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Abstract: Regular exercise plays a crucial role in promoting overall well-being in today’s lifestyle.
However, individuals often find it challenging to properly execute exercises, including maintaining
correct postures and appropriate movement speeds. Robotic companions have emerged as potential
solutions to assist and motivate users during exercise sessions. This research paper proposes a novel
robot companion designed for exercise scenarios using a reconfigurable robot. In contrast to existing
non-reconfigurable robotic companions, the use of a reconfigurable robot provides added flexibility
in generating emotions. The system incorporates a module that utilizes fuzzy logic to evaluate the
correctness of exercise performance based on posture variations and movement speeds. The robot
generates emotions and provides feedback to users based on the exercise correctness score. The robot
expresses emotions through reconfigurations, motion patterns, and variations in robot speed. This
emotion-based feedback could be helpful for creating engaging and interactive exercise experiences.
Apart from emotion generation, the robot utilizes vocal cues as feedback. Experimental results
validate the effectiveness of the proposed system in evaluating exercise correctness and demonstrat-
ing meaningful emotion transitions. The findings of this work contribute to the development of
innovative robotic companions for improving exercise adherence and overall well-being.

Keywords: reconfigurable robotics; exercise assistant; robot emotions; service robotics

1. Introduction

Regular exercise offers numerous benefits for physical and mental health [1]. With
the rise in office jobs and sedentary lifestyles, people spend extended periods sitting and
working on laptops, leading to weight gain and obesity. Therefore, incorporating daily
exercise is essential. Exercising offers a broad range of benefits, such as disease prevention,
increased energy levels, enhanced cognitive function, and stress relief [2]. Many social
media platforms provide videos and tips to conduct exercises, such as on YouTube and
Instagram. However, it is crucial to note that while people may engage in exercise, they
often require proper guidance and motivation to perform exercises correctly, maximizing
their impacts on the body. The introduction of robots as exercise trainers becomes impactful
in this context.

Robots have emerged as invaluable tools for guiding and motivating individuals
during their exercise routines, offering significant advantages over traditional methods of
exercise guidance [3–5]. One key advantage is their ability to provide consistent and precise
instructions, ensuring that individuals perform exercises accurately, thereby minimizing the
risk of injury and maximizing the effectiveness of each movement. Furthermore, robots can
offer real-time feedback on form and technique, enabling individuals to maintain proper
posture and alignment throughout their workouts.

Social assistive robots have emerged as valuable exercise companions, encouraging
users to engage in regular physical activity [6]. A robot that monitors user engagement

Appl. Sci. 2024, 14, 7249. https://doi.org/10.3390/app14167249 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14167249
https://doi.org/10.3390/app14167249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4631-7615
https://orcid.org/0000-0001-5921-7958
https://orcid.org/0000-0002-3458-5006
https://orcid.org/0000-0002-3598-5570
https://orcid.org/0000-0001-6504-1530
https://doi.org/10.3390/app14167249
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14167249?type=check_update&version=1


Appl. Sci. 2024, 14, 7249 2 of 18

and heart rate while performing upper body exercise has been proposed in [6]. This robot
generated appropriate emotions based on user engagement and heart rate using an nth
order Markov chain. Another study investigated the effects of exercising alone, receiving
instructions from a robot, and exercising conjunctively with the robot [7]. The findings
revealed that exercising in conjunction with a humanoid robot increased user motivation
and led to longer exercise durations. The impact of different levels of automation on
personalizing socially assistive robots in exercise scenarios was explored in a study [8].
The results demonstrated that adaptive robots were perceived as more competent and
trustworthy than adaptable robots. A study comparing acknowledgment–feedback versus
non-acknowledgment–feedback for a robot exercise instructor and companion has been
introduced in [9]. The outcomes indicated that users who exercised co-actively with
the robot exhibited significant performance improvements compared to those who were
instructed by the robot or exercised alone. These studies highlight the positive influence of
social assistive robots in exercise contexts, emphasizing the benefits of companion robots in
increasing motivation, personalization, and performance during physical activity.

