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Abstract
Money laundering has been a global issue for decades. The ever-
changing technology landscape, digital channels, and regulations 
make it increasingly difficult. Financial institutions use rule-based 
systems to detect suspicious money laundering transactions. 
However, it suffers from large false positives (FPs) that lead to 
operational efforts or misses on true positives (TPs) that increase the 
compliance risk. This paper presents a study of convolutional neural 
network (CNN) to predict money laundering and employs SHapley 
Additive exPlanations (SHAP) explainable artificial intelligence (AI) 
method to explain the CNN predictions. The results highlight the role 
of CNN in detecting suspicious transactions with high accuracy and 
SHAP’s role in bringing out the rationale of deep learning predictions.
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I.  Introduction

Money laundering has been a global issue for dec-
ades and is an ongoing threat for economies and 
societies. The United Nations Office on Drugs and 
Crime (UNODC) estimates that the amount of money 
laundered globally every year is between 2% and 
5% of global gross domestic products (GDP) value 
which exceeds 1 trillion dollars [1]. Money launder-
ing is a process of disguising the original source of 
funds obtained from illicit activities and legitimiz-
ing them through the financial system. The financial 
action task force (FATF), an intergovernmental organ-
ization formed in 1989, has published a standard set 
of recommendations that governments should follow 
to combat money laundering and terrorist financing. 
As per the FATF recommendations [2], most govern-
ments have established the regulations and policies 

to combat money laundering and terrorism financing. 
For example, the United States has established The 
Bank Secrecy Act [3]; Australia has established anti-
money laundering and countering terrorism financ-
ing (AML/CTF) Act [4]; and India has established 
Prevention of Money Laundering Act [5]. Most coun-
tries have set up the financial intelligence units (FIUs) 
[6–8] that are responsible for receiving, processing, 
and analyzing suspicious activity reports submitted 
by regulated entities to identify money laundering, ter-
rorism financing, tax evasion, and other financial crim-
inal activities. Regulated entities include the organi-
zations involved in cash business, financial services, 
bullion, and cryptocurrencies. Each regulated entity 
is obliged to ensure regulatory compliance, and one 
of the key compliance requirements is to report sus-
picious transactions to regulatory authorities. Failing 
to do so attracts heavy penalties, damages brand 
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reputation, and ultimately leads to loss of business. 
Most recent examples are as follows: in year 2023, 
the United States Department of Justice charged 
Binance and its CEO with US $4.3 billion for non-
compliance with AML laws and sanctions regulations 
[9]; in year 2022, the largest bank in Denmark was 
involved in one of the world’s biggest money laun-
dering scandals and was forfeited with US $2.0 bil-
lion [10]; and in year 2020, one of the Big Four Banks 
in Asia-Pacific region was issued a penalty of AUD 
$1.3 billion for breach of AML/CTF policy [11]. In 2019, 
approximately 58 AML penalties were issued, total-
ing US $8 billion, which is two times larger than the 
amount issued in 2018 [12].

Based on research commissioned by Refinitiv in 
2018 and conducted by an independent third party 
involving 2,300 senior C-suite executives (from com-
panies with average annual turnover of US $17.4 bil-
lion) from 19 countries, the true cost of combating 
the financial crime was identified as 3.1% of annual 
turnover which is equivalent to AUD $1.28 trillion [13]. 
To combat money laundering, financial institutions 
use transaction monitoring and rule-based AML sys-
tems. These systems raise alerts for suspicious trans-
actions, international fund transfers (IFT), and cash 
transactions beyond threshold amounts. Suspicious 
transaction alerts are further investigated by AML 
experts who determine if the transactions identified 
in the alerts are indeed suspicious (also called as true 
positives [TPs]) or false alerts (also called as false 
positives [FPs]). The FP rate of these alerts is esti-
mated over 98% [14]. If there is adequate evidence 
to qualify the transactions as suspicious, the same is 
reported by preparing the suspicious matter report 
(SMR) to regulatory authority. According to the EU’s 
law enforcement agency Europol, out of every 1,000 
transactions flagged by Banks to FIUs, only 50 trans-
actions are referred to law and enforcement, and only 
five of these lead to criminal investigations [13]. One 
can imagine the manual efforts, number of staff mem-
bers, and cost required to validate the humongous 
number of alerts each day, a number that continues 
to grow with the advancements in digital banking.

Considering the continuous increase in transac-
tion volumes, changing regulatory and technological 
landscapes, and evolving fraud patterns, few technol-
ogy-savvy financial institutions have started experi-
menting with artificial intelligence/machine learning 
(AI/ML)-based AML systems to identify suspicious 
transactions. However, they face several challenges 
when attempting to drive the adoption of AI-based 
systems. These challenges come from the lack of 

interpretability, transparency, and explainability of 
decisions made using opaque models. This creates 
difficulty in answering questions regarding the audit-
ability of systems, trust in the system, data privacy, 
ethical usage of the data, and bias in decision mak-
ing [15, 16]. According to the annual global CEO sur-
vey conducted by PWC in 2020, involving 1,378 chief 
executives from >90 countries, 84% of CEOs believe 
that AI-based decisions need to be explained in order 
to be trusted [17].

Regulations such as the general data protection 
regulation (GDPR) [18] and California consumer pri-
vate act (CCPA) [19] have mandated the explainability 
of AI/ML-based solutions in the regulatory compliance 
domain. The regulator demands sufficient evidence 
along with the SMR to justify the suspiciousness of 
transactions. Each SMR submitted by a bank con-
veys a message to the regulatory that a customer 
associated with the reported suspicious transac-
tions requires further investigation. The outcome of 
the SMR review by the regulatory can lead to crimi-
nal investigation of the customer. Hence, one of the 
top priorities of banks is to ensure that genuine cus-
tomers are not falsely reported while simultaneously 
preventing fraudsters from exploiting the financial 
system for money laundering. As per the systematic 
literature review [20], the research on the application 
of deep learning methods in the AML domain is lim-
ited and there is no evidence of XAI techniques being 
applied to explain the decisions made by deep learn-
ing methods.

a.  Key challenges and motivations

Despite the concerted efforts to combat the money 
laundering by intergovernmental organizations, 
national government agencies, and law and enforce-
ment, regulatory, financial institutions, the global 
financial system is still being exploited for money 
laundering. Financial institutions, which are the first 
line of defense to identify suspicious transactional 
behavior, hold authoritative positions to contrib-
ute effectively. This study has identified the follow-
ing challenges for financial institutions in the money 
laundering domain.

1.	 High FP alerts raised by rule-based AML systems 
for suspicious transactions lead to an increase 
in operational costs and reduce operational 
efficiencies.

2.	 High false negatives (FNs) cause true money laun-
dering transactions to go unnoticed, leading to an 
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increase in compliance risk and continuing crimi-
nal activities that negatively impact society.

3.	 The lack of explainability by highly accurate deep 
learning techniques hinders the adoption of AI 
technology in the AML domain.

