) are reversed to build a 2D Wd × Hd image of 
color values instead. Of course, doing this still leaves depth 
holes with no RGB value attributed, weakening the whole 
purpose of performing RGB-D registration. To overcome 
this, depth holes are filled with pixel interpolation and blur-
ring to create smooth transitions between edges of known 
depth regions.

Inpainting: After completing the RGB-D registration, we 
employ a color-guided fast marching method (FMM) inpaint-
ing algorithm to generate the target frames for training the 
denoising network. Following the original FMM inpainting 
technique [53], the algorithm starts by delineating the bound-
aries of all hole regions within the image. Subsequently, it 
performs inpainting from the outer pixels of these boundaries 
inwards, ensuring that all hole regions are filled.

Our FMM inpainting technique combines ideas presented 
in Refs. [30, 33, 53] and introduces novel elements that enable 
better results in consumer depth maps. Specifically, the pixel 
weighting function (see Eq. (5)) is different from the original 
FMM inpainting [53]. Concretely, we prioritize the distance 
factor wdst while dropping the factors wlev and wdir . Addition-
ally, we include two novel weights: wg , relating to color guid-
ance [33]; and conf, a confidence factor as in Ref. [30]. All 
these new insights contribute to the following novel functions:

(2)X�
d
=

⎡⎢⎢⎣

x�
d

y�
d

z�
d

⎤⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

(xd − cd,x) ⋅ zd

fd,x
(yd − cd,y) ⋅ zd

fd,y
zd

⎤
⎥⎥⎥⎥⎥⎦

(3)X�
rgb

=R−1
⋅ (X�

d
− T)

(4)Xrgb =

⎡
⎢⎢⎣

xrgb
yrgb
zrgb

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x�
rgb

⋅ frgb,x

z�
rgb

+ crgb,x

y�
rgb

⋅ frgb,y

z�
rgb

+ crgb,y

z�
rgb

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)w(p, q) =w2
dst
(p, q) ⋅ wg(p, q) ⋅ conf (q)

where d0 is the minimum inter-pixel distance, usually 1, G 
denotes the guiding image, and �2

g
 is its standard deviation. 

Additionally, T is a distance map that stores the distance of 
each pixel to the closest initial hole patch boundary, and Tout 
is a function that zeroes pixels in the set of initial holes Ω 
and assigns T to the remaining.

Furthermore, as in GFMM [33], the pixel inpainting 
priority takes into account both the distance to the ini-
tial hole boundary, given by T(p), and the guidance value 
of neighboring pixels, so that homogeneous areas are 
inpainted before other regions more likely to be transi-
tive or edge areas. However, the priority function used in 
SReD’s inpainting for target generation, Pr(p) , introduces 
a new normalization variable Tmax , leading to the final 
equation:

where Sg(p) (Eq. (10)) gives the local guide similarity at 
pixel p, |N(p)| denotes the number of known pixels in the 
neighborhood of p, Tmax is the greatest value in distance map 
T, and � is a mixing parameter. (Note: lower Pr values denote 
greater priority.)

3.3 � Denoising network

The denoising neural network implemented in SReD adopts 
a convolutional autoencoder architecture based on the U-Net 
design [47]. This architecture is primarily influenced by 
features from MF2F [13], FastDVDnet [52], and Noise-
2Noise [27]. During inference, the network takes as input 
three sequential depth frames, specifically dt−2, dt−1, dt . Con-
versely, during training, the input frames are dilated, namely 
dt−4, dt−2, dt . This setup enables using an inpainted version 
of frame dt−1 as the target, thereby preventing the network 
from learning the identity function. The network employs 
the mean absolute error (MAE or L1 ) loss function to meas-
ure the discrepancy between the inpainted target d∗

t−1
 and the 

(6)wdst(p, q) =
d2
0

‖p − q‖2

(7)wg(p, q) = exp

�
−
‖G(p) − G(q)‖2

2 ⋅ �2
g

�

(8)conf(q) =
1

1 + 2 ⋅ Tout(q)

(9)Pr(p) =(1 − �) ⋅
T(p)

Tmax

+ � ⋅ (1 − Sg(p))

(10)Sg(p) =
1

|N(p)| ⋅
∑

q∈N(p)

wg(p, q),
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input depth frame dt . In noisy regions, this approach repli-
cates the effects of Noise2Noise [27], and for depth holes, 
the network learns inpainting techniques.