Furthermore, as the global elderly population grows, promoting active and engaged
lifestyles becomes increasingly important for their overall well-being. Recognizing this
need, numerous research studies have focused on developing exercising companions
specifically tailored for elderly individuals [10,11]. The work [12] introduced a diverse
range of human–robot interactive games specifically designed to engage both the elderly
and young adults. These interactive games serve as effective tools to encourage physical
activity and foster healthy lifestyles across different age groups. Particularly, the use of
robot companions for rehabilitation purposes has emerged as an intriguing application
in this context [13–15]. Integrating robotics in rehabilitation programs showcases the
potential of exercise-focused robot companions to aid in the recovery and enhancement of
physical well-being in disabled individuals. To personalize the interaction with humans
while engaging in the exercises, robotic platforms have been introduced [16]. Furthermore,
studies have been conducted to enhance the social interaction in physical training using
robots [17].

The existing research discussed above primarily focuses on developing fixed-shape
robots as exercise companions. However, there is an unexploited potential for introduc-
ing reconfigurable robots for this purpose. Reconfigurable robots have the capability of
changing their shape based on the context in which they operate [18,19]. The unique
capabilities, applications, and challenges of reconfigurable robots have been introduced
in [20]. These robots have been extensively studied in various applications such as clean-
ing [21], exploration [22], and inspection [23], which demand area coverage. Their use
as exercise companions remains limited despite their unique capabilities. Reconfigurable
robots present an intriguing opportunity for human–robot interaction in the domain of
robotic exercise companions. Through morphology transformation, reconfigurable robots
can represent expressions in a more detailed, convincing manner. Their shape-changing
abilities can be leveraged to display a wide range of emotions and generate diverse motion
patterns, making them highly suitable for assisting in exercise activities.

Motivated by this potential, this paper proposes the development of a reconfigurable
exercising companion designed to provide emotional support during exercise scenarios.
The novelty of this paper lies in the robot’s ability to adjust its physical configuration and
provide emotional feedback based on how well the exercises are performed, aiming to
motivate users to improve. The use of reconfigurability for this new application is the
major contribution compared to the state of the art, where only non-reconfigurable robots
have been used up to now. In this proposed system, the robot delivers exercise instructions
while an external laptop displays exercise-related videos for the user. The user’s exercise
performance is monitored using the external laptop, and a fuzzy inference system is
developed to evaluate the correctness of their movements. Based on the assessed exercise
correctness, the robot generates appropriate emotions and motions to enhance the exercise
experience. By capitalizing on the reconfigurable nature of the robot, this proposed system
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aims to create a versatile and interactive exercising companion that can adapt to different
exercises and provide personalized emotional support. The incorporation of a fuzzy
inference system enables real-time evaluation of the user’s exercise correctness, allowing
the robot to generate suitable emotional responses and motion patterns accordingly.

The rest of this paper is outlined as follows. A system overview of the proposed
method is given in Section 2. Emotion-based feedback in relation to the performance of
exercise is provided in Section 3. Detailed information regarding experimental validation
is presented in Section 4. Section 5 provides concluding remarks.

2. System Overview

A functional overview of the proposed system is shown in Figure 1. The proposed
system analyzes and evaluates the correctness of an exercise performed by a user and gives
verbal and emotion-based feedback to interact with the user. The system extracts dynamic
characteristics information related to body movement in order to evaluate performance.
The Body Joint Extraction unit gathers vision data as an RGB image through a monocular
camera. It outputs the skeletal information as a set of 2D coordinate points representing
the specific joints/landmarks of the body. The necessary parameters, such as joint angles
and speed, are calculated by the exercise parameter calculation unit based on data points.
The set of body joints used for the calculation varies according to the specific exercise the
user performs. All the references for each body landmark corresponding to each exercise
are stacked in the exercises posture reference database. Calculated parameters are then
fed to the exercise correction evaluation unit. This unit uses fuzzy logic to analyze the
correctness of an excise based on the incoming parameters. This module is implemented in
such a way that it can adapt to different exercises. The parameters required for adapting to
different exercises are stored in the parameter reference database. The system evaluates
each complete exercise cycle and assigns a correctness score accordingly. The emotion
output generation unit determines the type of emotion with its level based on the history
of the exercise correctness score. This emotion is then fed to the action manager. The
overall coordination of the system is managed by the action manager (AM). It triggers voice
responses through the voice response generation unit based on the exercise correctness score.
The voice response generation unit is a text-to-speech converter with a set of predefined
responses. Furthermore, the AM enables playing a reference video of the exercise at the
beginning of the exercise for the user to follow. Up to this level, the whole process is
executed inside a PC.