Hence, the objectives of this study are to address 
these challenges by designing an effective deep 
learning technique to detect suspicious money laun-
dering transactions with minimal FPs and FNs and to 
develop an effective explainable AI technique to pro-
duce human interpretable explanations.

b.  Proposed methodology

To address these objectives, a novel method to 
detect suspicious transactions using a Conv1D con-
volutional neural network (CNN) was implemented 
and explained the CNN predictions using the state-
of-the-art SHapley Additive exPlanations (SHAP) 
XAI method, which is based on the approach out-
lined by Kute [21]. The CNN results were compared 
with three other most commonly used ML methods 
for detecting money laundering: random forest (RF) 
[22], extreme gradient boosting (XGBoost) [23], and 
support vector machine (SVM) [24]. This study chose 
Conv1D CNN model for detecting suspicious trans-
actions because of its suitability for sequential finan-
cial time-series data and tabular dataset. A model 
called agnostic method SHAP was chosen to explain 
the predictions made by CNN primarily due to its abil-
ity to provide an individual feature importance score 
for each input feature value, indicating contribution 
to prediction. All classifiers used in this study were 
trained, validated, and tested on synthetic data gen-
erated by the authors.

c.  Key contributions of this study

1.	 This is the first study to use a Conv1D CNN to de-
tect suspicious money laundering transactions in 
the banking domain.

2.	 This study employs the SHAP XAI method to ex-
plain suspicious transaction predictions made 
by CNN, which, to our knowledge, is a novel ap-
proach.

d.  Significance of this study

A bank or any regulated financial institution can 
potentially consider the methodology explained in this 
study to detect suspicious customer transactional 

behavior. The explainability part of the methodol-
ogy can help the investigator interpret the decisions 
made by opaque models. Detecting and preventing 
money laundering brings several benefits to society 
which include mitigating the harmful effects of crim-
inal activity, reducing terrorism financing, maintaining 
the integrity of financial systems, and protecting the 
economy. Money laundering is often associated with 
criminal activities such as drug trafficking, human traf-
ficking, organized crimes, and corruption. Therefore, 
the detection of money laundering can assist law 
enforcement agencies in identifying criminal organi-
zations, disrupting organized crimes, preventing illicit 
activities, and ultimately contributing to the safety and 
security of society.

The remaining paper is organized as follows: 
Section 2 describes the related work from the litera-
ture; Section 3 describes the methodology, including 
synthetic data generation, deep learning method, and 
XAI method; Section 4 provides the results; Section 5 
discusses the results and provides a viewpoint; and 
finally, Section 6 concludes the paper by providing 
key findings and future research directions.

II. Related Work

The detection of suspicious money laundering trans-
actions using statistical and ML methods is a fairly 
well-researched area over the past couple of decades 
[25], but with a limited research using deep learning 
techniques [20]. Previous work in the AML domain 
using deep learning includes a scalable graph con-
volutional neural network (GCN) for forensic analysis 
of financial data to provide visual analysis as part 
of decision support systems used by AML analysts 
[26]. The study was conducted using synthetic data. 
Another study used a GCN together with a multilayer 
perceptron classifier to predict illicit transactions in a 
Bitcoin transaction graph using a publicly available 
elliptic dataset of real Bitcoin transactions [27].

The suspicious transaction alerts generated 
by rule-based system was used as inputs for deep 
learning models (Natural Language Processing-
driven multichannel convolution neural networks) to 
perform sentiment and link analyses (using diverse 
set of data such as news, Twitter, and social media), 
presenting the results in visual form [28]. Autoencoder 
classifiers were used to identify possible fraudsters 
through anomaly detection by analyzing the transac-
tion patterns in Brazil’s foreign trade database con-
taining 50,000 legal entities in shipping goods to 200 
countries [29]. More recent studies include a dynamic 
graph attention network to detect suspicious 
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accounts involved in illicit activities [30], the applica-
tion of recurrent and transformer encoder models to 
raise AML alarms [31], the use of HAMLET, a scal-
able deep learning model for detecting money laun-
dering patterns [32], the adoption of a graph neural 
network known as node and edge neural network 
(NENN) to improve the decision-making ability of AML 
systems [33], the implementation of a group-aware 
deep graph learning-based approach for organized 
money laundering detection [34], the use of a meta 
path encoder for detecting Bitcoin money laundering 
transactions [35], and the performance of transac-
tional network analysis using graph convolutional net-
work and recurrent neural network to detect money 
laundering behavior [36].

Owing to the development of post hoc meth-
ods, deep learning has garnered increased atten-
tion in the field of money laundering detection, where 
explainability of decisions is most important along 
with the detection accuracy. This explainability of 
predictions is crucial for AML Investigation Officers 
to validate the decisions made by the deep learn-
ing classifier and gather evidence to build a case for 
further investigation. An explanation can be either 
a visual or textual representation of the connection 
between input features used for prediction [37]. A 
more comprehensive explanation of a prediction 
helps the AML Investigation Officer make a quick 
decision if the identified transaction(s) is legitimate or 
adequately suspicious so that it can be considered 
for the next level of investigation. In turn, this can sig-
nificantly improve operational efficiency. Hence, there 
is an immediate need for the application of explaina-
ble deep learning methods in the finance domain to 
help remove the AI adoption barrier.

III. Data and Methodology

The methodology is designed by considering the 
following two goals: (1) predicting suspicious money 
laundering transactions and (2) explaining the pre-
dictions by showing the most influential features that 
contribute to a decision. Figure 1 shows the design 
of the research development methodology that was 
used to conduct the research presented in this arti-
cle. This methodology has four major parts: Part 1 
focuses on synthetic data generation containing cus-
tomers, accounts, and transactions in tabular format; 
Part 2 focuses on developing a CNN classifier based 
on Conv1D layers for predicting suspicious transac-
tions; Part 3 focuses on explaining the predictions 
made by CNN using SHAP XAI techniques; and Part 
4 focuses on comparing the prediction performance 

of the CNN classifier with the RF, XGBoost, and SVM 
ML classifiers.

Typically, banks consider customer data, 
accounts or products, transaction list, watch lists, 
and sanction list as key data entities to detect sus-
picious transactions. It is relatively easy to detect 
money laundering transactions more effectively at 
the placement stage when money is deposited in 
a savings account. It becomes more difficult from 
the structuring stage, which includes transfer type 
of transactions to other savings accounts, credit 
cards, loan accounts, insurance accounts, etc., and 
is extremely difficult at the integration stage, where 
money is integrated into the economy by investing 
in legitimate businesses. Considering the complexi-
ties of transaction creation for each type of product 
(e.g., savings account, credit card, loan account, and 
insurance) and then integrating them together, we 
limited the scope of synthetic data creation to key 
data entities—customer, savings account, and trans-
actions—that were represented using 40 attributes. 
Customer creation rules were defined to ensure a 
balanced spread across geography and other demo-
graphic parameters. Transaction creation rules were 
defined to ensure basic finance rules and to keep 
transactions as real as possible. Money laundering 
scenarios were identified to generate transactions 
and label them as suspicious to train the ML model. 
A software was developed to automatically generate 
data and save it in the database. The generated data 
were exported to Excel and manually ingested with 
suspicious transactions. The data underwent several 
rounds of generation and refinement, including add-
ing noise to the data.

After creating synthetic data, a model using a 
CNN classifier was developed, trained, and tested 
on the generated dataset. The model has undergone 
several rounds of tuning the hyperparameters and 
testing to achieve the best performance and finalize 
the architecture of the CNN model. The RF, XGBoost, 
and SVM machine learning models were chosen to 
compare the performance of the CNN model. The 
ML models were trained and tested by adjusting the 
hyperparameters on the same dataset that was used 
to train and test the CNN model.

