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H I G H L I G H T S

• Social, environmental and economic elements are applied to nutrient CE WWTP.
• Meso, micro and macro systems factored across different scope areas.
• Framework provides a roadmap for stakeholders towards nutrient CE WWTP.
• Drivers and enablers are identified.
• A universal nutrient CE WWTP framework model is proposed.
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A B S T R A C T

Given the criticality of phosphorous and the harm eutrophication causes, wastewater treatment plants (WWTP) 
are undergoing circular economy (CE) conversions into becoming centres for resource recovery. This framework 
paper identifies the environmental, societal, political, commercial, economic, consumer, regulatory, legal, 
infrastructural, technological, international compliance, academic, agricultural, and plant-operator factors 
affecting the micro, macro and meso success and failure of nutrient CE WWTP across scope classifications. From 
this, nutrient CE framework is not as simplistic as it looks, given the multitude of impingers that need to be 
considered. The lack of technological readiness and vast selection methodologies for some nutrient recovery 
technologies, low private-sector investment, divisive consumer perceptions, unique economic situations, local-
ised regulatory specifications, threats of inefficient technology lock-ins, poor acceptance among farmers and 
WWTP operators due to infrastructural incompatibilities, lack of efficient CE supply chains, legacy infrastructure, 
poor digitised solutions for nutrient CE management, low training and awareness, and integration of nutrient CE 
WWTPs with broader society are barriers. On the contrary, nutrient CE WWTP will mainly be driven by regu-
lations, subsidies and consumer-WWTP-farmer nutrient CE acceptances. This framework aims to tie in and 
provide solutions to overcoming barriers to nutrient CE WWTPs that is universally applicable. Consequently, the 
framework provides a holistic structure for policy, legislative, academic, agricultural, plant operators, com-
mercial and consumer stakeholders a roadmap for the success and difficulties of nutrient CE WWTP adoption.

1. Introduction

Nutrient consumption is touted as a growing problem for growing 
economies and demographics. The unsustainable consumption of nu-
trients, and the subsequent production of wastewater, is a two-pronged 
issue that governments globally are challenged to address. In 2020, 44 % 
of household water is not treated, 26 % of the global population do not 
have access to safe drinking water, 60 % of the report's assessed 89 
countries have access to good quality water, while poor water quality 
data hampers assessment initiatives for more than 3 billion people 

accessing high-grade freshwater [1]. The leakage of nutrients via 
wastewater effluent into the environment presents significant sustain-
ability imperatives endangering the global biodiversity and preservation 
of both fauna and flora. For example, the World Bank estimated that in 
Latin America and the Caribbean – places where wastewater treatment 
plant (WWTP) facilities are lacking – 80 % of wastewater is discharged 
without adequate treatment [2]. Wastewater production rates are fore-
casted to increase by 24 % by 2030 and 51 % by 2050, with 16.6 Mt 
nitrogen, 3.0 Mt phosphorous, and 6.3 Mt of potassium present within 
this supply and the potential to offset 13.4 % of global demand for 
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nutrients [3].
A large concentration of wastewater generation per capita is in North 

America at 231 m3/capita/year [3]. Meanwhile in developing regions of 
the world, the capita falls to 46 m3/capita/year as seen in Sub Saharan 
Africa and Latin America at 65 m3/capita/year [3]. The low treatment 
rates may also present problems from lack of wastewater connectivity to 
populations for treatment where nutrients are disposed of into the 
environment, creating issues with eutrophication. Therefore, the need to 
recover nutrients to divert its leakage from the environment becomes 
one of the crucial missions WWTPs play in safeguarding environmental 
integrity. For instance, urine is responsible for 80 % of nitrogen and 50 
% of phosphorous loads within wastewater treatment plants [4], and the 
recovery of nutrient loads within wastewater can help drive down 
operating costs and support circular economy initiatives [5] that prevent 
many of the environmental problems arising from nutrient loading. 
Presently, the European Union's (EU) CE initiatives have primarily been 
focused on solid wastes as opposed to wastewater and other liquid 
wastes, despite the huge quantities of nutrients and caloric value of 
liquid waste entering treatment plants on an annual basis [6]. Moreover, 
there is very little penetration of CE efforts globally for WWTP nutrient 
recovery for commercial plants. The EU recently launched the “WIDER 
UPTAKE” project, where fertilisers, water, soil conditioners and bio-
plastics formed part of the strategy to convert wastewater into valuable 
products [6,7]. Similar nutrient CE WWTP projects have been seen in 
Germany with Project SUSKULT bio-economies [8,9] and the Dutch 
government aims to become a fully circular economy by the year 2050 
[10] through projects like DARROW [11]. NUTRIMAN is another project 
which aims to identify market opportunities linking industry with un-
tapped N–P recovery sources [12], BIOREFINE [13], NUTRI2CYCLE 
[14], Rich Earth Institute [15], Phos4You [16], REFLOW [17], The 
Water Research Foundation [18,19], RePhoR [20] are some research 
initiatives and social programs to disseminate awareness for nutrient 
shortages. As another part of the EU green deal, the Circular Economy 
Action Plan - commissioned in 2020 - aims to recover resources from 
waste across a wide range of sectors including water, food, and nutrients 
[21]. In order to meet 2050 sustainability targets, governments are 
beginning to see the benefits of adopting CE across a WWTP as a way of 
improving self-sufficiency and sustainability from resource 
consumption.

CE can help alleviate water, energy and food shortages throughout 
the world [22].

2. Methodological approach

Popularity for circular economy studies with WWTPs and nutrients 
has grown over the years within academia. Keywords used were 

“Circular Economy” AND “Wastewater Treatment” AND “Nutrient”; 
“Circular Economy” AND “Wastewater Treatment”; and “Circular 
Economy” AND “Nutrient” for the bibliometric assessment of these 
recent trends (Fig. 1). Other CE framework papers have used cascading 
[23] approaches to transform one value-added product to the next down 
the process chain using the 10R principles for CE.

Authors have separated CE into two types such as sensu stricto [24] 
and sensu latu [25] to respectively narrowly define it within the realm of 
slowing and closing resource loops, or to consider the economic, envi-
ronmental and societal impacts of CE frameworks [26]. In many CE 
framework studies, it is impossible to isolate the 10R principles for CE 
across all resource conservation studies, as it is ubiquitous throughout 
many waste management disciplines to minimise costs, material 
disposal and maximising product reuse and longevity. Liu et al. [27] 
sought to implement a digital lens towards automating, data collection 
and analysis for predicting the lifecycle of the product and consumer 
behaviours towards its use. The framework was then developed through 
systematic literature review, and ties in the 10R principles with that of 
automation, data analysis and collection. In many of these CE cases, 
there is an overemphasis on the product's life, which differs to that of 
nutrients in WWTPs. This in particular, is a challenge when the majority 
of CE studies have disproportionately focused on products and energy 
recoveries by extending the useful life of products and value-adding by 
upcycling and downcycling materials, while WWTP CE studies should 
place importance on the purity, safety and high efficiencies on nutrient 
resource recoveries from wastewater.

2.1. Circular economy in wastewater

WWTPs have orthodoxically been seen as centres for wastewater 
treatment and disposal into the environment, though, there is now 
renewed research focus and push towards retrofitting and converting 
current WWTPs into nutrient and energy recovery centres – closing the 
loop between farmlands and wastewater (Fig. 2). To a newer extent, CE 
is a recent area of application for WWTPs. Currently, it is possible for 
WWTPs to conduct nutrient recovery for fertilisers [28], energy recov-
ery in the form of biogases [29–34] and production using microalgae 
[35–40], electricity from microbial fuel cells (MFC) [41–43], hydrogen 
generation [44–49], and even simultaneous carbon capture for biomass 
growth and energy through bacteria [50–52]. Renewable energy sources 
have also been coupled with these technologies during the nutrient and 
energy recovery process [53]. Other useful resources that can be 
recovered from wastewater include phosphorous, potassium, nitrogen 
and organic fatty acids [28]. Meanwhile, non-nutrient resources that are 
used in chemical manufacturing processes have been proposed as 
recoverable from wastewater such as organic solvents or acids [54] and 

Fig. 1. Bibliometrics Assessment of the circular economy research for nutrients and wastewater using SCOPUS.
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bioplastics [40,55,56]. The underpinning principles for CE WWTP are 
reductions in new water consumption, reclamation or removal of 
harmful pollutants or nutrients from the environments, reuse, recycling 
of water and recovery of nutrients, and public acceptance and education 
[57,58]. There are complementary, sustainable benefits to the use of CE 
besides resource and energy reuse - which is the reduction in GHG 
emissions [59–62] and environmental pollution from improperly 
treated wastewater effluent [63,64]. Studies have examined the use of 
microalgae carbon capture technologies to provide cost relief and value- 
added products [60], while microbial technologies increasingly play an 
important role in the recovery of nutrients, energy and minimisation of 
CO2 emissions [34,65] and could be used to treat wastewater to EU 
Regulations [39]. The behavioural dynamics of bacteria, viruses, and 
other microorganisms in the AD process varies and requires high levels 
of genomic identification and tracking in order to reliably engage CE- 
metrics [65]. Larger organisms, such as wetland macrophytes, can be 
used to remove nutrients from water bodies before discharging into the 
environment – creating valuable products such as animal feed, biochar, 
biofuel, fertilisers and adsorbents used in the CE cycle while minimising 
eutrophication [66–68] and driving phytoremediation efforts of 
decontaminating wastewater for CE [38,69,70]. Both macro- and micro- 
organisms have roles to play in the conversion of wastewater elements 
into valuable inputs within the CE, despite the varied performances. CE 
WWTPs combine macro- and micro-organisms, mechanical, thermal, 
and chemical processes to function, however, CE systems generally 
require external power sources to operate and hence, renewable power 
sources have been studied to lower on-grid energy consumption [71,72].

