
Citation: Serbouti, I.; Chenal, J.;

Pradhan, B.; Diop, E.B.; Azmi, R.;

Abdem, S.A.E.; Adraoui, M.; Hlal, M.;

Bounabi, M. Assessing the Impact of

Agricultural Practices and Urban

Expansion on Drought Dynamics

Using a Multi-Drought Index

Application Implemented in Google

Earth Engine: A Case Study of the

Oum Er-Rbia Watershed, Morocco.

Remote Sens. 2024, 16, 3398. https://

doi.org/10.3390/rs16183398

Academic Editor: Andrés Navarro

Received: 10 July 2024

Revised: 8 September 2024

Accepted: 9 September 2024

Published: 12 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing the Impact of Agricultural Practices and Urban
Expansion on Drought Dynamics Using a Multi-Drought Index
Application Implemented in Google Earth Engine: A Case Study
of the Oum Er-Rbia Watershed, Morocco
Imane Serbouti 1, Jérôme Chenal 1,2 , Biswajeet Pradhan 3,* , El Bachir Diop 1, Rida Azmi 1 ,
Seyid Abdellahi Ebnou Abdem 1, Meriem Adraoui 1 , Mohammed Hlal 1 and Mariem Bounabi 1

1 Center of Urban Systems (CUS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco;
mohammed.hlal@um6p.ma (M.H.)

2 Urban and Regional Planning Community (CEAT), Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland

3 Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and
Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology
Sydney, Ultimo, NSW 2007, Australia

* Correspondence: biswajeet.pradhan@uts.edu.au

Abstract: Drought monitoring is a critical environmental challenge, particularly in regions where irri-
gated agricultural intensification and urban expansion pressure water resources. This study assesses
the impact of these activities on drought dynamics in Morocco’s Oum Er-Rbia (OER) watershed
from 2002 to 2022, using the newly developed Watershed Integrated Multi-Drought Index (WIMDI),
through Google Earth Engine (GEE). WIMDI integrates several drought indices, including SMCI,
ESI, VCI, TVDI, SWI, PCI, and SVI, via a localized weighted averaging model (LOWA). Statisti-
cal validation against various drought-type indices including SPI, SDI, SEDI, and SMCI showed
WIMDI’s strong correlations (r-values up to 0.805) and lower RMSE, indicating superior accuracy.
Spatiotemporal validation against aggregated drought indices such as VHI, VDSI, and SDCI, along
with time-series analysis, confirmed WIMDI’s robustness in capturing drought variability across the
OER watershed. These results highlight WIMDI’s potential as a reliable tool for effective drought
monitoring and management across diverse ecosystems and climates.

Keywords: drought monitoring; Google Earth Engine; watershed integrated multi-drought index;
LOWA; Oum Er Rbia watershed; irrigated agricultural intensification; urban expansion

1. Introduction

Droughts are intricate and multifaceted climatic hazards that have profound repercus-
sions on society, ecosystems, and the economy [1]. These slow-onset events, influenced by
natural climatic variations, can persist for weeks to years [2]. While they cause substantial
economic, environmental, and human distress, droughts often go unnoticed compared
to more visible disasters like floods or storms [3,4]. The immediate, quantifiable damage
caused by floods and storms contrasts with the underestimated impacts of droughts due to
their gradual development and indirect effects [5].

Drought severity is influenced by factors such as insufficient rainfall [6], groundwater
depletion [7], inadequate soil moisture [8], and socio-economic impacts [9]. These factors
categorize droughts into four types: meteorological (related to reduced precipitation),
agricultural (due to decreased soil moisture), hydrological (from diminished surface and
groundwater), and socio-economic (stemming from a supply–demand imbalance) [10].

Droughts can be characterized by their spatial and temporal extent, duration, and
intensity [11]. In Morocco, numerous researchers have investigated various parameters to
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comprehensively understand drought phenomena [12–20]; particularly, the OER watershed,
which has experienced significant land-use changes over the past two decades that were
primarily driven by irrigated agricultural intensification and urban expansion [21–23].
Recent studies have shown that these activities have led to increased water demand, soil
degradation, and altered hydrological cycles, thereby exacerbating the region’s vulnerability
to droughts [24–26]. Urban expansion has further stressed the watershed’s water resources,
with growing urban areas encroaching on agricultural lands and natural water infiltration
zones, leading to reduced groundwater recharge and increased surface runoff [21,22,25].
This watershed is vital for multiple uses across the regions it encompasses. It supports
agriculture by providing necessary irrigation water, supplies drinking water to urban and
rural populations, and is a source of hydroelectric power [27]. This multipurpose utility
makes it critically important to the socio-economic structure of Morocco.

However, based on the time-series analysis conducted in this research, the OER water-
shed faced significant drought events during the study period from 2002 to 2022, specifically
in the years 2005, 2010, and 2022, which were classified as severe, moderate, and extreme
droughts, respectively. These droughts had profound impacts on the region, including
increased competition for water resources, which collectively strained agricultural produc-
tivity, disrupted hydrological balances, and threatened socio-economic stability, leading to
water shortages and reduced agricultural income.

The OER watershed is critically at risk of drought, where water scarcity is compounded
by agricultural activities and urban expansion. This watershed, serving a critical economic
role both locally and nationally, faces significant threats from recurrent drought conditions
intensified by climatic changes and anthropogenic pressures [18,19]. The research concen-
trated on drought within the OER watershed has offered an extensive analysis of climate
change’s effects on water resources [17], analyzed trends and future projections related to
water availability and drought scenarios [14], and assessed historical drought patterns and
trends using observational data [28].

Monitoring drought is crucial, especially in arid and semi-arid areas where water scarcity
presents substantial threats to agriculture, ecosystems, and local economies [23,24]. The
challenge is exacerbated by the increasing variability in climate patterns, which demands more
precise measures of drought indices and adaptable monitoring tools [24–26]. The importance
of a drought monitoring system is multifaceted. It allows for early drought detection and is a
critical mitigation action for several compelling reasons [27–31]: it enables proactive mitigation
strategies [32–36], provides accurate and timely data for informed decision making [37], and
minimizes economic impacts on agriculture-dependent economies [9,38,39].

The OER Basin exhibits a high level of complexity due to its diverse hydrological and
ecological characteristics [21,22]. It includes varied climates and landscapes, from the snow-
capped Middle Atlas Mountains to fertile plains and eventually the Atlantic coast [23].
Managing such a diverse and dynamic water system, with multiple needs from agricultural,
urban, and ecological users, involves significant challenges [21–23]. This makes the OER
watershed a pertinent case study for understanding the multifaceted impacts of drought
exacerbated by human activities.

In recent years, there has been a marked increase in the frequency and intensity
of droughts worldwide, leading to a significant rise in interest in drought monitoring
through big data analytics [33,34]. Implementing a drought monitoring application using
Google Earth Engine (GEE), particularly in vulnerable countries, is a strategic approach
to harnessing cutting-edge technology for environmental resilience [40]. By integrating
multi-source, multi-product satellite imagery, and comprehensive environmental data, a
GEE application can provide actionable insights for timely response and preparedness.
This will help mitigate the adverse effects of droughts on agriculture and ecosystems and
enhance socio-economic stability by supporting informed decision making at all levels of
governance [23–36].

However, research that utilizes advanced computational tools to analyze large-scale
remote sensing datasets and integrate multiple drought indices for monitoring in Morocco
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is limited, particularly for the OER basin. Previous research has investigated agricultural
expansion over a forty-year period in Morocco’s OER valley, comparing the effectiveness
of the GEE with the Sentinel Application Platform in monitoring these changes [41,42].
Another study highlighted the use of GEE for assessing environmental change impacts on
natural resources in the Middle Atlas region, utilizing Landsat imagery and the Random
Forest algorithm to analyze land-use changes over three decades [43].