Using a U-Net [47] helps with image denoising. This 
is because the skip-connections enable passing higher fre-
quency details from the encoding stage to the decoding 
stages via layer concatenation. This propagation allows the 
network to “flatten” noise areas while still preserving sharp 
image features, such as object contours. Regarding the layer 
structure, the general layout loosely follows the model pre-
sented in Noise2Noise [27], differing mainly in the number 
of channels at each network block and the downsampling/
upsampling layers. Instead of max pooling and 2D upsam-
pling layers, SReD uses 2D convolutions with stride two and 
transposed 2D convolutions, giving the model more learning 
flexibility.

Additionally, like in FastDVDnet [52], the network 
applies a final residual operation between the input frame 
dt and the frame resulting from the last convolutional layer 
in the model dlast , yielding the depth frame prediction 
dpred = dt − dlast.

4 � Evaluation

We conducted a comprehensive evaluation of our method to 
assess the algorithm’s performance. A quantitative evalu-
ation was performed using a reference-independent noise 
metric to measure SReD’s depth-restoration capabilities 
objectively. We also performed several tests using a syn-
thetic dataset that provides usable artificial ground-truth 
data. The algorithm’s time performance was also assessed 
to determine its suitability for real-time applications. Fur-
thermore, we evaluated the method’s temporal coherence 
using a specialized metric. Finally, we compared SReD to 
other relevant reference-independent restoration algorithms 
to situate its performance within the broader landscape of 
available techniques.

4.1 � Data and metrics

Identifying an appropriate combination of data and metrics 
for evaluating SReD proved to be a non-trivial task. Ide-
ally, we would have access to a consumer-grade depth video 
dataset featuring raw frame sequences and reference depth 
data, perhaps captured using a high-precision laser sensor. 
However, such a dataset is not readily available. This very 
challenge underscores the importance of developing self-
supervised depth denoisers like SReD.

We evaluated SReD on a depth video dataset devoid 
of reference depth. The evaluation also used appropriate 
reference-independent metrics. We conducted comprehen-
sive tests on the CoRBS dataset [58], explicitly focusing 

on the Kinect v2 subset. These data include five distinct 
RGB-D frame sequences capturing a stationary scene with 
a mobile camera, resulting in an aggregate of approxi-
mately 14,000 depth frames. In terms of evaluation met-
rics, the denoised depth frames underwent quantitative 
assessment concerning noise through a “non-reference 
metric for image denoising” [22] (NMID), a robust meas-
ure based on structure similarity maps from both homo-
geneous and highly-structured regions, in the absence of 
the original clean data.

Additional tests relied on synthetic depth data from the 
InteriorNet dataset published in Ref. [31], which provides 
computer-rendered RGB and depth images for various 
indoor scenes. For evaluating this synthetic ground-
truth data, we employed proper reference metrics for the 
comparisons: MSE, PSNR, and SSI. Since this dataset does 
not provide noisy data, we introduced synthetic noise using 
the developed Kinect v1 noise model from Handa et al. [19], 
which combines Gaussian noise, bilinear interpolation, and 
quantization to produce noisier pixels at higher distances 
and missing depth values at pixels whose corresponding 
normals are close to perpendicular to the camera’s viewing 
direction.

To further assess our approach’s feasibility on these data, 
we evaluated it against the total variation (TV) method [7]. 
This denoising technique reduces the total magnitude of the 
image’s color intensity gradient while simultaneously try-
ing to keep object boundaries. The regularization param-
eter weight used in the algorithmic implementation from 
[56], which controls the denoising strength at the expense 
of fidelity to the original image, was set to 0.4 as this value 
maximized the mean scores among both datasets in our 
experiments.