2.2. Drivers and barriers to circular economy WWTP

CE WWTP introduces many opportunities for resource recovery 
commercialisation and there are plenty of drivers including: fertiliser 
and water scarcity driving prices up, policies favouring CE technologies, 
commercial energy demand for operation and recovery, scarcity of 
materials, simultaneous treatment and removal of harmful chemicals 
and particulates from effluents, energy and nutrient recovery to offset 
plant operating costs, meeting emissions targets, reducing chemical 
fertiliser use and Haber-Bosch nitrogen production, water reuse in 
droughts, retrofitting options, nutrient reapplication for agrifood, 
micropollutant and toxin removal, digital technologies and materials 
recovery [28,58,73–85]. Methodologically, lean approaches [86], sus-
tainability weightings [87], machine learning [88] and hybridisation 
[63,89–95]. While technologies are a driver for the expedition of CE 
WWTPs, there are also institutional and governance drivers towards 

WWTP CE. Several directives from the EU have aimed to regulate 
sewage sludge management (Council Directive 86/278/EEC [96]); 
water treatment from WWTPs (Council Directive 91/271/EEC [97]); 
and phosphorous nutrient recovery (currently in force with Council 
Directive UWWTD 91/271 [98,99]).

Other barriers to CE implementation for WWTPs include poor policy, 
lack of regulation and stakeholder integration, the need for public 
acceptance, incompatible business models for WWTP companies, 
financial barriers or emphasis on short-term gains, poor education, 
partnerships, poor scaling up, improper market product-fit, rigidity of 
linear economies of operation embedded throughout WWTPs, lack of 
enforcement or governance, high investment and operating costs, un-
certainties surrounding profit and sustainability impacts, poor gover-
nance and institutional frameworks, poor training, emerging technology 
status, lack of waste source separation, poorer countries prioritising 
water sanitation, poor CE fertiliser grade or quality, and low social 
acceptance [40,73–75,100–110]. While technically, P-recovery rates 
could reach 90 % for some processes [3], the cost of struvite for example, 
is generally higher than that of phosphate rock and superphosphate that 
is mined, which are also sensitive to changes in market commodity 
prices [63,76].

3. A framework for wastewater

3.1. Analysis

Articles were mined from Scopus and Web of Science for research 
relating to policy and framework perspectives on current CE practices 
across WWTPs. The duplicates were then removed by RStudio to give the 
list of nutrient CE WWTP articles dealing with frameworks and policies 
for WWTPs (Fig. 3). VOS Viewer was also used for Web of Science 
(Fig. 4) - given its higher quantity and saturation of articles – were able 
to provide a good visualisation of the CE WWTP topics connected to each 
other and the frequency of citations for the interrelated areas of 
research. The most commonly studied articles (see Table 1) show the list 
of journals and by citation count on research papers commencing from 
the year 2017. Science of the Total Environment – a journal specialising 
in the environmental conservation efforts for pollution prevention, 
climate change mitigation and water quality - had the highest WWTP 
citation counts for CE practices in the RStudio processed list of articles. 
This was then followed by the Journal for Sustainability, Journal of 
Environmental Management, and Bioresource Technologies. Therefore, 
recent CE WWTP studies have sought to advance an understanding of 
the impacts WWTPs have on societies and populations, and in particular 
from that of nutrient contamination and recovery [111]. Despite pushes 
from the EU to improve water circularity, only three articles from the 
bibliometric analysis obtained three publications in the Water journal. 
The assessment of key terms and their relationships from the Web of 
Science shows that regulatory, transitional, challenges and opportu-
nities, and phosphorous management are highly popular in the CE 
WWTP nutrient space. Meanwhile, technology applications, develop-
ment, nutrient recoveries remain heavily underappreciated given the 
criticality of fertilisers.

Table 2 considers the word counts of keywords from the research 
articles with the duplicates removed. The key terms circular and econ-
omy are obvious, while other areas surrounding energy, management, 
water, phosphorous, reuse, microalgae, AD, sustainability and assess-
ments are other descending terms of popularity for these CE framework, 
regulatory and policy-driven papers. From these recent pieces of 
research, it is becoming paramount that CE frameworks are beginning to 
factor in other valuable products that are recovered along the process of 
nutrient wastewater recovery practices.

3.2. Indicators for a circular economy WWTP

Several metrics were considered by authors within CE framework 

Fig. 2. The nutrient CE being closed, where society generates waste through 
wastewater, is collected in WWTPs which recovers the nutrients, reuses those 
nutrients for the growth of crops, and these crops are then sold to communities 
or livestock herders.

A. Soo and H.K. Shon                                                                                                                                                                                                                         Desalination 592 (2024) 118090 

3 



studies; however, these metrics are widely not applicable for the re-
covery of chemicals and nutrients from wastewater. For example, 
Number of Times of Use of a Material (NTUM) from Matsuno et al. 
[112], Product-Level Circularity Metric (economic value of recirculated 
parts/economic value of all parts) [113], longevity indicator [114], 
circular performance indicator (CPI, recycled mass over virgin mass 
material) [115], Linearity Indicator [116] and Material Circularity In-
dicator (MCI) [117] are all incompatible for nutrient WWTP CE given 
the emphasis on plastics and other material recovery efforts. Other CE 
indicators have considered the environmental and energetic footprints 
for reusability, recyclability and recoverability [118,119]. Given these 
studies, CE WWTP lacks considerable metrics tailored for nutrient and 
chemical circularity. For example, in Elia et al. [118] and the EMF 

Fig. 3. Bibliometric analysis and filtering for articles relevant to policies, frameworks, circular economies and nutrients.

Fig. 4. Number of citations by colour code legend, articles obtained from Web 
of Science.

Table 1 
Journal publications count through the refined keywords.

Journals Count on publications since 2017 based on 
refined keywords

Science of the Total Environment 14
Sustainability 9
Journal of Environmental 

Management
7

Bioresource Technologies 6
Energies 3
Adv. Sci. Technol. Innov. 3
Water 3

Table 2 
Keyword counts for the RStudio formatted bibliometric analysis.

Word Keyword counts since 2017

Circular 84
Economy 83
Wastewater 83
Recovery 62
Treatment 42
Nutrient + Nutrients 39
Water 28
Sludge 27
Reuse 27
Resource 25
Waste 22
Phosphorous 22
Sewage 18
Management 17
Energy 15
Anaerobic 15
Microalgae 14
Digestion 14
Assessment 13
Sustainability 12
Nitrogen 10
Analysis 10
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[120], the cost of manufacturing for a product with higher longevity and 
durability increases, by contrast, higher purities of WWTP nutrient re-
coveries add costs from the extra processes required to achieve these 
grades. For example, the addition of pretreatment [121], post-treatment 
[122] and post-processing technologies. Cost rises proportionally for 
durability in product CE, for WWTP CE, it is the purity of the recovered 
nutrient. Immediately, conventional product CE doctrine differs to that 
of WWTP CE.

Preisner et al. [87] listed a set of WWTP indicators that encompassed 
metal, nutrient, energy and water recoveries. The indicators for effective 
WWTP CE examined the use of chemicals to recover valuable nutrients, 
reuse rates for fertilisers and removal of toxins. The proposed final 
WWTP Circularity Indicator in Eq. (25) combines the recovery rates of 
nutrients, water, energy and organic matter. Interestingly, certain heavy 
metal recoveries have been experimented in other papers [123–125] 
which could have further expanded the indicator's coverage, but was not 
included in the author's paper [87]. Table 3 also combined with other 
relevant indicators from other works [126,127].