It is well known that the effects of drought vary significantly due to factors such as
local climate, local environment, the nature of the drought, affected communities, economic
conditions, and societal responses [44]. The OER basin, with its varied climate, environment,
and nature of drought (meteorological, agricultural, hydrological, and socio-economic),
requires new indices that consider the multifaceted nature of drought.

In this context, the primary objective of this study is to assess the impact of intensive
irrigated agricultural practices and urban expansion on drought dynamics within Morocco’s
OER watershed over a 20-year period (2002–2022). This assessment is conducted using
a novel Google Earth Engine (GEE) application that integrates multiple drought indices
through a localized ordered weighted averaging (LOWA) model.

To achieve this, several secondary objectives are addressed. First, the development
of a new Watershed Integrated Multi-Drought Index (WIMDI) is undertaken by integrat-
ing various traditional remote sensing indices such as the Soil Moisture Condition Index
(SMCI), Evaporative Stress Index (ESI), Vegetation Condition Index (VCI), Temperature–
Vegetation Dryness Index (TVDI), Standardized Water Index (SWI), Precipitation Condi-
tion Index (PCI), and Standardized Vegetation Index (SVI). To enhance the findings of
our research, VCI and TVDI were calculated using the Universal Pattern Decomposition
method applied to the Vegetation Index (VIUPD) derived from MODIS data, and SMCI
was extracted utilizing the GLDAS-2.1 product. Second, the study aims to validate the
effectiveness of the WIMDI in multi-drought monitoring by conducting both statistical
and spatiotemporal validations. The statistical validation was performed using a variety
of drought-type indices, including the Standardized Precipitation Evapotranspiration In-
dex (SPEI) and Standardized Precipitation Index (SPI) for meteorological drought [45,46],
Streamflow Drought Index (SDI) for hydrological drought [47], Socio-Economic Drought
Index (SEDI) for socio-economic drought [48], and SMCI for agricultural drought [49].
WIMDI demonstrated strong correlations with these indices, with r-values reaching up to
0.805, in addition to lower RMSE values, indicating its superior accuracy. Additionally, a
comprehensive spatiotemporal validation was conducted by comparing WIMDI against
widely used aggregated drought indices, such as the Vegetation Health Index (VHI), Scaled
Drought Condition Index (SDCI) and Vegetation Drought Synthesized Index (VDSI). This
validation confirmed WIMDI’s effectiveness in capturing the spatial and temporal variabil-
ity of drought conditions across diverse climate zones within the OER watershed, focusing
on the effects of rapid urbanization and irrigated agricultural intensification. Finally, given
the increasing issues posed by intensive irrigated agricultural practices, urban expansion,
and recurrent drought events in the OER watershed, this study addresses the urgent need
for a comprehensive drought monitoring system by developing the WIMDI. This index
is designed for real-world application, providing actionable tools for effective drought
monitoring, early warning systems, and sustainable watershed management.

2. Materials and Methods
2.1. Study Area

The OER watershed is located in central-western Morocco, spanning latitudes between
31◦15′N and 33◦22′N and longitudes between 5◦00′W and 9◦20′W (Figure 1). This region
ranks among the largest watersheds in Morocco, encompassing approximately 35,000 km2,
which constitutes about 7% of Morocco’s total area [17]. To the east, the OER watershed is
bounded by the Atlas Mountains, comprising two main sections: the Middle Atlas (oriented
NNE-SSW) and the High Atlas (oriented NE-SW). These mountains serve as the principal
source of water supply for the downstream areas [50,51].



Remote Sens. 2024, 16, 3398 4 of 28

Remote Sens. 2024, 16, 3398 4 of 28 
 

 

2. Materials and Methods 
2.1. Study Area 

The OER watershed is located in central-western Morocco, spanning latitudes be-
tween 31°15′N and 33°22′N and longitudes between 5°00′W and 9°20′W (Figure 1). This 
region ranks among the largest watersheds in Morocco, encompassing approximately 
35,000 km2, which constitutes about 7% of Morocco’s total area [17]. To the east, the OER 
watershed is bounded by the Atlas Mountains, comprising two main sections: the Middle 
Atlas (oriented NNE-SSW) and the High Atlas (oriented NE-SW). These mountains serve 
as the principal source of water supply for the downstream areas [50,51]. 

The highest peak in the basin reaches 3890 m above sea level (a.s.l) [39]. The hydro-
graphic network of the basin is primarily composed of the OER River, the second-largest 
river in Morocco with a length of 550 km. This river originates in the Middle Atlas at an 
elevation of 1800 m a.s.l. The basin is also fed by several tributaries, including the Tassa-
out, El Abid, Lakhdar, Derna, Melloul, Ouamana, Srou, Chbouka, Ouirine, Gzef, El 
Touim, and Faragh rivers [39,40]. The river spans 550 km until it reaches its outflow into 
the Atlantic Ocean [41]. Within the OER basin, there are numerous hydraulic infrastruc-
tures, including fifteen reservoirs. Among these, the main dams from the headwaters to 
the mouth are Bin El Ouidane, Ahmed El Hansali, and Al Massira. These dams are crucial 
for generating hydroelectric power, providing water for urban consumption, safeguard-
ing potable water, and supporting economic activities. They also supply water for irri-
gated agriculture, which is the primary user of water within the river basin, particularly 
for irrigating agricultural plains [41,42]. Agriculture consumes most of the water in the 
OER River Basin, using around 2856 m3 per year to irrigate 450,000 hectares of agricultural 
land [41,42]. The climate of the OER basin ranges from the coastal climate on the Atlantic 
coast to an orographic climate in the Middle Atlas Mountains, through an arid climate in 
the Rehamna plain and semi-arid in the Tadla plain. In January, the average lowest tem-
perature is 3.5 °C, whereas the average maximum temperature in August reaches 38 °C. 
The temperature in the region can vary widely, ranging from 10 °C to 50 °C. Evaporation 
rates are substantial, ranging between 1600 and 1800 mm per year. 

 
Figure 1. Geographical situation of the Oum Er-Rebia watershed. 

According to ISKANE Ingeniérie (2009) [43], the average annual rainfall in the basin 
varies from 200 mm in the downstream plains to 1100 mm in the Middle Atlas Mountains. 

Figure 1. Geographical situation of the Oum Er-Rebia watershed.

The highest peak in the basin reaches 3890 m above sea level (a.s.l) [39]. The hydro-
graphic network of the basin is primarily composed of the OER River, the second-largest
river in Morocco with a length of 550 km. This river originates in the Middle Atlas at
an elevation of 1800 m a.s.l. The basin is also fed by several tributaries, including the
Tassaout, El Abid, Lakhdar, Derna, Melloul, Ouamana, Srou, Chbouka, Ouirine, Gzef, El
Touim, and Faragh rivers [39,40]. The river spans 550 km until it reaches its outflow into the
Atlantic Ocean [41]. Within the OER basin, there are numerous hydraulic infrastructures,
including fifteen reservoirs. Among these, the main dams from the headwaters to the
mouth are Bin El Ouidane, Ahmed El Hansali, and Al Massira. These dams are crucial for
generating hydroelectric power, providing water for urban consumption, safeguarding
potable water, and supporting economic activities. They also supply water for irrigated
agriculture, which is the primary user of water within the river basin, particularly for
irrigating agricultural plains [41,42]. Agriculture consumes most of the water in the OER
River Basin, using around 2856 m3 per year to irrigate 450,000 hectares of agricultural
land [41,42]. The climate of the OER basin ranges from the coastal climate on the Atlantic
coast to an orographic climate in the Middle Atlas Mountains, through an arid climate
in the Rehamna plain and semi-arid in the Tadla plain. In January, the average lowest
temperature is 3.5 ◦C, whereas the average maximum temperature in August reaches 38 ◦C.
The temperature in the region can vary widely, ranging from 10 ◦C to 50 ◦C. Evaporation
rates are substantial, ranging between 1600 and 1800 mm per year.