Furthermore, we assess temporal coherence using 
straightforward image differences, Mtemp = mean(It+1 − It) . 
We address depth value oscillations over time by analyzing 
granular noise values on a frame-by-frame basis over con-
tiguous video sequences from the dataset.

4.2 � Experimental setup

We ran all experiments on a Windows 10 desktop machine 
with an NVIDIA GeForce RTX 3080 GPU, a Ryzen 7 3700x 
8-core CPU, 16 GB of RAM, and an SSD disk drive. We 
developed and tested SReD using Python 3.10.8 and ten-
sorflow-gpu 2.10, along with CUDA 11.2 and cuDNN 8.1.

4.3 � Results

We trained SReD with batch sizes of 16 and 200 epochs on 
the CoRBS [58] dataset, which we also thoroughly shuf-
fled and set with validation and test splits of 0.1 and 0.04, 
respectively.
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In the produced denoised depth maps, in Fig. 5, it can be 
seen that the model learned how to attenuate the noise in the 
original depth map and fill depth holes. Moreover, on the 
hardware used for evaluation, the model takes, on average, 9 
ms to denoise each depth map. Given that a regular RGB-D 
sensor, such as the Kinect v2, records data at a frequency 
of 30 frames-per-second (33 ms per frame), this evaluation 
confirms that the model can achieve the desired real-time 
performance during inference.

We also compared SReD against other approaches, 
including two deep-learning methods, Noise2Stack [44] 
and Noise2Noise [27] and two deterministic approaches, 
the Total Variation method [7] and a combination of a pair 
of methods that applies FMM inpainting [53] followed by 
bilateral filtering [55] denoising. We chose Noise2Noise to 
evaluate how the implemented technique differs from the 
original self-supervised U-Net [47] denoiser and what ben-
efits were secured by targeting specifically the denoising 
of depth. Similarly, we chose Noise2Stack [44] to compare 
SReD against another spatio-temporal depth denoiser. Last, 
we used the deterministic FMM + BF combination to evalu-
ate how SReD fares against more traditional approaches that 
perform both denoising and inpainting.

As already mentioned, we used a non-reference noise 
metric, NMID [22], to quantify the denoising quality, and 
applied a direct image difference metric to evaluate temporal 
coherence on contiguous depth videos. The results can be 
seen in Table 1. From the measured values, we note that 
SReD attained promising results, rivaling the significantly 
more computationally expensive deterministic algorithms 
with the NMID metric and achieving the best results with 
the temporal coherence in both datasets as expected, since 
it relies on multiple consecutive frames for its inference 
process. In addition, results in Fig. 4 show that original per-
frame noise discrepancies are mostly fixed, and yield tem-
porarily consistent values after denoising.

As shown in Fig. 5, Noise2Noise and Noise2Stack can 
only perform pixel denoising and not depth completion. As 
for the deterministic algorithm combination, while it was 
capable of denoising and inpainting the depth maps, it can 
also be visually seen that both the edge preservation and 
depth completion results are inferior to those of SReD.

Fig. 3   Example scenes from the ground-truth dataset demonstrating (from left to right) RGB color image, real depth map, depth map with syn-
thetic noise added (missing values in black color), results from the total variation method, SelfReDepth, and error map from our approach

Fig. 4   Temporal analysis of the mean depth value differences across frames. The noisy data were generated from a sample video sequence 
extracted from the InteriorNet synthetic dataset and restored using the SelfReDepth and total variation methods
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4.4 � Discussion

Based on the experiments and metrics, SReD effectively 
learned to reduce noise in depth maps. However, some image 
details still need to be recovered, evident in the blurred fea-
tures of the doll in the CoRBS [58] dataset. In these cases 
where large black depth holes are present, inpainting strug-
gles to effectively reconstruct this missing data due to the 
absence of depth information, resulting in over-smoothed 
restorations. While the results are promising, they highlight 
the need for further work on detail preservation.