3.3. Other wastewater treatment frameworks

Smol et al. [128] proposed a framework for the CE model of WWTPs 
in the European Union. Directives were laid out by the European Com-
missions (EC) to integrate energy, nutrient, raw material, water and 
emissions reduction; however, this research paper lacks the emphasis on 
recovering nutrients from wastewater streams. The framework – while 
influenced by the EMF ReSOLVE framework [129,130] - focuses on the 
reduce, removal, reuse, recycling and recovery, but does acknowledge 
the recovery of nitrogen and phosphorous from sewage sludge [128]. 
Waste recoveries from wastewater extend to include pure urine, agri-
cultural, industrial and greywater types; while the more nutritious waste 
types come from blackwater and sewage sludge. The lack of source- 
separation infrastructure makes the treatment of pure urine rare 
across the planet among WWTPs, however, there are technologies such 
as AD and struvite precipitation for sewage sludge which can extract 
valuable N-P-K [131–133], although, continuous stirring tank reactors 
and fluidised bed reactors were known to be effective technologies for P- 
precipitation of struvite [134]. These frameworks are developed to 
minimise the significant quantities of water wasted in the treatment and 
recovery processes to address the United Nations Sustainable Develop-
ment Goal (UN SDG) 6, while nutrient and energy recoveries tend to act 
as auxiliary resources recoverable. However, the EC recently proposed a 
set of legislative set of principles to address nutrient critical raw material 
shortages by mandating that a certain quota of domestic production be 
met for the extraction, processing, recycling of materials and that no 
more than 65 % of a critical raw material be imported from a single 
country [135]. Given the criticality and scarcity of phosphorous across 
Europe, WWTP CE frameworks should be expanded beyond meeting UN 
SDGs, and to ensure the minimisation of phosphate rock mining. In the 
latest 2016/2019 review for the Fertilising Products Regulation from the 
EC, sourcing domestic nutrients from waste was a major focus for fer-
tiliser CE in improving food security [136,137]. Frameworks for CE 
WWTPs need to tie in the recovery nutrients, energy and water with the 
available technologies [78,80], while the EC has yet to provide a 
framework that holistically integrates these resources for CE WWTP. 
Toxins in wastewater must also be removed such as traces of active 
pharmaceutical ingredients, heavy metals and other industrial chem-
icals that may pollute sewage waterways to ensure that the recovered 
resource does not harm the population.

When applying the 10R principles seen in Fig. 5, authors sought to 
focus on the products recovered as a litmus for the effectiveness of the 
CE framework, however, these studies ignore the lifecycle of the WWTP. 
To seriously consider CE for WWTPs: nutrients, energy, materials, water, 
and the plant itself must all be considered for a sustainable CE WWTP. 
The effective operating lifespan of a WWTP is somewhere between 15 
and 20 years [138,139] limited by the equipment used, and up to 50 

years before upgrades are required [140]. Given that many WWTPs have 
been established since the 1970s, their lifespans are nearing its end, 
requiring many upgrades and retrofits to make it more sustainable 
[141]. Therefore, the 10R principles need to be adapted to suit the up-
grades of aging WWTPs. Studies have begun looking at making the plant 
components themselves highly sustainable such as that of membranes 
[142].

3.3.1. Current directives or regulations for CE WWTPs
The EU is pioneering the advancement of CE frameworks as part of 

the EU Green New Deal. Currently, the EU is proposing a Waste Man-
agement Framework geared mostly towards the recycling and reuse of 
food waste and textiles [143], and proposals are underway for the 
introduction of circular principles into the Directive 91/271/EEC con-
cerning urban waste water treatment [144] and among others in 
Table 4. The reforms address the lack of harmonisation in circular re-
covery practices throughout the EU. Other reforms have come into focus 
such as the Critical Raw Materials Act 2023, Net Zero Industry Act 2023, 
and Soil Strategy 2030 which acknowledge the finite quantities of 
phosphorous and fertile soil and combining it to meet net-zero emis-
sions. The new proposed CE Action Plan carefully considers the inclu-
sion of businesses and civil societies in the implementation of CE 
frameworks across the EU [145]. According to the report [145], biomass 
contributes significantly to the global impact for water stress and habitat 
loss. Given that EU frameworks stress the need to conserve water, 
addressing water inefficiencies or recyclability are also key priorities 
coinciding with the recovery of nutrients from wastewater. The CE Ac-
tion Plan acknowledges financial investment barriers and the need to 
expand international partnerships to countries like China, India and the 
continent of Africa. However, there are drawbacks to the interpretation 
of nutrient CE throughout the EU, for example, incineration as a 
destructive process once implemented, may prevent some EU nations 
from realising the full potential of nutrient CE [146], and different 
countries will have their own technologies and regulations on the 
interpretation and treatment of wastewater.

3.3.2. Operating principles of the WWTP
Conventional WWTPs remove nutrients from wastewater before it is 

safely discharged back into the environment. Current WWTP technolo-
gies aim to use sludge that is activated with bacteria to consume and 
reduce the nutrients in wastewater down to an acceptable level for 
discharge. Waste activated sludge and membrane bioreactors (MBR) are 
some of the most common ways of reducing nutrient loads within 
wastewater which are widely adopted throughout municipal WWTPs, 
and there are methods to recover nutrients from MBRs with source 
separated urines [161,162]. Fig. 6 shows the conventional and inte-
grated CE pathways for municipal WWTPs. These technologies only 
remove and do not recover nutrients however.

The primary treatment stages of WWTPs remove grit, sediments and 
other large objects. The secondary treatment phases treat the waste-
water streams by removing nutrients using microbes and bacteria. 
Sewage sludge is collected from the clarifiers which are then treated and 
disposed of in landfills, however, this sludge can be recovered for AD to 
generate biogases and recover nutrients. These nutrients exist in the 
form of biosolids that are generally rendered safe for agricultural land 
applications, however, the EU has made restrictions on its applications 
for edible, root-based plants [155], due to concerns regarding the 
presence of heavy metals and toxins in contact with the produce. The 
discharge of effluents into the environments presents the most wasteful, 
for example, the United Nations reports that only 11 % of the world's 
wastewater is recycled while more than 50 % is discharged into the 
environment [163]. Furthermore, 80 % of the world's sewage is dis-
charged into the environment untreated [164], and within the EU-27 
alone, sewage sludge production is approximately 10 million tonnes 
[165]. In Europe and North America, about 50 % of WWTP sewage 
sludge is reapplied onto farmlands [166] and 27 % is incinerated within 
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Table 3 
List of CE WWTP indicators used by the authors.

Formula name Formula Description Eqn

Wastewater service coverage indicator nconnected

ntotal
⋅100% nconnected is the number of connected households to sewage system (capita/km2), ntotal 

Number of total households (capita/km2)
(1)

Nutrient removal efficiency indicator CiX − CeX

CiX
⋅100% Where CiX is the total nutrient content in mg/l in wastewater, CeX is the total content 

in the treated wastewater in mg/l.
(2)

Organic matter removal efficiency 
indicator

Qw
(
CODinf − CODeff

)

106

Qw is the wastewater flow rate in m3/day, CODin and CODout is the chemical oxygen 
demand for influent and effluent respectively.

(3)

Sewage sludge processing indicators

– Applied in land reclamation [Mg/year] or [%] (4)
– Applied in land reclamation [Mg/year] or [%] (5)
– Applied in cultivation of plants intended for compost production [Mg/year] or [%] (6)

–
Applied in cultivation of energy plants [Mg/year] or [%], anaerobically digested [Mg/ 
year] or [%]

(7)

–
Applied as an alternative fuel in cement plants [Mg/year] or [%], incinerated [Mg/ 
year] or [%], landfilled [Mg/year] or [%], stored at the WWTPs [Mg/year] or [%]. (8)

Treated wastewater recovery indicator 
for irrigation Iwr =

Qir

Qef
⋅100%

Qir is the treated wastewater flow reused for irrigation [m3/year], and Qef – total 
effluent flow [m3/year].

(9)

Effluent inorganic content indicator IEIC(X) = Xi⋅Qd Where X is the nutrient (N, P or similar) and Qd is the daily effluent flow rate (l/day). (10)

Nutrient recovery indicator Irec(X) =

(
Xinitial − Xfinal

)

Xinitial
⋅100% Where X is the nutrient (N, P or similar) content measured in Mg/year. (11)

Biological dephosphatation potential 
indicator IBDP =

COD
TP

COD is the chemical oxygen demand (mg/l) and TP is the total phosphorous (mg/l). (12)

The technological nutrient performance 
indicator for the recovered sludge

ISG,TN =
msg,x

QPMW 

ISG,ce,p = ISG,TN⋅
msg,x

QPMW
⋅100%

msg,x is the mass of sewage sludge recovered (Mg/year), QPMW is the wastewater 
flowrate of a papermill (m3/year), Pp = mass of the phosphorous product produced 
using recovered material (Mg/year), ISG, ce,p = is the productive sludge generation 
indicator.

(13)

Composting indicator for sewage sludge Ic,ss =
mBW

mbio
⋅100%

mBW is the mass of biodegradable waste for composting (Mg/year) and mbio is the total 
amount of biodegradable waste (Mg/year). (14)

Pollutant content indicator for the 
recovered sewage sludge Ib,ss =

Qb

mbio

Qb is the biogas obtained from AD of sewage sludge (m3/year) and mbio is the total 
amount of biodegradable waste (Mg/year).