According to ISKANE Ingeniérie (2009) [43], the average annual rainfall in the basin
varies from 200 mm in the downstream plains to 1100 mm in the Middle Atlas Mountains.
Most of this rainfall, approximately 70–80%, occurs between October and May, which
constitutes the rainy season [52].

The OER basin is recognized as one of the most polluted basins in Morocco, primarily
due to high urban density and human activities such as agriculture, industrialization,
mining, and wastewater discharge from both urban and rural areas [53,54].

2.2. Remotely Sensed Data

This study utilizes seven remotely sensed derived indices (SWI, ESI, SVI, VCI, TDVI,
PCI, and SMCI) to monitor the environmental impact of drought in the OER watershed
from 2002 to 2022. These indicators are calculated using the Google Earth Engine platform.



Remote Sens. 2024, 16, 3398 5 of 28

2.2.1. MODIS Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a medium-resolution
imaging spectrometer mounted on the Terra and Aqua satellites [45,46]. It is a vital compo-
nent of the U.S. Earth Observing System (EOS) and is used to monitor global biological and
physical phenomena [46]. MODIS captures electromagnetic energy across a wide spectrum,
enabling analysis of ecological, meteorological, and hydrological conditions on Earth [55].
For the research spanning from 2002 to 2022, MODIS data were sourced from the GEE
platform. This included several products (Table 1), namely, the MOD11A2 land surface
temperature and emissivity at an 8-day temporal resolution, using a 1 km spatial resolu-
tion [56] with all data adjusted to a 500 m spatial resolution for consistency in analysis;
MOD13Q1 vegetation index compiles data updates every 16 days throughout the year with
a 250 m spatial resolution, incorporating NDVI and EVI indices [57–59]; the MOD16A2
product provides estimates of evapotranspiration (ET) and potential evapotranspiration
(PET) [51,52]; and the MOD09GA product provides daily surface reflectance data, which
can be used to calculate the Normalized Difference Water Index (NDWI) [60,61].

Table 1. MODIS product descriptions used in this study from the website [62].

ID of Product Name Data Description Resolution (m)

MOD11A2 MODIS LST and Emissivity 8-Day
Provides 8-day composite estimates of land
surface temperature (LST) and emissivity
derived from thermal infrared data.

1000

MOD13Q1 MODIS Vegetation Indices 16-Day

The values of the Normalized Difference
Vegetation Index (NDVI) and the Enhanced
Vegetation Index (EVI) during a 16-day period
vary depending on the specific location and time
of year. Typically, these indices range from
negative values to values close to 1, with higher
values indicating healthier vegetation cover.

250

MOD16A2 MODIS Vegetation Indices Monthly
Provides global estimates of evapotranspiration
(ET) and potential evapotranspiration (PET) at
an 8-day temporal resolution.

500

MOD09GA MODIS daily surface reflectance
Provides daily surface reflectance data, which
can be used to calculate the Normalized
Difference Water Index (NDWI).

500 and 1000

2.2.2. CHIRPS Data

The CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) is
a precipitation dataset developed by the Climate Hazards Group at the University of
California, Santa Barbara. It offers high-resolution rainfall estimates globally by integrat-
ing satellite imagery with in situ station data. This integration enables the creation of
gridded rainfall time series, which are utilized for trend analysis and seasonal drought
monitoring purposes [63]. CHIRPS is especially valued for its ability to combine high
temporal resolution with a fine spatial resolution of approximately 0.05 degrees, which is
roughly 5 km. It offers both daily and monthly aggregated precipitation estimates, mak-
ing it a crucial tool for environmental scientists, agronomists, and meteorologists [64].
This dataset is particularly useful in regions where ground-based monitoring systems are
sparse but where rainfall monitoring and accurate historical precipitation data are critical
for agricultural planning, drought assessment, and water resource management [65].
CHIRPS data used in this study are available at https://www.chc.ucsb.edu/data/chirps
(accessed on 14 May 2024).

2.2.3. GLDAS-2.1 Soil Moisture Data

GLDAS-2.1 (Global Land Data Assimilation System Version 2.1) is an advanced system
used to simulate various land surface states and fluxes. Developed by NASA in collab-

https://www.chc.ucsb.edu/data/chirps
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oration with other research institutions, GLDAS integrates satellite and ground-based
observational data with advanced land surface modeling techniques to generate high-
quality data products [66]. This integration enhances the reliability and accuracy of the soil
moisture estimates [67,68]. These products are essential for agricultural, environmental,
and climate studies, offering a comprehensive view of global land surface conditions and
consistent view of soil moisture conditions globally, generated through advanced data
assimilation and modeling techniques [58,59]. GLDAS-2.1 offers global coverage of soil
moisture data at a spatial resolution of 0.25 degrees. These high-resolution data are avail-
able at multiple depths, typically including surface (0–10 cm), root zone (10–40 cm), and
deeper layers [69].

2.2.4. VIUPD Vegetation Data

The Vegetation Index based on the Universal Pattern Decomposition Method (VIUPD),
developed by Zhang et al. [61], offers distinct advantages over conventional vegetation
indices. As with NDVI, VIUPD utilizes satellite data to provide real-time global coverage
at high spatial resolutions. It assesses vegetation density and health more comprehensively
across terrestrial landscapes. Unlike traditional indices, which rely on near-infrared and
red bands, VIUPD integrates data from all spectral bands. Research highlights VIUPD’s
superior sensitivity to spectral variations and reduced sensor dependency compared to
11 other indices, including NDVI and EVI [62]. VIUPD has proven effective in monitoring
urban Land Surface Temperature (LST) changes, especially in urban heat-island studies [63].
It also outperforms NDVI, TVI, and the Ratio of Modified Transformed Chlorophyll Ab-
sorption Ratio Index in accurately measuring chlorophyll content in winter wheat [64]. The
VIUPD-derived Vegetation Condition Index (VCI) is recognized as an advanced alternative
for long-term drought monitoring, particularly across diverse climatic regions [65]. It
enhances the capability to monitor and mitigate drought impacts efficiently.

2.3. Reference Data and Remote Sensing Drought Indices
2.3.1. Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI), introduced by McKee et al. [10], serves as
a method to evaluate wet or dry conditions by analyzing precipitation data. It measures
how precipitation deviates from the long-term average across different time spans, usually
on a monthly or multi-month basis. This index is valuable for assessing the likelihood and
intensity of deviations in precipitation patterns over time. The SPI is calculated by taking
the precipitation of the pixel i during timeframe j of year k minus the historical mean of
pixel i during timeframe j over n years, divided by the historical standard deviation of pixel
i during timeframe j over n years given by Equation (1) as follows:

SPIijk =
CHIRPSijk − CHIRPSi,mean

CHIRPSi,σ
(1)

In this study, the monthly SPI will be computed using daily precipitation data from
the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). These daily
values will be aggregated to form monthly (or multi-month) precipitation totals. Given that
precipitation data typically do not conform to a normal distribution, a gamma probability
function is commonly applied for SPI calculations.

We selected the Standardized Precipitation Index (SPI) as the benchmark for eval-
uating our proposed index. SPI values were computed for one-, three-, and six-month
accumulation periods.