Following the development of the CNN model, 
the SHAP method was used to explain the CNN pre-
dictions. The authors developed a software code to 
apply SHAP to the CNN classifier, generate Shapley 
values, and explain the predictions made by the CNN 
using multiple graphs. Local explanations were pro-
vided at the individual record prediction level, high-
lighting the features that positively or negatively 



5

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

influenced the decisions. Further details are provided 
in the following sections.

a.  Synthetic data generation

This research requires financial transaction data 
together with labeled money laundering transac-
tions. Banks consider financial transaction data, 
including customer, accounts, history, balance, 
and products, as highly sensitive and protected 
data, which makes it difficult to obtain the same for 
research purposes. It is also important to note that, 

even in real banking transaction data, no one knows 
for sure if the transactions are legitimate or money 
laundering transactions until it is proved in the court; 
hence, the labeled data for training the ML models 
is also a challenge for banks. The decision points 
to determine if the identified transactions are indeed 
suspicious or legitimate are spread across several 
entities such as banks, FIU, law and enforcement, 
and court.

To our knowledge, real financial transaction 
dataset of a bank does not exist on public domain 
that provides labeled transaction data for research 

Figure 1: Research development methodology for generating synthetic data, predicting money 
laundering transactions using CNN, and interpreting the predictions using SHAP. AI, artificial 
intelligence; CNN, convolutional neural network; ML, machine learning; RF, random forest; 
SHAP, SHapley Additive exPlanations; SVM, support vector machine.
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purposes (and it should not be as a responsible 
bank). Considering the challenges surrounding the 
availability of financial transaction data for research, 
it was decided to produce synthetic data that would 
be as close as possible to the regular transactions 
of retail customers of a bank. The following key data 
entities were considered: customers, accounts, and 
transactions for data creation. Figure 2 illustrates the 
synthetic data creation process.

The attributes for the data entities were chosen 
based on the real banking customer transactions 
dataset and the attributes used by other research-
ers [25] in the same domain. Each data attribute was 
carefully chosen, considering its potential contribu-
tion to determine whether the transaction is suspi-
cious or legitimate. Additionally, these attributes were 
validated by AML subject matter experts (SMEs) to 

ensure that the correct data were fed into the model 
for improved decision making.

The key attributes considered for customer 
include customer ID, customer type, gender, date of 
birth, age, marital status, residence country, state, 
city, postcode, tax resident country, birth country, 
nationality country, profession, income category, 
know your customer (KYC) update date, KYC state, 
risk rating, and account number.

The attributes for account entity are chosen as 
account number, customer ID, bank state branch 
(BSB) number, account creation date, account type, 
daily transaction limit, tax file number (TFN) number, 
and account statement delivery method.

The attributes for transaction entity are chosen as 
transaction date, transaction number, source account 
number, amount, credit, debit, transaction type, 

Figure 2: Synthetic financial transaction data generation methodology.
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subtype, description, currency, transaction location 
type, transaction location code, target account num-
ber, target country code, target bank code, and is 
suspicious flag.

Demographic information from the Australian 
Bureau of Statistics [38] was used to maintain a 
realistic balance between customer profiles, age, city, 
profession, gender, and income. Customer profiles 
were created by limiting a country of residence to 
Australia, 12 cities, age group between 25 years 
and 60 years containing males and females; stand-
ard occupations such as managers, technicians, 
and trade workers, community and personal service 
workers, clerical and administrative workers, sales 
workers, machinery operators and drivers, laborers, 
and students; and an annual income range between 
AU $40,000 and $150,000.

Each customer profile was associated with 
one savings account. Transactions on the savings 
account were generated by meticulously defining the 
ranges of transaction dates and transaction amounts 
based on customer profiles, and the purpose of 
the transaction to keep the data as close as possi-
ble to real transactions. Credit transactions on the 
account include salary, cash deposits, and incom-
ing transfers. Debit transactions include rent, home 
loan EMI, energy bills, phone bills, vehicle loan EMI, 
health insurance, vehicle registration, green slip, vehi-
cle insurance, school fees, cash withdrawal, payment 
at counters, money transfer, bills, and shopping. 
To maintain a realistic number of transactions per 
customer, we used a combination of a fixed set of 

transactions and a few random transactions such as 
shopping and restaurant expenses. Transaction con-
sistency and integrity is maintained by ensuring that 
the account balance does not go negative. Financial 
transaction data are inherently unbalanced, with most 
transactions being legitimate and a minor number of 
transactions being suspicious. In practice, this ratio is 
typically approximately 99:1 with slight variations. To 
balance the synthetic data, we chose to label 95.64% 
of transactions as legitimate and 4.36% as suspi-
cious. Money laundering transactions were created 
based on the suspicious money laundering scenar-
ios listed in Table 1. In the banking sector, suspicious 
transaction data originate from alerts generated by 
rule-based AML systems, cases prepared post-alert 
cases, and SMRs submitted to regulatory authorities.

Table 2 shows some legitimate transaction sce-
narios that look like suspicious money laundering 
transactions, which are also called overlapping trans-
actions. Such transactions are also used to train and 
verify whether the model can identify true money 
laundering transactions.

b. � CNN model for money laundering 
detection

CNN is one of the methods of deep learning [39] 
that is widely and successfully used in the com-
puter vision domain [40] for image analysis [41], 
classification and identification, speech recognition 
[42], and natural language processing [43]. CNN is 
also one of the most studied algorithms to address 

Table 1: Scenarios to develop money laundering transactions

S. No. Scenario description

ML-1 Small deposits (<AU $5,000) of money through ATM by multiple people into a single account 
(<AU $10,000 per day) over a month. Then the same money is transferred in batches of AU $10,000 to 
$30,000 to multiple overseas accounts in different countries.

ML-2 Small deposits (<AU $5,000) of money through ATM by multiple people into a single account 
(<AU $10,000 per day) over a month. Then the same money is used to buy luxurious items locally in the 
range of AU $10,000 to AU $90,000 (vehicles, gold, property, etc.).

ML-3 Transfer of money from multiple overseas accounts from multiple countries and using the same to buy 
luxurious items in the range of AU $10,000 to AU $90,000 (vehicles, gold, property).

ML-4 Transfer of money from multiple overseas accounts from multiple countries and withdraw the same 
through ATM over next couple of months in a small quantity in the range of AU $2,000 to AU $4,900.

ML-5 Deposit a small amount of money in the range of AU $2,000 to AU $4,500 each month to ATM deposit 
machine and transfer the deposited amount online to an account in a different local bank (but same 
account) the next day.

ML, machine learning.
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the challenges surrounding computing needs, 
which has helped refine the algorithm further. The 
automatic feature extraction capability of CNN is 
another attractive feature for researchers with com-
plex data [44].