(15)

Pollutant content indicator for the 
recovered sewage sludge ICSUP =

∑n
i=1

Ci

Cref
i

Pconcentration

Ci is the concentration of heavy metal in recovered material, Ci
ref is the concentration 

of heavy metal in original reference material. (16)

Quality indicators for SSA recovery IMER =
CFe + CA1 + CMg

CP2O5

C and the corresponding subscript chemical symbols are measured with mg/kg. IMER 

is the minor element indicator. This equation can further be manipulated to compare 
ratios of heavy metal contents to nutrients.

(17)

Indicator for chemicals used for 
wastewater treatment I =

Qnon− chem

QW

Qsupport− chem

QW

Qpure− chem

QW

Qnon-chem is the wastewater treated without the use of chemicals for P removal, Qsupp- 

chem is the wastewater treated with partial chemicals for P removal, Qpure-chem is P 
removal using only chemical methods, and Qw is the total flow rate of the wastewater. 
All values denoted in (m3/day).

(18)

Biobased Fertilisers (BBF) IBBF =
XBBF

XCF

XBBF is the nutrient content measured in mg/kg, and XCF is the corresponding nutrient 
content present in conventional fertilisers mg/kg (for example, for N and P).

(19)

Hydrochar yield indicator for 
hydrothermal carbonization of sewage 
sludge

Iy,hydrochar =
Mhydrochar,dry

Msludge,dry

Mhydrochar,dry is the dry mass of obtained hydrochar (Mg/year) and Msludge,dry is the 
dry mass of the used sewage sludge (Mg/year). (20)

WWTP Circularity Indicator
ICE,RR,WWTP =

INutrients + IOrganic Matter+

IWater + IEnergy

n

INutrients is the recovery rate in % recovered nutrients, IOrganic Matter is the organic 
matter recovery rate in %, IWater is the recovery rate of water in % used for 
agriculture, IEnergy is the ratio percentage of energy production to energy 
consumption, and n is the number of indicators.

(21)

Technological nutrient performance 
indicator for water IW,TN =

QEF

QPMW

QEF is the effluent flow rate of the treated wastewater with nutrients recovered and 
QPMW is the total volumetric flow rate of the wastewater. Q can also be replaced with 
sewage sludge.

(22)

Circular economy efficiency for water IW,CE,r =
QEF

QW,T
⋅100

QEF is the effluent flow rate of the treated wastewater with nutrients recovered and 
QW,T is the total volume of water consumed throughout the process. Q can also be 
replaced with sewage sludge.

(23)

Technological nutrient performance for 
the recovered sludge ISG,TN =

mSG,R

QPMW
mSG,R is the mass flow rate of the recovered sewage sludge. (24)

Circular economy efficiency for sludge ISG,CE,r =
mSG,R

mSG,T
⋅100

mSG,T is the mass flow generated by the sewage sludge in the production process. ISG, 

CE, r is the sewage sludge recovered during the production process compared to the 
total sludge produced throughout.

(25)

ISG,CE,P = ISG,TN⋅
QPMW

PP
ISG, CE, P is the sewage sludge recovered during the production process. (26)

Circular economy efficiency for water IW,CE,P = IW,TN⋅
QPMW

PP
IW, CE, P is the water recovered during the production process. (27)

Biofertiliser efficiencies IBiofertiliser =

∑
mbiofertiliser

mslurry

Mbiofertiliser is the mass of the recovered and generated fertiliser from the sludge 
(grams), and mslurry is the mass of recovered slurry (grams). IBiofertiliser is the 
performance of the biofertiliser recovery system.

(28)

Recovery rates of nutrients R(%) =
1 − Cf

C0
⋅100

Cf is the final concentration of the nutrient and C0 is the initial concentration of the 
nutrient. (29)

Fertiliser requirements
Recommended dose

%Nutrient content in fertiliser
⋅100⋅Area Measures the grade of the fertiliser, within the CE context, this is the nutrient 

concentration of the recovered sludge. Area is in km2
.

(30)
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the EU [167]. The application of CE AD processes for the pig farming 
industry in one study saw water and natural gas consumptions reduced 
by 47.01 % and 5.33 % respectively [168]. There is therefore, potential 
for WWTPs to provide nutrient, water and energy savings. Given that the 
housing sector worldwide accounts for 50 % of wastewater generation, 
50 % of energy consumption, and a third of all global waste [169], 
connecting residential properties to CE WWTPs is a challenge given the 
legacy infrastructure which makes it impossible to integrate urine 
source-separation and other technologies incompatible with current 
hardwired plumbing systems [170].

3.3.3. CE framework for WWTPs
Currently, the EU plans on achieving full circularity on material 

consumption [209] in line with its climate neutrality goals. There are 
material, waste and energy considerations for WWTP CE [210]. 
Currently, the Netherlands, Switzerland and Germany have more than 
95 % of its domestic wastewater safely treated by WWTPs [211]. Even 
within the Netherlands, struvite adoption as fertiliser was primarily 
hampered by its legislative classification as waste rather than a valuable 
fertiliser – only now making up less than 1 % of the total fertiliser market 
domestically [171]. It was only recently that the EU began adding 
struvite as an acceptable fertiliser from July 2022 with amendments to 
Regulation 2019/1009 [172], and definitions to what constitutes as 
‘waste’ is still ongoing [146]. The barriers for nutrient CE are primarily 
legal, political, technological, economic and social, given the wide-
spread doctrine of using WWTPs for treating and removing human waste 
rather than as resource recovery centres. The emerging status of con-
verting current infrastructure through pilot programs are also evident 
[173], especially throughout the EU such as HOUSEFUL [169], Phos4-
You [174], SUSKULT WWTP NEWtrient®-Center [9]; INFEWS in the 

United States [175]; Singapore's Phos4SG PUB Project Challenge [176] 
and NEWater [177]; councils such as the Phosphorus Recycling Pro-
motion Council of Japan [178], and so on.

Microalgae and macroalgae have been explored for energy, nutrient 
and materials recovery while cutting down emissions and plastics using 
wastewater [56,68,179–183], however, microalgae was found to be 
unsustainable in the production of biofuels [67] but on the contrary, 
quite efficient in the production of bioplastics [184]. Meanwhile, there is 
potential for reuse of wastewater from WWTP for urban hydroponic 
farming applications [185], however these studies have found that there 
are still nutrient deficiencies in the CE-grown produce [185,186]. This is 
one of the prevailing barriers to the commercialisation of CE fertiliser 
among the agribusiness space, as technology development alone will not 
suffice without including investors and beneficiaries to the CE program 
who can monetise and consume commercially acceptable products 
[187].

Bottom-up approaches have been proposed for the success in CE 
adoption given the localised, participatory nature of this framework for 
all stakeholders, and that centralised approaches are prone to exclusion 
against small communities [9,188,189]. Participation by communities, 
particularly through urine-reuse reclamation programs, ring paradoxi-
cally with both cynicism and support in closing the nutrient loop [175], 
ranging from harm to human health and the detriment that urine- 
derived nutrients have on perceptions of farmers and consumers who 
consume it.

Environmental impacts that WWTPs have on the broader environ-
ments with P-eutrophication needs to be addressed [190]. It costs 
approximately $222.9 billion globally to repair damages caused by 
nutrient leakages into the environment from improper wastewater 
treatment [191]. The removal of nutrients is highly cost, energetic, 

Fig. 5. 10R principles for CE adapted to CE WWTP.
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chemically intensive, while climate neutrality goals require these tech-
nologies to simultaneously capture carbon and produce energy [192]. 
Microalgae is one solution to treat wastewater for irrigation that meet 
standards in Regulations (EU) 2020/741 [181] and 91/271 [39], how-
ever, it remains an emerging method [193]. In countries like 
Switzerland, P-recovery is mandatory [194], meanwhile, in California, 

Table 4 
List of directives and regulations from the EU for WWTP and waste management.

European Union CE Motions

Regulation/Directive/Legislation Description Source

Regulation (EU) 2019/1009 of 
the European Parliament and of 
the Council of 5 June 2019 
laying down rules on the 
making available on the market 
of EU fertilising products (EU) 
2019/1009  

Amends: 
(EC) No 1069/2009 and (EC) 
No 1107/2009. 
Repealed: 
(EC) No 2003/2003

Standards on contaminants, 
pathogens, minimum nutrient 
concentrations, inhibitors, 
polymers, bio stimulants, 
assigned tolerances on 
contaminants and nutrients, 
labelling and documentation, 
detonation tests, and compost 
regulating. Repeal (EC) No 
2003/2003 as it did not prevent 
the spread of non-harmonised CE 
fertilisers.

[147]

Council Directive 91/271/EEC 
concerning urban waste water 
treatment

Regulates effluent discharge into 
the environment.

[148]

Recast Urban Wastewater 
Treatment Directive adopted 
from April 2024

Introduce circularity into 
wastewater practices, with a 
focus on water reuse.