2.3.2. Single Condition Indices

a. Precipitation Concentration Index (PCI)

Given that insufficient rainfall is a primary contributor to aridity in any area, it is
essential to explicitly consider rainfall amounts in addition to the established indicators.
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In this study, the Precipitation Concentration Index (PCI) is determined using data
from CHIRPS data. The PCI serves as an effective statistical tool that measures the
distribution and concentration of rainfall over a designated period, often annually. This
index is instrumental in analyzing the variability and concentration of precipitation [70],
essential for examining seasonal fluctuations and their implications for agriculture [71],
water resource management, and disaster readiness. The data were then resampled to a
1 km resolution to calculate the monthly Precipitation Concentration Index (PCI), using
Equation (2) as follows:

PCIijk =
100 ×

(
∑12

i=1

(
Pijk

)
− Pi,mean

)
12P2

i,mean
(2)

where PCIijk is the PCI value for the given pixel (i) during month (j) for year (k), Pijk is the
precipitation CHIRPS value for the given pixel (i) during month (j) for year (k), and Pi,mean
is the mean monthly precipitation deviation for pixel (i).

b. Standardized Water Index (SWI)

Water availability is assessed and monitored using the Standardized Water Index
(SWI), an analytical tool that facilitates this process across various landscapes and over time.
SWI specifically focuses on quantifying deviations in water content relative to historical
averages, which makes it particularly useful in the fields of hydrology, agriculture, and
climate study [72]. To calculate this index, we must first extract NDWI by the Equation (3)
as follows:

NDWI =
ρband2 − ρband5
ρband2 + ρband5

(3)

where ρband2 and ρband5 represent the reflectance values at 857 nm and 2130 nm, respectively.
To standardize NDWI across different scales and to identify outliers in a dataset. The SWI
is derived by calculating the Z-score of NDWI, which represents the deviation from the
mean in units of standard deviation. Consequently, the SWI is represented in Equation (4)
as follows:

SWIijk =
NDWIijk − NDWIi,mean

NDWIi,σ
(4)

where SWIijk represents the SWI value for a specific pixel (i) in month (j) of year (k), NDWIijk
denotes the NDWI value for the same pixel (i) during the same month (j) of the same year
(k), and NDWIi,mean and NDWIi,σ are the multi-year mean and standard deviation of
NDWI for pixel (i), respectively.

c. Standardized Vegetation Index (SVI)

The Standardized Vegetation Index (SVI) is a normalized measurement that evaluates
the health, vigor, and robustness of vegetation [73]. Building on the concept of NDVI
anomalies, the SVI, developed by Peters et al. [73], quantifies the likelihood of deviations
from the typical NDVI values over an extended dataset, such as a 20-year span, analyzed
monthly. The SVI measures these deviations as a z-score, representing the number of
standard deviations an observed value differs from the mean. This calculation uses either
NDVI or EVI values for each pixel within a specific composite period annually throughout
a designated reference period. The formula provided below outlines the standard method
for calculating the SVI.

We chose the EVI index instead of the NDVI because of its less sensitivity to soil
background and uses the blue wavelength to correct for soil and atmospheric distur-
bances, making it more reliable than NDVI under these conditions. EVI is demonstrated in
Equation (5) as follows:

EVI = G × ρband2 − ρband1
ρband2 + C1ρband1 − C2ρband3 + L

(5)
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where ρband1, ρband2, and ρband3 represent the reflectance values at 645 nm, 857 nm, and
469 nm, respectively. G is the gain factor (usually 2.5), C1 and C2 are the coefficients
of aerosol resistance that use the blue band to correct for aerosol influences in the red
band (C1 = 6, C2 = 7.5), L is the canopy background adjustment that addresses nonlinear,
differential NIR and red radiant transfer through a canopy (L = 1).

The Standardized Vegetation Index (SVI) was calculated using Z scores, which repre-
sent the deviation of the EVI mean in terms of standard deviations across a time series. The
Equation (6) of SVI is determined as follows:

SVIijk =
EVIijk − EVIi,mean

EVIi,σ
(6)

where SVIijk is the SVI value for the given pixel (i) during month (j) for year (k), EVIijk is
the EVI value for the given pixel (i) during month (j) for year (k), and EVIi,mean and EVIi,σ
are mean and standard deviation multiyear EVI for pixel (i), respectively.

SVI plays a vital role in tracking vegetation conditions over various periods and
geographical areas [69,70], particularly useful in evaluating the effects of drought and other
environmental changes on plant growth.

d. Evaporative Stress Index (ESI)

The Evaporative Stress Index (ESI) is a remote sensing tool used to monitor drought
by measuring the Z-score of the ratio of evapotranspiration (ET) to potential evapotran-
spiration (PET) [74]. It quickly detects changes in water use by vegetation, potentially
indicating drought conditions before visible signs like wilting appear. ESI evaluates the
water consumption by plants compared to what would be expected under ideal moisture
conditions, with low values indicating possible drought [75]. This index is crucial for
providing early drought warnings, aiding in response planning, and supporting water
management, especially in agricultural settings to assess crop health and manage irrigation
effectively. The ESI Equation (7) is demonstrated as follows:

ESIijk =
rijk − ri,mean

ri,σ
with r =

ET
PET

(7)

where ESIijk represents the ESI value for a specific pixel (i) in month (j) of year (k), rijk is the
ratio r value for the same pixel (i) in the same month (j) of the same year (k), and ri,σ are
the multi-year mean and standard deviation of the ratio r for pixel (i), respectively.

e. Soil Moisture Condition Index (SMCI).

The Soil Moisture Condition Index (SMCI) is a specialized measure designed to
evaluate and track soil moisture levels in specific regions [76,77]. This index is invaluable
for agricultural management [72,73], drought tracking [78], and environmental studies [79],
as it helps gauge the availability of water in the soil, which has direct implications on plant
growth and drought severity.

Soil moisture data from the period of March to September, spanning the years 2002
to 2022, were resampled to a 1 km resolution and utilized to compute the monthly Soil
Moisture Condition Index (SMCI). The SMCI Equation (8) is defined as follows:

SMCIijk =
SMijk − SMi,mean

SMi,σ
(8)

where SMCIijk represents the monthly SMCI value for a specific pixel (i) in month (j) of year
(k), SMijk denotes the soil moisture value for the same pixel (i) during the same month (j) of
the same year (k), and SMi,mean and SMi,σ are the multi-year mean and standard deviation
of soil moisture for pixel (i), respectively.

f. Vegetation Condition Index (VCI) derived from VIUPD data



Remote Sens. 2024, 16, 3398 9 of 28

The National Oceanic and Atmospheric Administration (NOAA) has developed a
vegetation condition index (VCI) based on AVHRR data that is particularly effective for
monitoring agricultural droughts [80]. The VCI assesses the current NDVI relative to
the historical NDVI values recorded during the same period in prior years. This index
effectively detects fluctuations in vegetation growth within designated time frames [81].
However, in this study, we calculate the drought index using VIUPD to create an alternative
type of VCI. VIUPD is advantageous as it integrates all observed bands and is less depen-
dent on specific sensors, making it sensitive to subtle vegetation changes. The performance
of the VIUPD-derived VCI was evaluated across multiple climatic divisions by comparing
it to conventional drought indicators based on weather stations and other indices derived
from remote sensing, examining its pros and cons [82]. The VIUPD-derived VCI is defined
in Equation (9) as follows:

VCIijk =
VIUPDijk − VIUPDi,min

VIUPDi,max + VIUPDi,min
(9)

where VCIijk is the VCI monthly value for the given pixel (i) during month (j) for year
(k), VIUPDijk is the VIUPD value for the given pixel (i) during month (j) for year (k), and
VIUPDi,min and VIUPDi,max are multi-year VIUPD minimum and maximum values for
pixel (i), respectively.

Where VCIijk represents the monthly VCI value for a specific pixel (i) in month (j) of
year (k), VIUPDijk is VIUPD denotes the VIUPD value for the same pixel (i) during the
same month (j) of the same year (k), and VIUPDi,min and VIUPDi,max are the multi-year
minimum and maximum VIUPD values for pixel (i), respectively.

g. Temperature–Vegetation Dryness Index (TVDI) from VIUPD data

The Temperature–Vegetation Dryness Index (TVDI) is a well-known tool for drought
monitoring, valued for its use of empirical parameterization within the feature space
of Land Surface Temperature (LST) and the Normalized Difference Vegetation Index
(NDVI) [83]. This index has been successfully applied in diverse ecosystems worldwide
and does not require ancillary data, making it particularly advantageous for large-scale
applications [84]. To calculate a drought index using the VIUPD and create an alternative
type of Temperature–Vegetation Dryness Index (TVDI), we need to follow a methodology
that involves several steps, including data processing, and analysis. Both VIUPD and
LST data need to be normalized to ensure they are on comparable scales. Determine the
minimum, maximum, and average values for VIUPD and LST over a historical period
to establish a baseline for normal conditions. Plot LST against VIUPD for the period of
interest. This plot will typically show a trapezoidal scatter, where the upper and lower
bounds represent the wettest and driest conditions, respectively [85]. To identify the lines
that represent the maximum and minimum LST for a given VIUPD, a regression analysis
to define the edges of the scatter plot is performed in Figure 2.