The AM communicates the expression generator in the robot through a wireless link.
The expression generator acts upon the requested emotion levels and determines the motion
cues and shape changes. The predefined robot shape configurations mapped to a particular
emotion with the motion profile to follow stored in the expression database are used in
this regard. The reconfiguration controller executes the shape-shifting part of the robot
based on the input from the expression generator. The navigation controller handles the
maneuvering of the robot according to the given motion profile.

Reconfigurable Robot Platform

The proposed system utilizes the reconfigurable robot Smorphi for emotion expression.
Smorphi (www.wefaarobotics.com, accessed on 15 June 2024) is a reconfigurable mobile
robot platform consisting of four modules that are connected serially through three hinges
for allowing intra-reconfigurability (see Figure 2a). Thus, all four modules act as a single
platform. Reconfigurability of the robot is achieved by rotating modules around the hinges
to create different shape configurations. This robot can create seven shapes in total, as
shown in Figure 2b. Each robot block has a mecanum drive locomotion system to perform
holonomic movements required for reconfiguration and navigation.

www.wefaarobotics.com
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Figure 1. Overview of the system.
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Figure 2. (a) Smorphi robot platform. (b) Robot shape configurations.

3. Emotion-Based Feedback per Performance of Exercise
3.1. Perceiving Exercises

The correctness of an exercise depends on several parameters. Each exercise requires
the movements of a unique set of body joints in predefined ranges. Not achieving or
exceeding these ranges tends to reduce the overall outcome expected from the exercise.
This scenario can be used as a measure to evaluate the correctness of an exercise. For
example, a situation of a person doing an exercise involved with hand movements can be
considered. This exercise mainly involves two body joints (i.e., shoulder and elbow joints).
Monitoring the movements of these joints can give an idea of how correct the exercise is.
There should be a method to extract the information related to the body joint movement for
the proposed system to evaluate the correctness of an exercise. In this regard, the proposed
system utilizes a monocular camera to capture the movements of body joints. The locations
of the body joints are extracted from 2D image frames using MediaPipe Pose framework
(https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker accessed on
15 May 2024).

https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker
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This joint extraction model returns a total of 33 human body joints as depicted in
Figure 3a. Here, each joint has a unique Identity (ID), which is useful for tracking. This
information is then used to derive the joint angles that can be used to determine the
correctness of the posture during an exercise [24]. Apart from varying the posture, the
speed of the movements should be within certain limits for a specific exercise where the
movement speed should not be too slow or too fast [25]. Therefore, posture correctness
and movement speed are considered to evaluate the correctness of an exercise. The posture
correctness is measured as the deviation from the required posture movement range.
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Figure 3. Human body joint extraction: (a) 33 joint positions identified by Mediapipe Pose, and
(b) body joints corresponding to derive θi.

Given the 2D body joint coordinates for considered exercise, joint angles can be
derived. For a predefined set of exercises, the required joint angles to be calculated are
stored in a database with a given reference ID to each joint angle. Let set A consist of
the exercises {E1, E2, . . . Ee . . . En}. The eth exercise consists of an array of joint angles IDs
[θ1, θ2 . . . θi . . . θn] to be measured. Equation (1) explains how each exercise data point with
relevant angles is stored in the database A. The required angles can be derived using this
database for a known exercise.

A = {E1 : [θa, θb, . . . ], . . . , Ee : [θ1, θ2 . . . θi . . . θn], . . . En} (1)

A specific joint angle can be calculated using another database that stores a stack of
body joint IDs required to form a specific joint angle. Let B be the set of the joint angle
identities for the eth exercises such that B = {θ1, θ2, . . . θi . . . θn}. Each joint angle ID points
to a set of body joint IDs where ith joint angle can be measured using the locations of the
joints (ji−1, ji, ji+1). The mapping of joint IDs to each joint in database B is explained in (2).

B = {θ1 : (j0, j1, j2), . . . , θi : (ji−1, ji, ji+1), . . . θn} (2)

The joint angle θi can be calculated as in (3), where (xi, yi) is the extracted joint
coordinates (see Figure 3b).