Additionally, our method seems to struggle with accu-
rately restoring the depth of objects very close to the cam-
era, as seen in the top row of Fig. 3 and its rightmost error 
profile. This scenario where the objects are almost touching 
the camera was not seen in the training data but is very fre-
quent in the synthetic dataset, signaling the need to extend 
the training set to a wider range of scenarios.

The metrics pitched SReD promisingly against the 
other four algorithms evaluated. The visual analysis of the 
denoised data aligns well with the NMID metric values, 
reinforcing its reliability. Although not optimal, our method 
also performed very favorably in the synthetic ground-truth 
dataset regarding MSE, PSNR, and SSI scores. The subpar 
results on this synthetic dataset could be related to the a 

posteriori added synthetic noise based on a Kinect v1 noise 
model, while SReD was trained on Kinect v2 noise. This 
discrepancy, limited by the nonexistence of a usable v2 
noise model implementation, might explain the better results 
achieved in this dataset by more general image restoration 
approaches not based on deep learning.

In qualitative terms, upon visual inspection, SReD 
achieved both consistent inpainting and denoising behav-
ior and outperforms both deterministic approaches, namely 
the FMM + BF algorithm, particularly when filling miss-
ing areas and sharpening object boundaries, and TV, as this 
last method over-smooths the overall depth image, failing to 
preserve object details.

4.5 � Real‑time performance

Finally, the implemented algorithm can produce denoised 
frames at frequencies higher than 30 frames per second, thus 
making SReD suitable for real-time use. Indeed, on the com-
puter hardware used for evaluation, the model requires, on 
average, 9 ms to denoise each depth map. Given that com-
mercial off-the-shelf RGB-D sensors, such as the Kinect v2, 
generate data at 30 frames-per-second (33 ms per frame), our 
technique can achieve real-time performance at even higher 
frame rates. The modular design of the U-Net architecture 
allows for straightforward scalability to accommodate larger 

Fig. 5   Visual comparison between four image restoration algorithms applied to an example image taken from real data from the CoRBS dataset. 
From left to right: SelfReDepth, Noise2Noise, Noise2Stack and FMM + BF

Table 1   Benchmark of several 
metrics for all the tested 
methods: NMID (higher is 
better), temporal difference 
(lower is better), PSNR (higher 
is better), MSE and SSI (lower 
is better)

Results highlighted in bold are the best in each category
The last three metrics are reported for both real (CoRBS) and synthetic (InteriorNet) datasets while the first 
two are only available for the synthetic dataset since this is the only one which provides ground-truth depth 
data

CoRBS InteriorNet

NMID Temporal NMID Temporal PSNR MSE SSI

SelfReDepth 0.735 0.858 0.1611 0.0024 38.663 0.00036 0.830
Noise2Noise −0.154 1.085 0.1009 0.0039 39.020 0.00013 0.937
Noise2Stack −0.166 1.012 −0.0504 0.0038 37.582 0.00020 0.918
FMM + BF 0.735 0.926 0.2153 0.0032 43.753 0.00008 0.971
Total variation 0.165 1.057 0.0129 0.0026 42.979 0.00006 0.980



	 Journal of Real-Time Image Processing (2024) 21:124124  Page 10 of 14

image sizes without a significant impact on computational 
time, thereby maintaining real-time performance, as will be 
detailed in the following section.

SelfReDepth complexity: Our approach is made up of 
three main blocks as follows: inpainting (Eqs. (1) and (5)), 
registration (Eqs. (2)–(4)) and denoising (U-Net network) 
procedures. As already stated in Sect. 3.1, our proposal 
is designed to satisfy real-time requirements, as we can 
modify the SReD architecture during the inference stage, 
which is the one that has a direct impact on the complexity 
budget. Specifically, (i) remove the target generation, and 
(ii) the denoise shift to non-dilated input. Thus, only the 
U-Net (denoiser) needs to be carefully addressed since it 
is the unique block that affects a constrained time budget 
requirement.