This study proposes Conv1D CNN classifier to 
identify suspicious transactions from financial trans-
action data. The CNN model captures patterns in 
the temporal order of the data. Conv1D has fewer 

parameters than Conv2D, which aids in faster train-
ing times and reduces the risk of overfitting. Owing 
to the limited receptive field of each neuron, the net-
work focuses well on recognizing local patterns in the 
data, which are beneficial for the detection of suspi-
cious transactions. Conv1D layers help reduce the 
dimensionality of the data by retaining important fea-
tures and require fewer computations considering the 
large-scale nature of finance data. Figure 3 shows the 
architecture of the proposed CNN classifier, which 
includes the following layers: Conv1D, normalization, 
flattening, dropout, and a dense layer. The proposed 
CNN architecture used five different types of layers 
from the Sequential class, as provided in the Keras 
library [45], which was built on top of TensorFlow [46]. 
The layers are described as follows.

b.i.  Convolution layer

This layer performs the convolution operation on the 
input data, resulting in an output in the vector format, 
and then passes it to the next layer [44, 47]. Since 
financial transactions are time-series data (though not 
with fixed periods but largely the same pattern), and 
there is a potential to derive complex features from the 
data, such as frequency of transactions and volume of 

Figure 3: CNN architecture to predict suspicious money laundering transactions. CNN, 
convolutional neural network.

Table 2: Overlapping transaction 
scenarios that shares the characteristics 
of legitimate and suspicious transactions

S. No. Scenario description

OL-1 Wire transfer of money to offshore 
accounts from savings account

OL-2 Cash withdrawal from the account in the 
range of AU $2,000 to AU $5,000

OL-3 Wire transfer of money from offshore 
account into savings account

OL-4 Shopping in the range of AU $10,000 to 
AU $30,000
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transactions, we chose the Conv1D type of layer for a 
tabular dataset to detect suspicious money launder-
ing transactions. The convolution kernel of the Conv1D 
layer convolves with the layer input over a single dimen-
sion to produce the output. A rectified linear unit (ReLU) 
activation function was used with the Conv1D layer to 
determine the output. If the input value to the ReLU 
function is less than zero, it outputs 0; else, it returns 
the same value as the input. The ReLU activation func-
tion also helps prevent exponential growth in the com-
putation required to operate the neural network.

b.ii.  Batch normalization layer

This layer applies normalization for input data that 
helps maintain the output mean close to 0 and a 
standard deviation close to 1 [48]. During training, the 
layer normalizes the output by using the mean and 
standard deviation of the current input batch. During 
prediction, the layer normalizes the output using the 
moving average of the mean and standard deviation 
of the batches observed during training [45].

b.iii.  Dropout layer

This layer randomly sets the input to 0 during training 
at a defined rate frequency, which helps prevent the 
overfitting issue and improves the model generaliza-
tion power [45, 49]. The dropout layer is applicable 
only during training [45].

b.iv.  Flatten layer

This layer flattens the input, meaning it converts the 
multidimensional inputs into a single dimension array 
that is passed to the dense layer.

b.v.  Dense layer

This layer receives input from each neuron of the pre-
vious layer and is used to change the dimension of 
the vector [45, 50]. We used ReLU [51] as an activa-
tion function for the hidden dense layer and a sigmoid 
[52] activation function for the output dense layer.

c.  SHAP method for CNN interpretation

At this juncture in AI/ML adoption, when it comes to 
selecting the classifiers for prediction, there is always 
a trade-off between accuracy and interpretability. 
Interpretability refers to how accurately a model asso-
ciates a cause with an effect. Improved interpretabil-
ity leads to better model explainability. Explainability 

refers to the extent to which interpretability can justify 
predictions. While in some domains such as weather 
prediction, accuracy may be valued more than model 
interpretability, in domains where the post-decision 
stakes are high, model interpretability is valued more 
to enable adoption. Domains such as medicine [53], 
regulatory compliance [54, 55] and criminal investi-
gations [56] require the model to be interpretable or 
explainable. AML is one such domain in which model 
interpretability is critical [57].

In the banking sector, suspicious transactions 
detected by the AML system always go through 
investigation by the AML officer; hence, interpretabil-
ity can help the officer investigate suspicious trans-
actions more effectively. To reap the benefits of deep 
learning models, which are black boxes in nature, it 
is important to understand how such models make 
decisions. Recently, several post hoc methods (such 
as SHAP [58] and LIME [59]) have been developed 
to explain the predictions made by opaque or black 
box models, which apply yet another model on top 
of the black-box model and tweak the input to see 
the impact on output values. This helps gain an 
understanding of the feature importance considered 
by black-box models for making decisions. Some 
researchers have a different view that when the deci-
sion stakes are high, interpretable methods should 
be preferred over a post hoc approach for interpret-
ability, and future research should focus on creating 
interpretable models [60].

This study chose a model named agnostic XAI 
method SHAP [58] to explain the predictions made by 
the CNN classifier. SHAP is based on the coalitional 
game theory [61], where feature values are consid-
ered team players, the dataset is considered a team, 
and the game result is considered a prediction. Each 
feature contributes to the prediction of the results. 
The SHAP quantifies the contribution of each feature 
value to the prediction made by the model. Each fea-
ture value represents one value within a single record. 
The core idea of SHAP is to reverse-engineer and 
calculate the impact of each feature value on the pre-
dicted target value.

The Shapley value explanation is represented as a 
linear model and additive feature attribution method 
[62]. SHAP [58] uses the earlier proposed explana-
tion methods, DeepLIFT [63] and LIME [59], to explain 
the prediction for the original model f(z), as shown in 
Eq. (1).
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Precision is the percentage of predicted posi-
tives that are correctly classified [70, 71] as defined in 
Eq. (3). Usually, if the cost of FPs is higher than that of 
FNs, then precision is a better metric for measuring 
the performance of the model. In the money launder-
ing scenario, this is an important metric, as it deals 
with the operational cost of the effort required for 
reviewing FPs. 

	

TP
Precision  

TP  FP
=

+
� (3)

Recall is the percentage of actual positives that 
are correctly classified [71, 72] as defined in Eq. (4). 
Usually, if the cost of FNs is higher than that of FPs, 
recall is a better metric. In the money laundering 
scenario, this is a highly important metric because 
it involves a high risk of noncompliance, penalties, 
and brand image due to FNs or missing out on true 
money laundering transactions. 

	

TP
Recall  

TP  FN
=

+
� (4) 

F1 score combines the precision and recall met-
rics and determines the harmonic mean to measure 
the performance of the classifier [73] as defined in Eq. 
(5). For the money laundering detection scenario, to 
give higher weightage to recall, we have used the fol-
lowing formula to calculate the fβ score with 3β = . 

  
( ) ( )

2

2

precision recall
score 1

precision recall
fβ β

β
×

= + ×
× +

� (5)

AUC score is used to identify the model’s capabil-
ity to distinguish between legitimate and suspicious 
transaction classes [74, 75]. The AUC score repre-
sents the area under the curve plotted using the TP 
and FP rates, as defined in Eq. (6). The greater the 
area under the curve, the better the model. 

  

 = + − + + 

1 TP FP
AUC score  1

2 TP FN FP TN
� (6)

IV.  Study Results

This chapter presents the synthetic data creation, 
training, and testing results of CNN model by apply-
ing SHAP method on CNN to see the influencing 

where f(z) represents the CNN model in this case, z 
is the input parameter, g(z′) represents the explana-
tion model, z′ ∈ 0, 1 M is the coalition vector, M is 
the maximum coalition size, and ∅ j ∈ R is a feature j 
attribution.