θi = tan−1 yi+1 − yi
xi+1 − xi

− tan−1 yi−1 − yi
xi−1 − xi

(3)

such that relevant body joint angles are calculated for each captured image frame at time
t. Calculation of the joint angle deviation becomes complex if each captured frame is
considered, since there should be a database of correct joint angle values for each frame,
which is challenging to implement. Instead, the deviation between maximum and minimum
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values of joint angles acquired per an exercise cycle is considered. In this case, the only
requirement is to have a database with possible maximum and minimum joint angles for
each joint involved in each exercise. Consider that the minimum and maximum angles of
the ith joint of the exercise Ee are θi:min and θi:max, respectively.

Let the database F consist of reference minimum and maximum values for joint angle
data (θ1, θ2, . . . θi, . . . θn) for each considered exercise (E1, E2, . . . Ei . . . En). Then, (4) shows
how the data are stored in the database F.

F = {E1, . . . , Ee : {. . . , θi : (θi:re f min, θi:re f max), . . . }, . . . , En} (4)

Using the reference minimum and maximum joint angles (i.e., θi:re f min, θi:re f max), the
posture deviation for the eth exercises at time t, D can be calculated as in (5). Mean square
error is utilized as the joint deviation since deviations can be negative and positive.

D =
√

∑(θi:min − θi:re f min)2 + (θi:max − θi:re f max)2 ∀ i ∈ eth (5)

The second parameter to evaluate the correctness of an exercise is the movement speed
per cycle (defined as S). Let the image frame fo indicate the initiation of one exercise cycle,
which is acquired at time t = To. Then, fp frame represents the end of that cycle at t = Tp.
Then, the speed per cycle S can be calculated as in (6). The frames corresponding to the
minimum and maximum joint angles are used to identify the initiation and completion
frames of an exercise cycle.

S = 1/(Tp − To) (6)

Finally, calculated posture deviation (i.e., D) and the movement speed (i.e., S) are used
to evaluate the exercise correctness in each cycle.

3.2. Exercise Correctness Score

The goal of this module is to evaluate the correctness of an exercise performed by
a user. Although the mathematical modeling of the relationship between perceived pa-
rameters (i.e., posture deviation, D and movement speed, S) and exercise correctness is
challenging, linguistic explanations based on expert knowledge can provide insights. In
this context, fuzzy logic can be employed to model this process, which involves unknown
dynamics and linguistic relationships [26]. Fuzzy logic is a universal approximator that
can map the nonlinear relationship between input and output spaces through linguistic
expressions [27,28]. Additionally, the user parameters perceived by the robot may contain
noise due to limitations in the vision-based detection of human body joints. In contrast,
fuzzy logic effectively handles imprecise sensory information [29]. Furthermore, the rela-
tionships between input parameters and exercise correctness should be adapted to each
exercise. Fuzzy logic possesses adaptive abilities, making it well-suited for evaluating
exercise correctness based on the perceived information. Hence, fuzzy logic is utilized to
develop the module to evaluate the correctness of an exercise performed by a user based
on the perceived information.

The inputs of the fuzzy logic module are the posture deviation, D, and movement
speed, S. Figure 4a,b depict the corresponding input fuzzy membership functions. Non-
singleton fuzzy sets have been chosen to cope with the uncertainties in the inputs. The
membership function for D has been defined with the three triangular fuzzy sets; L: Low,
M: Medium, and H: High. The membership function for S has been defined with the
three triangular fuzzy sets; S: Slow, G: Good, and F: Fast. The ranges D and S should
be varied with the exercise a user is conducting since the amount of variation in body
joint angles and the expected speed differ from one exercise to another. The ranges of the
input membership functions are adapted with Ke and Le to facilitate the adaptation of the
fuzzy logic module for different exercises. The parameters Ke and Le define the possible
posture deviation and the speed range for the eth exercise. These range parameter values
are derived by analyzing a set of typical series of exercise cycles, and obtaining the average
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for each selected parameter. These data are pre-stored in the database and retrieved when
they are required.