Time complexity: We detail the architecture adaptation 
under a given complexity budget. The choice of the U-Net 
provides flexibility because it is possible to adapt its archi-
tecture under a predefined budget. The designs of network 
architectures should exhibit tradeoffs among several of its 
components, i.e. depth, numbers of filters, and filter sizes, 
from which the scalability is accomplished. From the 
above, depth is the most influential concerning the accu-
racy. Although it is not a straightforward observation, pre-
vious work [49, 51] has demonstrated its impact. The total 
time complexity of all the convolutional layers is given as 
O

�∑d

l=1
cl−1 . s

2
l
. fl . m

2
l

�
 where d is the depth of the net-

work, (i.e. the number of convolutional layers), l indexes 
the convolutional layer, cl is the number of input channels 
in the l-th layer, fl is the number of filters in the l-th layer, 
(i.e., the width), sl and ml are the spatial size of the filter 
and the size of the output of the feature map, respectively. 
The time cost of fully connected and pooling layers is not 
considered since these layers take about 5-10% computa-
tional time. The time complexity above is the basis of the 
network designs, from which we consider the tradeoffs 
between the depth d and filter sizes fl , inferring how the 
network scales in time.

Concretely, we design a model by replacing the layers 
in our experimental evaluation. This means that when we 
replace a few layers with some other layers, we must guar-
antee that the complexity is preserved without changing 
the remaining layers in the architecture. To design such 
a replacement, we progressively modify the model and 
observe the changes in accuracy. Our method addresses 
the following tradeoffs: 

1.	 depth d and filter sizes sl,
2.	 depth d and width fl , and
3.	 width fl and filter sizes sl.

We illustrate one of the steps above, the remaining with 
an analogous procedure, only changing the correspond-
ing parameters accordingly. For instance, as an illustrative 
of step 1 (tradeoff between depth d and filter size s), we 
replace a larger filter, say s1 , with a cascade of smaller 
filters, say s2 . Denoting the layer configuration as above, 
Lconf = cl−1 . s

2
l
. fl and considering two instances of filter 

sizes, e.g. s1 = 3 s2 = 2 , and cl−1 = N  , fl = N , we have the 
following complexities:

This replacement a s1 × s1 layer with N input/output channels 
is replaced by two s2 × s2 layers with N input/output chan-
nels. After the above replacement, the complexity involved 
in these layers is nearly unchanged, with the reduction frac-
tion of 2s2

1
∕s2

2
≈ 1.

With the strategy above, we can “deepen” the network 
under the same complexity time budget. This allows us to 
obtain several architectures and pick the best accuracy. In 
concrete, from our experimental evaluation yielding the 
times mentioned in Sect. 4.5, we found the best accuracy 
using the configuration in our final network, which has 
31 layers, 1729 convolutional size three filters, yielding 
1,260,865 trainable parameters.

Scalability: Now, we delve into how the architecture scales 
with the size of input images. First, let us introduce some 
basic notation:

–	 conv2DF,st : 2D (contraction) convolution with F number 
of filters and with stride st

–	 conv2D⊤

F,st
 : 2D (expansion) transpose convolution with F 

number of filters and with stride st

Our U-Net network includes the following main blocks:

–	 First block: 2 x conv2D32,1

–	 ith down block: 1 x conv2DFi,2
 + 1 x conv2DFi,1

–	 ith up block: 2 x conv2DFi,1
 + 1 x conv2D⊤

Fi,2

–	 Last block: 2 x conv2D32,1 + 1 x conv2D1,1

We use five blocks for each down and up stage, thus hav-
ing i ∈ {1,… , 5} . The number of filters for each block 
is F =

[
F0 … F5

]
=
[
32 32 48 48 64 128

]
 , where F0 

accounts for the filter in the first and last blocks.
Now, it is straightforward to determine convolutions. 