SHAP provides multiple explainers such as 
tree, gradient, deep, and kernel explainers [64]. 
DeepExplainer, which is an enhanced version of the 
DeepLIFT [63] algorithm from the SHAP library [64], 
was used to generate the Shapley values for the CNN 
classifier and then interpret the predictions using vari-
ous plots supported by the library.

d.  Performance metrics

To measure the performance of classifiers used to 
detect suspicious transactions, we considered the 
following metrics.

TP and true negatives (TNs) are the transactions 
that are correctly classified [65, 66]. FPs and FNs 
are transactions that are incorrectly classified [67, 
68]. With respect to the money laundering domain, 
FPs and FNs have specific importance. A FP indi-
cates that the model has predicted the legitimate 
transaction as money laundering transaction, and 
this results in the AML officer manually reviewing it 
and eventually closing it, which increases the oper-
ational cost for the organization. On the contrary, a 
FN indicates that the model has predicted money 
laundering transactions as legitimate, which results 
in missing the actual money laundering transaction, 
thereby allowing money launderers to use the finan-
cial system, which is far more severe and costly than 
the operational cost of efforts spent on reviewing 
FPs. More FNs are an indication that the system is 
not effective and can lead the organization into non-
compliance with effective controls, risks of a heavy 
penalty by regulatory, damage to brand, and corpo-
rate citizenship.

Accuracy is the percentage of correctly classified 
transactions [69] as defined in Eq. (2). Accuracy is 
one of the best metrics for understanding and meas-
uring model performance, but it is not suitable when 
the data are highly imbalanced. In financial trans-
action data and fraud scenarios, the TNs are much 
higher than the FPs and FNs together, and it under-
mines the impact of FPs and FNs. Hence, we consid-
ered accuracy as a measure to determine the overall 
model performance, but this was not a key measure-
ment criterion.

	

TP  TN
Accuracy  

TP  TN  FP  FN 
+

=
+ + +

� (2)
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features on the predictions made by CNN and finally 
the comparison results of CNN model with RF, SVM, 
and XGBoost models. Synthetic data were gener-
ated using a custom-developed utility by the authors 
and refined during the experiments. The synthetic 
dataset contained customers, accounts, legitimate 
transactions, and suspicious transactions. The code 
is written to predict suspicious transactions using 
a CNN classifier. The CNN model was trained and 
tested on the produced dataset, and its performance 
was validated against the results produced by RF, 
XGBoost, and SVM classifiers for the same data-
set. Furthermore, the code was written to use the 
DeepExplainer class of SHAP to produce the Shapley 
values and explain the predictions made by the CNN 
classifier at the individual record level. This section 
provides the results of all the experiments.

a.  Synthetic dataset

The key input data for detecting suspicious trans-
actions in banks include customer details, account 
details, and transactions. Table 3 provides the spec-
ifications of the data produced and used for train-
ing and testing the models. Transactions are classi-
fied into two classes: legitimate and suspicious. By 
nature, transaction data is highly imbalanced, where 
the majority class comprises legitimate transactions 
and the minority class comprises suspicious trans-
actions. In line with this, highly imbalanced data was 
produced with a ratio of 95.64%–4.36%. The data 
were validated by an AML expert from the industry.

b.  CNN prediction results

The CNN model underwent multiple rounds of train-
ing and testing to verify the results by tweaking the 

hyperparameters. Unlike weights and biases, which 
are learned by model during the training, the hyper-
parameters are set prior to training process and are 
crucial to determine the architecture and behavior of 
CNN model. We trained and tested the CNN model 
several times by changing the hyperparameters, 
including epochs (10–500) that define the number of 
iterations of passing the entire training data through 
training process, batch size (16–128) that defines the 
number of samples used in each iteration of the opti-
mization algorithm, layers (2–6 Conv1D layers; combi-
nation of Conv1D, Batch, Dropout, Flatten, and Dense 
layers) that define the architecture of CNN, dropouts 
(by dropping and adding after each Conv1D layer)—a 
regularization technique that randomly drops certain 
percentage of neurons during training to prevent over-
fitting, number of units (64–2,048), activation function 
(ReLU, Softmax, Sigmoid) that introduces nonlinear-
ity in data, allows it to learn complex relationships in 
the data, and finalizes the parameters. After analyzing 
various configurations, we finalized the parameters as 
shown in Table 4, which yielded optimal results with 
100 epochs and a batch size of 32. The model was 
compiled using the Adam optimizer [76] and binary 
cross entropy loss function [45].

To compare the results of the CNN model, tradi-
tional ML models, namely, RF, XGBoost, and SVM, 
were developed. The hyperparameters of these mod-
els are shown in Table 5.

All classifiers considered 70% data for training and 
30% data for testing the model. The split data were 
normally distributed with a feature column mean of 0 
and standard deviation of 1 using a standard scaler. 
This made it easier to apply weights and train the 
model. Table 6 presents the performance metrics of 
the predictions made by the CNN, RF, XGBoost, and 
SVM classifiers. The metrics include confusion matrix 
(TNs, FNs, FPs, TPs), recall, precision, accuracy, AUC 
score, fβ  score with 3β = , and training time.

The confusion matrix represents the performance 
and errors of the classifiers for classification. Type-I 
errors are shown as FPs, and type-II errors are 
shown as FNs. The error importance depends on the 
domain of the classification problem. In the case of 
AML, we assigned higher importance to type-II error 
after consulting with AML experts in the industry. 
Type-I error means more alerts and more operational 
efforts to investigate the alerts. Type-II error indicates 
that the system is not effective in identifying true sus-
picious transactions, which is a bigger risk from the 
compliance point of view and allows the launderers to 
exploit the financial system for their benefits. Hence, 
the model should have as few FNs as possible to 

Table 3: Synthetic financial transaction 
dataset summary

Parameter Value

Number of customers 442

Number of accounts 442

Approximate number of transactions 
per customer

184

Approximate time period of transactions 12 months

Total number of transactions 92,824

Labeled suspicious transactions 4,054

Labeled legitimate transactions 88,770
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improve suspicious transaction detection. Type-II 
error with high importance implies that recall metric 
is more important than precision; hence, we have 
considered fβ score metric calculation with 3β =  to 

reflect higher importance of recall metric. The results 
showed that CNN model outperformed other mod-
els considering FN identified, recall, and fβ score. 
The key characteristics of deep learning models are 

Table 4: CNN architecture hyperparameters

Layer Parameters

Conv1D Filters = 32, Kernel size = 2, Input shape = 51,980 × 40, Activation = ReLU

Batch normalization Axis = −1, momentum = 0.99, center = true, scale = true

Dropout 0.3

Conv1D Filters = 64, Kernel size = 2, Activation = ReLU

Batch normalization Axis = −1, momentum = 0.99, center = true, scale = true

Dropout 0.3

Conv1D Filters = 128, Kernel size = 2, Activation = ReLU

Batch normalization Axis = −1, momentum = 0.99, center = true, scale = true

Dropout 0.3

Flatten Axis = −1, momentum = 0.99, center = true, scale = true

Dropout 0.3

Dense Units = 512, Activation = ReLU

Dropout 0.3

Dense Units = 1, Activation = Sigmoid

CNN, convolutional neural network; ReLU, rectified linear unit.