The output of this fuzzy logic module is the correctness score of an exercise performed
by a user (defined by C). The output membership function is given in Figure 4c. The output
membership function has five triangular fuzzy sets; VL: Very Low, L: Low, M: Medium,
H: High, and VH: Very High. The fuzzy rule base given in Table 1 maps the input fuzzy
sets with the output fuzzy sets. There is a particular speed that is most effective for a
specific exercise, and performing it too fast or too slow would not be as impactful. Similarly,
deviation in the postures should be minimized to make the exercise perfect. These facts
were considered in formulating the rule base based on expert knowledge. The fuzzy sets in
the output membership function are defined by equivalently dividing the output range in
such a way that the minimum and the maximum output are in the range [0, 100]. The fuzzy
logic module is considered to be a Mamdani-type system with the center of area method
for the defuzzification. A C value closer to 100 indicates that the exercise is performed
flawlessly, while 0 indicates that the exercise is not performed at a satisfactory level.

𝜇𝐷

0 K𝑒  /2 K𝑒

(a)

L M H

0

1

𝜇𝑆

0 L𝑒  /2 L𝑒

(b)

0

1

S G F

-25  0   25   50   75             100   125

L M H VHVL

𝜇𝐶

(c)

1

L M H

posture deviation D 

movement speed S 

correctness score C 

Figure 4. Membership function of the fuzzy logic module developed for evaluating the correctness of
exercises. (a): the input membership function for D, (b): the input membership function for S, and
(c): the output membership function.
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Table 1. Rule base of the fuzzy logic module.

Input Memberships
Deviation D

L M H

Movement speed S

S H L VL

G VH M L

F H L VL

3.3. Emotion Generation

Expressing emotions through non-humanoid robots can be challenging [30]. Therefore,
adopting a systematic approach to generate emotions effectively is crucial. One effective
method is utilizing an emotion space model to represent and assess emotions. Various
options are available in this context, ranging from 1D to 4D emotion space models [31]. The
application and the desired number of emotions should be accounted for to determine the
most suitable model.

In the proposed system, the exercises evaluation unit generates a correctness score in
the range [0, 100] for each exercise cycle. Emotions can be mapped by setting threshold
values at specific positions along the continuum of correctness values, which spans from
0 to 100. This enables the mapping of multiple emotions by defining distinct regions.
However, due to the dynamic nature of the scenario and the limitations of the hardware
setup, incorporating multiple emotions may result in a less smooth emotion transformation.

Existing literature based on emotion space models reveals various approaches to
express emotions using non-humanoid robots such as movement path, speed, color indi-
cations, and sound [32,33]. Using multiple unique techniques allows for distinguishing
between emotions easily. Thus, the proposed system uses three different methods to ex-
press an individual emotion with its level. Those are movement pattern, movement speed,
and reconfiguration-based visual indication. As one emotion is the opposite of the other,
making the transition recognizable while being smooth is vital. The proposed emotion
model is inspired by the valence–arousal model [34]. Valence discriminates between pos-
itive and negative emotions, while arousal stands for the energy level of each emotion.
Happiness refers to high valence, high arousal expression, whereas sadness refers to low
valence, low arousal expression. According to the work [34], movement patterns can be
used to represent the valence where jerky motion indicates the negative and a smoother
motion pattern is used for the positive expression. Furthermore, speed can be used to
indicate the level of energy, which is arousal. Apart from that, the proposed system uses
one more technique to distinguish emotions in view of valence. Visual indication of the
emotion is a highly efficient way to represent it such that a user can easily understand the
expression well. The proposed system uses a sticker arrangement placed on top of the
robot to indicate emotion as a facial expression similar to a human. This sticker placement
is aligned in such a way that the reconfiguration can produce a unique human-like visual
aid. Reconfiguration is a unique feature of Smorphi, the mobile robot that is used in the
proposed system. Figure 5 shows the emotion model used in the proposed system. It also
shows how the expression modalities are mapped to specific emotions.

The proposed system uses O-shape and S-shape configurations for the emotion expres-
sion through reconfiguration based visual aid. Figure 6 shows the reconfiguration-based
emotions that can be generated by the robot.
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Figure 5. Emotion space model configured for the proposed system.

(a) (b)

Figure 6. Smorphi configurations with labeled top for emotion expression. (a): happy expression
with O shape and (b): sad expression with S shape.

