
Investigate Organizational Member Engagement
Through Financial X-ray and Artificial Neural

Networks

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy
in

Analytics

by

David Hason Rudd
Under the supervision of Professor Guandong Xu and Dr. Huan Huo

School of Computer Science
Faculty of Engineering and Information Technology

University of Technology Sydney
NSW - 2007, Australia

November 2023

© 2023 by David Hason Rudd
All Rights Reserved

https://davidhason.com




CERTIFICATE OF ORIGINAL AUTHORSHIP

I , David HASON RUDD, declare that this thesis, submitted in fulfilment
of the requirements for the award of Doctor of Philosophy Analytics, in
the School of Computer Science, Faculty of Engineering and Information

Technology at the University of Technology Sydney, Australia, is wholly my
own work unless otherwise referenced or acknowledged. In addition, I certify
that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other aca-
demic institution. This research was supported by the Australian Govern-
ment Research Training Program.

SIGNATURE:

[David HASON RUDD]

DATE: 25th November, 2023

PLACE: Sydney, Australia

i

Production Note:

Signature removed prior to publication.





ABSTRACT

Abstract. Comprehensive understanding of member engagement and churn is
imperative for employees within financial institutions and associations, necessi-
tating shifting from conventional approaches toward more sophisticated analytical

paradigms. Employing customer voice (CV), financial literacy (FL), and customer rela-
tionship management (CRM) data for churn analysis helps to define member engagement
level, facilitating effective retention strategies and fostering long-term loyalty for sus-
tained growth. Members with improved financial knowledge are better equipped to make
advantageous decisions and less likely to churn due to misconceptions or unmet expec-
tations. Concurrently, in an era where Telephonic interactions have become the norm
post-COVID-19, and emotional content derived from such conversational interactions
currently provides real-time insights into member’s sentiments, and can be utilized as
a predictor for churn modeling. Although many previous studies have explored helpful
information to analyze member’s behavior for churn, they often overlooked bridging mem-
ber engagement and churn through a holistic view of members’ interactions, emotions,
FL, and CRM data. Several approaches to addressing these issues have been introduced
using single data sources, e.g., transactional, demographic, and textual data, which are
not multifaceted views of member behavior. Current efforts are limited to three main
challenges. First, transactional data employed in several recent studies only reflected
prediction outcomes, rather than experience or underlying causes for churn. Second,
although demographic data have been employed in many studies; static data does not
capture dynamic customer satisfaction. Third, social media data (textual data) has been
employed in a few previous studies, but textual input is noisy and lacks personalized
insights, such as voice interaction and financial skills. Therefore, this thesis leverages a
multimodal modeling approach to capture multifaceted insights for member engagement.

The main themes of this thesis include

1. Introduce novel speech emotion recognition (SER) methods, developing a VGG-
optiVMD algorithm to capture real-time emotions from CV data, enabling early
detection of dissatisfaction and personalized interactions. This approach lever-
ages advanced acoustic analysis to improve customer service responsiveness and
personalize interaction strategies, directly impacting customer retention.

2. Develop an SER model using CV signal processing, harmonic and percussive compo-
nents from the Mel Spectrogram acoustic feature, and CNN-VGG16 architectures.
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This model enhances the accuracy of emotion detection, providing deeper insights
into customer sentiments and enabling more effective communication strategies.

3. Develop SMOGN-COREG semi-supervised machine-learning techniques to extract
patterns from unlabeled financial network data and subsequently predict FL
levels. This technique maximizes the use of available data, reducing the need for
extensive labeled datasets and lowering the barriers to comprehensive financial
literacy analysis.

4. Develop a causal model to understand root causes for churn in member-centric
organizations. This model helps tailor interventions to prevent churn and im-
prove customer engagement by identifying the underlying factors contributing to
customer departure.

5. Develop a multimodal hybrid fusion learning model that not only integrates FL
metrics, behavioral indicators, and voice emotional features; but also incorporates
essential member engagement aspect, significantly enhancing churn prediction
precision. This holistic approach provides a nuanced understanding of churn,
enabling precise targeting of at-risk customers based on a comprehensive data
profile.

6. Develop a state-of-the-art model by applying multifaceted neural network architec-
tures, data augmentation strategies, and emotion recognition algorithms. These
techniques advance the model’s learning capabilities, ensuring robust performance
even in complex and dynamic data environments.

The present study is the first to propose a multimodal hybrid fusion technique effec-
tively combining CV, FL, and CRM data, and hence providing deeper understanding of
member engagement for churn risk analysis. Empirical results from this thesis demon-
strate the developed methods’ advantages and effectiveness, which will be valuable
CRM research. This study proposes a comprehensive framework for organizations to
enhance member engagement and minimize churn by integrating disparate but inter-
related threads including financial skill, member sentiment, and financial behavioral
data. The proposed framework provides a strategic blueprint for organizations to ensure
sustainable growth and build lasting relationships with their members.

iv



DEDICATION

To my loved ones . . .

v





ACKNOWLEDGMENTS

Studying for the Doctorate of Philosophy is a long journey, and this thesis would not
have been possible without the support and encouragement from my supervisors, friends,
and relatives. A difficult part of writing the thesis has been how to adequately express
my sincere gratitude.

My sincerest gratitude to my supervisors, Professor Guandong XU and Doctor Huan
HUO, for their continuous support, motivation, enthusiasm, and inspiration and their
invaluable advice and discussion during our weekly meetings. Their guidance will remain
a positive effect throughout my future career path. I also thank them for their valuable
comments and discussion regarding the various research manuscripts that arose along
my Ph.D. journey. My sincere gratitude for the comprehensive financial assistance
provided by the Australian Government Research Training Program Stipend (RTP) and
the Faculty of Engineering and Information Technology (FEIT) Scholarship throughout
my Ph.D. study.

A large portion of this thesis has been published in various journals after peer
review by anonymous reviewers. I extend special thanks to those reviewers who provided
valuable suggestions to improve the research papers. My thanks to the friends who
accompanied me throughout my Ph.D. journey, the many conversations and fun we
experienced will remain unforgettable. Finally, I express my love and boundless gratitude
to my parents for their unconditional support and sacrifice. Their emotional and personal
support has been critical to allowing me to completely concentrate on the research and
has significantly impacted on the final thesis quality.

David HASON RUDD
Sydney, Australia, 2023.

vii





LIST OF PUBLICATIONS

Conferences

1. David Hason Rudd, Huo, H., Xu, G. (2022). Predicting Financial Literacy via

Semi-supervised Learning. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances

in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151.

pp. 304-319, Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_25. (Refer
to Chapter 4)

2. David Hason Rudd, H. Huo and G. Xu, "Causal Analysis of Customer Churn

Using Deep Learning," 2021 International Conference on Digital Society and Intel-

ligent Systems (DSInS), Chengdu, China, 2021, pp. 319-324, (Refer to Chapter
5)

3. David Hason Rudd, Rudd, D.H., Huo, H., Xu, G. (2022). Leveraged Mel Spectro-

grams Using Harmonic and Percussive Components in Speech Emotion Recognition.

In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge

Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol

13281. pp. 392-404 Springer, Cham. https://doi.org/10.1007/978-3-031-05936-0_31.

(Refer to Chapter 3)

4. David Hason Rudd, Huo, H., Xu, G. (2023). An Extended Variational Mode

Decomposition Algorithm Developed Speech Emotion Recognition Performance. In:

Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data

Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13937. pp. 291-331

Springer, Cham. https://doi.org/10.1007/978-3-031-33380-4_17 (Refer to Chapter
3)

5. David Hason Rudd, Churn Prediction via Multimodal Fusion Learning: Integrat-

ing Customer Financial Literacy, Voice, and Behavioral Data. BESC2023 (Refer
to Chapter 6)

ix



Journal

1. David Hason Rudd, Huo, H. & Xu, G. Improved Churn Causal Analysis Through

Restrained High-Dimensional Feature Space Effects in Financial Institutions.

Hum-Cent Intell Syst vol. 2, pp. 70-80 (2022), doi: 10.1007/s44230-022-00006-y.

(Refer to Chapter 5)

x



TABLE OF CONTENTS

List of Publications ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Economic imperative to minimize churn rate . . . . . . . . . . . . . 2

1.1.2 Member churn and human behavior factors . . . . . . . . . . . . . . 3

1.1.3 Leveraging emotion and financial literacy in churn prediction . . . 3

1.1.4 Multifaceted engagement analysis: diverse data for deeper insights 4

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research Core Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Ethical Considerations in AI: Safeguarding Privacy in Emotion Detection 11

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Works 15
2.1 Literature Review Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Member Engagement in Organizations . . . . . . . . . . . . . . . . . . . . . 16

2.3 Member Emotion Recognition Techniques . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Speech signal decomposition and emotion recognition . . . . . . . . 18

2.4 Financial Literacy Impact on Member Churn . . . . . . . . . . . . . . . . . 19

2.4.1 Leveraging unlabeled data in predicting financial literacy . . . . . 20

2.5 Innovations and Methodologies in Churn Prediction . . . . . . . . . . . . . 20

2.5.1 Causal inferences for churn . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Multimodal Churn Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



TABLE OF CONTENTS

2.7 Multifaceted Member Engagement Analysis Deficit for Churn Prediction 23

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Speech Emotion Recognition Predictive Models in Churn Analysis 27
3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Preliminary Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Acoustic signal low-level descriptors . . . . . . . . . . . . . . . . . . 31

3.2.2 Acoustic feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Method 1: Speech emotion recognition using Mel spectrogram har-

monic and percussive components . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Method 2: VGG-optiVMD extended VMD algorithm for SER . . . . 38

3.4 Experiment Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Method 1: Harmonic-Percussive Mel spectrogram . . . . . . . . . . 46

3.4.3 Method 2: VGG-optiVMD . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Harmonic-Percussive Mel spectrogram . . . . . . . . . . . . . . . . . 49

3.5.3 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 VGG-optiVMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Member Financial Literacy Prediction Role in Churn Analysis 53
4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Tackling online survey challenges with semi-supervised learning . 57

4.1.2 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Preliminary Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 GOREG for unlabeled data . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 SMOGN for imbalanced dataset . . . . . . . . . . . . . . . . . . . . . 61

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 SMOGN-COREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Experiment Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



TABLE OF CONTENTS

4.4.2 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Member Churn Causal Analysis in Multimodal Fusion Learning 73
5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Preliminary Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Membership churn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Calculating member churn rate . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Recency, frequency, and monetary analysis in churn . . . . . . . . . 77

5.2.4 Causal analysis fundamentals . . . . . . . . . . . . . . . . . . . . . . 78

5.2.5 Causal Inference with DoWhy . . . . . . . . . . . . . . . . . . . . . . 79

5.2.6 High dimension feature space . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Churn predictive method . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.3 Causal inference method . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Experiment Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Churn Prediction Method . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.3 Causality Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Churn prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.2 Causality analysis results . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Churn Prediction via Multimodal Fusion Learning: Integrating Mem-
ber Financial Literacy, Voice, and Behavioral Data 93
6.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Preliminary Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Definition and evolution of multimodal learning . . . . . . . . . . . 97

xiii



TABLE OF CONTENTS

6.2.2 Multimodal fusion learning methods types . . . . . . . . . . . . . . . 98

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Data prepocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.3 Proposed multimodal fusion learning . . . . . . . . . . . . . . . . . . 103

6.3.4 Feature representation space and translation . . . . . . . . . . . . . 104

6.3.5 Hybrid fusion strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Experiment Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.2 Evaluation metrics for multimodal modeling performance . . . . . 109

6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Chapter 7 115
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 121

xiv



LIST OF FIGURES

FIGURE Page

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Thesis roadmap overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Common emotion recognition methods . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Mel spectrograms of voice signal clearly illustrate amplitude and frequency

difference for each emotion. Frequencies that contribute more than orange

and white colours are shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Harmonic and percussive components for Mel spectrograms for neutral emotion 36

3.4 Hybrid feature map output visualized in 2D. . . . . . . . . . . . . . . . . . . . . 37

3.5 Method-1 workframe: leveraging Mel Spectrogram by harmonic and percus-

sive components to improve SER performance. . . . . . . . . . . . . . . . . . . . 38

3.6 Speech signal decomposition in three modes. . . . . . . . . . . . . . . . . . . . . 41

3.7 Typical speech signal decomposed over different modes. Various K and α

parameter sets capture different nonstationary signal properties: a) too small

K and α causes under-segmentation of noisy sub-signals with mode overlap;

b) too large K and α captures macro-segmented data from the input signal

and distribute informative signal data to different modes; c) too small K and

too large α causes neighboring mode interference, with important signal data

distributed to different modes; d) too large K and too small α causes over-

binning and duplicate signal modes with improper decomposition structure;

e) optimum K = 3 and α= 1200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Optimizing emotion recognition classification from signal data augmentation

to VGG16 network training using VGG-optiVMD. . . . . . . . . . . . . . . . . . 44

3.9 Enhancing spectral feature discrimination: VGG-optiVMD’s proficiency with

3D Mel spectrogram, MFCCs, and chromagram. . . . . . . . . . . . . . . . . . . 45

4.1 Synthetic examples in SMOGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



LIST OF FIGURES

4.2 Proposed SMOGN-COREG model workflow . . . . . . . . . . . . . . . . . . . . . 64

4.3 Target variable distribution pre and post SMOGN application . . . . . . . . . 68

4.4 The SMOGN-COREG and M5 models achieved the better MAE result. . . . . 69

4.5 R2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Churn categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Example causal graph for churn . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Member accounts (closed and non-closed) for 6 months . . . . . . . . . . . . . . 82

5.4 Proposed method to extract feature values using a sliding observation window

onto a dataset. The observation and outcome time windows = 12 and 6 months,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Framework overview for the proposed churn predictive model . . . . . . . . . 84

5.6 Example case for the 10 highest predictive features with influence > 10% . . 85

5.7 Churn predictive model performance using several evaluation metrics and

best-practice classifiers. The highest test accuracy was achieved using the

proposed ensemble ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 The SHAP graph illustrates feature impacts on prediction outcomes. Feature

acc_balance_change_amount and sg_recency are the most important features

that improve prediction accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 The PDP plot shows that six causal assumptions can be related to features

since they are identified as the highest predictive power variables for model

prediction outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10 The causal graph illustrates the causal link between attributes and causal

assumptions, confirming the interconnected factors influencing churn decisions. 90

6.1 Multimodal fusion learning method types . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Proposed multimodal hybrid fusion learning method workflow to integrate

various modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Proposed hybrid fusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 (a) Multimodal model performance significantly improved by combining LF

and DF fusion (i.e., hybrid fusion); and (b) more members were identified as

mid and high risk using the proposed hybrid fusion method. . . . . . . . . . . 111

6.5 Hybrid fusion achieves higher AUC than the other methods considered . . . . 111

6.6 Incorporating textual features to represent member review and feedback from

webpages and emails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvi



LIST OF TABLES

TABLE Page

1.1 Summary of literature gaps and limitations . . . . . . . . . . . . . . . . . . . . 2

2.1 Comparative Overview of Speech Emotion Recognition Technologies. . . . . . 18

2.2 Comparative studies and recent modalities . . . . . . . . . . . . . . . . . . . . . 23

3.1 Sample voice distribution in the Berlin EMO-DB dataset . . . . . . . . . . . . 45

3.2 Prediction accuracy impacts from feature extraction technique, sampling rate,

and window size on EMODB dataset. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Confusion matrix for the proposed model, achieving 92.71% average accuracy

on the EMO-DB dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Emotion classification performance: Automatic decomposition parameter (K
and α) selection using VGG-optiVMD . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Summary of Regression Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Regressor models for comparision . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 RMSE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 PCC results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Churn rate calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Ensemble ANNs network architecture for predicting churn. . . . . . . . . . . . 84

5.3 Model performance metrics for ten classifiers . . . . . . . . . . . . . . . . . . . . 88

5.4 Causality analysis illustrates assumptions that have causal effects on cus-

tomer churn are valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Databases employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Example evaluating churn risk prediction using MAP metrics . . . . . . . . . 110

6.3 Fusion method performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvii





C
H

A
P

T
E

R

1
INTRODUCTION

Member engagement is paramount to organizational vitality. Engaged members actively

participate in events and fully utilize the services offered, sustaining the organization’s

core purpose. High engagement levels translate into numerous benefits for the organiza-

tion, with reduced churn rates being a particular advantage, since organizational growth

is intrinsically linked to its ability to retain existing members. Organizations develop an

environment that encourages members to renew their commitment by providing dynamic

and compelling content that resonates with them. This creates a stable and reliable

member base that is indispensable for the organization’s long-term success and sustain-

ability. However, maintaining this engagement level becomes increasingly challenging as

organizations navigate the complex global market dynamics. In the increasingly complex

global market landscape, businesses constantly face dual challenges to fully understand

member’s engagement and retain them. Traditional customer relationship management

(CRM) strategies evolve as industries grow and technology advances, with businesses

now placing significant emphasis on both acquiring new members and ensuring existing

member loyalty. Retaining members is not only crucial but also economically significant

for sustained growth and profitability within the financial sector. For instance, American

Express found that loyal customers are likely to spend up to 67% more than new ones [1].

To ensure a comprehensive analysis of organizational member engagement and churn,

it’s vital to address several identified gaps in the literature. Table 1.1 presents a sum-

mary of knowledge gaps. Traditional CRM strategies predominantly focus on member

acquisition rather than retention, overlooking the cost-effectiveness of nurturing existing
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members. Current models often underutilize multimodal data, limiting the depth and

accuracy of churn predictions. There’s also a significant gap in integrating emotional

data, which can preempt churn indications. Moreover, reliance on static demographic

data fails to capture the dynamic nature of customer satisfaction, and most systems

lack real-time prediction capabilities. These gaps highlight the necessity for enhanced

multimodal integration and real-time analysis in churn prediction models.

Table 1.1: Summary of literature gaps and limitations

Gap Description
1 Traditional CRM strategies emphasize member acquisi-

tion over retention, not recognizing the cost-effectiveness
of nurturing existing members.

2 Current models often fail to utilize multimodal data fully,
restricting the depth and accuracy of churn predictions.

3 Significant gap in integrating emotional data, which can
provide early warnings of potential churn.

4 Over-reliance on static demographic data does not reflect
the dynamic nature of customer satisfaction.

5 Most systems lack real-time prediction capabilities, lim-
iting their effectiveness in proactive churn management.

This thesis investigates each facet of this multifaceted problem, providing insights,

methodologies, and implications for businesses globally. Section 1.1 presents the research

background and motivation, and Sections 1.2 to 1.4 discuss the objectives, limitations,

and contributions, respectively. Section 1.5 describes the thesis structure.

1.1 Background and Motivation

1.1.1 Economic imperative to minimize churn rate

Historically, many businesses, particularly growing ones, have focused almost exclusively

on member acquisition, using the simple logic that more members equaled more business.