Table 5: Hyperparameters for RF, XGBoost, and SVM

Classifier Hyperparameter Value

RF Number of trees in the forest 100

RF Minimum number of data points in a node prior splitting 2

RF Minimum number of data points allowed in a leaf node 1

RF Maximum number of features for splitting a node sqrt

RF Method for sampling data points True

RF Class weight 0:1, 1:100

XGBoost Minimum number of data points in a node prior splitting 2

XGBoost Minimum number of data points allowed in a leaf node 1

XGBoost Learning rate 0.1

XGBoost Number of decision trees to be boosted 100

XGBoost Subsample ratio of training data 1

XGBoost Maximum depth 3

SVM C 1.0

SVM Kernel Linear

SVM Gamma Scale

RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting.
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Table 6: Suspicious transaction 
prediction results of CNN, RF, XGBoost, 
and SVM models

Metrics CNN RF XGBoost SVM

fβ score 78.23% 61.97% 62.09% 30.86%

Recall 91.01% 59.82% 60.14% 29.10%

Precision 34.56% 91.53% 87.72% 67.47%

Accuracy 92.03% 97.95% 97.84% 96.20%

AUC 98.00% 79.80% 98.40% 83.60%

TPs 1,114 746 750 363

TNs 24,515 26,532 26,496 26,426

FPs 2,109 69 105 175

FNs 110 501 497 884

Training 
time

70 min 6 s 16 s 4.4 min

CNN, convolutional neural network; FNs, false 
negatives; FPs, false positives; RF, random forest; 
SVM, support vector machine; TNs, true negatives; 
TPs, true positives; XGBoost, extreme gradient 
boosting.

as follows: the accuracy improves with the increase 
in data size and, in the case of financial domain, mil-
lions of transactions are generated every day. This 
provides a good indication of the application of CNN 
model in the financial domain.

A FP represents a legitimate transaction reported 
as a suspicious money laundering transaction by the 
model. From a domain perspective, each FP trans-
action alert goes through manual investigation. The 
impact is that it requires the investigation time of the 
AML compliance officer, which is widely accepted 
in banks. Although the aim is to have as less FP as 
possible, there is a chance of missing out on TPs. 
Achieving the right balance is crucial, and this bal-
ance may come at the cost of the investigation.

FN represents a true money laundering transaction 
considered by the model as a legitimate transaction, 
which is a huge risk. The risk lies in the bank’s fail-
ure to detect the actual money laundering transac-
tion, which results in noncompliance with regulatory 
policies. If the regulatory authority uncovers such 
missed transactions later, it may lead to substantial 
penalties to the bank.

The FN produced by the CNN model is far less 
than that of other ML models, which indicates that 
the model can address the risk relatively better than 
other models. To build trust in the decisions, the XAI 

model is applied, which shows the rationale behind 
the decisions, and the compliance officer can quickly 
take a call by seeing the rationale of the decision to 
determine whether it is a FP or TP.

From a practical perspective, financial institutions 
employ several approaches to detect suspicious 
money laundering transactions. It includes a trans-
action monitoring system, a rule-based AML sys-
tem, identifying the topologies by employing different 
focused approaches, such as detecting anomalies 
and then investigating from a money laundering per-
spective, detecting money launderer gangs by detect-
ing patterns using link analysis, graph learning, and 
social network analysis, and detecting suspicious 
transactions by applying natural language process-
ing to read through the transaction remarks. AI-based 
systems often combine multiple classifiers to improve 
the results. This research presents an approach 
using one classifier that can be clubbed together 
while building an AI-based AML system and further 
enhances the reduction of FPs and FNs. Having FPs 
is not a “major” concern, as AML officers can still 
investigate it. FN is riskier as it goes undetected and 
should be minimized as much as possible. Hence, we 
believe that this CNN method would help in reducing 
the number of FNs, and the XAI technique would help 
the AML Compliance Officer to efficiently investigate 
the identified suspicious transactions. Figure 4 shows 
the AUC curves for CNN, RF, XGBoost, and SVM. The 
AUC measures the ability of the classifier to distinguish 
between transactions as suspicious or legitimate. The 
higher the curve, the better the model’s ability to dis-
tinguish between classification categories.

c. � SHAP interpretation of CNN 
predictions

The models are interpreted at both local and global 
levels. Local interpretation focuses on determin-
ing the reasoning behind the individual prediction, 
whereas global interpretation focuses on how the 
model behaves in general. This section describes 
the local interpretation using the SHAP. After training 
and testing the CNN classifier, we applied SHAP to 
interpret the feature importance considered by the 
CNN while making predictions. A DeepExplainer 
class from the SHAP library was used to generate the 
Shapley values for test data containing 24,410 rows 
and 40 columns, which took approximately 20 min 
to generate the Shapley values for each data value 
in the test dataset. The availability of Shapley values 
for each data element on a record makes it possible 
to explain the individual record prediction by applying 
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these values to provide a view of the highly contribut-
ing features leading to a decision.

Figure 5 shows a force plot representing the inter-
pretation of two individual record predictions made by 
the CNN classifier. The base value shown in the plot 
is the average value of the target variable across the 
dataset that was passed to the DeepExplainer class. 
Each arrow strip shows the impact of its associated 
feature on pushing the target variable away from or 
close to the base value. Red strips show that their 
associated feature pushes the value on the higher 
side (indicating a transaction as suspicious) with 
respect to the base value, whereas the blue strips 
show that the associated feature pushes the value on 
the lower side (indicating a transaction as legitimate).

Figure 5A presents the interpretation of one 
record predicted as a suspicious transaction by the 
CNN classifier. The key features contributing to the 

prediction are credit, transaction amount, transac-
tion description, KYC state, and transaction currency. 
Table 7 shows the details of an original transaction 
record that is predicted as a suspicious transaction. 
The table shows the values prior to converting them 
to numerical and categorical values that are submit-
ted to model. The inference from the force plot is 
shown in Figure 5A and original transaction record is 
shown in Table 7. In the “Suspicious Transaction” col-
umn, where the customer associated with the trans-
action account appears to be a student, transaction 
is done in cash with decent large amount, and the 
cash is deposited into an account from ATM deposit 
machine, the account balance appears to be high. 
This showed a positive correlation with the transac-
tion being suspicious. However, KYC state showed 
a negative correlation with the prediction because 
KYC review is complete and status is good; hence, 

 
(A) CNN 

 
(B) RF 

 
(C) XGBoost 

 
(D) SVM 

Figure 4: ROC curve for (A) CNN, (B) RF, (C) XGBoost, and (D) SVM classifiers. CNN, 
convolutional neural network; RF, random forest; SVM, support vector machine; XGBoost, 
extreme gradient boosting.
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it contributes negatively to the overall prediction. This 
inference makes the transaction suspicious and wor-
thy of further investigation.

The suspicious transactions reported by financial 
institutions go through multiple levels of investigation 
(first by financial institution themselves, then FIUs, 
investigation agency, and court) before being quali-
fied as a true money laundering transaction. The real 
value addition by the SHAP explanation for investiga-
tion is the identification of key contributing features for 
a prediction made by the CNN classifier.