[144]

Council Directive 98/83/EC of 3 
November 1998 on the quality 
of water intended for human 
consumption  

Amended by: 
Commission Directive (EU) 
2015/1787 of 6 October 2015

Governs the quality of water for 
human consumption.

[149] 
Amended 
by: 
[150]

Council Directive 91/676/EEC of 
12 December 1991 concerning 
the protection of waters against 
pollution caused by nitrates 
from agricultural sources  

Amended by: 
Regulation (EC) No 1137/2008 
Regulation (EC) No 1882/2003

Regulates nitrate pollution being 
leaked out into the environment.

[151]

Directive 2000/60/EC of the 
European Parliament and of the 
Council of 23 October 2000 
establishing a framework for 
Community action in the field 
of water policy

Conservation of groundwater 
and surface water 
acknowledging its scarcity and 
need for conservation.

[152]

Directive 2008/56/EC of the 
European Parliament and of the 
Council of 17 June 2008 
establishing a framework for 
community action in the field 
of marine environmental policy 
(Marine Strategy Framework 
Directive).  

Amended by: 
(EU) Commission Directive 
2017/845 from 17th of May 
2017

Protection of marine 
environment to preserve 
biodiversity and prevent 
eutrophication.

[153]

Critical Raw Materials Act 2023 Phosphorous identified as a 
critical element in the list. 
Assigns quota quantities to 
domestic production of critical 
raw materials throughout the EU 
in each process.  

Stakeholder engagement, supply 
chain self-sufficiencies, 
circularity and sustainability 
principles incorporated, 
workforce reskilling, climate 
change, indigenous protections, 
GHG footprint, technology 
support, transparency, impact 
assessments, policy framing, 
budgetary support, risk 
management, measurement 

[154]

Table 4 (continued )

European Union CE Motions

Regulation/Directive/Legislation Description Source

systems, partnerships 
management, and political 
structure of governing bodies.

Council Directive 86/278/EEC of 
12 June 1986 on the protection 
of the environment, and in 
particular of the soil, when 
sewage sludge is used in 
agriculture  

Amended by: 
(EU) 2019/1010 EU Parliament 
5th of June 2019.

Governs contaminants of heavy 
metals and soil applications by 
use of sewage sludge, 
prohibitions of sludge contact in 
soil with fruits and vegetables or 
otherwise specified, sludge and 
soil analysis methods.

[155]

Net Zero Industry Act 2023 Investment areas, simplifying 
administrative burdens for 
manufacturing, drive public 
support and participation 
through schemes across 
procurement, sandbox testing, 
skills training for net-zero, 
carbon capture project 
facilitation and partnerships 
development.

[156]

Proposal for a Directive on Soil 
Monitoring and Resilience (Soil 
Monitoring Law)

Proposal document as part of 
Soil Strategy 2030 to preserve 
soil fertility for food production, 
decrease presence of 
microplastics in sewage sludge 
on soil, and development of 
clean circular bioeconomies.

(Working Document) Measuring 
progress towards circular 
economy in the European 
Union – Key indicators for a 
revised monitoring framework

Proposes a circular economy 
monitoring framework on 
material recycling rates, waste 
generation, material footprint, 
green procurement, investment 
in jobs and CE sectors, GHG 
emissions, imports and exports 
of CE materials, innovation, raw 
material self-sufficiency, CE 
resilience and sustainability.

[157]

(Working Document) THE 
EUROPEAN ECONOMIC AND 
SOCIAL COMMITTEE AND 
THE COMMITTEE OF THE 
REGIONS on a revised 
monitoring framework for the 
circular economy

Resource productivity, GHG 
emissions, material 
dependencies and footprints. 
Indicators were covered for this: 
waste generation, recycling 
rates, investment into green 
innovation, CE resilience and 
sustainability, trade in 
secondary raw materials and 
recycled material contributions 
and material consumption.

[158]

Directive 2008/98/EC of the 
European Parliament and of the 
Council of 19 November 2008 
on waste  

Directive (EU) 2018/851 of the 
European Parliament and of the 
Council of 30 May 2018 
amending Directive 2008/98/ 
EC on waste  

Amended by: 
(EU) 1357/2014; (EU) 2015/ 
1127; (EU) 2017/997; (EU) 
2018/851.

Amends the waste directive to 
factor in CE goals. Factors in 
Raw Materials Initiative, 
introduce quota percentages for 
recycling rates by weight for 
waste management facilities, 
and holding accountable the 
European Environment Agency 
for reviewing member state's CE 
performance every two years.

[159,160]
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disposal of organic waste in landfills is prohibited [146,195]. However, 
regulatory strengths in the EU for treated wastewater irrigation via 
fertigation varies from country to country [196] and is made more 
difficult by the ever-changing standards and regulations [197], there-
fore, regional fragmentation and transitional nature in regulatory 
strengths, concepts and practices makes CE implementation difficult. 
Preisner et al. [198] found that not all 15 member EU states achieved 
acceptable nutrient loading removal rates, and this was exacerbated by 
the difficulties in nation-specific regulations on wastewater treatment, 
failure to consider eutrophication, bioavailability and nutritional 
criticalities.

Various methodologies have been proposed to evaluate the envi-
ronmental impacts that CE has [199]. Water scarcity is the central theme 
in the nutrient CE paradigm which factors in drought and flood disasters 
as part of food supply resilience [81,196]. Lifecycle assessments such as 
ReCiPe have been used to assess the depletion of resources and GHG 
emissions from the CE process [200]. Frameworks to transition WWTP 
towards P-circularity by involving the meso, micro and macro stake-
holders with WWTPs to overcome systemic and technical lock-ins, are 
needed to consider all of the stakeholder's interests. Nutrient profiles 
could be mapped to identify misallocated and displaced nutrients from 
areas where they are needed [201], indicating that there is potential for 
improved management and distribution of nutrients into areas with 
higher crop productivity. However, the study [201] does not consider 
the logistical costs of reallocating nutrients into more population-dense 
or crop-productive areas or the use of chemical fertilisers – an issue 
raised in another study [202]. The SWAT model can also be applied to 
simulate the natural flow of nutrients from rainfalls, and how it may 
impact sowing practices and timing among farmers [203]. Therefore, 
LCA and model assessments of nutrient and pollution flows will need to 
be factored into frameworks to assess impacted CE stakeholders.

Irrigation from wastewater effluents was proposed as a water-reuse 
method of circumventing issues relating to nutrient pollution and 
water wastage by dosing low quantities of N and P for crop fertigation, 
although, there are risks towards polluting groundwater systems 

through salinisation, alkalinisation and soil degradation 
[58,187,196,204], and benefits such as GHG emissions reduction via 
fertiliser substitution [111,205]. Fertigation themes have centred 
around cutting down water consumption given that farming practices 
consume approximately 70 % of the global freshwater supply [58,206]. 
Accordingly, there is a need to move from removal to recovery among 
WWTPs to minimise its treatment energy consumption and realise its full 
potential for cutting down fertiliser costs [58,111,207]. Additionally, 
some LCA studies do not consider the use of recovered products and 
social dimensions of the studies [207].

The application of recovered biosolids and treated effluents for fer-
tigation have soil remediation properties that can reverse soil degrada-
tion and reduce landfilling [208,209]. ReCiPe LCA approaches that meet 
the ISO 14044 lifecycle standard [200], have been used to ensure landfill 
reapplications of sewage sludge are safe, and have even been combined 
with ML [210]. While other LCA studies have sought to include ponds 
and water bodies for remediation or restoration [211], or penalties from 
non-compliant effluent discharging, controls on contaminants, trans-
portation costs and pipelines [212]. Regardless of which LCA is used, the 
impacts of nutrient reuse on the environment should be factored in.

3.3.4. CE WWTP technologies available
Nutrient recoveries recovery focuses will be on phosphorous and 

nitrogen, and different technologies will be chosen depending on the 
concentration efficacy of these nutrients. Technology CE selection 
would factor in social issues covering water security, energy security, 
food security, technology adoption, acceptance and human health [58]. 
These difficulties are compounded by the specific types of P recoverable 
[213], purity needed [214], primarily in the form of struvite [213,215]. 
Meanwhile, the EU Green Innovation Deal sees great potential in using 
AnMBR as an effective [216,217] and compliant [218] technology. 
Therefore, the most promising sources of P will come from wastewater, 
sludge and sewage sludge ash [62,219,220].

One of the significant barriers to P-recovery are chemical [221] and 
energy costs [222]. For example, it is estimated that the cost to recover P 

Fig. 6. Conventional and CE Pathways for WWTPs. In a conventional WWTP the sludge is disposed of in landfills and the water treated and discharged into the 
environment. Integrating CE, the sludge is recovered for both nutrients and biogases.
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is around €6 to €10 per kg recovered [221]. The profit margins from P- 
recoveries are extremely small, and there exists weak economic, 
demand-driven reasons for P-recovery [223], moreover, it is difficult to 
determine the true operating costs given the emerging status of nutrient 
CE technologies [209,224], and the lag period that exists for benefits to 
be realised [199]. Given that there are more than 30 P-recovery tech-
nologies [219], and more than 24 decision support tools for its selection 
[225], it becomes difficult and cumbersome to identify the best solution 
for a given WWTP [219], or avoid biases through policy incentives 
[226]. Technological Readiness Levels, Lifecycle assessments (LCA) and 
Material Flow Analysis (MFA), emergy analysis, Input-Output analysis 
are effective starting points for CE framework formulations at the macro 
scale [28,227,228] that also need to be compliant [58,229]. For 
example, 3 out of the 24 CE WWTPs in the EU failed to meet regulations 
[171].