However, the current economic environment, marked by increased competition, has

compelled businesses to reconsider this approach. Bringing in new members is a costly

process, in terms of both monetary cost and resources expended. Retaining existing

members, who have already been oriented into the business and its offerings, can be more

cost-effective, providing larger transaction values and more frequent interactions [2].
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1.1. BACKGROUND AND MOTIVATION

This realization has led to development and widespread adoption of the churn rate

metric to quantify the rate at which a business loses members, customers, or subscribers

over a specified timeframe. High churn rate signals potential problems with product

offerings or service quality and has direct financial implications due to associated lost

revenue. Member-centric organizations must overcome high churn rate by addressing

both the underlying causes of churn and reinvesting in acquiring new members to replace

those who left [3].

1.1.2 Member churn and human behavior factors

Factors contributing to member churn are diverse, including voluntary churn, where

members leave due to perceived better alternatives or dissatisfaction; involuntary churn,

due to unavoidable circumstances, e.g., financial problems; incidental churn, triggered

by relocation, etc.; and deliberate churn, rooted in unhappiness with service quality,

pricing, or unmet expectations. In the information age, members are more aware and

have a plethora of choices at their fingertips, hence the root causes for churn become

more sophisticated, and understanding these become paramount.

Understanding human behavior, particularly in financial decision contexts, adds

another layer of complexity. Cognitive biases are commonly pivotal in how individuals

perceive and interact with financial services. For example biases, such as anchoring

bias; availability heuristic; and bandwagon effects, where decisions are based on recent

information, can significantly impact member trust in a financial institution, particularly

in the aftermath of negative news or rumors [2, 4].

1.1.3 Leveraging emotion and financial literacy in churn
prediction

The onset of the digital transformation in organizations and associated explosion in

data availability and granularity have revolutionized churn prediction. Businesses are

no longer limited to analyzing transactional data or demographic factors, and can now

access diverse sources for member-related information.

One important churn prediction area is analyzing member emotions derived from

voice and text interactions. Understanding these underlying sentiments allows busi-

nesses to predict potential member churn before it occurs. Financial literacy (FL) is

another crucial factor, particularly within financial service organizations. Members’

understanding of financial products and services is directly related to their satisfac-
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tion levels. A well-informed member can navigate financial products more efficiently,

leading to reduced churn; whereas those who struggle might become gradually more

dissatisfied, increasing the likelihood they move away from complex financial products

[3]. A real-world example highlighting the link between customer emotion, financial

literacy, and financial products is seen in the area of mortgage handling. When customers

understand the implications of interest rates and the benefits of refinancing options,

their satisfaction and trust in the financial institution increase. For instance, during the

2008 financial crisis, customers with higher financial literacy were less likely to default

on mortgages because they were more likely to renegotiate their loan terms or refinance

due to their understanding of changing interest rates. This knowledge not only impacts

their financial decisions but also reduces frustration and anxiety, encouraging a stronger

emotional bond with the financial service provider [5].

1.1.4 Multifaceted engagement analysis: diverse data for deeper
insights

Sophisticated analytical methodologies are essential to understand the present plethora

and diversity of member data. Multimodal machine learning appears to be a promising

solution to this challenge [6], integrating multifaceted data modalities, ranging from

conventional CRM repositories to sentiment analytics from member engagements, and

even FL measures. Thus, multimodal learning endeavors to construct a detailed and

holistic image of member behavior in financial organizations, creating a "financial X-

Ray" for members. This expansive data perspective is pivotal to refine churn prediction

algorithms. Combining diverse data sources ensures comprehensive understanding

of member motives and actions, ensuring robust and strategically actionable churn

predictions in real-world scenarios.

Member retention is a critical factor for business success in the current global market.

Competition is intense, and digital advancements have led businesses to focus on member-

centric models, where member churn, i.e., the rate at which customers discontinue

services, indicates customer satisfaction and business health. Business models for finance,

telecom, and e-commerce are strongly based on recurring subscriptions, hence churn

can significantly affect revenue and harm brand reputation. Traditional approaches to

managing churn have relied on transactional data and demographic analysis, but these

methods have become inadequate due to the wealth of data now available, including text,

images, and audio, which traditional methods may not fully utilize.
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1.1. BACKGROUND AND MOTIVATION

Member behavior is complex and influenced by cognitive, emotional, and situational

factors. Cognitive biases, e.g., anchoring effects and availability heuristics, can signifi-

cantly alter financial decision making and increase perceived risk, potentially leading

to increased churn. Recent studies have highlighted the importance of distinguishing

between immediate churn triggers and underlying churn predictors. Although triggers

are direct causes for discontinuing service, predictors can offer subtle indicators for

potential churn, and recognizing these predictors allows businesses to act before churn

occurs.

To conduct a comprehensive analysis of churn and member engagement in financial

organizations, it is essential to integrate various models that reflect member emotions,

financial literacy, and churn propensity. Previous studies have primarily focused on

utilizing a single model based on demographic and CRM data. However, there is a

lack of research incorporating emotional and financial literacy features to predict mem-

ber engagement and churn within organizations. While state-of-the-art single-model

approaches exist, they are not necessarily tailored for analyzing churn and member

engagement.

The current state-of-the-art in speech emotion recognition (SER) model is repre-

sented by the method proposed by Zhao et al. [7]. This method employs a combination of

convolutional neural networks (CNN) and long short-term memory networks (LSTM)

to analyze log Mel spectrograms for emotion recognition. It has achieved a notable

accuracy of 95.89% on the EMODB database, outperforming various other methodolo-

gies listed in the study, making it a leading technique in the field of SER. In recent

advancements within the field of financial literacy prediction, Rudd et al. [8] developed

the SMOGN-COREG model, which leverages semi-supervised learning (SSL) techniques

to enhance the accuracy of financial literacy predictions using unlabeled financial data.

This innovative approach incorporates the Synthetic Minority Over-sampling Technique

for Regression (SMOGN) alongside a co-regression (COREG) algorithm, effectively ad-

dressing the challenges posed by unbalanced datasets. The experimental outcomes

demonstrated that the SMOGN-COREG model significantly outperforms traditional

regression models, achieving higher prediction accuracy on several financial datasets.

This underscores the potential of semi-supervised methods in utilizing unlabeled data to

improve predictive performance in financial applications. In recent advancements within

the field of financial literacy prediction. In the financial and banking sector, the latest

state-of-the-art for customer churn prediction has been significantly advanced by the

work of Tran et al. [9]. They explored the impact of customer segmentation using diverse
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machine learning models, including k-means clustering, k-nearest neighbors, logistic

regression, decision trees, random forests, and support vector machines. Their findings

indicated that the random forest model was most effective, achieving a 97% accuracy

rate.

Effective churn management requires an advanced analytical framework that can

handle multiple data types and provide a more profound understanding of customer

behavior. Thus, there is a need for holistic churn analyses that incorporate diverse data

types and ranges, including psychological and behavioral factors, to provide comprehen-

sive explanations for member churn dynamics.

Given these realities, the motivation for my Ph.D. research is a compelling need, and

I must recognize the challenges and potential within the modern data deluge. This study

aims to navigate this duality by considering the following aspects.

1. Bridge the evolving data landscape. Member data is constantly, and signifi-

cantly, growing. Hence, it is essential to harmonize various data streams into a

unified, actionable narrative [10]. The proposed multimodal approach enables a

more robust understanding of member behavior and churn patterns by combining

data sources.

2. Unbiased churn prediction. Inherent biases in traditional churn prediction

models, originating from over-reliance on singular data sources or overly simplistic

algorithms, can distort reality. The proposed core approach will leverage advanced

machine learning techniques on multiple member data sources to deliver more

accurate and critically unbiased churn likelihood views and predictions.

3. Financial X-Ray analytical approach to churn. Transcending conventional

method boundaries will enable holistic understanding of member churn. This

360-degree perspective, called the member Financial X-Ray, can explore deep

into client behavior intricacies, offering insights to empower business’ strategic

and informed decisions. The Financial X-Ray is a comprehensive approach to

understanding members’ FL levels and behaviors by exploring various dimensions

and factors contributing to churn, well beyond surface level analyses. Exploring the

underlying dynamics and patterns that influence member decisions can identify

key drivers and hidden trends for churn, and develop targeted strategies to mitigate

member attrition. Businesses can leverage insights from Financial X-Ray to make

confident data-driven decisions that align with member needs and preferences.

This comprehensive understanding of member behavior will empower businesses
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1.2. RESEARCH OBJECTIVES

to optimize their offerings, enhance member engagement and experiences, and

establish long-term relationships with clientele.

Contemporary business environment dynamism incorporating increasing data avail-

ability and evolving member behaviors require a paradigm shift in understanding and

addressing member churn, empowering businesses to rethink traditional models. This

thesis considers this challenging but promising interaction, aspiring to illuminate paths

to greater member understanding, retention, and, ultimately, business success.

1.2 Research Objectives

Core objective. This thesis’ main research objective is to develop a comprehensive mul-

timodal framework leveraging diverse data sources, including member FL, behavioral

data, and customer voice (CV) interactions. The specific output is to develop an actionable

model that informs targeted engagement and retention strategies. Therefore, this thesis

investigates intricate relationships among multiple modalities, including para-linguistic

emotion detection from vocal interactions, member FL levels, and CRM data, to enhance

churn risk prediction accuracy and robustness for financial service organizations. Ex-

ploring these modalities and interactions will ensure an effective multimodal fusion

learning mechanism to address each modality and synergize their strengths to ensure

more precise churn predictions.

Each modality represents a critical component for the broader churn prediction

landscape. This thesis will investigate challenges and opportunities posed by each

modality to develop holistic understanding culminating in a multimodal fusion learning

framework, leveraging the collective power from the three modalities.

Objective 1.1 for modality: speech emotion recognition. Improve paralinguistic

emotion detection accuracy and reliability by applying modern speech signal decomposi-

tion methods. The objective is to extend current signal based emotion detection method-

ology boundaries by incorporating novel signal decomposition techniques, ensuring that

emotions extracted from vocal interactions accurately reflect member sentiments.

Objective 1.2 for modality: member financial literacy level. Develop a quantitative

framework to assess FL levels. This framework will identify key patterns within survey

data and large unlabeled financial network datasets with the ultimate goal to build a

data-driven and empirical framework to measure financial literacy as a critical predictor

of member behavior and churn. This objective underscores the need to enhance member

retention strategies.
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Objective 1.3 for modality: customer segmentation for churn. Develop a multidi-

mensional framework integrating causal and predictive models, with high-dimensional

CRM data, and identify root causes for churn.

1.3 Research Problems

Core problem 1. Considering the primary goal to assess benefits from integrating

multiple modalities to predict churn risk, this thesis will attempt to develop a solution

based on the following research question.

• To what extent does fusing the diverse modalities, including member FL, para-

linguistic emotion detection from vocal interactions, and CRM data, contribute to

churn risk prediction accuracy?

The solution to this problem will provide valuable insights into the fusion effectiveness,

highlighting potential accuracy gains achievable from predictions based on individual

modalities, and also will establish baseline data such as simple demographic data. This

foundation enables the integration of complex data modalities, such as financial literacy,

emotion detection, and CRM information, to significantly improve churn prediction

accuracy.

Core problem 2. Churn risk prediction robustness, which is the model’s ability to

maintain high levels of prediction accuracy and reliability across various conditions and

data variations, depends on successfully integrating individual data modalities into a

coherent prediction system. Robustness here aims to integrate different data sources such

as financial literacy, emotion detection from voice, and CRM data effectively, ensuring the

churn prediction model remains effective and accurate in real-world scenarios where data

may be incomplete, noisy, or highly variable. This requires a fusion learning mechanism

to consolidate each modality’s strengths while mitigating inconsistencies and anomalies.

The research challenge is to identify and implement a multimodal fusion learning

mechanism that ensures the churn prediction model resilience. The relevant research

question is as follows.

• What multimodal fusion learning mechanism offers maximum robustness?

The main research question intricacies are grounded in profoundly understanding

each modality. Therefore, each sub-question aims to dissect a specific modality, addressing

its challenges and potential, and contribute to answering the main research questions.
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Problem 1.1 The first research objective for this thesis focuses on detecting emotions in

speech since recognizing the vital role emotions play in member churn and improving

their detection accuracy is essential. This will enhance emotion detection by investigating

speech signal decomposition contributions to overall churn prediction accuracy. Therefore,

this thesis will propose a solution based on the following research question.

• How can para-linguistic emotion detection be improved through speech signal

decomposition techniques?

Problem 1.2. Financial literacy is a key aspect for member behavior in financial or-

ganizations, but quantitative assessment is complicated. The challenge is to discern

meaningful patterns from diverse survey results and unlabeled financial data to measure

financial literacy, a significant churn predictor, accurately. The research question guiding

this exploration can be expressed as follows.

• How can member FL level be quantitatively assessed by identifying significant

patterns in key attributes within survey and unlabeled financial data?

Problem 1.3. CRM data is vast and often high-dimensional. Although this provides

valuable insight into historical member data, the curse of dimensionality presents

considerable challenges. Therefore, this thesis will attempt to solve the problem based

on the following questions.

• How can a work frame be implemented to mitigate impacts from high-dimensional

feature spaces in CRM data for more accurate and computationally efficient mem-

ber churn prediction?

This research question corresponds to the third thesis objective to establish a frame-

work that can efficiently handle sparse CRM data while preserving richness, ensuring

accurate and computationally feasible churn predictions.

1.4 Research Core Contributions

The main contribution of this thesis is the development of an innovative multimodal

fusion learning framework that significantly advances the fields of churn prediction and

member engagement analysis. This research offers a holistic view of member behavior by

synergistically integrating diverse data sources, including customer voice interactions,
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financial literacy assessments, and comprehensive CRM data. This approach enhances

the accuracy of churn predictions and provides a more in-depth understanding of the

multifaceted nature of member engagement.

• Advancing speech emotion recognition using hybrid methods. This thesis

will advance speech emotion recognition (SER) by constructing a hybrid acoustic

feature map and leveraging previously unexplored Mel spectrogram capabilities.

These architectures and methods for data augmentation will constitute substantial

progress in emotion recognition technology. Linked research question 1 and research
objective 1. Improve para-linguistic emotional cue detection by employing advanced

speech signal decomposition techniques.

• Advance financial literacy measurement using SSL in regression. Develop

a more nuanced perspective on FL by introducing mixed methodology SMOGN-

COREG to measure FL by regression. This addresses real-valued target variable

challenges and will augment current paradigms.

Linked research question 2 and research objective 2. Develop a framework for

holistic understanding through multimodal predictive modeling.

• Churn propensity modeling framework. This thesis proposes an innovating

churn propensity framework specifically designed for financial behavior analysis,

providing a new paradigm for churn evaluation that is adaptable across various

business sectors.

Linked research question 3 and research objective 3. Develop and apply a robust

framework for efficiently processing high-dimensional CRM data feature spaces

and providing precise churn predictions.

• Customer churn prediction through multimodal hybrid fusion learning:
This thesis will revolutionize churn propensity analysis by integrating a multi-

modal fusion approach combining FL, emotion recognition, and CRM data. The

proposed method will enhance prediction accuracy and provide a bias mitigation

strategy within the customer churn prediction (CCP) model, leading to fairer and

more balanced outcomes.

Linked main research question and research objective. Develop a comprehensive

framework utilizing diverse modalities and hybrid fusion techniques for equitable

churn prediction in member-centric organizations.
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1.5. ETHICAL CONSIDERATIONS IN AI: SAFEGUARDING PRIVACY IN EMOTION
DETECTION

1.5 Ethical Considerations in AI: Safeguarding
Privacy in Emotion Detection

The ethical utilization of AI, particularly in detecting emotions from vocal interactions,

raises significant privacy concerns. The EU Artificial Intelligence Act, a landmark

regulation, addresses these challenges by setting stringent standards for AI applications,

emphasizing the protection of fundamental rights and privacy. This Act mandates robust

safeguards against the misuse of biometric and personal data, prohibiting untargeted

scraping of vocal characteristics for creating recognition databases, and ensuring that any

use of emotion recognition technologies adheres to strict privacy and ethical guidelines.

Additionally, it restricts AI systems that could manipulate or exploit user vulnerabilities,

thereby protecting individuals from privacy infringements and ensuring their vocal data

is handled responsibly [11]. In this thesis, we attempt to consider the implications of

the EU AI Act, integrating its principles into our research methodology to ensure that

our approach to emotion detection not only advances the field but also aligns with these

critical ethical and privacy standards. Our approach also aligns with the Australian

AI Ethics Principles established in 2019 to uphold democracy, the rule of law, and

individual rights, setting a precedent for the ethical management of sensitive data in AI

applications.

1.6 Thesis Organization

Figures 1.2 and 1.1 show the thesis organization. This introduction chapter describes

the thesis motivation, aims, objectives, and contributions. Subsequent chapters consider

the following aspects.

Chapter 2 explores member behavior analysis evolution for churn prediction and

real-world applications. Multimodal churn modeling strengths are highlighted by catego-

rizing various learning algorithms. The chapter also summarizes algorithm key features,

limitations, and potential avenues for future research.

Chapter 3 considers empirical analysis for factors affecting SER performance, includ-

ing benefits and limitations regarding pattern classification. SER modality significance

for multimodal churn modeling is also investigated along with Mel Spectrogram com-

ponents to enhance emotion recognition, and acoustic feature augmentation impacts

using variational mode decomposition (VMD) based signal decomposition techniques to

improve CNN VGG learning. This chapter also compares the proposed VGG-optiVMD al-
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gorithm performance against other SER algorithms and provides insight into prospective

research avenues for further SER problem exploration.

Chapter 4 introduces the SMOGN-COREG semi-supervised learning framework,

designed to label large unlabeled target variable datasets by merging labeled online

member surveys with unlabeled transaction datasets. This chapter explains how this

proposed methodology overcomes challenges posed by limited sample sizes in online

surveys.

Chapter 5 explores causal analysis for member churn within organizations, highlight-

ing its growing importance in the modern complex business landscape. The core aspect

is introducing a framework that combines deep feedforward neural network capabilities

with insights from sequential pattern mining, specifically regarding high dimensional

sparse data inherent to financial domains. The efficacy of this fusion approach compared

with existing methodologies, is evident from superior churn prediction outcomes. This

chapter also integrates the churn prediction model with a Bayesian causal network,

leveraging the DoWhy library, to enhance predictive robustness and provides more com-

prehensive insights into fundamental churn causes, providing a more comprehensive

picture. The chapter concludes by discussing potential directions for future research, fo-

cusing on refining churn prediction mechanisms and exploring innovative methodologies

to pinpoint underlying causes behind member churn.

Chapter 6 provides a novel perspective on churn prediction within contemporary busi-

ness environments, addressing limitations with traditional churn models, which depend

on a singular data source. This chapter underscores the importance of a multimodal

fusion learning approach, advocating for integrating diverse datasets, i.e., CV, FL, and

CRM, to develop more accurate churn prediction models.