The TVDI from VIUPD is defined by the Equation (10) as follows:

TVDIijk =
LSTijk − LSTi,min(VIUPD)

LSTi,max(VIUPD) + LSTi,min(VIUPD)
(10)

where TVDIijk is the TVDI monthly value for the given pixel (i) during month (j) for year (k),
LSTijk is LST value for the given pixel (i) during month (j) for year (k), and LSTi,min(VIUPD)
and LSTi,max(VIUPD) are the multi-year minimum and maximum LST values for a given
pixel (i) and VIUPD.

Where TVDIijk represents the monthly TVDI value for a specific pixel (i) in month
(j) of year (k), LSTijk denotes the LST value for the same pixel (i) during the same month
(j) of the same year (k), and LSTi,min(VIUPD)LST_{i,min(VIUPD)}LSTi,min(VIUPD) and
LSTi,min(VIUPD) and LSTi,max(VIUPD) are the multi-year minimum and maximum LST
values for pixel (i) with respect to VIUPD.
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2.3.3. Aggregate Conditions Indices (ACIs)

Table 2 presents two Aggregated Conditions Indices (ACIs), which are created from
weighted linear combinations of Single Condition Indices (SCIs). These ACIs consist of the
Vegetation Health Index (VHI), Scaled Drought Condition Index (SDCI), and Vegetation
Drought Synthesized Index (VDSI). The methods for computing these indices, as well as
their corresponding references, are included in Table 2.

Table 2. Overview of the aggregated drought indices applied in this study. The equation column
indicates how the weights of individual drought indices were calculated.

Index Equation References

SDCI SDCIijk = 0.25 × VCIijk + 0.25 × TCIijk + 0.5 × PCIijk [86,87]

VDSI VDSIijk = 0.33×SVIijk + 0.33×SWIijk + 0.33×ESIijk [88]

VHI VHIijk = 0.5 × VCIijk + 0.5 × TCIijk [89,90]
These three indices will be used for a comparison with the new index that we have developed in next section.

WIMDI Implementation via LOWA Model

The Ordered Weighted Averaging (OWA) operator, introduced by Yager in 1993 [87,88],
is a decision-making tool used in fields such as artificial intelligence, data mining, and
decision-support systems. The OWA operator allows for a degree of flexibility and sub-
jectivity in aggregating multiple inputs, differing from classical aggregation operators
like the mean, min, or max by incorporating the attitudes toward risk and importance
of each criterion. It enables the aggregation with a predetermined degree of optimism
or pessimism in decision-making processes. The OWA operator is especially valuable in
situations where it is necessary to merge decision criteria to account for varying levels of
importance or relevance [87–89]. It represents a broad category of parameterized aggre-
gation operators that span from the minimum to the maximum. In OWA, two types of
weights are used: criteria weights and order weights. The criteria weights (w1, w2, . . .,
wn, 0 ≤ wi ≤ 1 and ∑n

i=1 wi = 1) evaluate the relative significance of each assessment
criterion, while the order weights (γ1, γ2, . . ., γn, 0 ≤ γi ≤ 1 and ∑n

i=1 γi = 1) manage the
balance between the situation where all criteria are satisfied and the situation where at least
one criterion is satisfied [91]. A significant limitation of the OWA model is its consistent
application of weights, which does not account for the spatial variability of the phenomena
under study [92,93]. To overcome this limitation, Malczewski and Liu [94] introduced the
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Local OWA (LOWA) model. The LOWA model employs a moving window technique to
segment the study area into various neighborhoods. Within each window, weights are
assigned to each individual drought index according to the ranking of index values from
minimum to maximum. To determine the local weight of the kth individual drought index
in the qth neighborhood using LOWA, we adjust the traditional OWA to better align with
local data and conditions. Denote xkq as the value of the kth drought index within the qth

neighborhood. These values are sorted in the neighborhood in descending order based on
their impact or severity. With x1q, x2q, . . ., xnq, the reordered values, and wq = [w1q, w2q,
. . ., wnq], a vector of local weights specifically tailored for the qth neighborhood.

The new drought index is computed using the LOWA model according to the
Equation (11) as follows:

LOWAiq =
n

∑
k=1

λkqxikq (11)

where LOWAiq represents the LOWA value for the ith pixel estimated within the qth

neighborhood; λk,q is the order weight corresponding to the kth individual drought index
(k = 1 to 7); and xi1q ≥ xi2q ≥ . . . ≥ xi7q is derived by reorganizing the normalized values
based on the local value function as defined by Equation (12).

δ(a ϑ
ik) =


aϑ

ik−miniϑ(aϑ
ik)

maxiϑ(aϑ
ik)−miniϑ(aϑ

ik)
maxiϑ(aϑ

ik)−aϑ
ik

maxiϑ(aϑ
ik)−miniϑ(aϑ

ik)

(12)

where maxiϑ
(
aq

ik ) and miniϑ
(
aq

ik ) represent the maximum and minimum values of the kth

drought index within the qth neighborhood.
To determine the local weight λkq for the kth index specifically at pixel i, normalize the

contribution of each index in the LOWA score relative to others by using the Equation (13)
as follows:

λ*
ikq =

λkq·xikq

LOWAiq
(13)

Here, λ*
ikq now indicates the weighted contribution of the kth index to the overall

drought condition in the qth neighborhood of pixel i, highlighting its importance in the
local context. This helps in understanding the proportionate influence of each index.

To gauge how closely an OWA operator resembles the logical OR operator, the parame-
ter α was introduced, which regulates the distribution of weights within the OWA operator.
This parameter α is a measure of risk attitude that influences drought conditions. It enables
the adjustment of the OWA’s weighting strategy, ranging from a completely optimistic
strategy (OR-like) to an entirely pessimistic strategy (AND-like), or any level in between.
Specifically, when α = 0.5, each λk is set to 1/n; for α = 0, λk equals 1 with all other weights
being 0; if α = 1, λn is 1 with all other λk weights set to 0 and if α tends to infinity, the first
weight λ1 tends to 1 and all others tend to 0, mimicking the OR operation. Table 3 presents
the λk values across various α settings in our study. In a broader setup, α can be employed
in a parametric function to set the weights among the inputs. This allows for a range of
behaviors from OR-like to AND-like. A typical Equation (14) is used as follows:

αikq = ∑n
k=1

n − k
n − 1

.λ*
kq, ∑n

k=1 λ*
kq = 1, 0 ≤ λ*

qk ≤ 1 k = 1, . . . , n (14)
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Table 3. Optimal order weights λk* for selected α parameter values with a criterion count of n = 7.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ1 0 0.015 0.016 0.040 0.041 0.142 0.235 0.277 0.300 0.302 1
λ2 0 0.050 0.055 0.091 0.093 0.142 0.200 0.193 0.187 0.180 0
λ3 0 0.090 0.100 0.103 0.105 0.142 0.180 0.175 0.170 0.165 0
λ4 0 0.130 0.132 0.133 0.138 0.142 0.138 0.135 0.130 0.129 0
λ5 0 0.155 0.156 0.158 0.159 0.142 0.114 0.110 0.105 0.100 0
λ6 0 0.200 0.21 0.215 0.216 0.142 0.092 0.080 0.077 0.067 0
λ7 1 0.355 0.360 0.363 0.364 0.142 0.041 0.030 0.027 0.025 0

To examine the impact of the analyst’s risk attitude on drought conditions, nine
distinct risk attitudes were evaluated using LOWA configurations with α values of 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, by analyzing them against reference drought indices.
Among the different α profiles examined, the LOWA configured with α = 0.7 demonstrated
the strongest correlation with the SPI multiple timescales (e.g., 1, 3, 6 months) (Table 4).
Consequently, an α of 0.7 was recommended for the development of WIMDI.