After receiving the exercise’s correctness score at cycle t (i.e., Ct), the average correct-
ness score at cycle t (defined as Ĉt) is calculated as in (7) considering the correctness scores
received for the immediate past three cycles. This average calculation is performed every
three cycles to avoid the high variations in emotion output that could not be handled by
reconfiguration as well as to account for the history of exercise performance by a user. Two
threshold values are introduced to define the emotion regions based on the range of Ĉt.
Algorithm 1 shows the flow of the emotion generation based on the average correctness
score. According to the output emotion, the robot motion profile is derived. The robot
moves on a jerky path for the sad emotion expression, and for the happy emotion, it follows
a smooth circular path. Furthermore, the robot’s movement speed is calculated based on
the degree of each emotion level. This process is given in Algorithm 2.

Ĉt =
1
3

t

∑
t−2

Ct (7)
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Algorithm 1 Emotion derivation

Ĉt;
upperthreshold;
lowerthreshold;
emotion← none
emotionlevel ← 0
if Ĉt ≥ upperthreshold then

emotion← happy

emotionlevel ← (
Ĉt − upperthreshold

100− upperthreshold
) ∗ 100

else
if Ĉt ≤ lowerthreshold then

emotion← sad

emotionlevel ← (
lowerthreshold− Ĉt

lowerthreshold− 0
) ∗ 100

end if
end if

Algorithm 2 Motion pattern, robot speed calculation

emotion;
emotionlevel;
maxspeed;
motionpattern← none
speed← 0
if emotion = happy then

motionpattern← circular

speed← (
emotionlevel

100
) ∗maxspeed

else
motionpattern← jerky

speed← (
emotionlevel

100
) ∗maxspeed

end if

The robot is commanded to follow the motion profile and the speed determined by the
algorithms. These motion cues are predefined for both cases of emotions. The navigation
controller of the robot derives linear velocity components of the robot in x and y directions
at time t (defined by (vxt , vyt)). Here, the robot’s movement is holonomic. Hence the
angular displacement of the robot is not required for circular loop motions.

Let the motion pattern be circular with a fixed radius and speed is vt at time t. Let ϕ
be the current position on the path. Thus, directional linear velocity components of the
robot (vxt , vyt) can be calculated according to (8). The directional velocity components are
derived according to (9) for the jerky motion. Here, α is a constant that controls the amount
of jerkiness. The wheel angular velocities corresponding to the linear velocity components
are calculated based on the kinematic model of the robot. The motors are commanded to
follow the derived wheel velocities.[

vxt

vyt

]
= vt

[
cos(ϕ)
sin(ϕ)

]
(8)

[
vxt

vyt

]
= vt

[
cos(ϕ) + sin(αϕ)
sin(ϕ) + cos(αϕ)

]
(9)
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4. Experiments and Results
4.1. Experimental Setup

Normal squats and sumo squats were considered for the experiments (see Figure 7b,c).
These two exercises were often conducted in domestic environments and are essential to
verify the correctness of body joint movements. The user maintained a distance from the
laptop in such a way that the camera captured the whole body’s joints. The robot was
placed in front of the user in order to perform the emotional expression. The experiment
setup is depicted in Figure 7a. The setup consisted of a laptop computer that handles
the vision-based perception and processing. The built-in front camera of the laptop was
used to capture the video. No additional data collection or training was performed as
the detection processing module uses pre-trained models. The robot was initiated with
the happy configuration without movements. The experiments commenced with a warm
greeting and then provided a video guide to follow the specific exercise by the computer.
The user then performed the exercise, referring to a guide video on the computer screen. In
order to observe and verify the transition of emotions, the user was instructed to perform
the exercise incorporating correct and incorrect posture variations. This process allowed
for the examination of emotional changes in response to different performance scenar-
ios. The important variables of the system were recorded for each time step throughout
the experiment.

(b)(a) (c)

The PC

User

Smorphi robot 

Figure 7. Experimental setup. (a): Hardware setup with a user. (b): A user performing normal squats.
(c): A user performing sumo squats.

4.2. Results and Discussion

The results obtained with respect to the normal squat exercise are displayed in Figure 8.
The variations in the emotions and the robot speed with the average correctness score
during this experiment are depicted in Figure 9. Table 2 represents the results for the first
15 cycles of normal squat exercise performance. The variation in the parameters during the
second cycle is considered for the explanation. Knee and hip flexion are the movements that
are required to be monitored during the squat exercises. Therefore, variations in knee and
hip angles are considered in evaluating the exercise’s correctness. These were identified
from the pre-stored data in the posture reference database. The posture variation captured
by the camera during the second cycle is shown in Figure 10.
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Figure 8. Normal squat experiment correctness evaluation results.