The SER system is introduced as the first modality in the proposed multimodal

modeling to explore member sentiment analysis. Leveraging pre-trained CNN-VGG16 ca-

pabilities, this system can proficiently discern member sentiments from vocal attributes

such as pitch, energy, and tone. The SMOGN-COREG supervised model adopts FL as a

second modality to interpret member FL from historical financial network data. The third

modality, i.e., the baseline churn model, is fortified with an ensemble artificial neural

network coupled with SMOTE oversampling techniques, to estimate churn probabilities

adeptly.

This chapter focuses on innovative fusion techniques, incorporating late and hybrid

fusion methodologies into the multimodal method to ensure individual modality feature

preservation while optimizing collective synergies to extract holistic insights. Efficacy for

12



1.6. THESIS ORGANIZATION

this multimodal modeling approach is demonstrated by evaluation metrics and robust

prediction accuracy.

Finally, the chapter explains a notable insight from the collated data: a distinct

correlation between negative emotion, low FL level, and elevated churn propensities.

Chapter 7 summarizes and concludes the thesis, and discusses practical contributions,

key findings, and potential directions for further research.

Introduction

Chapter 1

Motivation Aims and
Objectives Contributions

Recent Works

Chapter 2

 Applications Problems and
Drawbacks

Potential
Directions

Chapter 3

Speech Emotion Recognition Predictive Models in Churn Analysis

The Role of Member Financial Literacy Predictors in Churn Analysis

Chapter 4

Causal Analysis of Customer Churn in Financial Institutions

Chapter 5

Churn Prediction via Multimodal Fusion Learning: Integrating Member
Financial Literacy, Voice, and Behavioral Data

Chapter 6

Chapter 7

Conclusions Future Research Directions

Figure 1.1: Thesis structure
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RELATED WORKS

This chapter investigates the relationship between organizational member engagement

and their granular financial and emotional behaviors, called financial X-Ray, to iden-

tify predictors for churn. This chapter is organized as follows. Section 2.1 describes

the comprehensive literature review of relevant previous studies regarding analysis

methodologies. Sections 2.2–2.4 discuss member engagement (ME), member emotion

recognition (MER), and financial literacy (FL). Section 2.5 investigates causal analysis

for member churn (CAMC) and section 2.6 discusses insights from multimodal churn

modeling (MCM). Section 2.7 summarizes and concludes the chapter. Each section con-

tributes to a more profound understanding of factors affecting member engagement and

attrition.

2.1 Literature Review Methodology

The literature search methodology was designed to ensure comprehensive collection

and analysis of relevant scholarly articles. The search spanned multiple databases,

including IEEE Xplore, ACM, Science Direct, Google Scholar, arXiv, and Wiley, to cover a

wide range of scientific publications. Keywords included "ME in Organizations", "MER",

"Speech Emotion Recognition", "Customer Sentiment Analysis", and "Measuring FL

Level" to retrieve articles relevant to the research objectives. Inclusion criteria were

rigorous, focusing on article relevance to the predetermined topics. The screening process

examined the selected article titles, abstracts, keywords, and full texts to filter unrelated
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studies. This was followed by a critical review process, where the remaining articles

were evaluated for their contribution to the field and relevance to the research questions.

Screened articles were then classified into categories ME, MER, FL, CAMC, and MCM.

The final phase combined data synthesis and content analysis to facilitate extracting

significant findings and constructing a coherent narrative around the research topic.

This review critically assessed previous published studies between 2014 and 2021,

primarily focusing on premier journals and conferences as classified by the Australian

Business Deans Councils (ABDC) and Computing Research and Education Association

of Australasia (CORE). Given the absence of a definitive compendium in the field, it

prioritized sources rated A/A* by these councils. Select tier B publications were also

considered, in particular "Expert System with Applications" and the "International

Conference on Customer Behavior Analysis and Computer Human Interface Systems,"

which are recognized for their impactful citations in data science. The remainder of

this section presents the synthesis from these articles to encapsulate trends in member

engagement, churn, and associated data mining methodologies.

2.2 Member Engagement in Organizations

Many previous studies have considered member engagement and churn within organi-

zations, proposing several diverse frameworks and analytical techniques [12, 13], with

general agreement the FL forms a significant determinant for customer retention. Hast-

ings et al. [14] reviewed relevant financial literacy, financial education, and consumer

financial outcome literature, suggesting a strong link between financial knowledge and

consumer behaviors relevant to retention. Rudd et al. [8] subsequently proposed a corre-

lation between financial comprehension and member loyalty. Lamba et al. [15] considered

telephonic communication, particularly post-pandemic COVID-19, emphasizing call log

sentiment analysis predictive power for preempting churn. Some recent studies have ap-

plied artificial neural networks to model member behavior in CRM platforms, confirming

its efficacy in identifying informative patterns to predict churn [16].

2.3 Member Emotion Recognition Techniques

Assessing member engagement through call logs has become increasingly relevant since

the COVID-19 pandemic. Call logs can provide valuable information, including call

frequency, duration, and recency. Member emotional tone during calls can be detected by
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voice analytics, i.e., and subsequently provide a potent indicator for member sentiment

and satisfaction and an informative feature for churn modeling.

Previous speech emotion recognition (SER) studies have been significantly influenced

by feature extraction and classification technique advances [17]. SER has traditionally

been segmented into facial, acoustic, and linguistic domains, with some studies proposing

multi-view approaches integrating two or more domains.

Early SER frameworks proposed enhanced support vector machine (SVM) classifiers

to predict emotions, such as anger, happiness, and sadness [18–20]. Wu et al. [21] em-

ployed traditional machine learning (ML) methods on the EMO-DB database, adding

modulation spectral features that amalgamate prosodic features, achieving 85.8% val-

idation accuracy using a multi-class linear discriminant analysis classifier. Milton et

al. [22] subsequently integrated three SVMs for emotion classification in EMO-DB, and

Huang et al. [23] proposed a hybrid semi-convolutional neural network (CNN) model

using deep learning (DL) CNNs (DNNs) to learn feature maps and a traditional SVM to

classifying emotions, achieving high test accuracies 88.3%, 85.2%, respectively for both

speaker dependent and independent scenarios.

Several recent studies have explored pre-trained CNN image classifier potential,

using transfer learning to treat spectrograms as input images, and achieving competitive

performance outcomes [24, 25]. Wang et al. [26] introduced the Fourier parameter as

an acoustic feature, and Popova et al. [27] achieved 71% accuracy using a fine-tuned

DNN and CNN-VGG16 classifier on the RAVDESS dataset. Satt et al. [28] employed a

multimodal long short-term memory-convolutional neural network (LSTM-CNN) with a

novel feature extraction method based on para-lingual data from spectrograms, achieving

68% accuracy on the IMOCAP database.

Meng et al. [29] proposed a multimodal dilated CNN architecture with a residual

block and LSTM by Bai (BiLSTM) to improve classifier accuracy. They achieved re-

markable accuracy of 79.96% and 90.78%, respectively, on IEMOCAP and EMO-DB

databases. Hajarolasvadi et al. [30] designed a 3D feature framework utilizing a 3D

CNN-based classifier; and Zhao et al. [7] proposed a multimodal 2D CNN-LSTM network;

both achieved significant accuracy 95.33% and 95.89%, respectively pushing speaker

independent classification performance boundaries on the Berlin EMO-DB. Table 2.1

summarizes the various technological approaches for member emotion recognition, show-

casing advancements in SER methodologies across different feature extraction methods

and learning networks.
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Table 2.1: Comparative Overview of Speech Emotion Recognition Technologies.

Model proposed by Feature extraction method Learner
Badshah et al. [24] log Mel spectrogram CNN
Dendukuri et al. [31] 45d- Mode statistical+MFCCs+Spectral SVM
Zamil et al. [32] 13 MFCCs Tree Model
Popova et al. [33] Mel spectrograms VGG16
Hajarol. et al. [30] Mel spectrograms+MFCCs CNN
Wang et al. [26] Fourier Parameter+MFCCs SVM
Kown et al. [34] Spectrogram Deep SCNN
Badsha et al. [35] Spectrogram CNN
Huang et al. [23] Spectrogram CNN
Issa et al. [36] MFCCs+Chroma.+Mel spec.+Contrast+Tonnetz VGG16
Meng et al. [29] log Mel spec.+1st & 2nd delta(log Mel spec.) CNN-LSTM
Wu et al. [21] Modulation Spectral Features (MSFs) SVM
Rudd et al. [37] Harmonic-Percussive (HP)+log Mel spec. VGG16-MLP
Demircan et al. [25] LPC+MFCCs SVM
Zhao et al. [7] log Mel spectrogram CNN-LSTM
VGG-optiVMD 3D-Mel spectrogram+MFCCs+Chromagram VGG16-VMD

2.3.1 Speech signal decomposition and emotion recognition

Speech signal decomposition has recently experienced significant advancement, with

Dendukuri et al. [31] pioneering decomposing speech signals into three distinct compo-

nents at 16000 Hz over 20 milliseconds. They proposed adding mode central frequency

statistical parameters to a SVM classifier, producing several new methods for emotion

recognition. Lal et al. [38] subsequently empirically substantiated variational mode de-

composition (VMD) efficacy to isolate the correct central frequencies from noise-polluted

emotional speech signals, achieving enhanced epoch location estimation. Zhang et al. [39]

explored multidimensional feature extraction potential, merging wavelet packet decompo-

sition with VMD for EEG signal emotion recognition. This technique allowed extracting

complex features, such as wavelet packet entropy and fractal dimensions, yielding robust

classification results when coupled with a random forest (RF) classifier on the DEAP

dataset [40]. Khare et al. [41] proposed minimizing reconstruction error through meta-

heuristic techniques, refining the optimized variational mode decomposition (O-VMD)

with 5% increased accuracy on a self-compiled four-emotion dataset.

Pandey et al. [42] proposed combining VMD with DNNs (VMD-DNN) for subject-

independent emotion recognition on the DEAP dataset. This enhanced classifier accuracy

from VMD based feature extraction that utilized first difference and power spectral

density features.

Although previous studies have predominantly utilized STFT signal decomposition

techniques for SER, VMD application for speech signal analysis remains relatively

new, with most research focusing on EEG signals for emotion recognition research. One

objective for the current thesis was to utilize VMD to enhance multidimensional feature
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vectors and, consequently enhance the VGG16 network [43] learning capabilities in the

SER domain. This marks a significant precision improvement in assessing feelings.

As we explore the nuances of member emotion recognition through advanced speech

signal decomposition, it becomes evident that emotional intelligence is deeply inter-

twined with financial behaviors. The emotional states of members, discernible through

sophisticated SER techniques like VMD, often reflect their engagement levels and satis-

faction with financial services. This emotional feedback is a critical component of broader

member profiles, which also encompass FL. Just as emotional dispositions can signal im-

pending churn, a member’s financial understanding significantly dictates their financial

decisions and long-term loyalty to an institution. Thus, transitioning from the realm of

emotion recognition to financial literacy allows us to delve deeper into the psyche of the

consumer, where emotional and financial competencies meet to shape overall member

engagement and churn.

2.4 Financial Literacy Impact on Member Churn

Enhancing customer FL is essential but significantly challenging for organizations,

particularly in the financial sector. Deficient FL among customers often leads to sub-

optimal product choices and inability to capitalize on financial advisory services. This

understanding gap, particularly regarding financial product profitability and utility, can

precipitate erroneous decision-making, culminating in reduced organization profitability

and increased customer dissatisfaction and churn. Previous FL studies focused on FL

surveys (i.e., qualitative methods) or predicting FL (i.e., quantitative methods). The

most prevalent method to ascertaining individual financial expertise remains surveys.

For example, Worthington [44] conducted an extensive survey encompassing a broad

demographic spectrum to correlate FL with socio-economic and demographic traits. Al-

though they employed a logit model to segment FL levels, they encountered significant

precision limitations, particularly within median spectrum responses. Previous empirical

studies have indicated that lower FL levels are disproportionately prevalent among

members resident in socioeconomically disadvantaged areas. Higher education, business

ownership, and age all correlate with elevated FL [45]. Huang et al. [46] utilized a back

propagation neural network to evaluate FL across diverse financial domains, achieving

92% overall accuracy.
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2.4.1 Leveraging unlabeled data in predicting financial literacy

Recent studies have expanded to include semi-supervised learning (SSL), which employs

labeled and unlabeled data, in contrast to solely labeled or unlabeled data. Ding et al. [47]

advanced this domain with GraphSGAN, an SSL approach using generative adversarial

networks on graphs, outperforming conventional methods such as Chebyshev and graph

convolutional networks for sensitivity to labeled data [48, 49]. Previous studies have

shown that exploiting a small labeled dataset derived from online FL surveys makes it

challenging to label the plethora of unlabeled financial network data corresponding to

user financial behavior.

2.5 Innovations and Methodologies in Churn
Prediction

Churn prediction methodologies have undergone extensive evaluation to identify the most

effective techniques [50]. Cutting-edge churn prediction frameworks incorporate DNN

models, time-to-event analytics, and big data processing, leveraging GPU computational

power for large-scale parallel computing [51]. Employee churn poses similar challenges

for organizations, since key customer departures may impose more substantial costs

due to the complex nature of the loss compared with employee attrition. However, the

repercussions of recruiting and instructing new personnel to replace valuable employees

can also generate substantial expenses [52].

Recent advances in predictive modeling have adopted partial least squares (PLS)

based techniques, which outperform in generating precise models from highly correlated

datasets [53]. The telecom sector in particular has benefitted from hybrid learning

algorithms for churn predictive modeling of member behavior [54].

Locally linear model tree methods combine neural networks, fuzzy logic, and deci-

sion trees, and the RemsProp training technique has demonstrated superior accuracy

compared with conventional algorithms in DL based churn prediction [55, 56]. Randon

Forest algorithm efficacy has been well established for in churn prediction, particularly

when integrated with sampling methods and cost learning, surpassing many recent

well-known algorithms on real banking datasets [57]. Real-world case studies, such

as Orange Belgium’s customer churn, have been tackled using the ensemble method

with an RF classifier to address significant class imbalances [58]. General feature sets

extracted from transaction data have been employed in non-subscription business con-
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texts to predict churn using multilayer perceptrons [59], and the CHAMP system was

proposed to predict telecommunication service cancellations [60]. Neural networks (e.g.

Alyuda Neuro Intelligence) have also been employed for data mining banking customer

churn [61].

Adding textual data to CCP algorithms enhances their value [62], and combining

classifiers (e.g. gradient boosting) with oversampling techniques has been shown to be

effective against skewed data in superannuation funds [63]. Hidden churn factors, which

are prevalent in superannuation funds where accounts become dormant, necessitates

strategies to improve member engagement and fully utilize member data. Advanced DL

techniques have expanded the capacity to manage larger datasets than traditional ML

approaches, and integrating DL with CNNs has been successful in predicting churn [64].

2.5.1 Causal inferences for churn

Investigating causal inferences for churn has transformed significantly with recent stud-

ies, shifting away from conventional statistical analyses to embrace multivariate causal

frameworks [60]. Various innovations, such as Peter Clark (PC) stable algorithm, enable

interpreting causal structures from datasets with deep feature sets, facilitating temporal

causal modeling for large time series datasets [65]. Directed acyclic graphs are increas-

ingly leveraged within Bayesian networks to depict causal linkages, enhancing predictive

accuracy for customer churn in banking [66]. Shah et al. [59] proposed this approach

using a model that assigns precise feature weights, which has become instrumental in

predicting customer churn across diverse sectors, including telecommunications and

finance. Such methodologies have been extensively utilized to discover churn causal

variables and construct churn causal models [67]. Lattimore et al. [68] proposed a CNN

to gauge sentiment from daily Twitter feeds, verifying the findings with the Granger

causality test incorporated in churn models.

Despite these advancements, there remains a gap relating causal analysis of churn,

particularly within superannuation funds, associations, and financial institutions. Churn

prediction models have been typically examined against datasets from telecommunica-

tions, media, and gaming industries. Following on from these previous studies, this thesis

proposes a scaled churn prediction methodology. The proposed framework effectively

addresses high-dimensional sparse data from local financial institutions with millions

of members, combining recursive feature elimination, synthetic minority over-sampling

technique (SMOTE), DNNs, and Bayesian causal networks. This mixed-methodology ap-
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proach addresses the challenge of financial behavioral data collected from CRM platforms

for predicting churn.

2.6 Multimodal Churn Modeling

Churn prediction is rapidly moving towards more sophisticated methods, capitalizing

on increasing data availability to enhance predictive accuracy. Thus, MCM is also

developing rapidly, integrating various customer experience aspects to offer composite

understanding for churn dynamics [69]. De Caigny et al. [62] proposed integrating

textual data within churn prediction models, highlighting CNN efficacy, outperforming

traditional text mining methods to achieve 89.87% accuracy. This advancement verifies

that text mining can also assist with predicting churn.

Nhi NY and Liu [70] extended churn prediction methodologies to include unstructured

data, such as audio call transcriptions. Their proposed model integrated text mining

with CRM data for a gradient boosting tree algorithm, significantly enhancing churn

prediction performance across diverse datasets. Kimura [71] demonstrated advantages

from blending boosting algorithms with hybrid resampling methods, tackling various

challenges due to imbalanced datasets. However, techniques like SMOTE are not yet

widely implemented for churn prediction despite their potential. Ahn and Hwang [67]

discussed the requirement for adaptable churn prediction methodologies adapted to

specific data types, noting a scarcity of diverse data input approaches in existing research.

This thesis addresses the identified gap by employing three distinct datasets to

represent multifaceted organizational member engagement for churn prediction. Various

hybrid feature fusion approaches are also employed to improve churn prediction in

financial institutions by fusing member’s emotional feedback from audio calls, historical

data from CRMs, and FL survey or financial X-Ray data. Table 2.2 details the proposed

methodology, combining diverse data streams, and establishes a new precedent for

multimodal churn prediction strategies. Many previous studies have only considered

single input data sources, e.g. CRM databases, for churn prediction; whereas integrating

diverse data sources is imperative.
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Table 2.2: Comparative studies and recent modalities

Ref. Input Learning Prediction Industry
[72] 1a Unimodal RF Finance
[73] 1 Ensemble GBT+k-medios Telecom
[58] 1 Unimodal RF Telecom
[74] 1 Ensemble DL+LSTM Game
[75] 1 Ensemble LSTM+HS Game
[70] 2b Feature fusiond GBT Finance
[62] 2 Feature fusion CNN+Logit Finance

Proposed 3c Hybrid Fusione CNNs+DL Finance
a1: Structured data, e.g. demographic, account, and CRM data)
b2: Structured + textual data, e.g. call log script and e-messages)
c3: Structured + voice + financial literacy, i.e., qualitative data)
dFeature fusion: multimodal feature fusion modeling or early fusion)
eHybrid fusion: multimodal hybrid (early + late) fusion modeling

2.7 Multifaceted Member Engagement Analysis
Deficit for Churn Prediction

Previous churn prediction studies have predominantly focused on individual customer

data aspects, such as transactional or demographic information, with less attention

to the multifaceted nature of member engagement. Despite significant advances in

identifying churn predictors within these distinct dimensions, a significant gap remains

regarding interactions between member financial behavior, emotional feedback, and

overall engagement in predicting churn. Current models have frequently overlooked

customer interaction features that cover FL, sentiment from communication channels,

and behavioral data. This oversight presents a missed opportunity to understand the

full scope for factors influencing a member’s decision to remain with or depart from

an organization. Current methodologies are advanced within their domains, but fail

to consider multifaceted aspects of member engagement that could collectively impact

churn.