Table 4. Correlation coefficients (r-values) between drought indices (SPIs over various time scales)
and LOWAs across different α values, showing statistical significance with p-values below 0.01 in all
instances.

α r-Value

SPI1 SPI3 SPI6

0.1 0.702 0.744 0.665
0.2 0.705 0.730 0.689
0.3 0.738 0.739 0.701
0.4 0.728 0.705 0.612
0.5 0.710 0.731 0.664
0.6 0.720 0.737 0.699

0.7 0.739 0.740 0.705

0.8 0.668 0.640 0.680
0.9 0.661 0.622 0.677

2.4. Methodology
2.4.1. WIMDI Development Process Overview

The methodology illustrated in Figure 3 outlines a comprehensive process for develop-
ing the WIMDI to provide a reliable multi-drought index for watershed-level management.
The procedure begins with the acquisition and preparation of various datasets, covering the
period from 2002 to 2022, including MOD09GA_006 for monthly NDWI, Climate Engine
ESI for monthly ET and PET, MOD13Q1 for monthly EVI, MOD11A2 for monthly LST,
MOD09A1 for monthly VIUPD, CHIRPS for precipitation data resampled to a 1000 m
resolution, and GLDAS-2.1 for soil moisture data, also resampled to a 1000 m resolution.

In the data preparation phase, the datasets are processed to produce monthly indices
such as NDWI, ESI, EVI, LST, and VIUPD. These are then standardized into SWI, ESI,
SVI, TVDI, VCI, PCI, and SMCI, respectively. Notably, VIUPD was used first to compute
the VCI, instead of the commonly used NDVI, and then to compute TVDI. This choice
was based on previous research indicating that VIUPD-derived indices provide enhanced
performance for drought monitoring across various climate regions compared to NDVI-
derived indices [95]. The standardized indices are then normalized to calculate both global
and local criterion weights.
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In the next phase, these condition indices were combined using the LOWA model
where global criterion weights and ordered weights from OWA operators are integrated.
The final step involves the use of reference drought indices to evaluate the correlation
between the reference drought indices and WIMDI.

2.4.2. WIMDI Assessment

We assessed WIMDI using data from the years 2005, 2010, and 2022, which were
generally classified as years of severe drought, moderate drought, and extreme drought,
respectively. The drought conditions estimated by WIMDI were compared to the results
provided by VHI, SDCI, and VDSI. Those drought indices were selected for comparison
with WIMDI because of their demonstrated efficacy in previous studies [82–84]. Initially,
our analysis was primarily based on visual assessment. In the next step, we assessed
WIMDI’s performance by utilizing correlation values (r-value) and the Root Mean Square
Error (RMSE) between WIMDI and the reference drought indices. Furthermore, an uncer-
tainty analysis using the linear regression prediction interval was calculated according to
Equation (15) as follows:

yk = α̂0 + α̂1xk ± τ
(1− β

2 ,n−2)
× SEprediction (15)
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where α0 and α1 are the estimated coefficients from the regression model. x is the value of
the predictor variable for which the response is being predicted.τ

(1− β
2 ,n−2)

is the critical

value from the τ-distribution for
(
1 − α

2
)

(typically 0.975 for a 95% confidence level) and
(n − 2) degrees of freedom (where n is the number of data points). SEprediction is the
standard error of the prediction given by the Equation (16) as follows:

SEprediction =

√√√√RMSE

(
1 +

1
n
+

(xk − x)2

∑n
k=1(xk − x)

 (16)

3. Results
3.1. The Reference Drought Map

The reference drought maps utilize various indices to comprehensively assess different
types of drought conditions. The SPI is primarily used to monitor meteorological drought,
focusing on precipitation anomalies [45,96]. Similarly, SPEI also monitors meteorological
drought, but it expands upon SPI by incorporating evapotranspiration, providing a more
comprehensive measure of water balance, the calculation approach for the SPEI is thor-
oughly described in existing research studies [46,97]. The SDI is crucial for monitoring
hydrological drought, as it assesses reductions in river flows and water availability in
reservoirs. The method for calculating the SDI is available in the literature [47]. The SEDI
measures drought conditions by assessing when a regional water supply system cannot
satisfy societal water demands, especially when it falls below the minimum in-stream water
requirement, The method for calculating the SEDI is extensively covered in existing stud-
ies [48]. The SMCI is essential for assessing agricultural drought, focusing on soil moisture
levels that are critical for crop production [49,98]. In this work, all these indices were used
to serve as a baseline for validating the new WIMDI, ensuring a robust comparison of
drought conditions across the OER watershed.

3.2. Time Series Analysis

Figure 4 provides a detailed interannual variability of key climatic variables, notably,
precipitation, temperature, water balance, and the SPEI, from 2002 to 2022 in the OER
watershed. The precipitation chart illustrates significant variability with notable peaks
in certain years, indicating periods of above-average rainfall, while other years show
lower levels contributing to potential drought conditions. The water balance chart further
emphasizes the fluctuations in water availability, with both positive and negative values
reflecting periods of surplus and deficit. The temperature chart reveals a clear seasonal
pattern with an overall increasing trend, which impacts evapotranspiration rates and thus
affects the water balance. The SPEI chart, which combines the effects of precipitation and
temperature, shows periods of significant drought, highlighting the temporal variability
of drought severity in the region. This integrated analysis underscores the complexity of
the climatic dynamics in the watershed, showing how these variables interact to influence
drought conditions over time.
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Figure 4. Temporal analysis of precipitation, temperature, water balance, and SPEI from 2002 to 2022.

The SPI graphs (Figure 5), calculated at 1-month, 3-month, and 6-month intervals, demon-
strate fluctuations in precipitation anomalies over time. While the 1-month SPI captures
short-term variations that may reflect seasonal patterns, the 3-month and 6-month SPI provide
a more reliable indication of sustained dry and wet periods. This allows for a better distinction
between natural variability and actual drought events, with the 6-month SPI.
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Figure 6 presents the interannual variability of various drought indices, including SDI,
SEDI, SMCI, and WIMDI, all computed on a 1-month scale, over the period from 2002 to
2022. The purpose of this analysis is to evaluate the temporal consistency and sensitivity
of WIMDI in capturing drought conditions relative to other established drought indices.
The SDI graph (Figure 6) captures variations in hydrological drought, reflecting changes
in river flow and water availability in the watershed. The SEDI graph (Figure 6), which
represents socio-economic drought conditions, shows fluctuations driven by evapotranspi-
ration deficits, indicating potential impacts on agricultural and human activities. The SMCI
graph (Figure 6) reflects agricultural drought conditions through soil moisture variability,
highlighting the sensitivity of crops to drought stress.
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WIMDI, shown in Figure 6, integrates multiple aspects of drought, including meteo-
rological, hydrological, socio-economic, and agricultural factors. The WIMDI time series
closely follows the general trends observed in the other indices but offers a more compre-
hensive view by capturing the multi-dimensional nature of drought. Notably, WIMDI’s
response during significant drought years, such as 2010 and 2022, shows strong alignment
with the patterns seen in SPI, SDI, and SEDI, underscoring its robustness in reflecting the
overall drought conditions across the watershed.