Figure 9. Normal squat experiment emotion expression results.

t = 0.00s t = 0.37s t = 0.69s t = 0.83s t = 1.38s

t = 1.67s t = 1.76s t = 1.88s t = 2.07s t = 2.86s

Figure 10. Normal squat correct posture variation.
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Table 2. Normal squat performance results.

Exercise
Cycles

Posture
Deviation

Cycle
Speed

Correctness
Score

Average
Correct-

ness Score
Emotion Robot

Speed

1 23.12 0.43 66.98

83.57 Happy 0.382 13.66 0.53 83.71

3 12.38 0.46 100.00

4 13.82 0.47 98.32

90.31 Happy 0.495 16.70 0.46 86.50

6 17.10 0.41 86.10

7 11.00 0.51 88.99

70.40 Happy 0.178 15.10 0.38 99.13

9 39.83 0.59 23.08

10 53.76 0.63 9.01

26.15 Sad −0.2311 33.14 0.25 45.12

12 36.53 0.60 24.33

13 53.74 0.65 8.68

8.45 Sad −0.5114 88.57 0.82 8.33

15 87.81 0.78 8.33

The maximum knee and hip joint angles captured by the system were 179◦ and 182◦,
while the minimum knee and hip angles were recorded as 52◦ and 61◦, respectively. The
maximum reference angle defined for knee and hip angles was 180◦, while the minimum
reference angle was 65◦ for both. Thus, the posture deviation was observed as 13.78◦.
According to the fuzzy membership functions that correspond to this exercise, this value
has a higher degree of membership for the Low deviation region and a trivial degree of
membership for the Medium deviation region. The movement speed was recorded as 0.53,
slightly higher than the reference movement speed corresponding to the exercise (reference
speed is 0.38). Thus, a correctness score of 83.71 was received for this cycle, suggesting
that the user is correctly performing the exercise. Here, the user performed the exercise
correctly, and the proposed system successfully interpreted it.

The user intentionally performed some segments of the exercise incorrectly to validate
the system’s ability to identify such situations. For example, the user performed the exercise
during cycle 15 while having deviated posture movements. Figure 11 depicts the body joint
observation recorded in the system. During this cycle, minimum angles of 131◦ and 122◦

were observed for hip and knee flexion, respectively. Consequently, the deviation value was
calculated as 87.8◦. In addition, the observed movement speed was 0.6 m s−1 indicating a
too-fast movement speed. As a result, the fuzzy logic system returned a correctness score
of 8.33, suggesting that the user was performing the exercise incorrectly.

The variations in the average correctness score and the corresponding emotions of
the robot is given in Figure 9. The average correctness value at the end of the third cycle
was 83.57. Since the average value is higher than the threshold value of 60, the robot
started to express a happy emotion with a circular movement. The movement speed was
0.38 m s−1. The user performed the exercise correctly in the subsequent three cycles, and
the average correctness score observed at the end of the sixth cycle was 90.31. As a result of
the increased happiness level, the robot speed was raised to 0.49 m s−1 to express that the
user is performing well.
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t = 0.00s t = 0.75s t = 0.99s t = 1.24s t = 1.44s t = 1.80s

Figure 11. Normal squat wrong posture variation.

At the end of the 9th cycle, the average correctness score was 70.4. This value was
higher than the predefined upper threshold, and the robot’s emotion output was happy.
However, the robot speed was lowered to 0.3 m s−1 since the average correctness score
dropped. According to these parameter values, the robot’s configuration was an O-shape,
and it was moving on a circular path with a speed of 0.3 m s−1. The same emotion with the
same speed was observed for the subsequent three cycles.

At the end of the 12th cycle, the average correctness was 26.15, which is below the
lower threshold of the average correctness score considered for sad emotion transition
(i.e., 40). So, the robot reconfigured itself to an S-shape to express a sad emotion. After
reconfiguration was performed, the robot moved on a jerky path with a speed of 0.23 m s−1.
The robot remained in this shape configuration and motion expression until the end of the
24th cycle. At the end of the 24th cycle, the robot’s emotion changed to happy, and the
robot was moving in a circular path in the O-shape. This behavior continued until the end
of the first experiment. These observations related to emotion variation suggest that the
proposed system is capable of varying the emotion as planned to give feedback to the user.