Thus, a comprehensive churn prediction framework is required to transcend tra-

ditional unimodal analyses and incorporate a multimodal approach. Such a model

would provide richer, more nuanced understanding of churn by considering how various

member engagement forms interact and what that interplay suggests about potential

churn. It would also address limitations with current models, which struggle with high-
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dimensional and sparse modern data sets, particularly for large financial institutions

with vast member bases. However, implementing such multimodal strategies in finan-

cial applications introduces several technical challenges. Integrating varied data types,

such as vocal call interactions, transactional records, and behavioral data, necessitates

advanced preprocessing to ensure compatibility across modalities. This integration also

involves aligning data with different temporal dynamics and developing a unified feature

space that effectively captures crucial inter-modal relationships without information

loss. Moreover, the processing and analyzing of extensive multimodal data require ro-

bust computational resources to handle the scale and complexity, ensuring the system’s

scalability and efficiency.

This thesis aims to bridge this gap by adopting a holistic approach considering the

full range of member engagement. Therefore, this study constructs a more accurate and

predictive churn model integrating data from audio call sentiment analysis, financial

transactions, and member surveys. This approach will enhance churn prediction accuracy

and provide strategic insights for organizations to better proactively address and mitigate

factors contributing to member attrition.

2.8 Summary

This literature systematically explored the multifaceted components contributing to

member churn within organizations, mainly focusing on the complex interplay for FL,

emotional engagement, and behavioral data. This comprehensive survey highlighted

various methodologies and predictive models from traditional statistical analyses to

multimodal churn modeling.

Section 2.2 explored member engagement, identifying FL related impacts on customer

retention and loyalty. Section 2.3 evaluated member emotion recognition advances and

how emotion analytics, particularly from telephonic communications, have become cru-

cial in interpreting member sentiments and forecasting churn. Section 2.4 investigated

FL impacts on customer decision making, identifying a critical need for improved FL in

preventing churn. Section 2.5 considered causal analysis for member churn, highlighting

causal inference method evolution and applications in churn prediction. Section 2.6 fused

insights derived from each modality through MCM, confirming the advantages of employ-

ing diverse heterogeneous and distinct data sources to achieve holistic understanding of

churn.

The review highlighted the necessity for an integrated approach to churn prediction,
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leveraging the strengths from various data modalities. Section 2.7 identified a current

research gap to consider the comprehensive range of member engagement in predicting

churn. This thesis aims to address this gap using a proposed hybrid feature fusion tech-

nique, providing significant benefits by enhancing predictive accuracy and organizational

strategy insights to improve member engagement and reduce churn.
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SPEECH EMOTION RECOGNITION PREDICTIVE MODELS

IN CHURN ANALYSIS

This chapter presents a comprehensive empirical study of Speech Emotion Recognition

(SER), including

1. detecting positive and negative sentiments and their predictive power for member

behavior,

2. impacts from increased negative emotion on member engagement and churn,

3. exploring effects from informative acoustic features in emotion recognition (ER),

and

4. comparative analysis for the proposed algorithms against other SER methodologies.

3.1 Background and Motivation

Tone of voice significantly influences conveyed meaning, often more than the words them-

selves, with facial expressions and vocal variations also playing key roles in expressing

emotions [76, 77]. The concept of "mind" extends beyond mere thinking, and includes

our emotional states and all unconscious patterns of mental and emotional reactions.

Emotions emerge at the intersection of mind and body. They are the body’s response to

our thoughts and the unconscious mind, effectively mirroring the mind within the body.
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Many previous studies have demonstrated that intense emotions can alter the body’s

biochemical state, hence these biochemical shifts are tangible material manifestations

of our emotions. Physical expression of emotions can be observed externally, notably

through voice tone and intensity during verbal exchanges. Emotions often signify height-

ened and energized thought processes and provide essential, albeit subtle, insights into

customer satisfaction with the services and products being offered. Therefore, it is crucial

to be attentive to customer and member emotions.

Speech emotion recognition is a set of well-known data mining techniques for call

center data analytics. The SER domain holds considerable significance across diverse

fields, enhancing human-computer interfaces, enriching customer support, and augment-

ing interactive entertainment and contact center experiences [78]. The intrinsic objective

for SER frameworks is to identify distinctive vocal features in varied emotional contexts

and hence enrich member engagement with a touch of personalization. CRM teams, for

instance, commonly leverage SER to estimate customer or member satisfaction using

vocal cues during interactions. Many organizations, from growing startups to tech giants,

e.g. Google and Microsoft, are engaged in SER research. Emotional expressions, while

universally recognized, are interpreted in ways influenced by cultural norms [79, 80]. In

contrast to speech recognition, emotion recognition currently lacks a unified methodology

for processing and interpreting emotions from vocal cues [81].

Figure 3.1 shows that member emotion can be categorized as signal or text-based.

Text-based systems analyze member sentiments using natural language processing

(NLP) techniques, incorporating data from various touchpoints, including social media,

call transcripts, emails, surveys, customer reviews, blogs, and forums. Signal-based

approaches employ signal-processing techniques to recognize emotional states. Voice-

based emotion recognition is employed when we only have access to customer voice (CV).

SER is a robust method that cannot be imitated, in contrast with facial expression or

text-based sentiment analysis, since these are based on historical call logs. SER systems

can also detect member or customer primary and secondary moods by computing negative

and positive emotion modes over the call duration.

Various physiological factors can modulate vocal expressions, and sophisticated

systems are required to interpret these changes for emotion detection. SER’s central chal-

lenge lies in extracting distinct and stable features from speech. Such features encompass

prosodic elements, e.g. pitch and energy, and acoustic dimensions, e.g. linear predictor

coefficients (LPCs), Mel spectrograms, linear frequency cepstral coefficients (LFCC),

fast Fourier transform (FFT), chromagram, and Mel-frequency cepstrum coefficients

28



3.1. BACKGROUND AND MOTIVATION

Customer Sentiment
Analysis

Signal-based
Emotion Recognition

Text-based
Emotion Recognition

Linguistic

Para linguistic
Biosensing

Facial expression detection

Customer Voice (CV)

EEG & ECG signal

Emails

Online Survey

User feedback

Blogs & Forum

Social Media

Our approach
[1,2]

RQ1

Figure 3.1: Common emotion recognition methods

(MFCCs) [82–86]. Mel spectrogram, MFCCs, and chromagram techniques have been

shown to have particular efficacy in extracting emotional data from audio signals [87].

Dual methodologies have also been considered for acoustic feature analysis, some ex-

amining proactive features in isolation, and others combining the most informative

features to improve model efficacy [88–90]. Empirical findings support data augmenta-

tion approaches, fusing prosodic and acoustic feature analysis to ensure a diversified and

feature-rich input dataset and hence improving model generalization. Meng et al. [29],

Hajarolasvadi et al. [30], and Peng et al. [91] introduced various three-dimensional vocal

feature mapping, applying hybrid feature maps to Mel spectrograms and MFCCs for

LSTM or CNN-VGG16 [43] extraction.

Following these advancements, this thesis focuses on exploiting the Mel spectrogram

for enhanced SER, proposing a novel method that integrates harmonic and percussive

elements from Mel spectrograms with the log Mel spectrogram. The core innovation is a

hybrid acoustic feature map that improves SER performance, utilizing CNN-VGG16 not

only for image analytics but also as a potent tool for emotion classification. Emotions

are classified following feature extraction using an optimized MLP network, fine-tuned

using a random search hyperparameter sensitivity analysis method, to deliver robust

results that parallel current state-of-art accuracy (Zhao et al. [7]).

Speech emotion recognition has substantially evolved from initial reliance on short-

time Fourier transform (STFT) methods with RAVDESS, EMO-DB, IEMOCAP, and
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WSJCAM databases (amongst others) providing rich resources for training and testing

SER models [17, 36, 87]. Integrating CNNs marked a significant SER advance, with

pre-trained image classifiers being adapted through transfer learning. Recent advances

in this field verify improved efficacy by combining extracted acoustic features from Mel

spectrograms and their harmonic and percussive components. However, it is not yet

feasible to utilize harmonic and percussive components as a two-dimensional image for

CNN input [24, 92, 93].

Although empirical mode decomposition (EMD), wavelet packet decomposition (WPD),

STFT methodologies, etc. have been widely employed for electroencephalogram (EEG),

electrocardiogram (ECG), and biosensing signal analysis, their application to decompos-

ing customer voice signals for SER remains limited [39, 94]. Applying VMD for speech

signal analysis also remains rare, with most studies applying VMD to EEG signals

rather than vocal data [31, 38]. Thus, combining VMD with CNNs for data augmentation

in acoustic feature extraction remains largely unexplored, but is a potential area for

pioneering research [95].

Introducing VMD as a non-recursive signal decomposition method marks a significant

advance from EMD and EWT constraints, overcoming their respective limitations and

enhancing tone of voice separation performance [8]. Therefore, this thesis leverages VMD

in speech signal processing, aiming to extract frequency statistical properties at specific

times that distinguish emotions within the feature vector and hence maximize emotion

recognition efficacy [31, 41, 96]. The proposed VGG-optiVMD methodology provides a

compelling demonstration of how VMD can enrich feature sets, improving classification

precision, e.g. recent considerable emotion recognition improvements across well-known

emotion datasets.

3.1.1 Key contributions

The main contributions in this chapter can be summarized as follows.

- Proposed an efficient hybrid acoustic feature map technique using harmonic and

percussive components from Mel spectrograms, leveraging CNN-VGG16 model

strengths, typically used for image processing, to extract and identify emotions

from speech signals.

- The first study to employ VMD for dynamic data augmentation in SER, setting a

new standard for feature extraction and classification in the field.
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- Empirical experiments validate that data augmentation, combining prosodic and

acoustic features, significantly improves SER generalization, achieving state-of-

the-art 96.09% test accuracy.

3.2 Preliminary Knowledge

3.2.1 Acoustic signal low-level descriptors

Feature extraction in speech analysis typically involves extracting significant features

from audio samples and assembling them into extensive vectors. These vectors are sub-

sequently standardized for size using various normalization methods, and often include

prosodic and spectral features derived from acoustic low-level descriptors, including the

following.

Duration features capture temporal characteristics of speech, including phoneme

length, syllables, words, or pauses, and can be normalized in various ways.

Intensity features represent perceived loudness by measuring amplitude over time,

mitigating the logarithmic nature of auditory response and spectral distribution’s impact

on sound perception. They form a loudness contour vector and reflect emotional arousal

level.

Pitch features contain data on emotional states due to the tension and vibrations of

the vocal cords. Pitch frequency and glottal velocity volume are particularly informative

for this purpose.

Formants provide spectral insights into vocal tract characteristics from the frequency

and bandwidth of resonances. Emotions can affect sound articulation, causing variations

in formant bandwidths. These are typically analyzed using LPCs to estimate formant

frequencies.

Spectrum features defined by formants that shape the verbal content. The spectral

envelope is assessed using LPCs to compute further characteristics, including centroid,

flux, roll-off, and spectral flatness ratio. Long-term average spectra, indicative of overar-

ching spectral patterns, and FFT derived classical spectral elements, offer insights into

various parameters, e.g. phase and magnitude. The cepstral domain is also segmented

into Mel frequency bands (MFB) to align more closely with human auditory responses.
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3.2.2 Acoustic feature extraction

Most previous studies using signal processing techniques for emotion detection focused on

extracting statistical features from the signal time-frequency domain, which often holds

more information than the time or frequency domains alone. Extracting key spectrum

features from speech signal and creating large vectors is a challenging problem for

SER. It is important to reshape all the obtained feature vectors to the same size while

maintaining the trimmed frame lengths for the most valuable data before utilizing them

for model training. Essential features in speech signal processing are Mel spectrograms,

chromograms, spectral contrasts, Tonnetz and MFCCs. Mel spectrograms are used

in various real-world applications, such as sound event identification [97], speaker

recognition [98], and speech recognition [99]. This thesis focuses on leveraging Mel

spectrograms using harmonic and percussive components in a hybrid feature engineering

technique to improve SER performance. The most important acoustic features in SER

can be summarized as follows.

3.2.2.1 Mel-frequency cepstrum coefficients

The speech signal is the convolution of the vocal tract frequency response with a glottal

pulse. The most informative data for voice signal processing is vocal tract frequency data,

where glottal pulse generated by the vocal cords is considered noise in the speech signal.

This thesis used MFCC features to separate these two speech components, employing FFT

voice signal mapped onto the Mel scale. The cepstrum result is subsequently obtained

from the Mel spectrum by applying the discrete cosine transform (DCT), a simplified

FFT, on the log power spectrum. DCT output is coefficient amplitudes, called MFCCs,

where their number can be set from 13 to 40 [100].

3.2.2.2 Spectral contrast

Spectral contrast identifies differences between spectral peaks and spectral valleys.

Changes in this difference implies a significant change in the emotion behind the

voice. Thus, emotional prosody can be decoded, i.e., non-verbal emotional aspects of

language [101].

3.2.2.3 Tonnetz

The Tonnetz function is commonly utilized as an alternative representation for pitch

and harmony along with the Chromagram and MFCCs. Tonnetz can also estimate tonal
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centroids on a six-dimensional basis [101].

3.2.2.4 Chromagram

The primary application for chromagrams is to capture harmonic and melodic character-

istics of music. However, its use has recently extended to some real-world applications,

such as content voice retrieval, song recognition and audio identifiers. For speech signal

processing, chromagram features are sensitive to pitch variation in the human voice,

providing a powerful tool for emotion recognition. Chromagrams are typically extracted

using either the constant-Q transform and or STFT in a defined filterbank. Larger

filterbanks provide a high-resolution image of voice data, hence the filterbank setting

depends entirely on the application. However, STFT produces a more informative im-

age in a fixed size window; whereas the constant-Q transform provides different data

structures in each signal. Thus, STFT chromagrams are easier to synchronize with other

features [101].

3.2.2.5 Mel spectrogram

The Mel spectrogram represents the audio signal’s frequency spectrum over time, where

the frequencies are mapped onto the Mel scale. Thus, a spectrogram is a graphical

representation of how the frequency spectrum for a signal changes over time, and is

often used to analyze audio. Spectrograms can be displayed in two or three dimensions,

with the latter sometimes referred to as a waterfall display. They are crucial for various

disciplines, including music, linguistics, and geophysics, for phonetic transcription and

animal call analysis tasks. Spectrograms are typically presented as heat maps where

colors indicate intensity [102].

Steven and Volksmann [103] established that humans hear different sound frequen-

cies in a nonlinear manner, i.e., the human ear can detect the distance between lower

frequencies better than higher frequencies, hence increasingly large intervals are judged

above 500Hz by voluntary listeners. The authors proposed the Mel unit, which mitigates

nonlinear detection to provide pitch sounds equally distant to the listener, which can be

expressed as

(3.1) fmel = 2595.log(1+ f
700Hz

),

where f denotes the input audio signal and fmel represent the converted f to Mel band.
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The Mel spectrogram was subsequently synthesized as follows

(3.2) LMS(m)=
f (m+1)∑

k= f (m−1)
log(Hm(k) . |X (k)|2),

where |X (k)|2 is the power spectrum within the kth frequency bin, k is the index associ-

ated with the FFT, m is the MFB quantity, and LMS is the logarithmic Mel spectrogram.

3.3 Methodology

This section discusses two distinct approaches to enhance SER performance. The initial

method investigates Mel spectrogram acoustic features’, along with their harmonic

and percussive components, effects on SER efficacy. The subsequent method explores

decomposition based speech signal processing, which helps to identify emotional states

from member or customer vocal expressions.

3.3.1 Method 1: Speech emotion recognition using Mel
spectrogram harmonic and percussive components

This approach computes the average harmonic and percussive components for the Mel

spectrogram and combine the result with the log Mel spectrogram. The proposed frame-

work’s efficiency was compared with previous studies and other comparable models that

employed different data augmentation methods.

Voice samples were extracted from recorded voice files before implementing feature

extraction, ranging from four seconds duration at 88 kHz sample rate. To guarantee

frequency resolution and minimize spectral leakage, these samples were then digitized

and processed using the Hanning window function [104],

(3.3) Hm(k)= 0.5[1− cos(
2π.k
M−1

)]= sin2(
π.k

M−1
) 0=< k < M−1,

where M denotes the number of sample points in the output window, k present specific

FFT used in Hanning window function. The method utilizes the Librosa library [105] for

feature extraction and accordingly sets Mel filter banks, window, and hop lengths.

The first feature map was obtained by applying the log Mel spectrogram (3) to

measure the Mel spectrogram output sensitivity to changes in voice signal amplitude.

Figure 3.2 shows a representative log Mel spectrogram depicting diverse emotions from

the EMO-DB dataset, exhibiting distinct amplitude and frequency representations for

each emotion.
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Figure 3.2: Mel spectrograms of voice signal clearly illustrate amplitude and frequency
difference for each emotion. Frequencies that contribute more than orange and white
colours are shown in red.

Decomposition is pivotal role for extracting harmonic and percussive components

from an audio signal, which is critical for enhancing SER performance. This process

begins with applying the STFT to the audio frames, yielding spectrogram S from the

input signal s,

(3.4) s = Sh + Sp,

and

(3.5) S(n, k) :=
N−1∑
r=0

s(r+nH) . ω(r) . e(−2π.kn
N ),

where S is the spectrum obtained from input signal s, ω is the sine window function

which defines the window length, H is hop size, n is the current frame number, and N is

the FFT length applied to each frame.

Applying median filtering along the time (horizontal) and frequency (vertical) axes

for S separates the harmonic Sh and percussive Sp component,

(3.6) Ĥ = Ŝ
⊗

MH ,

and

(3.7) P̂ = Ŝ
⊗

MP ,

obtained from

(3.8) F2(LMS) = (Ĥ + P̂)
2

,

where F2(LMS) represent second feature map resulted by mean of harmonic Ĥ and

percussive P̂ components.
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The harmonic component Sh captures tonal elements and the percussive component

Sp captures the rhythm and instantaneous nature of the audio signal.

This decomposition technique allows the SER system to distinguish between different

emotional expressions that might be conveyed more strongly in either the tonal or

rhythmic aspects of speech. Actual implementation requires a more complex set of

operations, including specific definitions for the median filters and how they are applied

to the spectrogram. Fitzgerald [93] indicated a specific method for spectral decomposition.