3.3. Data Input for WIMDI

In this section, we present the various datasets that serve as input for our analytical
model. These seven data are PCI, SWI, SVI, ESI, SMCI, VCI, and TVDI. Understanding
these inputs is essential for interpreting the model’s results and ensuring its applicability
to real-world scenarios. PCI (Figure 7a) varies between −3.107 and −0.029 over the entire
basin showing a slightly dry conditions area in red color to extremely dry conditions area
in green color. SWI (Figure 7b) varies between −0.629 and 0.329 over the entire basin
showing that the entire basin lacks water. Western and Southern Areas (Yellow to Red)
show varying degrees of above-average water availability. The red areas, particularly in
the west, indicate the highest levels of lack of water, and this might require strategies
to be considered to manage water resources in these agricultural areas. SVI (Figure 7c)
varies between −2.5 (red) and 1.46 (green) over the entire basin area. The red areas indicate
extremely poor vegetation conditions. These regions are experiencing significant vegetation
stress or degradation, likely due to drought, and poor soil conditions. The presence of dark
red patches indicates areas with the most severe stress. In the ESI (Figure 7d), the Western



Remote Sens. 2024, 16, 3398 17 of 28

and Northern Areas (Yellow to Red) are experiencing moderate to very high evaporative
stress. The red regions, particularly in the northwest, indicate the highest levels of stress,
suggesting severe water shortage and potential drought conditions. Farmers in this region
might need to implement irrigation strategies to mitigate water stress in crops. SMCI
is an essential indicator that evaluates drought conditions based on soil moisture. It is
particularly useful for identifying periods of agricultural drought and for monitoring soil
moisture levels. From the SMCI (Figure 7e) map, we see that in most of the agricultural
land located in the watershed western part, the vegetation is probably stressed, with signs
of wilting, discoloration, or drying. Immediate interventions, such as irrigation, are needed
to mitigate the effects of drought. While in the western part of the basin, the moderate
SMCI values (around 0.5) suggest normal to slightly dry soil conditions. The soil may have
sufficient water, but moisture reserves have begun to diminish. For VCI, Figure 7f shows
that central and eastern areas (yellow to red) have higher vegetation stress. The red regions,
particularly in the east, indicate the highest levels of stress, suggesting severe conditions
affecting vegetation health. Finally, TDVI (Figure 7g) varies between 0.34 and 0.88 over the
entire basin. The TVDI is an indicator that combines temperature and vegetation indices to
assess drought conditions. In this image, we can see that central, western, and northern
areas are experiencing higher drought stress. The yellow areas indicate moderate stress,
while the orange and red areas indicate severe to extreme drought conditions, with the
dark red regions facing the highest stress levels.
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3.4. Statistical Validation

The correlations between four aggregated drought indices (WIMDI, VHI, VDSI, SDCI)
and various reference drought indices—including SPI (at 1-, 3-, and 6-months), which
represent different aspects of short-, medium-, and long-term drought conditions, as well
as SDI, SEDI, and SMCI—were evaluated. Among these remotely sensed drought indices,
WIMDI consistently demonstrated superior performance across most evaluation metrics.
As presented in Table 5, WIMDI showed stronger correlations with the 1-, 3-, and 6-month
SPI, SDI, SEDI, and SMCI compared to VHI, VDSI, and SDCI (r = 0.728, 0.805, 0.733, 0.750,
0.730, 0.710, respectively, p < 0.05 for all cases). Furthermore, Table 6 indicates that WIMDI
exhibited lower RMSE values than VHI, VDSI, and SDCI (RMSE = 0.698, 1.106, 1.133, 1.100,



Remote Sens. 2024, 16, 3398 18 of 28

1.090, 1.080 respectively). Compared to the reference drought indices (SPI-1, SPI-3, SPI-6,
SDI, SEDI, and SMCI), WIMDI has lower prediction uncertainty.

Table 5. Evaluation of the correlation coefficient (r) between WIMDI, SDCI, VDSI, VHI, and reference
drought indices SPI 1-, 3-, and 6-month, SDI, SEDI, and SMCI.

Drought Indices r-Value

SPI-1 SPI-3 SPI-6 SDI SEDI SMCI

VHI 0.345 0.333 0.302 0.320 0.320 0.320
VDSI 0.350 0.370 0.404 0.380 0.380 0.380
SDCI 0.650 0.550 0.603 0.590 0.590 0.590

WIMDI 0.728 * 0.805 * 0.733 * 0.750 * 0.730 * 0.710 *
The asterisk (*) indicates the highest value in each column.

Table 6. Comparison of RMSE values between WIMDI, SDCI, VDSI, VHI, and reference drought
indices including 1-, 3-, and 6-month SPI, SDI, SEDI, and SMCI.

Drought Indices RMSE

SPI-1 SPI-3 SPI-6 SDI SEDI SMCI

VHI 0.702 1.205 1.404 1.220 1.220 1.220
VDSI 0.776 1.370 1.854 1.500 1.500 1.500
SDCI 0.750 1.550 1.883 1.650 1.650 1.650

WIMDI 0.698 * 1.106 * 1.133 * 1.100 * 1.090 * 1.080 *
An asterisk (*) indicates the minimum value in each column.

3.5. Spatiotemporal Validation

In addition to statistical validation, a seasonal comparison of WIMDI was con-
ducted against other widely used drought indices, each representing different types of
droughts: SPI and SPEI for meteorological drought, SDI for hydrological drought, SEDI
for socio-economic drought, and SMCI for agricultural drought. Figure 8 provides the
spatial distribution of drought intensity across Spring, Summer, Autumn, and Winter,
as captured by each index. The comparison shows that WIMDI effectively mirrors the
seasonal drought patterns identified by these indices, particularly during the most severe
drought periods in Summer and Autumn. This alignment indicates WIMDI’s robust-
ness in integrating various drought-related parameters to provide a comprehensive
assessment of meteorological, hydrological agricultural, and socio-economic drought
conditions across the OER watershed.

To assess the comparative performance of WIMDI, a comparison with integrated
drought indices, including VHI, VDSI, and SDCI was established to evaluate its seasonal
and spatial performance. Figure 9 illustrates the spatial distribution of drought intensity
across the four seasons of the year, as captured by these indices. The comparison shows
that WIMDI closely aligns with the other indices, particularly during severe drought
periods, while presenting a more holistic approach that integrates multiple drought-related
factors, resulting in a more comprehensive and detailed assessment of drought conditions
across the OER watershed. This enhanced capability makes WIMDI a valuable tool for
drought monitoring, providing a nuanced understanding of drought impacts that supports
informed decision making in watershed management.
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3.6. Drought Yearly Mean Comparison

To comprehensively assess the spatial variation in drought conditions across the OER
watershed, a comparative analysis was conducted using multiple drought indices for the
years 2005, 2010, and 2022. These years were strategically selected as they represent severe,
moderate, and extreme drought conditions, respectively. The analysis included indices,
particularly SPI, VHI, VDSI, SDCI, and the WIMDI.

Figure 10 presents the spatial distribution of drought intensity as captured by these
indices for the years 2005, 2010, and 2022, with the SPI used as the reference map. A
visual comparison reveals that WIMDI aligns closely with the SPI map in these years,
particularly in capturing the spatial extent of severe drought in 2005, moderate drought in
2010, and extreme drought in 2022. Other indices tend to underestimate drought conditions,
especially in the eastern and southeastern regions. WIMDI’s ability to more accurately
represent the spatial extent of drought highlights its robustness as a comprehensive tool for
drought monitoring. This comparison underscores the effectiveness of using the WIMDI
index to assess drought conditions over time.
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Years 2005, 2010, and 2022.