The second experiment was carried out considering a sumo squat exercise. Similar to
the previous experiments, the user performed both correct and wrong exercise cycles to
analyze the behavior of the system. Only the knee angle was considered for evaluating the
correctness of this exercise since it was the factor defined in the database. Figure 12 shows
a cycle of a user accurately performing sumo squats. The third cycle is considered here.
The maximum knee flexion has been recorded as 180◦, where the leg is fully stretched. As
for the minimum angle, 95◦ was observed. The reference minimum for the knee flexion
angle was defined as 100◦ for this exercise.

t =0.00s t =0.50st =0.20s t =0.87s

t =0.96s t =1.09s t =1.25s t =1.72s

Figure 12. Sumo squat correct posture variation.

Hence, the posture deviation was observed as 7.87◦, which has a higher degree of
membership for the low category in the fuzzy membership function. The movement
speed was observed as 0.73 m s−1, which is closer to the expected speed level for this
exercise. Thus, the exercise correctness score received a value of 100. The system has
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correctly identified the perfectness of the exercise being performed by the user. Figure 13
shows the variation in the exercise correctness score during the second exercise. The cycle
number 20 represents a situation where the user incorrectly performed the exercises. The
posture deviation was 29.53◦, and the movement speed was observed as 0.37 m s−1. These
parameters were way off from the expectation. Thus, a correctness score of 13.78 was
received, indicating that the user was performing the exercise incorrectly.
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Figure 13. Sumo squat experiment correctness evaluation results.

Figure 14 shows the variations in robot emotion and average correctness score. Re-
ferring to the figure, an emotion transition happened at the 27th cycle. The previous
average, calculated at the 24th cycle, was beneath the lower threshold; hence the robot
expressed sad emotion with an S-shape configuration while moving in a jerky path with
a speed of 0.1 m s−1. In the 27th cycle, the average correctness score climbed above the
upper threshold, and the emotion output transformed from sad to happy as in Figure 14.
The robot reconfigured from S-shape to O-shape in this regard. The robot’s speed also
varied accordingly.

Figure 14. Sumo squat experiment emotion expression results.

The observation from the two experiments confirms that the system is effective in
evaluating the correctness of an exercise being performed by a user. The results also
validated that the robot is capable of expressing emotions based on the variation in the
exercise correctness. Furthermore, the robot configuration, movement path, and speed are
effectively varied for expressing the required emotion.
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5. Conclusions

A reconfigurable robotic system that can evaluate the correctness of an exercise being
performed by a user and gives emotion-based feedback to the user has been proposed. The
system consists of two segments, one for exercise correctness evaluation and another for
robot emotion generation.

The exercise correctness evaluation module implemented using fuzzy logic determines
the correctness of an exercise based on a set of parameters derived from the skeletal
information. A monocular vision-based system is used to acquire skeletal information
about a user during an exercise scenario. The posture deviation and the movement speed
are considered for evaluating the correctness. The system has been developed in such a way
that it can be adapted to various exercises by defining the reference values corresponding
to exercises of interest.

The robot’s reconfiguration, movement pattern, and speed varied per the correctness
of the exercise to generate robot emotions. The major leap of the proposed system over the
existing approaches in emotion expression is its unique emotion generation with the aid of
reconfiguration. The system also provides predefined voice feedback to the user, revealing
an idea about the correctness of the exercise.

In order to evaluate the performance of the proposed system, experiments have
been carried out considering a mixture of correct and wrong exercise scenarios. The
experimental results validated the effectiveness of the proposed system in determining
the exercise correctness and the transition of emotions per the variation in the exercise
correctness. Therefore, the proposed system would be useful as an exercise companion
that could interact and provide feedback to a user to improve exercise performance, as it
provides interactive emotional feedback that encourages the users to correct their postures.

Currently, the proposed system is only capable of evaluating one target at a time, and
the robot may fail to adapt to an environment with more than one human. The positioning
of the user is highly important as the vision system should be able to capture the whole
body of the user to generate skeletal information. As future work, it is expected that the
system will be improved to solve these limitations. Furthermore, the current system has
been implemented to express only two emotions, happy and sad, which can be further
improved to have more emotional feedback.
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