Assuming an image size of W × H , we have:

–	 First Block: 2 ⋅ F0 ⋅W ⋅ H

–	 Down Block i: 2 ⋅ Fi ⋅W ⋅ H ⋅ 2−2i

–	 Up Block i: 3 ⋅ Fi ⋅W ⋅ H ⋅ 2−2i

O1 = N2 . s2
1

O2 = 2 . (N2 . s2
2
)
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–	 Last Block: (2 ⋅ F0 + 1) ⋅W ⋅ H

–	 T o t a l : �
1 + 4F0 + 5

∑5

i=1
Fi ⋅ 2

−2i
�
W ⋅ H = 189.625W ⋅ H

This means that, for a �-increment in the image resolu-
tion (W + �)(H + �) , we have a complexity of O(�2) . So, 
roughly speaking, a twofold increase in image resolution 
would entail a fourfold increase in image processing time 
using the same architecture and memory footprint. Assum-
ing that in the worst case, 80% of the CPU time is spent on 
running the Neural Network, the processing time per frame 
would be around 30 ms for an effective frame rate of 30 Hz, 
which is still reasonable.

5 � Limitations

While our technique has proven to be very effective at 
restoring depth values from noisy RGB-D images, it can 
be improved in several ways. A notable limitation involves 
adequately addressing high-frequency temporal noise. While 
effective for general noise reduction, averaging pixel values 
across frames falls short in capturing and mitigating these 
rapid fluctuations. This suggests potential for future refine-
ment. More sophisticated techniques should be capable of 
discerning and smoothing out high-frequency temporal noise 
without compromising the dynamic content of the scenes.

6 � Conclusions and future work

We introduced SelfReDepth, a self-supervised approach for 
denoising and completing low-quality depth maps gener-
ated from consumer-grade sensors. Our technique advances 
self-supervised learning in-depth data denoising, offering 
a precise, data-driven architecture without reference data. 
This flexibility makes SelfReDepth easily adaptable across 
various environments and applications.

SelfReDepth’s architecture features two main elements: a 
denoising network and a target generation component. The 
denoising network is inspired by the original Noise2Noise 
[27] and MF2F [13] video denoisers and is responsible for 
learning how to denoise depth data without the need for 
reference data. Meanwhile, the target generation component 
fills in the gaps in target depth frames using color-guided 
FMM inpainting. The technique can denoise inaccurate 
depth values and paint out missing ones with this structure.

We also implemented and assessed SelfReDepth for both 
denoising efficacy and time performance. Results indicate 
real-time noise elimination and successful inpainting of 
depth gaps. Future work will focus on preserving image 
details compromised by denoising. Training with synthetic 

data might also improve depth inpainting performance and 
dampen oscillations.

In future work, we aim to explore controllable image 
denoising to generate clean sample frames with human per-
ceptual priors and balance sharpness and smoothness. In 
most common filter-based denoising approaches, this can 
be straightforwardly achieved by regulating the filtering 
strength. However, for deep neural networks (DNN), regulat-
ing the final denoising strength requires performing network 
inference each time. This of course, hampers the real-time 
user interaction. Further work will address real-time con-
trollable denoising, to be integrated into a video denoising 
pipeline that provides a fully controllable user interface to 
edit arbitrary denoising levels in real-time with only one-
time DNN inference.

SelfReDepth represents a significant advancement in 
data denoising, tackling noise and depth hole challenges 
with notable efficiency. The outcomes of our research are 
encouraging, illustrating the algorithm’s capacity to mitigate 
these problems. However, the concomitant loss of certain 
image details in the process highlights areas for potential 
improvement. This observation underscores the need for 
additional investigation while pointing to clear pathways for 
refining future algorithm iterations. Such enhancements aim 
to improve the balance between our denoising algorithm’s 
robustness and critical image detail preservation, enhancing 
its already remarkable efficiency and making it more appli-
cable to very complex scenarios.
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