Technology applications will depend on the type of influents and 
products produced from recoveries. For example, nutrient recoveries for 
biosolid slow-release fertilisers can use crystallisation and electrodial-
ysis, pure substances through ammonia stripping, gas permeable mem-
branes, electrochemical [230] and bioelectrochemical systems [82], or 
face limitations such as the inability to separate heavy metals from 
valuable waste seen in microalgae and photosynthetic bacteria 
[105,179,231] which can prevent its selection. Cost is another barrier to 
the implementation of CE WWTP technologies, given the debate be-
tween centralised and decentralised CE WWTPs - both have their pros 
and cons. For example, the high treatment coverage and cost effective-
ness from centralised WWTPs [232], and the high transportation costs, 
weaker regulations which can overcome legacy infrastructure barriers 
stemming from decentralised CE WWTPs [83,107,170,175,233]. In-
vestments, policies, economics and social acceptance for CE WWTP 
technologies play a critical role to its success [146]. Despite the debate, 
Torre et al. [234] proposed striking the right balance depending on the 
unique CE challenges that country faces.

The recovery of nutrients requires further process efficiencies and 
commercialisation improvements before it can be applied to scale 
[105,219]. Mature technologies for nutrient and resource recoveries 
include electrodialysis (ED), AnMBR, upflow anaerobic sludge blanket 
digestion, expanded granular sludge beds, inverse fluidised bed reactors, 
AD hybrid reactors, dewatering, incineration, composting, P-precipita-
tion, ash leaching, and animal bone biochar 
[105,173,213,217,219,230,235,236], in particular, it appears AD is 
more acceptable [111], and could consume food waste as a substrate 
[237]. In Hidalgo et al. [236] study, the most promising methods for 
recovering nutrients are thermally-driven and crystallisation, however, 
there are other established approaches through liming, constructed 
wetlands, ammonia stripping, drying, and biological treatment for K- 
recoveries. Despite AnMBR being promising, challenges to the technol-
ogy include membrane fouling, pathogen and heavy metals presence, 
the need to balance energy and nutrient recoveries, and the piloting 
stages of the plant.

3.3.5. Stakeholder involvement
Several indicators were proposed covering international and na-

tional priorities for water, energy and food security, investors, plant 
operators, suppliers, community and consumers [238] and elaborated in 
Fig. 7. From the community level, younger demographics appear to be 
more receptive to innovations in the CE WWTP technologies [238]. 
Moreover, there will be different influential actors throughout the 
nutrient supply chain depending on the beneficiaries (farmers and 
businesses), but there is still a lack of inclusion for the former [9,146]. 
The study [146] identified regulatory, communication or linguistic, 
commercial, visual (certification/label acceptance), technological, 
structural and ideological barriers to nutrient CE adoption. Further-
more, academic and media work hand-in-hand to disseminate the suc-
cess of nutrient CE research throughout the broader stakeholder 
network. Given that approximately 80–87 % of struvite in the EU is 

being sold at prices lower than the market value of €250–412 per ton, 
investors may refrain from P-recovery projects fearing unprofitability 
[171].

3.3.5.1. Consumers. The reuse of nutrients to grow forage crops or 
biomass feed for animal and aquacultural consumption has instead, 
gained much more popular acceptance [68,111,239], there are howev-
er, certain divisive attitudes regarding consumer confidence in the safety 
of growing crops with WWTP CE nutrients that deters the adoption of 
new technologies [111]. In Sweden, more consumers held favourable 
perceptions towards P-recovery through ash than dried urine due to the 
presence of pharmaceuticals [189]. The 127 surveyed grocery stores 
however, were unlikely to push for nutrient CE-derived products unless 
consumers demand it [189]. Urine reuse as fertiliser had an acceptance 
rate of around 85 % and only 50 % by farmers in the EU [240], but 
globally this number drops to an average of 59 % [241]. The more 
processed the recovered nutrient was, the higher the acceptance. The 
commercial success of nutrient CE depends on the acceptance of con-
sumers of these products [242].

3.3.5.2. Farmers. Fertiliser costs have increased drastically since the 
COVID-19 pandemic and farmers will become enticed to pursue nutrient 
CE WWTP products if the price is competitive relative to synthetic 
substitutes [243]. Changes to conventional farming practices may be 
necessary depending on the fertiliser, crop and even aquaculture [244]. 
For example, the design of supply chains to support farmers to switch to 
organic fertilisers [245], decentralised waste management [246] and to 
better participate in CE through better education and engagement with 
innovative farming CE practices [247]. There must be financial in-
centives and effective educational programs for farmers to adopt 
nutrient CE products and disposal practices. Moreover, farming carries 
significant carbon footprints and CE is seen as an effective model for 
reducing this via effective end-of-life strategies and energy recovery 
[248]. The most promising products farmers can use from CE WWTPs 
are recycled water for irrigation and nutrients [242,249]. While energy 
recoveries are largely applied to offset operating costs for WWTPs and 
reduce carbon emissions [59].

3.3.5.3. Businesses. Among businesses, there is hesitancy among large 
organisations to invest in technologies without proven returns, and lack 
of smaller startups which have proven technologies. The EU is seeking to 
improve commercial prospects by evaluating the range of technologies 
that pilot plants have been implementing for phosphorous recovery 
[250]. Given the recent legislations around carbon disclosures, busi-
nesses would welcome CE as a low-carbon strategy to reuse cheaper 
alternative and sustainable materials and energy [251], there are 
infrastructural policy, regulatory and supply chain barriers. The value of 
CE must also be aligned across different stakeholders that the business is 
affecting and is being affected by to minimise conflicts [252]. Most 
notably, the cost to transport nutrients and valuable resources to those 
who need it [246]. Moreover, if there is demand by consumers for CE 
products, surely opportunities for businesses to tap into this market 
opportunity would flourish, however, this requires societal perceptions 
on waste to change.

3.3.5.4. Governance. Regulators, governments and legislators all have a 
key role to play in driving the implementation of CE to practice - being 
the bridge between knowledge and application. The EU and China for 
example, are heavily involved in CE activities and policy implementa-
tions, but challenges remain in retraining and regulatory specifications 
for recovering valuable nutrients [246]. These drivers of policies include 
water scarcity and high synthetic fertiliser prices [242]. A weak regu-
latory framework, low financial investments and unclear goals will 
create weak conditions for CE to close phosphorous cycles [253]. The 
stringency of frameworks and regulations set out by governments clear 
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Fig. 7. Stakeholder nutrient CE map showing the stakeholders involved in nutrient CE WWTP.
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on its goals enforced by strong institutions are critical for promoting 
nutrient circularity. These regulations should also be built into other 
sustainability dimensions such as carbon emissions and bioproducts 
management [254,255] to prevent regulatory silos.

3.3.5.5. Construction and infrastructure. Current WWTP infrastructure is 
heavily centralised and relies on collecting wastewater from connected 
households. There are several recommendations to how countries can 
move towards CE WWTP, one involves maximising the use of existing 
infrastructure through retrofitting WWTPs, have additional services and 
provide optimal deliveries [256]. Within residential settings, waste-
water infrastructure is not designed to separate urine and faecal matter 
for efficient resource recoveries, and therefore, there is a lack of CE 
systems in place [257]. The other is through the use of decentralised CE 
WWTP treatment systems embedded across urban settings to allow 
public participation into wastewater CE projects without retrofitting 
existing buildings [258]. Regardless of the strategies undertaken, a cost- 
benefit analysis is assessed to determine which urban CE approach is 
most effective, but it is accepted that such approaches should have high 
participation and support rates across communities.

Despite proposed involvement of farmers, policy makers, and fertil-
iser producers, little involvement has been made with industrial sectors 
[111], given that zero-waste and reduced GHG emissions were a major 
reason for favouring CE WWTPs [259]. This makes sense however given 
the fear stemming from heavy metal waste generations and the diffi-
culties arising from its removal or recoveries. The dairy wastewater 
industry for one, emits large quantities of CO2, lost energy and nutrients 
[17,34,62,224,260], and in Ye et al.'s [62] study, 54.1 kg CO2-eq/m3 

reduction was realisable with the use of AnMBR technologies, with 
valuable recovered nutrient market value of $13.8/m3.