3.7. OER Watershed Drought Monitoring Cloud Interface

As shown in Figure 11, the application (https://imaneserbouti.users.earthengine.app/
view/wimdi-oer-watershed-morocco) (accessed on 3 September 2024) provides the yearly
average VHI, VDSI, SDCI, and WIMDI, from 2002 to 2022. This application enables users
to display these four indices map for the OER watershed and query these indices values
for any point within the area of interest. Users can choose the year they want to investigate
from the checkbox panel.

https://imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco
https://imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco
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4. Discussion
4.1. Leveraging Cloud Monitoring Interface to Assess Human Impact on Drought Patterns in the
OER Watershed

The application of WIMDI has provided a nuanced and comprehensive understanding
of drought dynamics within the OER watershed, closely aligning with observed shifts
in regional climate patterns influenced by human activities such as intensified irrigated
agriculture and urban expansion. The OER Watershed Drought Monitoring cloud interface
has played a crucial role in visualizing these dynamics, offering an accessible platform for
users to explore and analyze the yearly average drought indices, including WIMDI, VHI,
SDCI, and VDSI, from 2002 to 2022.

Our findings reveal significant correlations between WIMDI, and areas subjected to
agricultural intensification and urban sprawl, underscoring the index’s effectiveness in
capturing the impacts of these human activities on hydrological stability. By incorporating
remote sensing data such as VCI and TVDI from VIUPD, SVI from EVI, and SMCI from
GLDAS-2.1, the WIMDI enables a detailed spatial analysis that highlights localized drought
conditions. These findings demonstrate that WIMDI offers superior consistency compared
to other widely used aggregated indices, reinforcing its validity under varied environmental
conditions. The integration of these indices through the cloud interface further enhances
the ability to monitor and manage drought risks, particularly in regions facing significant
anthropogenic pressures.

4.2. Agricultural Practices and Water Resource Sustainability

Our analysis indicates that peaks in evapotranspiration and reduced soil moisture
conditions correlate with periods of agricultural expansion, particularly noted in the years
2005 and 2010. This suggests that intensified farming practices, including the increased
use of irrigation and high-water-demand crops, contribute significantly to water stress
within the watershed. The deterioration in soil moisture conditions, as reflected by the Soil
Moisture Condition Index (SMCI), and the Vegetation Condition Index (VCI), points to the
vulnerability of agricultural lands to drought conditions, necessitating a shift toward more
sustainable agricultural practices.

Figure 11 illustrates the evolution of irrigated areas (highlighted in green) across all
basin areas over three distinct years: 2002, 2010, and 2022. The map shows the distribution

https://imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco
https://imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco
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of irrigated areas in 2002 (Figure 12a). These areas are concentrated primarily in the central
part of the region with a surface of 196,000 hectares. By 2010 (Figure 12b), the irrigated
areas have expanded significantly compared to 2002. The central region sees a noticeable
increase in the extent of irrigated land with a surface of 320,000 hectares. The irrigated
areas in 2022 (Figure 12c) have expanded even further, covering a much larger portion of
the region (560,000 hectares). The central region has the most significant increase, with
continuous green patches indicating extensive irrigation networks. Expanding irrigated
areas increases the demand for water, primarily sourced from surface water bodies and
groundwater. This heightened demand can exacerbate water scarcity, especially during dry
periods. The expansion of irrigated areas in the OER basin significantly impacts drought
dynamics by increasing water demand, depleting groundwater resources, reducing surface
water availability, and degrading the environment. These changes can exacerbate the effects
of drought, making the region more vulnerable to water scarcity.
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4.3. Urban Expansion and Drought Vulnerability

The study also highlights the exacerbating effect of urban expansion on drought
severity. Urban areas, particularly in the western and southern parts of the watershed,
have shown a consistent pattern of reduced water availability and increased drought
stress. This is consistent with the literature that describes how urbanization leads to
increased impervious surfaces, thereby reducing groundwater recharge and increasing
surface runoff. These changes in land use require strategic urban planning that incorporates
green infrastructure to mitigate the effects of reduced infiltration and increased runoff,
thus enhancing urban resilience to drought. The map shows the distribution of built-
up areas in 2002, 2010, and 2022. In 2002 (Figure 13a), built-up areas (3200 hectares)
are relatively sparse, indicating limited urban development currently. Built-up regions
are concentrated in certain pockets. By 2010 (Figure 13b), there is a noticeable increase
in the built-up areas compared to 2002. The urban regions have expanded, covering a
larger portion of the map (4500 hectares). The growth is not uniform, with some areas
experiencing significant expansion while others remain relatively unchanged. This suggests
varying rates of urbanization across the region. The built-up areas in 2022 (Figure 13c) have
expanded even further, indicating continuous urban growth over the 20-year period. Over
the 20-year period from 2002 to 2022, there is a clear trend of increasing built-up areas. This
indicates significant urban development and expansion. The intensity of urban growth
appears to accelerate over time, with more substantial increases in built-up areas observed
between 2010 and 2022 compared to the previous decade.
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4.4. Spatial Correlation between Drought, Urbanization, and Irrigated Areas

Figure 14 clearly illustrates the relationship between urbanization, irrigated areas, and
drought conditions in 2022. Areas with significant built-up regions and irrigated areas tend
to overlap with zones experiencing severe drought, highlighting the impact of urbanization
on local water resources. This correlation underscores the need for sustainable urban
planning and integrated water resource management to mitigate the adverse effects of
urbanization on drought dynamics. Implementing efficient water-use practices, promoting
green infrastructure, and adopting climate-resilient planning are essential steps to ensure
the sustainable development of urban areas while protecting water resources.
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5. Conclusions

This study successfully demonstrates the application of the WIMDI using GEE to
assess the impact of intensified irrigated agricultural activities and urban expansion on
drought dynamics within the OER watershed in Morocco. By integrating various drought
indicators, including SWI, ESI, SVI, TVDI, VCI, PCI, and SMCI, through the LOWA model
over a 20-year period (2002–2022), WIMDI provides a comprehensive and dynamic tool for
evaluating multi-drought conditions at the watershed scale.

Key findings of this research include the following:
1. Intensified Irrigated Agricultural Activities: The results indicate that the expansion

of irrigated areas significantly correlates with increased drought severity. Intensive agricul-
tural practices, particularly those involving high-water-demand crops, exacerbate water
scarcity issues by depleting water resources, reducing groundwater recharge, increasing
soil salinity, causing waterlogging and soil degradation, altering local climate patterns,
and disrupting natural ecosystems, thereby reducing biodiversity. Consequently, while
irrigation is essential for agriculture, its overuse and mismanagement can lead to more
severe and frequent droughts.

2. Urban Expansion: Rapid urbanization in the watershed has further aggravated
drought conditions by reducing groundwater recharge and increasing surface runoff. Urban
areas, especially in the western and southern parts of the watershed, exhibited consistent
patterns of reduced water availability and heightened drought stress.

3. Efficacy of the WIMDI: Statistical validation of WIMDI against various drought types
of indices, including SPEI, SPI, SDI, SEDI, and SMCI demonstrated strong correlations and
lower RMSE values, underscoring WIMDI’s accuracy and reliability in drought assessment.

4. Spatiotemporal Validation: WIMDI’s effectiveness was also validated through
spatiotemporal seasonal analyses and interannual variability. These analyses, conducted
against various drought-type indices as well as widely used aggregated indices, confirmed
WIMDI’s capability to accurately capture the spatial and temporal variability of drought
conditions across the diverse climate zones within the OER watershed.

5. Drought Monitoring GEE Application: A detailed exploration, assessment, and
comparison of WIMDI with existing indices was conducted using a developed GEE
application across the OER watershed. This application, publicly accessible via https://
imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco (accessed

https://imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco
https://imaneserbouti.users.earthengine.app/view/wimdi-oer-watershed-morocco
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on 3 September 2024), allows users to view and interact with the results, create their own
monitoring maps, and extract data for their chosen watershed. It enhances the analysis
of the spatial and temporal distribution of drought and improves the monitoring of
various drought types.

In conclusion, this research highlights the critical interplay between human activities
and drought dynamics in the OER watershed. The innovative use of GEE for developing
WIMDI offers a replicable model for drought assessment in other vulnerable regions,
providing valuable insights for developing more sustainable land management strategies.
Ongoing monitoring and adaptation of these strategies will be essential for mitigating the
impacts of climate change and ensuring water security in the region.
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