Figure 3.3 shows the harmonic and percussive component feature map, built using

the average of these components from the Mel spectrogram. Components are separated

using a spectral decomposition process adapted from Fitzgerald [93], where the harmonic

and percussive elements were distinguished by applying median filters in time and

frequency directions on the spectrum.

Figure 3.3: Harmonic and percussive components for Mel spectrograms for neutral
emotion

Figure 3.4 shows the hybrid feature map, i.e., average the two extracted features,

forming a (128 * 128 * 2) combined 2D feature as input data for VGG16. The proposed

hybrid feature map function represents acoustic features necessary for training CNN-

VGG16 networks. Based on empirical experiments, this particular feature combination

demonstrates its efficacy in emotion prediction.

The recent concept to use pre-trained networks in SER considerably improved com-

putational processing of emotion in speech [93]. Therefore, we can build a fresh CNN

network to process voice features and then feed the results to an MLP classifier. Using a

pre-trained CNN, such as VGG-16, as a feature extractor is an effective approach for SER

feature analysis, exploiting CNN-VGG16, which was already trained on the ImageNet
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Figure 3.4: Hybrid feature map output visualized in 2D.

dataset [43]. The experimental results confirm that transfer learning models can be

generalized in voice signal processing. The example used CNN-VGG16 as a feature

extractor only and deactivated its dense layers since it was not used as a classifier.

The drawback of transfer learning networks is the complexity and difficult result

interpretation. However, analyzing the activation functions in image processing neural

networks improves understanding of how vision-based deep learning models recognize

object shape and edge in an input image [106]; this ability can be applied to a spectrogram

image. The CNN-VGG network’s ability to recognize fine details in high-dimensional

feature maps was essential to make this application work for subtle differences between

features. Although the VGG16 network’s requirement for substantial memory storage

poses a limitation for straightforward classification tasks, its utility in comprehensive

feature analysis is undeniable.

Figure 3.5 shows the proposed architecture, and integrates the VGG16 network with

an MLP network functioning as a feature extractor and emotion classifier, respectively.

Feature maps were built from subsamples within a predefined window size, forming

a 2D image feature reshaped for size in 128 frames and bands. VGG16 receives these

(128∗128∗2) feature maps as input image data, outputting a 2048-dimensional vector

to feed into the MLP classifier. This classifier was structured with four fully connected

layers, employing the ReLU activation function with a softmax output layer.

The proposed framework enhances SER by separating the Mel Spectrogram into har-

monic and percussive elements, capturing emotional cues in voice signals. Improved SER

accuracy facilitates more profound insights into member sentiments during interactions,

a crucial indicator for engagement levels. By accurately gauging emotional responses,

organizations can better predict and address causes of member churn, thereby making

more targeted retention strategies and preventing member churn.
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Figure 3.5: Method-1 workframe: leveraging Mel Spectrogram by harmonic and percus-
sive components to improve SER performance.

3.3.2 Method 2: VGG-optiVMD extended VMD algorithm for SER

3.3.2.1 Speech signal decomposition with VMD

Variational mode decomposition is a prominent method to decompose nonstationary

signals into discrete sub-signals or modes. Each mode captures distinct characteristics

from the original signal within a limited bandwidth centered around a specific frequency.

These modes were extrapolated from Hilbert transform outputs, called intrinsic mode

functions (IMFs), accurately reflecting the signal’s actual components for sufficiently

narrow bandwidths [38]. Adaptability of the VMD algorithm is crucial for simplifying

the original signal’s complexity, facilitating a more focused analysis [95, 107].

The VMD process integrates Wiener filtering, Hilbert transformations, analytical

signals, and frequency mixing techniques. The Wiener filter is primarily a narrowband

filter for denoising [95]. The Hilbert transformation is a linear time-invariant opera-

tor that convolves the original signal g(t) with 1/πt, converting the real signal into a

complex signal that helps extract the magnitude and phase time series for influential

frequencies at particular time instances [108]. Although the Hilbert transform is theo-

retically only applicable to narrowband nonstationary signals, it exhibits remarkable

performance when combined with a finite impulse response bandpass filter. The VMD al-

gorithm enhances the original signal g(t) by incorporating its Hilbert transform H [g(t)],
effectively eliminating any negative frequency band due to Hermitian symmetry. As

demonstrated in Equation (3.9), the frequencies are subsequently mixed by multiplying
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ω1 ×ω2, resulting in a nuanced examination of the signal’s intricate properties,

(3.9) 2cos(ω1t)cos(ω2t)= cos((ω1 +ω2) t)+cos((ω1 −ω2) t)

where ω1 and ω2 indicated target frequencies should bypass via Wiener filter. The

analytical signal formulation employs the Hilbert transform, j
πt , to convert the real-time

voice signal into the complex domain. This transformation is essential to extract the

instantaneous signal frequency and amplitude. The Hilbert transform is coupled with

the unit impulse δ(t) or Dirac delta function. This function acts as an "impulse" that

is infinitely high at the signal’s origin point and zero elsewhere. It is a mathematical

concept used in signal processing to isolate a single point in time. Applying the Hilbert

transform to a signal essentially shifts the phase of all frequency components by 90

degrees. This phase shift is pivotal for constructing the analytic signal, combining the

original function with its Hilbert transform to create a complex signal whose real part

is the original signal and imaginary part represents the phase-shifted version. The

challenge of reconstructing the original voice signal from its transformed state involves

solving a constrained optimization problem,

(3.10)
min{uk},{ωk}

{∑K
k=1

∥∥∥ ∂
∂t

[(
δ(t)+ j

πt

)
∗ gk(t)

]
e− jωk t

∥∥∥2

2

}
,

subject to: g(t)= ∑K
k=1 gk(t),

where operation ∂
∂t

[.] is employed to reduce bandwidth variations for the signal modes

extracted; g(t) is the discrete frame for the original speech signal being analyzed; each

gk(t) signifies the kth mode derived from g(t), providing a granular view of the signal’s

characteristics; K is the total number of modes, which encompasses the complete set of

extracted signal components, where ωk = {w1, . . . ,wk} is the central frequencies of these

modes.

These central frequencies provide a pivotal reference, capturing the dominant fre-

quency components for each mode. Additionally, e− jωk t acts as a modulator function,

which is instrumental in translating the frequency spectrum for each individual mode

down to the baseband. This modulator function allows the bandwidth located around the

central frequency ωk.

This particular type of issue aims to identify the optimal resolution within predeter-

mined parameters or constraints. A Lagrangian multiplier is introduced to streamline

this procedure and enhance its computational feasibility. This transforms the problem
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into an unconstrained optimization,

(3.11)
L (gk,ωk,λ) :=α

∑K
k=1

∥∥∥ ∂
∂t

[((
δ(t)+ j

πt

)
∗ gk(t)

)
e− jωk t

]∥∥∥2

+∥∥g(t)−∑K
k=1 gk(t)

∥∥2
2 +

〈
λ(t), g(t)−∑K

k=1 gk(t)
〉

,

where, λ is a time-dependent Lagrangian multiplier, and α is a bandwidth control

parameter. This effectively removes the constraints by incorporating them into the

optimization objective, allowing for a more straightforward solution that optimizes signal

reconstruction while satisfying the original constraints.

To extract intrinsic mode functions (IMFs) and their corresponding central frequen-

cies from the speech signal, the unconstrained Lagrangian problem (3.11) is tackled

using the alternate direction method of multipliers [95, 109, 110], to facilitate decompo-

sition in the spectral domain. The equivalent optimization outcomes are the same when

applied in either the frequency or time domain. Consequently, mode gk(ω) associated

with each IMF can be iteratively upgraded within the spectral domain,

(3.12) ĝn+1
k (ω)← ĝ(ω)−∑

i<k ĝn+1
i (ω)−∑

i>k ĝn
i (ω)+ λ̂n(ω)

2

1+2α
(
ω−ωn

k

)2

where gk(ω) is frequency domain of decomposed kth mode of input signal.

The Wiener filter is applied to the residual signal, utilizing the signal 1/(ω−ωk)2,

which limits oscillation around the central frequency minimum. This constraint assists

in stabilizing the frequency spectrum around each mode’s center, providing an updated

and more accurate estimation for the central frequency ωk for each mode as indicated in

(3.13). This update is a crucial step for variational mode decomposition, since it ensures

that each mode is finely tuned to its specific frequency band, capturing the essential

characteristics from the original signal necessary for accurate decomposition,

(3.13) ω̂n+1
k =

∫∞
0 ω

∣∣Ĝk(ω)
∣∣2 dω∫∞

0
∣∣Ĝk(ω)

∣∣2 dω
,

where Ĝk(ω) is the FFT for the newly updated mode gn+1
k (t) at iteration n+1. This

transformation shifts the updated mode from the time domain into the frequency domain,

enabling analyzing and processing the signal based on its frequency content. Accurate

transformation of these modes is essential for capturing speech signal characteristics

indicative of the emotional states, which is critical for SER systems. Figure 3.6 shows

signal decomposition in three modes.
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Figure 3.6: Speech signal decomposition in three modes.

3.3.2.2 Challenges and advances in speech signal decomposition:

Decomposition for a nonstationary input signal among multiple sub-signals is not unique

since the mode has AM-FM signal format due to the two individual harmonics [95].

Reconstruction error for a decomposed signal can be reduced by selecting optimum K
and α. However, finding the optimal values empirically is time-consuming and unreli-

able because incorrect K and α selections can cause information loss from sub-signals,

negatively affecting the learning process and reducing classifier performance. Figure 3.7

shows an example where decomposition outcome is more dependent on the band con-

straint, controlled by α, hence large K and small α can duplicate the noisy sub-signal.

However, too small K and too large α causes mode mixing eliminating information within

the sub-signals, and the output becomes a micro and macro segmentation of the signal

data that no longer contains meaningful features.

The one drawback of VMD is the difficulty to determine optimal decomposition

parameters K and α. Several approaches have been proposed for ER using ECG, EEG,

and vibrational signals. For example, the optimal VMD algorithm (O-VMD) [111] uses a

series of indicators, including permutation entropy, kurtosis criteria, extreme frequency

domain value, and energy loss coefficients, to identify optimum K . Wang et al. [112]

controlled power spectral and dynamic entropy features to find optimal K and α to

decompose vibration signal and extract fault features.
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Original Input Signal g(t) a) k =3 & α=30

b) K=10 & α=30000  c) K=3 & α=30000 

d) K=10 & α=30 e) K=3 & α=1200

Figure 3.7: Typical speech signal decomposed over different modes. Various K and α

parameter sets capture different nonstationary signal properties: a) too small K and
α causes under-segmentation of noisy sub-signals with mode overlap; b) too large K
and α captures macro-segmented data from the input signal and distribute informative
signal data to different modes; c) too small K and too large α causes neighboring mode
interference, with important signal data distributed to different modes; d) too large K and
too small α causes over-binning and duplicate signal modes with improper decomposition
structure; e) optimum K = 3 and α= 1200.

However, these approaches use IMF or mode characteristics to find the best decom-

position parameters for specific low amplitude input signals with empirical threshold

selection, which is not applicable for speech signal processing. Dendukuri et al. [31]

decomposed speech signals using five modes to recognize eight emotions, achieving 61.2%

accuracy on the RAVDESS database. They combined different features, constructing

a 45-dimensional feature set including mode center frequency, statistical values for

mode center frequency, MFCCs, and spectral statistical features to improve classifier

performance.

The above methods evaluate optimum K using statistical features and indicators

for guidance. In particular, identified mode number correctness was not verified or

fine-tuned practically by monitoring classification accuracy. Improper decomposition

parameter selection will create duplicate modes, causing signal information losses and

hence reduced classifier performance.
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In contrast, this thesis proposes a framework to automate optimum VMD decomposi-

tion parameter selection using a feedback loop from the VGG16 flattening output layer.

The optimized VMD algorithm (VGG-optiVMD) is specifical for audio signal processing.

The key strengths for VGG-optiVMD are reliability, generality, and reproducibility across

different speech databases for real-world applications.

3.3.2.3 VGG-optiVMD: advances in signal decomposition techniques

This thesis proposes the VGG-optiVMD algorithm dynamic acoustic feature data aug-

mentation by extending the current variational mode decomposition algorithm. VGG-

optiVMD can enhance frequencies distinction carrying paralinguistic emotion data and

improve SER performance. Input data for VGG-optiVMD combines the Mel spectrogram,

MFCCs, and chromogram data frames extracted from a speech signal. This acoustic

data frame is decomposed into dynamic modes using the K(2−6) and α(2000−6000)

parameters. Each mode data frame is concatenated after decomposition and embedded

into a larger data frame, creating an augmented acoustic data frame. This approach

enhances informative emotion data in acoustic feature maps, and can consequently boost

VGG16 training by providing these augmenting acoustic data frames.

This specific approach is the first to utilize VMD as a dynamic acoustic feature data

augmentation for SER. Another outstanding VGG-optiVMD ability is to automatically

select the VMD decomposition parameters K and α, which guarantees the most optimum

emotion classifier performance. This is achieved due to iterative tuning parameters K
and α by the VGG-optiVMD algorithm until maximum accuracy (ACC) and F1 score are

achieved in the VGG16 classifier. The algorithm sets initial K and α, then changes them

iteratively while observing classification accuracy until it obtains the highest AUC and

F1-Score metrics, or reaches the break loop condition. The algorithm automatically and

effectively selects the optimal decomposition parameters based on a diverse set of K and

α testing, ultimately converging on the highest model performance, rather than relying

on decomposition parameter convergence.

Figure 3.8 shows that model development commences with sampling the voice signal

at 88,400 Hz, and deriving five prominent acoustic features within the time-frequency

domain, i.e., MFCCs, Mel spectrogram, Tonnetz, spectral contrast, and chromagram.

The Hann window function is then applied to the sub-signal spectra, with fixed length

= 2.9 s and shifting time = 0.4 ms across a sequence of frames. Extracted features

are then consolidated into a unified feature vector with dimension (128×128×3). The

SMOTE [113] oversampling technique is applied to enhance minority classes representa-
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tions and mitigate model bias. The VGG-optiVMD algorithm is then applied to extract

frequency statistical characteristics at precise temporal instances, crucial for differenti-

ating emotions within the feature vector. The culmination is training the VGG network

on the augmented feature vector, enabling emotions to be classified into seven distinct

categories. The extracted features undergo enrichment via VGG-optiVMD, which intu-

itively identifies optimal K and α, ensuring a refined and accurate emotion recognition

performance.

Figure 3.8: Optimizing emotion recognition classification from signal data augmentation
to VGG16 network training using VGG-optiVMD.

Figure 3.9 shows the efficient functionality for VGG-optiVMD on the feature vector

3D-Mel spectrogram+MFCCs+chromagram. Figure 3.9(a) and (b) show the initial feature

state prior to augmentation; and the enriched frequency distinguished on the augmented

feature map data frame achieved post-augmentation, with a markedly increased energy

distinction, respectively.

3.4 Experiment Outcomes

3.4.1 Material

Customer voices (CVs) were mapped with similar emotion sample voices from stan-

dard emotion databases to maintain privacy while preserving emotional content in the

recorded voice files from inbound calls. This de-identifying technique constructed a

shadow CV database utilizing the correlation between negative emotions and high-risk

churn customers with low FL, and the association between positive emotions and low-risk
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Figure 3.9: Enhancing spectral feature discrimination: VGG-optiVMD’s proficiency with
3D Mel spectrogram, MFCCs, and chromagram.

churn customers. The Berlin EMO-DB database, a standardized resource for categorizing

emotions based on voice recordings, was utilized to label customer motions [114].

3.4.1.1 The Berlin EMO-DB dataset

The Berlin EMO-DB, is a well-known database frequently used for SER, and contains

535 audio files in WAV format. These audio files are categorized into seven emotions:

neutral, fear, anger, happiness, sadness, disgust, and boredom. The Berlin EMO-DB was

constructed by five female and male actors between 25 and 35 years old who were asked

to read ten prepared texts while performing in seven different emotions [114].

Table 3.1: Sample voice distribution in the Berlin EMO-DB dataset

neutral anger fear happiness sadness disgust boredom
79 128 68 71 62 46 81

3.4.1.2 RAVDESS database

The Ryerson audio-visual database of emotional speech and song (RAVDESS database)

was employed for model comparison. RAVDESS is a validated, balanced emotional

speech and song collection by 24 actors encoded in a neutral North American accent with
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lexical consistency. It provides a range of emotional states across two intensity levels,

plus a neutral baseline, in speech (calm, happy, sad, angry, fearful, surprise, disgust)

and song (calm, happy, sad, angry, fearful). Available in face-and-voice, face-only, and

voice-only formats, the database includes 7356 multiply rated recordings for emotional

validity, intensity, and genuineness by 247 North American raters. The dataset exhibited

high emotional validity and interrater reliability, corroborated by test-retest data from

72 participants. Enhanced with corrected accuracy and metrics, RAVDESS facilitates

precise stimuli selection for emotional research [113].

3.4.2 Method 1: Harmonic-Percussive Mel spectrogram

The voice samples were divided randomly, with 80% allocated for training and the

remaining 20% split evenly between validation and testing. Voice sample imbalance

across the seven emotion classes was addressed by employing an oversampling strategy

to increase minority class voice samples. Window size was set to 2048 and configuring

(128×128) bands and frames produced 167,426 signal subsamples and 9,717 feature

maps at 88 kHz sample rate. The Librosa toolkit was employed [105] to extract Mel

spectrogram features with Mel filterbanks size, window, and hop length = 128, 2048, and

512, respectively.

Foundational feature representations were then constructed using the hybrid feature

map extractor function and transformed into 2D image input data. Training data was

applied to the VGG16 network to recognize the intricately designed hybrid feature

maps. An MLP classifier was subsequently employed to predict seven emotions from

the 2048-long one-dimensional vector created by VGG16. The random search method

was employed to estimate sensitivity for the optimum MLP model configuration, and the

output layer MLP included four fully connected layers, incorporating ReLU activation

and softmax functions. The first two dense layers were configured with 1024 inputs and

dropout =0.5, whereas the latter two layers were configured with 512 inputs and dropout

= 0.3. The ADAM optimizer was selected to optimize the MLP network with learning

rate = 0.0001. The classifier was trained over 128 epochs with batch size = four, taking

advantage of the NVIDIA GPU computational power.

I further evaluated The proposed hybrid feature method was compare with several

traditional acoustic feature extraction techniques, with different MFCCs, chromagram,

Tonnetz, spectral features, and Mel spectrogram combinations. VGG16 was chosen for

the SER framework due to its practical performance and trade-off between prediction
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accuracy and model training time on different tested CNN-based networks, including

ResNet, MobileNetV1, VGG16, VGG19, and DenseNet.