Figure 5B represents the interpretation of a record 
that was predicted as a legitimate transaction by the 
CNN classifier. The key features that contribute to the 
prediction are transaction description, transaction 
location code, transaction location type, transaction 
currency, and transaction subtype. The “Legitimate 
Transaction” column in Table 7 shows the details of 
an original transaction record that is predicted as 
a legitimate transaction in Figure 5B. The inference 
from the force plot and original transaction record 
is that the customer associated with the transaction 
is a married woman aged 55 years, and the iden-
tified transaction is an auto-debit transaction that 
is paid online for health insurance in the local cur-
rency of her birth country, which concludes that the 
transaction is legitimate. Practically, legitimate trans-
actions in banks will not be screened; however, they 
are presented here to demonstrate the interpretation 

to validate the reasoning by SHAP for the prediction 
made by CNN.

Figure 6 shows the global interpretation or the 
feature importance graphs for the RF, XGBoost, and 
SVM classifiers used in comparison with the CNN 
classifier. Each feature contributed differently to all 
three models. These are also opaque models, and 
SHAP can explain individual predictions, which is not 
considered in the scope of this paper.

We conducted a study to apply the LIME XAI 
method to the Conv1D model, but this study found 
that LIME does not support the Conv1D classifier. 
LIME supports Conv2D. LIME requires data in a 
three-dimensional format, which is taken as an input 
by the Conv2D classifier, whereas the input data for 
Conv1D are two dimensional.

V.  Discussion

Banks use rule-based AML systems to generate alerts 
based on the rules specified by regulators. The alert 
scenario includes cash transactions beyond thresh-
olds, IFT, and past money laundering topologies. The 
AML system works as expected for generating alerts 
for cash transactions and IFT; however, it struggles 
to detect suspicious transactions. Suspicious trans-
action alerts are raised by the system based on the 
scenario developed from the past money launder-
ing patterns. It is difficult to keep these rules up to 

 

(A) 

 

(B) 

Figure 5: Interpretation of CNN predictions using SHAP force plot. (A) Force plot of a transaction 
predicted as suspicious by CNN. (B) Force plot of a transaction predicted as legitimate by CNN. 
CNN, convolutional neural network; SHAP, SHapley Additive exPlanations.
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Table 7: Sample of two original transaction records considered for prediction by CNN 
and interpretation by SHAP

Features Suspicious transaction Legitimate transaction

Transaction date 7/12/2017 6/02/2018

Transaction number 339549 359932
Transaction account 10300015 10202449
Transaction amount 6,000.00 322.00
Credit 6,000.00 –
Debit – 322.00
Balance 52,659.00 16,054.00
Transaction type Credit Debit
Transaction subtype Cash deposit Auto-debit
Transaction description Cash deposit Health insurance
Transaction currency AUD AUD
Transaction location type ATM Online
Transaction location code 448 222
Target account 0 891141
Target country code 0 Australia
Target bank code 0 559059
Customer ID 20000736 20002452
Customer type Student Individual
Gender Male Female
Date of birth 24/09/1992 26/05/1965
Age 28 55
Marital status Single Married
Residence country Australia Australia
State New South Wales New South Wales
City Sydney New Castle
Postcode 2358 2361
Tax resident country Australia Australia
Birth country Overseas country Australia
Nationality country Overseas country Australia
Profession Student Laborers
Income category 4000 77668
KYC updated on date 22/04/2017 13/09/2019
KYC state Active Active
Risk rating 0 0.463290428
Account number 10300015 10202449
BSB number 203901 201807
Account created on date 22/04/2017 23/08/2017
Account type Savings Savings
Daily transaction limit 3,000 2,000
TFN 999528645 968305061

Statement delivery method Not set Online

BSB, bank state branch; CNN, convolutional neural network; KYC, know your customer; SHAP, SHapley 
Additive exPlanations; TFN, tax file number.
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Figure 6: Global interpretation of predictions made by RF, XGBoost, and SVM using feature 
importance score. RF, random forest; SVM, support vector machine; XGBoost, extreme gradient 
boosting.
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date, considering the pace at which the number of 
transactions is growing, and new money launder-
ing patterns are being innovated by fraudsters. This 
causes more FP alerts by the system and impacts the 
operational efficiency of AML departments involving 
AML Investigation Officers. AI/ML-based systems that 
churn out huge amount of data and identify suspi-
cious transactions act as decision support systems 
for AML officers. These systems are trained using the 
historical money laundering patterns derived from the 
alerts generated by the AML system and the details 
captured from Case and SMR. The key goal of AI/
ML-based AML systems is to help AML officers iden-
tify suspicious transactions along with adequate evi-
dence. Unidentified money laundering transactions 
pose a serious risk to banks from a compliance point 
of view.

The core characteristics of deep learning method 
to identify features automatically and detect suspi-
cious transactions with high accuracy can help iden-
tify suspicious transactions by minimizing FPs and 
FNs. This is the first study in the money laundering 
domain that has used a Conv1D CNN model on tab-
ular financial transaction data to detect suspicious 
money laundering transactions, and successfully 
trained and tested the Conv1D-based CNN model 
to classify transactions as either suspicious or legit-
imate. To compare the CNN results, RF, XGBoost, 
and SVM classifiers were trained and tested using 
the same dataset. Furthermore, we applied the state-
of-the-art SHAP XAI method to the CNN classifier to 
interpret decisions at the individual transaction level.

This study generated synthetic data containing 
customers, accounts, and transactions. By nature, 
the transaction data used for money laundering 
detection are highly imbalanced, meaning that legit-
imate transactions are high in number and suspicious 
transactions are less compared to legitimate trans-
actions; hence, we followed a similar pattern. The 
dataset proportion was 95.64%–4.36% for legitimate 
and suspicious transactions, respectively. Because 
the data were highly imbalanced, accuracy was not 
considered a primary metric. We considered fβ score 
as a key metric of performance measurement with 

3β =  to value recall more than precision. As per the fβ 
score, we found that that CNN model outperforms RF, 
XGBoost, and SVM models. This means that the FNs 
are fewer compared to other models and a good indi-
cation from a risk reduction point of view. However, 
the FP number of the CNN model is higher than that 
of the other models, which indicates more operational 
effort for investigation. AML SMEs prioritize reduc-
ing risk and ensuring regulatory compliance, over 

reducing operational efforts. Deep learning meth-
ods are believed to perform better with large data-
sets and, in AML cases, the volume of transactions is 
growing day by day with digital banking, which makes 
deep learning an appropriate method to apply.

The interpretation shown by SHAP has identi-
fied satisfactory reasoning for the predictions made 
by CNN, and inspecting those indicators along with 
the original records containing customer, account, 
and transaction details provides good insight to AML 
officers to decide if the identified suspicious transac-
tion is a FP or worth investigating further.