3.3.6. Tracking value-adding products
Authors such as Cooney et al. [261] utilised a top-down strategy for 

identifying and sorting by-products from most to least valuable. For 
example, in descending importance: chemicals that can be used in 
pharmaceutical medicine, followed by food ingredients, animal feed, 
fertilisers and energy. The recirculation of value-added products should 
also track the environmental benefits from refusing virgin extraction of 
nutrients because avoiding the use of N can alleviate up to 95 % of the 
environmental impacts from fossil fuel and heavy metal depletions 
[200]. Previously, the measure for efficiency was based on reductions in 
virgin material use and pollutant removal according to EU Directive 91/ 
271/EEC [232]. Some valuable products that can be recovered go 
beyond nutrients and include bioplastics and VFAs [173], while phar-
maceuticals are a grave concern for groceries [189].

Crop productivity will vary due to differing geographical conditions, 
regulations and social attitudes [58]. Therefore, the importance of 
stakeholder relationships between interested parties will differ from 
region to region. Nutrient leakages into the environment can also be an 
indicator of the value lost in CE WWTPs [262] and as a measure of the 
effectiveness of the WWTP plant in meeting or exceeding regulations. 
The value derived from recovering nutrients from WWTPs should also 
factor energy consumption flows [263].

There is also a growing trend of using artificial intelligence and ML 
with nutrient CE WWTPs [264,265] to improve the reliability and 
quality of recovering nutrients from WWTPs through forecasting. 
Moreover, ML can help forecast the demand for nutrients [266], aid 
sustainable supplier selection [267], however, ML CE faces regulatory, 
standards and acceptance barriers [268]. The technology can also 
improve the tracking and transparency of nutrient movement 
throughout supply chains – giving greater visibility to impacted stake-
holders and nutrient monitoring. This would address some concerns 
raised by surveyed participants relating to fertiliser contaminations, 
nutrient traceability and safety certifications [175]. Given that the bulk 
of operating costs from WWTPs come from personnel [269], ML can be 

used to reduce labour costs through automation. Given the open-source 
data that can be used to model the impacts nutrients have on the natural 
environment, nutrient pollution monitoring and tracing it back to the 
root cause is crucial [203] for CE environmental management.

3.3.7. Policies
EU water regulations cover the Water Framework Directive, Urban 

Wastewater Directive, and HELCOM [270]. Subsidies could be proposed 
to incentivise the production of CE nutrients from WWTPs [236,271], 
given that nutrient standards on fertilisers differ globally, even with the 
right support, the production of such fertilisers may not be acceptable on 
the commercial market or to human safety [146,171,229]. Higher GHG 
emissions and lower nutrient recovery efficiencies can make the tech-
nology more harmful than it is beneficial [262,263], meanwhile, 
reducing emissions and eutrophication was touted as a value proposition 
for communal acceptance [188,262]. In poorer countries especially, 
nutrient leakage and inefficient applications are severe given the lack of 
infrastructure or regulations in place. Furthermore, it becomes very 
difficult to tie nutrient recovery technologies together given the lack of 
funding, knowledge and infrastructure in place [105], legislative gaps to 
identify highly efficient sites for nutrient application [205], or prohib-
itively, protective legislations and regulations which make CE WWTP 
economically difficult [259]. It is purported that further policy inter-
vention for nutrient CE technologies will be required to expedite its 
economic and technological feasibility [40], given some standards do 
not include LCA for CE WWTPs [207]. Such policies, with Germany's 
SUSKULT program as an example, factored in consumer prices, food 
security, energy consumption, nutritional quality, and impact on 
farmers when transitioning WWTPs to CE [9], however, given that some 
EU regulations do not typify the categorisation of nutrient waste as a 
commodity [213], this is regarded as a significant legislative barrier 
mirroring a societal assumption that waste is waste, not as a valuable 
commodity recovered for reuse on farmlands.

Countries within the EU lack clear WWTP nutrient recovery regula-
tions, investment and research programs, and research into recovery of 
critical raw materials are still in its infancy stages [219,272]. This was 
further backed by surveys completed with a lack of clear policies, slow 
regulatory changes to accommodate new CE technologies, in-
compatibilities between agricultural practices and nutrient CE, and 
guidance on the available P-recovery technologies there are available 
[40,73]. For example, phosphorous is listed as a critical raw material 
across the EU since 2014 [273], despite this, most WWTP regulations 
focused on removal, rather than the recovery of P from effluents. 
Additionally, some fertiliser standards and regulations globally do not 
recognise recovered CE nutrients as appropriate for market sale 
[73,146,213], and there are varying limitations on the concentration of 
fertiliser content (maximum of 250 kgN ha− 1 under Scottish Waste 
Management Licencing 2011 land reapplication [205] and Polish 
Regulation of the Minister of Agriculture and Rural Development 
mandating a minimum N-P-K fertiliser composition of 2 % each 
[274,275], Poland's cadmium concentrations at 50 mg/kg [274,275] 
compared to 40 mg/kg in P-fertilisers by the EU [276]). Currently, the 
replacement of conventional fertilisers through recovered P in the EU is 
about 0.5 %, and a maximum theoretical value of 13 % replacement of P 
imports could be reached [171], therefore, more needs to be done 
improve the self-sufficiency of P.

Moreover, the ownership of the nutrient CE process has come into 
question on what happens after sewage sludge exits the WWTP and 
enters the process recovery chain, who bears the cost of burden, the 
tendering process and profiteering [73,175,277]. An example of a 
legislation ascribing responsibilities for this is Poland's Waste Act which 
charges sludge producers with the responsibility for transporting sludge, 
testing and reporting to environmental protection agencies [83], with 
the difficulties surrounding the legal treatment of sewage sludge ash 
[220]. This responsibility becomes much more blurred when the sewage 
sludge is sold to multiple parties downstream, for example, companies 
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processing the sludge for other purposes besides agricultural applica-
tion. Therefore, some laws focus on waste management to prevent harm 
to society and environment, rather than on CE recoveries. In developing 
countries, the focus is ensuring hygienic and safe working conditions, 
transforming social perceptions and better waste management and ac-
counting systems [202].

4. Proposing the framework

Scope 1, 2, 3, 4 and 5 impacts of the nutrient CE WWTP are 
considered for the proposal of the new framework. These fall under the 
categories of:

1. Scope 1: The recovered products and their economic, social and 
environmental impacts from the plant onto the wider surroundings 
considered at the meso, macro and micro levels. These include 
complimentary recovered products from the nutrient recovery pro-
cess (e.g., biogases, syngas, biomasses, electricity, and thermal en-
ergy). Scope 1 is applied across Scopes 2–6.

2. Scope 2: Transitory effects from changing regulations, policies and 
legislations have on the treatment and definitions of CE waste to 
products.

3. Scope 3: Technological compatibility with the treatment of influents 
and their economic viability, efficiencies, acceptability, integration 
via retrofitting, and readiness.

4. Scope 4: Societal acceptance of nutrient CE technologies regarding 
hygiene, safety, and educational awareness.

5. Scope 5: Inclusion of stakeholders such as mining firms, farmers, 
consumers, academia, regulatory bodies, governments, plant oper-
ators, and standards institutions.

6. Scope 6: Infrastructural systems in place to facilitate effective 
nutrient CE between WWTPs and end consumer. For example, source 
separation and decentralised urinals.

Smol et al. [128] covers the recovery of energy, nutrients, water and 
removal of toxic chemicals within the context of the EU, however, the 
framework inadequately fails to consider the meso, macro and micro 
impacts that the recycling and recovery of nutrients WWPTs will have. 
The term “reclamation”, or removal, has been proposed as a substitute 
for one of the 10R principles to eliminate harmful toxins and chemicals 
from WWTP influents by the author [128], however, there is a gap in the 
framework which does not consider: CE metrics, factoring in market 
conditions and commercial opportunities; current research into pilot 
plants in existence; and the lifecycle of the WWTP plant itself; and is 
more confined with localised EU directives. Smol et al.'s [57,128] 6R 
principles were:

1. Reduction: Reduce use of water
2. Reclamation (removal): Pollutants removal
3. Reuse: Water reuse
4. Recycling: Water recycling
5. Recovery: Nutrient, materials and energy recovery
6. Rethink: Public awareness

Norton et al. [278] proposed the 4R principles for nutrient stew-
ardship, these include: the right amount, right fertiliser, right time, the 
right way. In other words, nutrients should be used sparingly to achieve 
the desired crop yields, high efficiency in both removal nutrients and 
efficient nutrient delivery into produce. It is expected that the R prin-
ciples will evolve with time depending on advancements in policy, 
technology and social attitudes. For example, crop yields have increased 
with P-efficiencies given improvements in crop genetic modifications, 
planting technologies and improved fertiliser management [76]. How-
ever, the R principles proposed by previous authors do not consider 
strongly the social, economic and environmental dimensions of nutrient 
CE.

Table 5 
Dynamic framework for Nutrient CE WWTPs.

Scope 
1

Economic Environmental Social

Scope 
2

Meso Regulations protect 
consumers during 
economic 
exchanges and 
maintain company 
profitability.