3.4.3 Method 2: VGG-optiVMD

A series of experiments were implemented to investigate VGG-optiVMD capabilities,

incorporating nine distinct feature vectors, and utilizing a consistent computing environ-

ment throughout all tests (Intel Core-i7 processor, NVIDIA GT1080 GPU, 32GB RAM,

Windows 10 OS). The implementation used the Keras framework and Python 3.8 to

program quickly. The number of sample voices from EMODB and RAVDESS databases

was expanded to ensure a robust dataset, stratifying them based on mean duration

extremes. Acoustic feature extraction was executed using the Librosa tool, with frame

size = 2048, HOP length = 256, and sampling rate = 88,400, where these parameters

were selected to mitigate spectral leakage and boost frequency resolution. Pretrained

VGG16 networks were trained on the extensive ImageNet database, containing more

than 14 million images, to detect subtle variations within the feature maps presented.

The objective in deploying this framework was to enhance informative data encapsu-

lated within feature vectors drawn from speech signals, thus improving member emotion

prediction accuracy. The algorithm established initial K and α, and optimal counterparts

were determined by iterative testing, aligning with configurations that ensured the

highest test accuracy. Other hyperparameters from VMD remained constant. The DC

parameter at zero was set at ω= 1 to address inherent DC voltage offset typical in speech

signals; tolerance parameter, which governs minimum update rate for ω, tol = 10−9, with

noise tolerance parameter τ= 0. The VGG-optiVMD algorithm used two decomposition

parameters K(2−−6) and α(2000−−6000), because more computing power and space

were required as more modes were decomposed.

The VGG16 architecture was set up to use the ADAM optimizer with learning rate

of 0.0001. The network’s six fully connected hidden layers were activated by the ReLU,

SELU, and TanH functions, operating over 50 epochs with batch size = 4. The output

layer utilized SoftMax, which completed the architecture design for effective emotion

classification. Therefore, Parameters for VGG-optiVMD were calibrated as above to

fine-tune the VGG16 architecture processing capabilities.
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3.5 Results and Discussion

3.5.1 Method 1

Various evaluation metrics were used to compare between the methods, including con-

fusion matrix, precision, recall, F1 score, and accuracy. Comparisons included different

sample rates, feature map sizes, dimensionality (1D, 2D, and 3D), and impacts from

varying the number of subsamples were examined by augmenting the window size and

sample rate. I compared the performance outcomes for the proposed hybrid feature map

extraction strategy compared with conventional approaches using ten different feature

map representations.

Table 3.2 compares the proposed approach with several best-case conventional ap-

proaches for various methods and options applied. Mel spectrogram harmonic and

percussive components are powerful predictors for emotion recognition, and the proposed

hybrid feature map representation outperformed other well-known feature combination

techniques. Model accuracy improved with increasing sample rate and window size since

the feature map generator was able to process a greater volume of data points. VGG16

network outputs also benefited from more enriched feature sets and higher sample rate.

Table 3.2: Prediction accuracy impacts from feature extraction technique, sampling rate,
and window size on EMODB dataset.

Window size 512 1024 2048
Sample sate 22050 44100 88200
Feature extraction methods Acc. (%) Acc. (%) Acc. (%)
1D MFCCs 65.81 68.39 69.03
1D Mel spectrogram 75.48 75.48 82.71
1D chromagram 80.01 80.13 81.29
1D Tonnetz 56.77 63.08 56.81
1D spectral 54.84 50.93 47.10
2D MFCCs+chromagram 83.87 83.23 91.59
2D Mel spectrogram+MFCCs 88.39 85.16 85.81
2D Mel spectrogram+Spectral 82.01 85.13 80.65
3D Mel spectrogram+MFCCs+chromagram 83.87 88.39 81.94
2D log-MSS+Avg.HP(proposed) 92.02 89.54 92.79

Table 3.3 shows the model confusion matrix is proficient at recognizing anger, happi-

ness, and fear emotions, but relatively weaker for the more subdued emotions (neutral

and boredom).

Augmenting data points within the subsamples created significant memory storage

requirement, extending to the gigabyte range, to store the base, training, validation, and

test feature map files in pkl format. The proposed mode, in particular required almost

3 GB storage at 88 kHz signal sampling rate and window size = 2048 to analyze the
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complete voice files from EMO-DB, presenting a significant implementation obstacle for

practical real-world applications.

Table 3.3: Confusion matrix for the proposed model, achieving 92.71% average accuracy
on the EMO-DB dataset

Emotion: Anger Boredom Disgust Fear Happiness Neutral Sadness
Anger 94.92 0 0 0 5.12 0 0
Boredom 0 78.77 0 0 0 9.9 11.54
Disgust 0 0 89.47 0 9.8 0 0
Fear 0 0 0 96 0 0 3.85
Happiness 0 0 0 0 100 0 0
Neutral 0 12.81 0 0 0 88.87 0
Sadness 0 0 0 0 0 0 100

3.5.2 Harmonic-Percussive Mel spectrogram

This thesis explored potential Mel spectrogram components through a hybrid feature

engineering approach, devising a new acoustic feature extraction method to enhance

SER. A significant facet of this study involved fusing distinct elements, such as the

harmonic, percussive, and log Mel spectrogram components extracted from speech signals.

A specialized feature map generator function was built to create an enriched 2D feature

map vector, and a CNN-based transfer learning strategy was employed to decode emotion

data from extracted acoustic features. One significant drawback for CNN networks is

their inability to disclose the patterns they uncover in the data. Furthermore, although

high sampling rate improved accuracy, this also required substantial storage space for

the feature maps, creating practical obstacles. Consequently, the 2D feature extraction

strategy was a trade-off between memory usage and network performance. Despite this

limitation, the proposed H.P. SER model performance was unaffected, achieving 92.79%

test accuracy.

Future directions for this research will be to diversify the network architecture.

Considerable potential remains to create more comprehensive models by combining

outputs from various neural networks, each trained on different acoustic features. In-

corporating call transcripts as a textual feature could further generalize the model,

considering variations across languages and cultures. The ultimate goal is to develop

a multimodal learning model that transcends just acoustic analysis, but embodies a

multifaceted approach to member emotion and engagement level. The Python Keras

based network implementation for the proposed model and more experimental results
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and visualizations are available in the GitHub repositories1 noted below.

3.5.3 Method 2

Table 3.4 summarizes the outcomes for various mode count (K) and bandwidth con-

trol (a) using the proposed approach. There is strong correlation between K , α, and

classification accuracy. Acoustic characteristics were significantly enhanced for particu-

lar decomposition parameter sets, with optimal settings K ∈ [4,6] and α ∈ [2000,4000].

However, the ranges were restricted to α ∈ [1000,100000] and K ∈ [2,8], to reduce compu-

tational burden, which increases significantly for K > 8, particularly with sample rate

= 88.4 kHz. This boundary served as a functional constraint within the VGG-optiVMD

algorithm. Despite these constraints, the proposed methodology using 3D Mel Spectro-

gram+MFCCs+Chromagram achieved state-of-the-art outcome (96.09% with K = 6, and

α= 2000) on EMODB dataset. Also, we achieved the highest accuracy of 92.14 % with

K = 6, and α= 4000 using the spectral feature on RAVDESS dataset. Therefore, using

the spectral feature extraction method outperforms on RAVDESS than EMODB dataset.

Table 3.4: Emotion classification performance: Automatic decomposition parameter (K
and α) selection using VGG-optiVMD

Features VGG-optiVMD Performance
Database [K=4, α=2000] [K=4, α=4000] [K=6, α=2000] [K=6, α=3000] [K=6, α=4000]
EMO-RAV Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

CH EMODB 68.54 68.37 81.63 81.47 94.05 94.88 94.90 91.10 95.41 95.11
RAVDESS 70.23 70.55 82.73 82.96 85.21 85.92 79.81 79.79 47.49 46.53

MS EMODB 91.84 91.86 93.15 93.07 95.19 95.07 95.34 94.98 95.92 94.89
RAVDESS 64.21 64.69 71.36 71.55 75.28 75.95 84.19 84.68 87.25 88.11

MF EMODB 48.1 46.92 65.16 64.42 64.87 65.18 56.12 56.57 67.64 66.9
RAVDESS 42.64 41.77 53.29 52.14 55.61 56.80 51.81 51.44 41.86 40.46

SP EMODB 94.27 93.11 93.01 92.95 93.88 93.07 93.44 93.37 94.02 93.87
RAVDESS 89.25 90.11 78.48 79.21 91.28 92.88 90.70 90.10 92.14 93.55

TZ EMODB 74.93 75.11 91.25 90.89 88.92 88.91 91.84 91.12 92.44 92.10
RAVDESS 48.21 48.26 51.04 51.67 52.07 52.12 49.06 49.12 51.98 52.23

MS+SP EMODB 89.62 90.85 88.76 89.08 88.2 88.13 95.92 96.11 95.41 95.12
RAVDESS 78.33 78.12 74.37 74.79 78.52 78.78 81.38 81.42 81.84 81.91

MF+SP EMODB 58.1 58.2 66.91 66.98 65.16 65.11 62.54 62.13 67.64 67.21
RAVDESS 53.08 53.12 56.25 56.68 60.28 60.94 58.21 58.14 54.7 54.06

MF+CH EMODB 85.21 85.2 84.35 84.36 90.14 90.13 87.41 87.52 90.82 90.82
RAVDESS 51.29 51.35 54.25 54.89 53.65 54.66 55.13 55.12 56.08 56.84

M+M+C EMODB 86.56 86.42 87.41 87.35 96.09 96.04 93.54 93.42 94.73 95.98
RAVDESS 60.28 60.11 60.28 60.84 61.55 62.36 59.25 60.87 57.70 57.56

Abbreviations
M+M+C: 3D-Mel Spectrogram+MFCCs+Chromagram;

CH: Chromagram; TZ: 1D-Tonnetz; MF: MFCCs; MS+SP: 2D-Mel Spectrogram+Spectral;
The top-performing results across both databases are highlighted in bold font.

1https://github.com/DavidHason/ser
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3.5.4 VGG-optiVMD

The proficiency to precisely recognize emotional states solely from voice becomes very

important for situations where only auditory cues are available, such as emergency call

centers or customer service lines in organizations. Therefore, this thesis investigated

how member emotions are sent through vocal intonations, with a view to identifying

an optimal analysis pathway to enhance this aspect. Experimental outcomes confirmed

that VGG-optiVMD, a version of the VMD algorithm, significantly improves SER perfor-

mance. The experiments indicated that sampling rate and VGG-optiVMD decomposition

parameters (K and α) are key factors determining the emotion classification system

effectiveness, and combining feature vectors by concatenating significantly improved

VGG network training.

However, extending the range for K and α requires caution due to substantial in-

creases in computational demand, a constraint inherent to the VGG-optiVMD algorithm.

Notwithstanding, lower decomposition parameter ranges consistently yielded higher

classification accuracy. Future investigations should explore whether leveraging only

the most informative decomposed modes for acoustic feature extraction could reduce

computational overheads.

Potential for prediction improvement by applying the VMD algorithm upstream of the

acoustic feature extraction process requires further exploration. The opportunity could

revolutionize practices within human-computer interaction (HCI) and customer or mem-

ber behavior analytics, enhancing our understanding and interaction with technology

on an emotional level. Insights gained from this study not only propel us towards more

empathetic and intuitive HCI interfaces but also provide a strategic framework for en-

hancing member engagement in organizations. The details of Network implementations

implementation details are available on the GitHub repository2 noted below.

3.6 Summary

This chapter empirically assessed the advantages and drawbacks for para linguistic

emotion recognition methods such as H.P SER and VGG-optiVMD on many benchmark

datasets, and investigated the effects from setting speech signal decomposition parame-

ters on classification. The VGG-optiVMD approach excels primarily due to its innovative

integration of VMD with the VGG network, enhancing emotion recognition in speech.

2https://github.com/DavidHason/VGG-optiVMD
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VMD dynamically decomposes speech signals into distinct frequency modes, capturing

nuanced emotional details more effectively than traditional static features. The method

optimizes decomposition parameters K and α adaptively, ensuring optimal feature ex-

traction. Coupled with the VGG16 network, renowned for its deep learning prowess,

this integration allows for superior pattern recognition in emotional data, leading to

more accurate and robust emotion classification compared to baseline models. Therefore,

the proposed VGG-optiVMD approach was shown to be superior to previous SER algo-

rithms, and automatic selection for optimal K and α greatly improves VGG-optiVMD

performance, avoiding setting them by hand, which requires domain knowledge or expert

guidance. The outcomes from this chapter provide the following key insights.

• Advanced SER techniques, such as like VGG-optiVMD, are pivotal for interpreting

emotions from voice data, impacting member engagement and churn analysis.

• Speech signal processing is essential for emotion detection in voice-only contexts,

such as emergency services or customer support.

• The VGG-optiVMD algorithm’s state-of-the-art results on emotion classification

demonstrate its potential to revolutionize member sentiment analysis.

• Future advances in SER, such as reducing computational demands while maintain-

ing high accuracy, will enable more dynamic and responsive member engagement

strategies.
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MEMBER FINANCIAL LITERACY PREDICTION ROLE IN

CHURN ANALYSIS

This chapter explores how financial literacy (FL) influences member churn. FL empowers

informed financial decisions, impacting member engagement, satisfaction, and decision

making. Low FL leads to dissatisfaction and increased churn risk. This chapter considers

1. considers FL impact on engagement,

2. considers FLs vital role as a predictive factor in member churn analysis, and

3. introduces the SMOGN-COREG model, semi-supervised regression framework to

address unlabeled and imbalanced data.

4.1 Background and Motivation

Financial literacy is important for member engagement, particularly within financial

institutions. Members well-informed about financial products and services are more

likely to make informed decisions that align with their personal and financial goals,

leading to higher satisfaction; whereas members with limited FL may feel overwhelmed

by offered financial product complexity, resulting in lower engagement levels, dissat-

isfaction, and higher likelihood of exiting the organization. Therefore, The ability to

understand financial concepts and management is crucial for individual and society

economic wellbeing, particularly in the contemporary world.
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Suppose we accept the hypothesis there are four basic financial domains: personal

funding, savings, credit, and investment affairs. Then we can define FL as the ability to

analyze and handle costs and progress in terms of financial management, i.e., high FL

represents the ability to turn an asset into income. The modern definition of FL has been

updated to include digital currencies, i.e., cryptocurrency, virtual currency, and central

bank digital currency. However, FL cannot be summarized by the above definition, since

there are many unknown factors that could make the FL definition more sophisticated

among researchers and financial analysts, including sex, age, income level, education

level, occupational status, demographics, geographical location, language, and ethnicity

[44, 46, 115, 116].

Aside from all these above definitions, a general definition for FL has been stipulated

in a report to the National Foundation in the UK for Education Research by Schagen

and Lines [115] as financial literature is "the ability to make informed judgments and

to take effective decisions regarding the use and management of money". This definition

has been used many times [115]. There are two main qualitative and quantitative

research approaches toward FL: qualitative research concerning FL definition, concept,

and evolution, based on surveys; and quantitative, which focuses on predicting FL levels

and impacts from low FL.

Financial literacy is not only essential for people, but is also vital for member-centric

financial organizations to achieve efficiency and success in the market. It has been

determined that current economic conditions have raised significant concerns about the

financial security of Australians, in particular for those people who seem to lack the

resources and skills required to withstand downswings in the market and take advantage

of upswings. Individuals are generally responsible for several financial decisions, the two

most are retirement preparation and house financing. There is a relationship between

the complexity of these choices and increasing stakes. For example, current economic

issues have highlighted the significance of making effective financial decisions, and also

the consequences or results of making financial decisions without sufficient FL [117].

A few qualitative FL studies have been conducted by the Australian and US govern-

ments. For exaqmple, the US has realized many significant surveys aimed at determining

student FL, and many other FL initiatives have been implemented throughout the world

to predict FL for the various groups. For example, the Canadian Bankers Association

and Enterprise New Zealand Trust implemented the same program; and Australia

implemented various reports to determine if there wais a need for not only better un-

derstanding but also improving FL. Although the latter survey concluded that most
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Australians tend to have fundamental FL, those from lower socioeconomic backgrounds

are disadvantaged in terms of making informed decisions about money management.

However, almost all of these studies rely on literature reviews and online surveys, and a

few have uses data mining to predict people’s FL. Most also employed only simple linear

regression to determine correlations.

Many recent studies have considered FL definition and effects, some through online

surveys to measure FL level, asking volunteers questions including compound interest,

inflation, time value of money, and risk diversification . Risk diversification has been the

most challenging question, with only 9% of respondents able to provide a correct answer

in Australia [45].

Portfolio diversification encompasses various strategies to optimize the balance

between risk and return.

- Allocation across multiple asset classes. This involves distributing investments

among diverse categories such as equities, fixed-income securities, real estate,

and commodities. Each class exhibits distinct risk and return characteristics,

contributing to the overall risk management for the portfolio.

- Diversification across various sectors, industries, geographical regions, and coun-

tries. This approach mitigates risks associated with specific market segments or

geographical areas. Investing in a broad range of industries and regions reduces

the portfolio’s exposure to sector specific or region specific economic downturns.

- Investment in companies with differing market capitalizations. This strategy

includes investing in large, mid, and small-cap companies. Company size can

influence its market behavior and risk profile, thus opening the company size offers

an additional layer of diversification.

- Varied investment durations in income-generating assets. Diversification can also

be achieved by investing in assets with different maturity periods, such as short,

medium, and long-term investments. This helps manage liquidity needs and inter-

est rate risks.

The effectiveness of diversification is quantifiable using the correlation coefficient

between pairs of assets. This coefficient ranges from -1 to 1, and measures the degree

to which two assets move relative to each other. Correlation coefficient = -1 indicates a

perfect inverse relationship, whereas coefficient = 1 signifies a perfect positive correlation,

and and coefficient = zero implies no relationship. Broadly, lower correlation between
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assets in a portfolio signifies better diversification, as it suggests that the assets do not

move in tandem, thus potentially reducing overall portfolio risk.

A common aim for organizations is to increase their members and employees FL.

However, each organization benefits differently from developing FL knowledge, and the

outcomes can be used differently, depending on the particular organiztion.

• Government authorities, financial planners, and fintech companies can leverage

artificial intelligence to exploit unlabeled financial network data alongside online

FL surveys. Integrating technology and data analytics could significantly improve

CRM, member engagement, and customer retention rates, thereby enhancing

overall economic value.

• Member-centric organizations could benefit from more informed decision-making

regarding investments, savings, and budget management, ultimately encouraging

a more financially responsible and empowered community just from inceasing FL

among students and faculty.

• Enhancing FL levels is a multidimensional goal for research and development

engineers, that intersects with user experience, member engagement, system

engineering, and business-oriented predictive analytics. Equipping individuals

with better financial understanding through artificial intelligence, would enable

engineers to design more efficient financial tools to explain complex financial

products to members or users. This would assist members in making informed

decisions and provides a substantial financial behavior dataset from which to

optimize algorithms, ultimately contributing to more personalized and effective

financial services.