The strength of this study lies in the effective use 
of the CNN model to identify suspicious transac-
tions with high fβ scores and recall rates. This study 
used features similar to those used in AML solutions 
in banks, including customer profiles, accounts, 
and transactions. We found some customer profile 
attributes to be key contributors to the detection of 
suspicious transactions. Furthermore, the research 
demonstrated that the SHAP XAI technique can 
be effectively used with the CNN model, providing 
insights into the feature importance at the individ-
ual record level for CNN predictions. SHAP’s abil-
ity to show the interpretation of CNN predictions by 
pinpointing the contribution score of each feature to 
reach a decision at the individual record level would 
help AML officers investigate suspicious transactions 
quickly. This will help improve the effectiveness of 
AML controls at banks and enable the adoption of 
deep learning in the AML domain.

a.  Implications and applications

Banks have established several AML controls to 
combat money laundering, such as KYC, customer 
due diligence (CDD), enhanced CDD, risk profiling, 
watch list screening, sanctions, politically exposed 
person (PEP) screening, employee training pro-
grams, and transaction monitoring for suspicious 
activities. Considering the continuous increase in 
transactions, evolving fraud patterns, and changing 
regulatory requirements, any method that can help 
identify suspicious transactions is of great value to 
banks. Primarily, rule-based AML systems (usually 
bought from established software product compa-
nies that are specialized in financial crime) are used 
by banks for transaction monitoring, which have both 
advantages and disadvantages. However, the rule-
based system is an essential and important system 
when it comes to detecting transactions for report-
ing as per the thresholds defined by regulations (e.g., 
cash transactions and IFTIs). On the positive side, 
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rule-based systems are configured according to reg-
ulatory rules and historical money laundering scenar-
ios, ensuring compliance with reporting thresholds 
(e.g., IFTIs). However, banks face several challenges 
in keeping these systems up to date along with the 
constantly changing regulatory landscape and money 
laundering patterns. Banks are involved in analyzing 
AI/ML technology to assist them in detecting suspi-
cious transactions and reducing the compliance risk.

The outcome of this research, a novel method 
of detecting suspicious transactions using the CNN 
method, could be highly beneficial for banks. The 
recommendation for using this model is to ensure 
that the data attributes and data are in the required 
format, normalize the data, ingest the actual money 
laundering transactions as per the historical records 
available in banks as labeled training data, and train 
and test the model. It is important to note that the 
identification of suspicious transactions using CNN 
should be one of the components in the “to-be” 
AI-based AML system. The CNN method should 
be used together with other components to further 
improve the effectiveness of the outcome, including 
customer segmentation, risk profiling, social network 
analysis, customer screening, and sanctions screen-
ing, to establish adequate ground to define the sus-
piciousness of the transactions and report SMRs 
for compliance. The authors believe that the CNN 
method can improve the effectiveness of detecting 
suspicious money laundering transactions, leading to 
a reduction in compliance risk and operational cost 
required for the screening and investigation of FP 
alerts [77].

Furthermore, a bank’s future AI-AML system can 
be enhanced by incorporating the novel method of 
“explaining CNN predictions using the SHAP XAI 
framework,” as implemented in this research. The 
explanations generated by post hoc SHAP methods 
for CNN predictions would help AML officers view 
the reasoning behind the predictions and gather rele-
vant evidence to enhance the investigation and report 
suspicious transactions with high confidence. An 
explainable AML system would help build trust [16] 
and drive the adoption of AI/ML technologies in the 
AML domain. This adoption can help manage com-
pliance risks, maintain brand reputation, and avoid 
hefty penalties for noncompliance.

b.  Limitations

Banks offer a wide range of products, including 
accounts, loans, credit cards, insurance, securities, 
mobile transfers, checks, and money drafts. They 

serve various types of customers, including retail cus-
tomers, small businesses, business banking, institu-
tional banking, and investment banking. Additionally, 
regulatory requirements vary based on the country 
in which banks operate. Therefore, it is essential to 
comprehensively test the model while considering all 
diverse scenarios and data in stages. In this study, 
the model is tested on a limited set of data, whereas 
in a real banking scenario there would be millions 
of transactions per day; hence, the model’s perfor-
mance considering the continuous flood of trans-
actions must be tested. We believe that suspicious 
transaction detection depends heavily on the availa-
bility of historical money laundering transaction data 
for training.

A limitation of this study is that the models were 
not trained and tested on real transaction data. All 
experiments were performed on synthetic data that 
had limited types of customers, products owned by 
customers, and types of transactions, whereas in 
banks there would be a much more complex trans-
action dataset and access to external data sources 
such as PEP screening, world checklists, and social 
network datasets. Hence, the method proposed in 
this study should be validated on real data before it is 
considered for actual use.

c.  Future research directions

This section illustrates the future research directions 
in continuation with this study. (1) Deep learning 
models are primarily designed to work with image 
type of data; hence, the recommendation is to con-
vert the tabular dataset into images and apply the 
Conv2D CNN model to check the outcome for suspi-
cious transaction detection. (2) Most state-of-the-art 
XAI techniques, such as SHAP [58] and LIME [59], 
support image data to explain the predictions made 
by deep learning models on image data; hence, con-
verting the tabular data into images and then predict-
ing suspicious transactions using the Conv2D CNN 
models can open up several XAI options to interpret 
the predictions. (3) From a data perspective, an opti-
mization study can be performed to eliminate cor-
related features; for example, the Aquila optimizing 
technique [78] can be used to reduce the number of 
features before feeding the CNN model. (4) Attention 
Mechanism [79] on the CNN model can be used to 
further reduce FPs. (5) The use of long short-term 
memory (LSTM) or gated recurrent unit (GRU) model 
can be explored for predicting suspicious transac-
tions. (6) The research on reinforcement learning 
methods can be enhanced by leveraging human 
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decision-making knowledge to detect suspicious 
transactions.

VI.  Conclusions

The aim of this study was to develop a model to pre-
dict suspicious money laundering transactions and 
explain the predictions. The Conv1D CNN classifier 
was chosen for detecting suspicious transactions 
and the SHAP XAI method to explain the predic-
tions made by the CNN classifier. Considering the 
constraint of financial transaction data from banks 
being highly sensitive and unavailable for research 
purposes, the authors produced synthetic financial 
transaction data. The synthetic data was kept highly 
imbalanced to maintain consistency with real data. 
In suspicious transaction classification, FPs indicate 
more operational efforts and FNs indicate a high 
risk of noncompliance. Considering risk over oper-
ational efforts, a recall was given higher weightage 
over precision for measuring the performance. The 
results showed that the CNN model successfully 
identified synthetically injected money laundering 
transactions far better than other ML models (RF, 
SVM, and XGBoost) that are used for comparison. 
The CNN model produced the lowest number of FNs 
(110), indicating its ability to detect the maximum 
number of injected suspicious transactions. In com-
parison, XGBoost produced 497 FNs, RF produced 
501 FNs, and SVM produced 884 FNs. This low FN 
rate is highly favorable for banks, as it reduces the 
risk of overlooking true money laundering transac-
tions, enhances AML compliance, and helps catch 
bad actors. Overall, the CNN model outperformed 
RF, SVM, and XGBoost that is measured using fβ 
with 3β = . CNN fβ has the highest score of 78.23 fol-
lowed by the XGBoost score 62.09, RF score 61.97, 
and SVM score 30.86. Furthermore, SHAP was suc-
cessfully applied on CNN to determine the positive 
or negative contribution of each feature value on 
the prediction made by CNN. Original transaction 
records along with SHAP plots were analyzed and 
found that it was possible to understand the rationale 
behind the prediction made by CNN, and the same 
was verified with AML SME. SHAP took around 
20 min to generate the Shapley values for 24,410 
records, which can be a concern considering millions 
of records in the bank. In the AML domain, each sus-
picious transaction alert undergoes manual review 
and investigation before being reported to regulatory 
authorities. Therefore, we recommend that the future 
research should focus on using reinforcement learn-
ing methods and leveraging the knowledge gained 

from alert reviews and investigations as training data 
to continuously improve model performance.
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