Promotes water 
circularity and 
environmental 
preservation (e.g., 
CE WWTP nutrient 
fertigation).

Regulated 
training and 
induction for 
CE WWTP 
workers.

Micro Regulations on 
profit/loss 
ownership and 
accounting. 
Transitional 
regulations are not 
financially 
disruptive.

Regulations on safe 
nutrient CE 
consumption. 
Transitional 
regulations 
promote individual 
environmentalism.

Consumer 
education and 
awareness.

Macro Regulations on 
imports and exports 
of nutrients. Does 
not lock-in 
inefficient 
technologies.

Regulations are 
enforced within a 
zone (region/ 
globe).

Globally 
accepted and 
overcomes 
national 
barriers on 
nutrient CE 
regulations, 
education and

Scope 
3

Meso Technology 
integrates well with 
other WWTP 
networks and/or 
households, 
effective selection 
methods.

Technology poses 
no adverse 
environmental 
damage.

Technology is 
accepted by 
industry, 
beneficiaries, 
operators, and 
standards 
institutions.

Micro Commercially 
viable and 
profitable for 
operators, nutrients 
can be purchased by 
households.

High efficiencies in 
nutrient recovery 
and toxins or 
pharmaceuticals 
removal to 
consumers.

Technology 
sufficiently 
builds trust and 
reliability.

Macro Subsidised 
technologies by 
governments.

Technology is 
certified as 
environmentally 
friendly.

Technology is 
socially 
acceptable due 
to long 
established 
reliability.

Scope 
4

Meso Widely accepted 
practice that is 
proven to be 
profitable.

Supports 
environmental 
objectives across 
society.

Alignment with 
NGOs and NFP 
organisations.

Micro Consumer and 
WWTP 
affordability.

Supports communal 
demands for safe, 
healthy 
environments.

Households and 
companies 
champion being 
connected to CE 
WWTPs.

Macro Supports job 
creation 
opportunities.

Tackles goals from 
a governing body 
reflective of global 
values (e.g., UN 
SDGs).

Countries 
advance CE 
reputation 
throughout the 
global 
community.

Scope 
5

Meso LCA of CE WWTP on 
economic 
performance with 
stakeholders.

LCA between CE 
WWTPs and 
stakeholders with 
environmental 
factors.

Transparent 
supply chains to 
build trust and 
accountability 
between CE 
WWTPs and 
stakeholders.

Micro Financial incentives 
to nutrient 
recycling.

Individual 
responsibility for 
environmental 
performance.

Individual 
responsibility 
for safe nutrient 
disposal.

Macro CE-driven economic 
growth.

Governments, 
institutions, 
regulatory bodies, 
and regional 
standards 

Global cultural 
and national 
acceptance of 
CE WWTPs for 
society.

(continued on next page)
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In Table 5, social, environmental and economic goals of nutrient CE 
WWTP should be factored in with the meso, micro and macro elements 
of society. The framework captures the dynamic nature of Scopes 2–6. 
For example, regulations are constantly changing and facing discrep-
ancies between local, regional and international zones regarding fertil-
iser and reapplication nutrient contents; different countries will have 
varying levels of infrastructure compatibilities to support nutrient CE, 
technology maturity and compatibility will also vary; and inclusion of 
the stakeholders will also differ depending on their capabilities and 
vested interests reflective of the institutions, social, environmental and 
economic acceptance of nutrient CE.

5. Discussion

From the analysis, governments and in particular within the EU, are 
beginning to implement a range of measures that serve both protec-
tionist and sustainable goals towards material conservation and circu-
larity. A lot of research in academia has been translated into nutrient 
recovery pilot plants and these remain emerging, Fig. 8 ties in the 
research elements that create the CE WWTP ecosystem. Nation-driven 
programs such as Germany's SUKSULT or the EU's Critical Raw Mate-
rials Act, are policy-backed examples for attaining macro-scale material 
self-sufficiency and sustainability. However, little is done to tie in 
broader society support and awareness about phosphorous scarcity 
using wastewater sewage and urine P-recovery technologies. There is a 
noticeable shift towards expanding nutrient efficiency from recovery to 
include delivery into farmlands, the incorporation of ML digital systems 
to automate and streamline nutrient recovery efforts, and much more 
inclusive regulations and legislative definitions on categorising CE 
waste. Market interventions in the forms of government subsidies and 
investor awareness are needed to support the expansion and adoption of 
maturing, nutrient CE technologies with WWTPs. There is however, 
currently insufficient support for nutrient recovery projects for WWTPs 
on a global scale, given the uncertainty around profitability or swathe of 
emerging technologies and selection methods that have yet to garner 
trust and reliability. Different countries will have unique priorities and 
recovery technologies depending on the availability of funding, types of 
infrastructure compatible with nutrient CE WWTPs, and economic 
priorities.

The involvement of many different stakeholders will prove crucial - 
namely governance, farmers, regulators, legislators, businesses and 
consumers - to make CE possible for WWTPs. Consumer acceptance, 
strong regulatory support enforced by institutions, businesses willingly 
participating in this commerce, and farmers who are actively engaged 
and purchasing nutrient CE products are all necessary, with govern-
ments exploring a range of technologies available to make the CE pro-
cess a reality. However, each country will be different given the varying 
urban densities there are, strength of institutions, water connection 
rates, the level of centralisation of water treatment systems, and per-
ceptions on waste reuse. This is also affected by the level of water 

Table 5 (continued )

Scope 
1

Economic Environmental Social

publishers for CE 
WWTPs.

Scope 
6

Meso Infrastructure links 
communities, 
farmers and WWTP 
operators to 
investment 
opportunities.

Infrastructure 
meets net-zero 
emissions and 
supports CE 
nutrient 
consumption 
among 
stakeholders.

Community 
support of 
nutrient CE 
wastewater 
infrastructure.

Micro Consumers can 
purchase and 
monetise 
infrastructure for 
wastewater nutrient 
recoveries.

Consumers can 
access and use CE 
WWTP 
infrastructure.

Consumers and 
households can 
promote and 
endorse the 
benefits of 
using nutrient 
CE 
infrastructure.

Macro Major infrastructure 
investments that 
promote greater CE 
WWTP integration 
and 
commercialisation.

National and 
international 
infrastructure 
networks 
supporting WWTP 
CE nutrient supply 
chains.

Heavily used 
and accepted by 
society – has 
become 
omnipresent.

Fig. 8. The intermeshing of priorities, stakeholders, social, economic, environmental, infrastructural, commercialisation, regulatory and legislative factors that are 
required to realise CE WWTP.
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scarcity and prices of synthetic fertilisers where farmers may be incen-
tivised to switch to a more organic substitute or reclaimed water for 
irrigation. WWTP operators can either process the waste into reusable 
fertiliser, or outsource this process to a dedicated nutrient recycling 
provider. Therefore, the introduction of cheaper, organic nutrient CE 
WWTP fertilisers would become beneficial for consumers as food prices 
become lowered. The main critical ingredients for this to work rely 
heavily on favourable economics for all parties involved that is safely 
regulated by governments and institutions.

6. Conclusion

It has become clear that the move towards nutrient CE WWTPs re-
quires factoring in environmental, societal, political, commercial, eco-
nomic, consumer, regulatory, legal, infrastructural, technological, 
international compliance, academic, agricultural, and WWTP operators 
for nutrient CE to be a success. The translation of CE into a feasible 
system of practice for countries, regions and the world, remains difficult 
due to localised legislative barriers on the treatment of waste and re-
sources. Meanwhile, nutrient recovery plants are being piloted for the 
purposes of identifying best NPK recovery approaches. However, many 
of these pilot plants are heavily subsidised by governments and research 
institutions, rather than being driven by commercial investment op-
portunities. Given the emerging status of some nutrient recovery tech-
nologies, caution is taken to ensure that policies do not lock-in 
inefficient technologies. Therefore, fear among investing in unproven 
technologies exists that serves as a resister to nutrient CE WWTP com-
mercialisation. The framework identifies regulations, subsidies, com-
mercial incentives, consumer acceptance, wastewater professional CE 
practice acceptance as enablers for CE WWTP adoption, meanwhile, 
stakeholder inclusion using a bottom-up approach is crucial. Given that 
most CE policies are concentrated throughout the EU to achieve net-zero 
circularity in material consumption, a large amount of nutrient CE 
research and piloting is done in this region, and practices are increas-
ingly becoming enforced through legislations such as the Critical Raw 
Material Act of the EU. Therefore, regulatory directives contribute 
significantly to CE activities. Meanwhile, upscaling CE solutions will 
depend on the unique infrastructural and economic challenges and 
priorities that a country faces, and in essence, a one size fits all approach 
may not be appropriate for global CE WWTP. This framework is posited 
to factor in situations facing the meso, micro and macro environments to 
which nutrient CE is implemented. Conclusively, WWTPs are undergo-
ing an unprecedented transformation to become nutrient and resource 
recovery centres, with this framework setting clear guidelines on its 
interdependencies for success.
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