Few previous studies used only supervised learning and labeled data for classifi-

cation tasks. Real-value target variables in regression tasks face a practical difficulty

in implementating semi-supervised regression (SSR) algorithms. SSR builds a better

regressor by utilizing a large amount of unlabeled data with a small amount of labeled

data; requiring less human effort while providing better performance in theory and

practice. However, no previous study used semi-supervised learning (SSL) methods for

FL prediction. Therefore, there is possibly considerable scope to improve FL prediction

using SSR over unlabeled data.

Many studies have shown that low FL increases not only the churn risk in organi-

zations but also the social harm risks, such as low-income retirement, job loss, mental
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health problems, and longevity outcomes. Reliable FL prediction algorithms are essential

to estimate individual FL for allocating specific intervention programs and financial

advice to less financially literate groups. This will not only increase organisational

profitability and social economy, but also reduce government spending.

4.1.1 Tackling online survey challenges with semi-supervised
learning

Online surveys are not always ideal to measure FL levels in a large organization,

sometimes other methods, including using machine learning to analyze recorded data,

are more economical and constructive. Although most of these data types data in finance

networks are unlabeled, exploiting the large amount of easily accessible unlabeled

data through SSL is the best strategy when collecting labeled data is too expensive or

infeasible. Semi-supervised learning aims to find meaningful features from an unlabeled

dataset and use them in the prediction model. The main reason why SSL has recently

become a popular approach is because the amount of unlabeled data is increasing very

quickly.

This thesis proposed a novel method to synergize a limited dataset from a qualitative

online FL survey, including diverse queries indicative of members’ FL. Survey findings

assign a numerical FL value, ranging from 0 to 1, to each participant, and this FL dataset

is subsequently utilized within an SSL framework to categorize a substantial amount of

unlabeled data. This process, termed "financial X-Ray", is designed to provide detailed

analyses of members’ financial engagements within an organization, by combining

qualitative data from surveys with quantitative SSL methodologies to assess member

FL levels.

4.1.2 Key contributions

The main contributions from this thesis are summarized below.

- Developed the SMOGN-COREG model, an innovative semi-supervised regression

framework that effectively leverages unbalanced and unlabeled financial datasets.

- The proposed approach handles unbalanced datasets by merging oversampling

strategies with co-regression algorithms, enhancing the predictive power of a

combination of labeled and unlabeled data.
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- First known use of SSL for financial literacy prediction, a notable breakthrough

for utilizing vast unlabeled datasets in a domain where such methodologies have

not been extensively applied.

- The proposed model achieved enhanced accuracy with synthetic samples; labelling

64% of prior unlabeled data.

4.2 Preliminary Knowledge

4.2.1 Semi-supervised learning

Low cost and broad access to unlabeled data in various research scopes has made the SSL

method more popular. On the other hand, the recent massive growth of unlabeled data on

different platforms, such as social media, education systems and finance networks, makes

it inevitable to ignore them in real-world predictive models. SSL has been categorized

into two main approaches: semi-supervised classification (SSC) and semi-supervised

regression (SSR) based on the target variable type in model output. SSC is used where

the target variable is discrete, whereas SSR is the best choice when the model output is

a continuous variable. This thesis focuses on SSR since FL is a continuous variable. SSL

exploits both labeled and unlabeled data to obtain higher accuracy, where most data is

unlabeled and only a small amount of labeled data is available. The underlying method

can be summarized as

X = (xi)i∈[n],

where n there is the total number of instances, x is an independent predictor into labeled

set X l = (x1, ...., xl) associated with labeled data Yl = (y1, ...., yl), and unlabeled instances

Xu = (xl +1, ...., xl+u) where labeled data are not available for them. The SSR algorithms

can be classified based on the relationship between attributes in SSL, i.e., parametric or

non-parametric methods.

• Parametric methods use a functional form to define relationships among attributes,

such as linear, quadratic, or periodic relationship functions.

• Non-parametric methods extract relationship between attributes from input data

using an unknown estimator function. Some well-known non-parametric regressors

are k-nearest neighbors, polynomial estimators, and kernels.
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Learner view in SSL refers to the concept that each example x can be interpreted

in various aspects related to feature sets. The learning process can be categorized into

single and multiple views.

• Single view is mostly used for real-world problems where each predictor describes

the feature in one view.

• Multiple view is used where different views on the feature sets are considered for

each instance x. The most popular multi-view learners are the genetic and random

split algorithms.

There are also two types of learners: single and multiple learners. The multiple-

learner method applies more learners during learning to improve prediction accuracy

and reduce possible over-fitting, whereas single learners are mainly utilized in simple

regression tasks. Other important factors to consider when choosing suitable SSR al-

gorithms are the number of instances, unlabeled set pool size, number of iterations,

instance confidence measurement accuracy, and evaluation metrics. Table 4.1 shows how

SSR models can be categorized.

Parametric Non-Parametric
Single View Multi-view Single View Multiple View

Single Learner Least squares Regression -

Simplified Co-Regression
Kernel Ridge Regression

SVM Regression
Output Kernel Regression

Graph Laplacian Regularisation
Hessian Regularization

Parallel Field Regularization
Spectral Regression

Local Linear Regression
Gaussian Process Regression

Hybrids

Simplified Co-Regression

Multiple Learners - - Co-regression
Kernel Ridge Regression

Hybrids

Table 4.1: Summary of Regression Techniques

Semi-supervised learning uses unlabeled and labeled data in the learning process, in

contrast with supervised and unsupervised learning methods. Labeled data are expensive

and/or time-consuming to obtain and require experienced human annotators. In contrast,

unlabeled data acquisition is relatively easy and can quickly obtain considerable data

for the learning process. Although exploiting unlabeled data via SSL helps to reduce

human effort and improve model performance, there are other challenges that make

a time-consuming effort in model tuning more critical than other machine learning
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techniques. This thesis designs a regressor that utilizes unlabeled data in the training

set to perform better than a regressor that uses only labeled training data [118].

Commonly employed SSL methods to fit the problem structure with generative

mixture models include self-training, co-training, transductive support vector machines,

and graph based methods. An assumption is required to design a new algorithm when

the current SSR method is hard and complicated to modify. Inductive semi-supervised

and transductive semi-supervised learning vary depending on the model application.

Inductive semi-supervised learning can handle unseen data, whereas transductive only

works on the existing labeled [119]. The problem in modeling a SSL can be formulized in

labaled

{(xi, yi)}l
i=1

iid∼ p(x, y)

and unlabeled

{xi}l+u
i=l+1

id∼ p(x)

training data, where L and U are labeled and unlabeled data, respectively; X is an

input data point, y is a target label, P(X , y) is the unknown joint distribution, and p(X )

is marginal (typically p(X ) = l ≪ u). The transductive method only considers labeled

data [119]

{xi}l+u
i=l+1 .

Thus, the proposed SSL method can be expressed as

X = (xi)i∈[n],

where n is a total number of instances and x is an independent predictor into the labeled

set X l = (x1, ..., xl) associated with labeled data Yl = (y1, ..., yl) and unlabeled instances

Xu = (xl +1, ..., xl+u), where labeled data are not available.

4.2.2 GOREG for unlabeled data

Semi-supervised learning uses unlabeled and labeled data in the learning process, in

contrast to supervised and unsupervised learning methods. A non-parametric multi-view

SSR method is the most flexible algorithm for several domains, therefore, this thesis

proposes a non-parametric multi-learner SSR algorithm inspired by co-training SSR. The

co-training algorithm is mostly used for classification, where the algorithm trains two

supervised learning classifiers separately on independent sufficient and redundant view

sets, and both are independently applied to the classifiers to predict unlabeled examples

to augment the training set. This algorithm is used in many fields, including statistical
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analysis and noun phrase identification. A better SSR algorithm for labeling examples

shouild have low computational load and provide superior results in a large, imbalanced

dataset. The co-training regressors (COREG), is a SSL algorithm that implements

two regressors, one of which labels unlabeled data for the other, and the confidence in

labeling an unlabeled example is determined by the sum of the mean squared error

reduction over the labeled neighborhood for that example. Final predictions are derived

by averaging the regression estimates generated by both regressors. COREG utilizes

different distance metrics rather than requiring sufficient and redundant views, hence it

has broad applicability. COREG employs a lazy learning method including two k-NNs in

the learning process, and can improve computational load since it doesn’t hold a separate

training phase and optimizes regressors in each iteration. Whereas, the large number of

labeling iterations required for neural networks or regression trees will lead to heavy

computational costs [120].

COREG employs the k-NNs to compute the MSE for each Xu and hence identify the

most confidently labeled example by maximising ∆xu in

(4.1) ∆xu =
∑

xi∈Ω

(
(yi −h (xi))2 − (

yi −h′ (xi)
)2

)
,

where h and h
′
are the original and refined k-NN regressor, respectively; and Ω is the set

of k-NN labeled examples of XU . Information provided for regressors (xu, ŷu) by where

ŷu defines with ŷu = h (xu).

Following the co-training method, both base regressors are first trained on the

primarily labeled set, where its size is set to the labeled ratio (R),

(4.2) R = |L|
|D| ,

where D is the primary training set, L the target examples, and U the initial unlabeled

set, such that D = L∪U and |L|≪ |U | and the parameter defines the ratio between the

L training set size and total number of examples.

4.2.3 SMOGN for imbalanced dataset

SMOGN integrates random undersampling with two oversampling techniques to enhance

generated data diversity through Gaussian noise. This technique creates new synthetic

instances utilizing SMOTER, which identifies k-NN by measuring distances between

data points and can also add Gaussian noise to further diversify the data [121, 122].

SMOTER determines the neighborhood proximity, categorizing them into ’safe’ or ’unsafe’
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zones by evaluating median distance between data pairs. The approach systematically

segregates important from less important cases into respective BinsR and BinsN par-

titions, and finally applies oversampling and random undersampling strategies. This

thesis applied SMOGN sampling on all datasets to balance target variable distributions.

The unbalanced learning problem is concerned with learning algorithm performance

in the presence of underrepresented data and severely skewed class distributions [123].

We can solve this skewness by defining a relevance function to determine normal and

rare value sets, and then map them onto a relevance scale between 0 and 1, representing

minimum and maximum relevance, respectively [124]. A threshold tR was established

on relevant values assigned to each user to define the rare value set as

DR = {|x, y| ∈ D : φ(y)≥ tR
}
,

and normal cases as

DN = {〈x, y| ∈ D : φ(y)< tR
}
,

where

D = {〈xi, yi〉}N
i=1

is a training set with N data points. The relevance function and tR are used to determine

DR and DN sets in all sampling strategies.

Figure 4.1 shows that SMOGN’s synthetic graphics for baseline cases consider five

proximate neighbors, three of which fall within the defined safe zone, and the remaing

pair lie beyond, in the unsafe zone. This illustration highlights that normal bin instances

(marked in green) are more likely to intersect with significant bin instances within the

unsafe zones. Therefore, SMOGN synthesizes new instances, with SMOTER choosing

either k-NN or Gaussian noise as the mechanism for new instance generation, contingent

upon the spatial relationship between data points. Interpolation through SMOTER is

used when a neighbor is in a safe zone, and Gaussian noise is used when a neighbor is in

an unsafe zone.

4.3 Methodology

This section explores the SMOGN-COREG model, a proposed technique for SSR learning.

This model is particularly useful when labeling unlabeled data, since this requires an

algorithm that can handle large unbalanced datasets efficiently with low computational

load while delivering high quality results. Therefore, selecting an SSR algorithm is
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Figure 4.1: Synthetic examples in SMOGN

pivotal, and the SMOGN-COREG model is proposed as an effective solution for these

requirements.

4.3.1 SMOGN-COREG

Practical study, not detailed here, empirically investigating different sampling and

SSR algorithm adaptability confirmed that combining sampling strategies with a non-

parametric multi learner SSR algorithm achieves superior results on an imbalanced

dataset. The best arrangement was to combine compatible SMOGN and COREG in a

real-world financial dataset. Rare but important data points in the minority class can

often create bias in SSL models. Therefore, this study employed the SMOGN method

as a pre-processing step to improve model performance during the learning phase.

This technique strategically combines undersampling overrepresented values typically

clustered around the normal distribution mean of the response variable and oversampling

underrepresented, or ’rare’, values located in the distribution’s tails. SMOGN enhances

the regression process by introducing Gaussian noise to modify the interpolated values

synthetically. This process involves applying a function φ to the response variable,

which assigns a corresponding variate φ ∈ [0,1] for each data point, determining its

classification as a majority or minority instance based on the predefined threshold tR .

SMOGN randomly selects from the observed values within their function range to

generate synthetic values for categorical features. The resulting post-processed data

frame includes a balanced mix of under and oversampled observations. These sampling

strategies are crucial as they improve the learning process by enhancing representation
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for rare but critical cases. Figure 4.2 shows that the workflow to implement the proposed

SMOGN-COREG model involves four primary stages: input data; pre-processing (includ-

ing data cleaning), feature selection, and sampling; follwed by data augmentation of the

labeled set using SSR, and increased labeled data in output.

Figure 4.2: Proposed SMOGN-COREG model workflow

This thesis utilized the COREG algorithm due to its ability to work with diverse

distance metrics, eliminating the requirement for numerous redundant data views.

COREG incorporates sampling strategies with a non-parametric, multi-learner, SSR

algorithm, to significantly enhance model performance, particularly when dealing with

unbalanced datasets. Base regressors undergo co-training on a predominantly labeled

dataset, which is determined by the ratio R for labeled set L to the entire dataset D,

which also includes the unlabeled set U .

4.4 Experiment Outcomes

4.4.1 Materials

Table 4.2 summarizes the five imbalanced datasets that experiments were conducted on.

One dataset, includes 68 feature (55 integer and 14 real variables) and 932 instances, was

provided from an online survey in 2017 and 2018 by a local Australian superannuation

company with more than 1 million customers; and the other four datasets with 89

features (54 integer, 16 polynomial, and 19 real variables) and 918 labeled instances

belong to members who participated in the FL survey. Thus the combined dataset
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features cover customer financial activities, demographics, financial status, income,

account balance, marital status, age, and employment.

Table 4.2: Datasets

Dataset # Attributes # Instances Records
CFS_201706 89 824 73336
CFS_201712 89 856 76184
CFS_201806 89 899 80011
CFS_201812 89 918 81702
CFS_2017-2018_FL 69 931 64239

4.4.2 Baseline model

The baseline model for this comparison was the meta multi-scheme SSR Algorithm

(MSSRA), proposed by Fazakis et al. [125]. This algorithm incorporates three base k-NN

regressors, with k = 3, 7, and 9. The approach begins with these k-NN models to label

the data, which is then followed by self-training to enhances the initial labeled dataset

by incorporating insights drawn from the unlabeled data set.

The random forest (RF) regressor was employed to retrain the model and integrate

refined labels obtained from the previous iteration. The iterative process completed

with the RF regressor outputting labels for the test instances, which were previously

unknown. A unique aspect of MSSRA is that it leverages different regressors within

and outside the iterative learning process. This multi-regressor approach effectively

introduces diverse perspectives into the model training process, and this diversity in the

learning process contributes significantly to the resulting model robustness, enhancing

its overall predictive performance.

Table 4.3 shows the suite of supervised and semi-supervised regressor models (built

on the Weka platform) compared with the proposed SMOGN-COREG model performance.

Several additional supervised regressors were also investigated, but are not discussed

explicitly since their performance was markedly inferior.

4.4.3 Experiment setup

First, a cross-validation method was implemented, dividing the datasets into 10 folds.

One fold was reserved for testing and the remaining folds were allocated for training.

The unlabeled ratio, UR= 80%, was used to split the training set for each fold, retaining

only 20% of labeled data for the learning process. COREG maximum iterations = 100,
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Table 4.3: Regressor models for comparision

Method Characteristics Parameters

LR Linear relationship Weighted instances
k-NN Euclidian distance k ∈ {4,7,9}
SMOreg SVM-polynomial kernel Batch size = 100
M5 Rules Model tree in if-then form Min. instances/leaf = 4
M5 Model Tree Multivariate LR trees Min. instances/leaf = 4
Random Forest Regression/classification Depth: unlimited; iterations = 100
MSSRA(Baseline) Semi-Supervised Base regressors: 3,7,9 k-NN, RF

with pool size U
′
= 100, ensuring that ∆xu > 0 always in each iteration. This configuration

resulted in a theoretical maximum labeling capacity of 50,000 iterations. However this

number seemed overly optimistic, considering potential negative effects from noisy data

in the L subset. After experimenting with the trade-off between iterations and model

runtime, 500 iterations with pool size U
′ = 100 unlabeled data points was identified as

ideal, ensuring all confidence predictions to enhance the labeled set during learning

across all five datasets.

The two k-NN regressors within COREG employed the selected distance order k = 2

and 3, respectively, and k = 2 for the SMOGN algorithm oversampling, with tR = 0.25.

Gaussian noise included in the SMOGN was set at 5%, producing 0.05 perturbation

05 and maximum iteration count = 1000. The pool comprised 100 unlabeled examples

randomly chosen from the unlabeled set in each iteration, with the final prediction being

the averaged regression predictions from both regressors. Average MSE for labeling was

also recorded for the most confident instances.

The proposed approach was benchmarked against one SSR algorithm and five com-

monly employed supervised regressors across five distinct datasets (see Table 4.2).

multivariate linear model defined as

Yi =β0 +
P∑

j=1
β j X i, j +εi,

where Yi and y′i are the actual and predicted values, respectively.

Four evaluation metrics were considered to evaluate regression performance, as

shown below. Optimal predictions are indicated by higher PCC and R2 values and lower

MAE and RMSE values.

Root mean squared error (RMSE) is a standard metric measuring the difference
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between predicted and actual values,

(4.3) RMSE =
√

1
n

n∑
i=1

(
yi − y′i

)2 ,

where RMSE = zero indicates perfect predictions with no deviations. However, MSE can

disproportionately reflect impacts from larger errors, complicating interpreting model

performance.

Mean absolute error (MAE) measures predictive accuracy considering absolute

error values,

(4.4) MAE = 1
n

n∑
i=1

∣∣yi − y′i
∣∣ ,

facilitating a more straightforward interpretation compared with RMSE. Similar to

RMSE, MAE is always non-negative, and lower values denote more precise fits, and

MAE = zero signifies roboust predictions.

Coefficient of determination (R2) commonly referred to as R2, determines the

proportion of variance in the observed data that the model accounts for. It is calculated

using the ratio of the sum of squared errors (SSE) from the predicted mean y′i to the

actual observations yi, relative to the total sum of squared errors (TSS) between the

actual observations yi and overall mean of them Y i,

(4.5) R2 = 1− SSE
TSS

=
∑n

i=1(yi − y′i)
2∑n

i=1(yi −Y i)2
,

Typically R2 ∈ [0,1], where R2 = 0 indicates the model fails to capture any variance

within the dataset, and R2 = 1 indicates a perfect fit, describing the entire data variance.

Pearson correlation coefficient (PCC) is a statistical measure that quantifies the

strength and direction of the linear relationship between two variables,

(4.6) PCC =
∑n

i=1 (yi − yi)
(
y′i − y′i

)√∑n
i=1 (yi − yi)2

√∑n
i=1

(
y′i − y′i

)2
.

4.5 Results and Discussion

Considering the various experiments are conducted, the proposed SMOGN-COREG

model has a significantly improves perfrmance compare with the alternative regression

methodologies. One core objective was to utilize SMOGN potential to address imbalanced

regression tasks. Figure 4.3 shows the empirical analysis for the FL dataset, emphasized
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Figure 4.3: Target variable distribution pre and post SMOGN application

the SMOGN efficacy due to the significant reformation in the skewed data distribution

before applying SMOGN. Figure 4.3 shows the initial imbalance in the target variable,

with the initial data points densely populated above 0.5, whereas significant redistribu-

tion after SMOGN, reducing data points from 0.6 to 0.9 and considerably increase below

0.5, confirming SMOGN sampling efficacy to rectify data imbalances.

Figure 4.4 shows MAE metrics results for the datasets considered. The M5 and M5

Rules algorithms yield considerably lower MAE compared with their supervised and

semi-supervised counterparts. Although the RF model achieves the least variation, MAE

oscillating narrowly between 0.102 and 0.104, the superior result is achieved by the

SMOGN-COREG model, which consistently records the lowest MAE = 0.099 – 0.1091

across the considered datasets.

Table 4.4 shows RMSE outcomes for the considered datasets are satisfactory for all

regressors. The M5 model achieved optimal RMSE = 0.1207, maintaining the least vari-

ance across diverse datasets. The proposed SMOGN-COREG model exhibits enhanced

efficacy relative to the baseline model and the three k-NN regressors, but marginally

higher RMSE than M5, SMOreg, and LR. The latter result is because SMOGN-COREG

regression models were trained on a broader training set, combining the initial labeled

set with a pseudocode subset. This integration inherently increases prediction error in

SSL relative to supervised methods due to SSL vulnerability to data noise, which can
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Figure 4.4: The SMOGN-COREG and M5 models achieved the better MAE result.

produce inaccurate pseudo-labels and consequently highly confident but erroneous pre-

dictions. Nevertheless, the SMOGN-COREG algorithm demonstrates superior stability

over the baseline SSL algorithm and the other supervised learning models.

Table 4.4: RMSE Results
Datasets MSSRA SMOGEN-COREG 4-NN 7-NN 9-NN SMOreg LR M5 M5rules RF
CFS_2017-2018_FL 0.1367 0.1356 0.1344 0.1306 0.1284 0.1317 0.1275 0.1276 0.1277 0.1317
CFS_201812 0.1565 0.1335 0.1483 0.1439 0.1426 0.1321 0.1224 0.1214 0.1215 0.1339
CFS_201806 0.1618 0.1303 0.1581 0.153 0.1533 0.1325 0.1304 0.1223 0.1229 0.1359
CFS_201712 0.156 0.1285 0.1502 0.1447 0.1448 0.1831 1.1528 0.1227 0.1231 0.1362
CFS_201706 0.1549 0.1416 0.1513 0.1465 0.1462 0.1263 0.1251 0.1207 0.1208 0.1361

The significant improvements in the coefficient of determination (R-squared) and

Pearson correlation coefficient (PCC) with the introduction of my model are indicative

of the synergistic integration of the SMOGN sampling technique with my model. The

results shown in Figure 4.5 and Table 4.5, reveal that the COREG algorithm alone

obtained modest R-squared and PCC values of 0.4431 and 0.6656, respectively. However,

the SMOGN-COREG model significantly elevates the improvement to 0.7171 for R-

squared and 0.8468 for PCC. This not only confirms the synergistic compatibility of

SMOGN and COREG within the financial network’s dataset but also emphasizes the

critical role of the SMOGN sampling technique in increasing prediction accuracy in

imbalanced datasets.
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Table 4.5: PCC results
Dataset MSSRA (Baseline model) SMOGEN-COREG 4-NN 7-NN 9-NN SMOreg LR M5 M5rules RF Improved %
CFS_2017-2018_FL 0.7922 0.8468 0.7876 0.7988 0.806 0.7955 0.8092 0.8094 0.8092 0.7985 4.6
CFS_201812 0.7465 0.8384 0.7274 0.7472 0.754 0.7919 0.8249 0.827 0.8267 0.8119 1.4
CFS_201806 0.7322 0.8622 0.6837 0.7117 0.7144 0.7917 0.8025 0.8259 0.824 0.8081 4.4
CFS_201712 0.7476 0.8523 0.7171 0.7442 0.7461 0.6295 0.0858 0.8225 0.8214 0.809 3.6
CFS_201706 0.7501 0.7454 0.7095 0.7325 0.7365 0.8085 0.8134 0.8268 0.8265 0.8053 −8.8

Figure 4.5: R2 results

4.5.1 Discussion

This investigation into FL predictors for churn analysis has highlighted the critical

importance of integrating financial education into member engagement and retention

strategies. Financial literacy is fundamental to empower members to make informed

decisions that align with their long-term financial goals, enhancing their engagement

with financial services, and increasing their propensity for continued membership. The

complex FL landscape extends beyond a specified understanding of financial products

and services. This study is the first to use SSL to predict FL levels utilizing extensive

datasets of unlabeled financial information, due to the impracticality of traditional

approaches, such as online surveys, for gauging FL across large population groups.

SSL is an effective strategy that leverages the abundant unlabeled datasets, extracting

pertinent features that can significantly inform and enhance predictive model accuracy.

The proposed semi-supervised SMOGN-COREG model represents a significant advance

in addressing inherent obstacles posed by imbalanced datasets, which are common in

financial contexts.

The SMOGN-COREG model was empirically shown to be superior predicting FL

levels than traditional methods. The model uses advanced sampling methods to balance

data, and hence improve prediction accuracy. However, this study has some limitations.
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Although SSL is advantageous for processing extensive datasets, it also introduces

potential complications due to noise in the data, which can result in generating inaccurate

pseudo-labels. This challenge necessitates unbiased model training and validation to

ensure outcome reliability. Additional data sources, such as behavioral and transactional

records, should be explored to improve SMOGN-COREG models. Integrating SSL with

other advanced machine learning models presents an opportunity to enhance the FL

prediction field and general financial behavior analysis. The main objective is to develop

a framework that provides multifaceted insight into member financial behaviors and

hence improve member engagement in organizations.

The Python implementation for the proposed SMOGN-COREG model and more result

visualizations can be downloaded from the GitHub repository1 shown in the footnote.

4.6 Summary

This chapter presented a comprehensive study on financial literacy (FL) as a predictor

of member churn, highlighting FL significance in enhancing member engagement and

retention. A novel semi-supervised learning model, SMOGN-COREG, was proposed to

predict FL using unlabeled financial data, and confirmed to be superior to traditional

survey methods. This model effectively addressed dataset imbalances, demonstrating

excellent robustness and accuracy. These findings emphasize the need for advanced

learning models in predicting FL and suggest future directions for integrating diverse

data sources to improve FL assessments and reduce churn.

The specific outcomes from this chapter can be summarized as follows.

1. Proposed SMOGN-COREG SSL as a transformative tool for FL prediction, address-

ing limitations for expensive questionnaire survey methods to measure FL.

2. Confirmed the proposed SMOGN-COREG model efficacy in leveraging unlabeled

financial network data for predicting FL.

1https://github.com/DavidHason/predicting-financial-literacy
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MEMBER CHURN CAUSAL ANALYSIS IN MULTIMODAL

FUSION LEARNING

This chapter addresses the underlying causal factors for member churn and provides

a strategic framework for organizations to enhance member engagement, satisfaction,

and long-term loyalty. Specifically, this chapter considers the following main aspects for

causal analysis of member churn.

1. Comprehensive member attrition analysis by integrating predictive and causal

models.

2. Identify causal factors that influence member churn.

3. Improve churn predictive models through restrained high dimensional feature

space effects.

5.1 Background and Motivation

Member engagement and churn are two sides of the same coin. Churn is typically low

when members are highly engaged, and churn tends to increase when engagement

drops. Studying churn indirectly studies the factors contributing to or detracting from

member engagement. Given that member engagement and churn are intrinsically linked,

this thesis investigates churn intricacies using a multimodal approach integrating

predictive and casual models. Two strategies are commonly employed by subscriber-based
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organizations exist to improve market share: acquiring and retaining new customers.

The latter challenge is referred to as preventing churn. It is usually more expensive

to attract a new member or client than to retain an existing member or client, hence

investing in member loyalty is smart. It is even smarter to target that investment into at

risk members or clients, rather all of them, and particularly focus on those where there is

a chance to keep. Given the at risk members and/or clients are identified, organizations

then need to know how to keep them. Thus, there are countless aspects to consider for

churn reduction or prevention, constituting a sophisticated challenge.

Customer service embodies two member types: those who remain loyal and use the

organization’s services, and those who might switch to other services or stop using the

organization’s services altogether. These latter members are likely to leave. This creates

a dichotomy: loyalists versus churners. A major objective for this thesis is to distinguish

these segments clearly. The primary task involves transforming the member churn

concept into a classifiable issue, subsequently addressed by deploying a data mining

algorithm for predicting churn. The second but equally important task is to identify

hidden causal variables, covariates, and confounders using the proposed causal model,

ensuring their relevance as a cause of churn, since predictive models may not clearly

reveal these causal details.

I present a framework that conducts causal churn analysis for a local financial in-

stitution, with the aim to examine this data over a 12-month period, and subsequently

forecast churn for the forthcoming six months. This timeframe facilitated extracting

latent factors contributing to churn. The proposed churn model integrates Bayesian net-

works to describe deliberate churn causation, and a novel causality analysis methodology

to test hypotheses on features with high predictive power identified by Shapley additive

explanations (SHAP) and partial dependence plot (PDP) analysis and can help improve

causal model outcomes.

Another aspect is assessing deep feedforward neural networks (DFF NNs) for predict-

ing churn from large sparse datasets prevalent in financial sectors. These datasets are

often generated from member-centric organizations, such as associations and insurers,

utilizing interval-based features in CRM systems. Recursive feature elimination (RFE)

techniques were employed to manage the high dimensional data, and the outcomes were

compared with ensemble ANNs and other classifiers.

Most causal churn inference studies in telecommunications, gaming, and financial

sectors involve counterfactual reasoning and causal Bayesian networks [59, 60, 66].

Despite this, few studies have employed propensity score matching (PSM) [126] coupled
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with DoWhy [127] to explore causality [128]. Although most previous studies focused on

churn prediction, few studies link causal analysis with customer churn, specifically in

the financial sector. This gap inspired my investigation for a different approach to causal

analysis of member churn using deep learning and PSM/DoWhy.

5.1.1 Key contributions

Key contributions toward causal analysis of churn from this thesis can be summarized

as follows.

- This thesis is the only empirical investigation of causal Bayesian networks with

PSM/DoWhy into causal effect impact on churn in high-dimensional sparse datasets.

- This thesis integrated different approaches, including RFE, SMOTE sampling, and

ensemble ANN to address high-sparsity datasets.

5.2 Preliminary Knowledge

5.2.1 Membership churn

Membership churn refers to termination of a business relationship or reduced member

engagement over a specific timeframe. Two primary marketing strategies are essential

for increasing market share: acquiring new members and retaining existing members.

Member acquisition costs are significantly higher than member retention costs, hance

focusing on churn risk members is a wise investment.

Member-centric businesses rely heavily on retaining satisfied members, which con-

tributes significantly to their revenue in a competitive market. Although acquiring new

clients is crucial initially, retaining existing clients gradually become equally or more

important. Many previous studies have emphasized retention rate impacts on the mar-

ket [67]. However, members typically exhibit warning signs before churning, prompting

developing churn prediction systems that focus on member behavior to identify poten-

tial churners and reasons for their churn. These factors aid in formulating efficient

retention strategies, enhancing customer lifetime value and augmenting the company

market value. For example, member-centric organizations often lose members with fewer

interactions over time, resulting in account closure.

Figure 5.1 shows different churn categories, including voluntary churn, where mem-

bers choose to leave due to dissatisfaction or unmet expectations; involuntary churn, due
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Figure 5.1: Churn categories

to payment issues or technical problems; and incidental churn due to external factors,

such as location or career changes. Deliberate churn occurs when members seek alter-

natives due to various issues, including poor service quality, non-competitive pricing,

or old technology. Organizations can utilize churn modeling to rank churn risk and

consequently improve retention strategies.

The most significant reasons for churn analysis, particularly for member-centric

organizations, can be summarized as follows.

- Costs to acquire a new member can be 5 times (or more) the cost to keep an existing

member [67].

- Loyal members are less costly to serve, resulting in higher profits, and potentially

generating new referrals.

- The loss of a member typically results in reduced profit for the organization. A

company can effectively reduce member loss and increase revenue by thoroughly

analyzing churn.

- Churn analysis can mitigate frustration in the business workflow. [67].

5.2.2 Calculating member churn rate

Member churn rate represents the business pulse and can be quantified in multiple ways,

such as total number of customers lost, percentage of customers lost relative to overall

customer base, value of lost recurring business, the percentage of dormant accounts. For

example, an investing company with 400 investors that loses 8 investors in a month has

2% churn rate. Some organizations may calculate churn over quarters or financial years,

but the most common method involves dividing the number of customers lost during a
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Table 5.1: Churn rate calculation
Formula Title Description
[1] members at the beginning of month
[2] Existing members who churned by the end of month
[3] New members in the month (not included at the beginning of the month)
[4] New members who churned
[5] Total churners [2] + [4]
[6] Total members at the end of month (total active)
[7] Basic churn rate [5] / [6]

specific period by the total customer count at beginning of the period. Hence churn rate

[55] can be expressed as

(5.1) ChurnRate = LostMembers
InitialMembers

.

The preferred churn calculation method should be clarified before finding imple-

mentable ways to deal with churn rate, as a benchmark of where the business stands

and any red flag metrics. Table 3 shows member churn based on existing members who

churned at the end of the month, new members who churned, and total active members

at the end of the month. Therefore, churn rate can be calculated by dividing the number

of churners from the beginning and end of the month by total active members at the end

of the month.

5.2.3 Recency, frequency, and monetary analysis in churn

A CRM database allows combining data from static and dynamic features. Recency,

frequency, and monetary (RFM) values have been utilized for many years to segment cus-

tomers for churn analysis [129]. RFM analysis is a data mining model that differentiates

clients by three variables, as follows.

1. Recency of engagement: the time period between the last interaction, contact, or

login and present.

2. Frequency of engagement: the different number of logins to portal, calls, emails, or

any member interactions in a specific period.

3. Monetary: the account’s monetary value, purchased products, investments, etc.

Member behaviors can also be analyzed using the RFM method, where recency

represents how recently a member has used services, frequency represents that how

often members used services, and monetary refers to how much a member spent on

services. RFM analysis can identify loyal members, members willing to churn, and level

of member engagement.
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5.2.4 Causal analysis fundamentals

Predicted data does not speak alone. Predicting churn without causality based interpre-

tation is insufficient; it is imperative that the root cause of churn is known to formulate

valid churn strategy plans. Where regression analysis predicts outcomes from variables,

causal analysis reveals the root causes behind events. Variables are evaluated for their

impact on results, and it seeks to confirm whether a variable influences the outcome

and measure this effect. Variables that directly impact outcomes are considered causal,

whereas those that move with outcomes but are not the cause are deemed correlational.

It is crucial to identify those features directly leading to member churn.

Deep learning model output interpretation is divided into causal feature learning

and counterfactual causal analysis. Causal feature learning involves identifying features

or variables within the data that have causal relationships with the outcome of interest,

whereas counterfactual explanations are a way to understand causal relationships con-

sidering alternative realities by modifying some variables and observing the hypothetical

outcomes. This thesis employed causal feature learning, which is explained in detail in

the following sections.

Causal analysis employs experimental design and statistical reasoning to uncover

causal connections. It requires a time-ordered sequence where causes precede effects and

a credible mechanism for causal influence. It also involves discovering the actual cause for

a phenomenon by excluding other possible causes. The scope ranges from hypothetical

scenarios to factual event evaluations, where we anticipate possible outcomes. For

example, a hypothetical causal analysis might look at the effects of a price increase,

while factual analyses might look at the effects of important historical events. The

choice to focus on causes or effects depends on the research intent and subject. The four

primary patterns underpin causal investigation, include multiple causes leading to a

single outcome, a single cause with multiple outcomes, hypothetical effects that predict

future outcomes, and causal chains that link events to outcomes. These patterns guide

the investigation structure, ensuring a methodical approach towards causal networks. In

this analytical framework, cause types are classified as immediate causes, which directly

cause the effect; remote or background causes, from a more distant past; or perpetuating

and hidden causes for holistic understanding.

Bayesian causal analysis uses probability to articulate uncertainties around unknown

quantities based on known data. For example, it can help to quantify the likelihood that

various features contribute to high churn rate, which improves our understanding of the

underlying causes. Bayesian inference is the process of refining beliefs with incoming
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information. New information becoming available changes our ideas’ likelihood and helps

us make better predictions.

The core concept for causal inference is to evaluate an effect estimation using causal

discovery tools such as DoWhy [127], EconML [130], Causal Discovery Toolbox [131],

and TIGRAMITE [132]. The DoWhy causal inference tool can quantify effects from a

predefined treatment set on an attribute, and constitutes a powerful tool for treatment

effect estimation of individual feature observations. Figure 5.2 shows that the main

causal graph components utilized for causal feature learning include

1. covariate Z refers to hidden variables that represent attribute properties;

2. outcome Y is the effect of treatment;

3. confounder W is a causal variable that impacts treatment and outcome; and

4. treatment T refers to an intervention that is deliberately applied to an attribute.

Figure 5.2: Example causal graph for churn

5.2.5 Causal Inference with DoWhy

The DoWhy Python library facilitates causal reasoning, allowing causal models to be

developed with graphical representations. Even with partial graphs, DoWhy treats
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unmodeled variables as confounders, determines all methods to identify a causal effect,

and employs graph-based rules and do-calculus for estimation. DoWhy is supported by

back-door criteria and instrumental variables, and provides non-parametric confidence

intervals and permutation tests for statistical validation. It also supports strategies such

as adding control variables, using instrumental variables or implementing sensitivity

analyses to address potential confounding and produce more reliable causal estimates. A

key feature of DoWhy is its suite of refutation methods, which critically assess causal

estimate validity.

5.2.6 High dimension feature space

Datasets commonly include more features than observations for each member, which

can lead to overfitting the model. This is particularly common for financial data, where

many features have low variance and correlation with the target variable.

Causal model performance depends on considering all causal features, possible co-

variates, cofounders, and attributes available in the data sources, and dropping low-

importance features can increase bias in the model. In contrast, preserving all attributes

leads to overfitting for predictive models. Hence, it is imperative to strike the appropriate

balance between adverse and beneficial impacts from dimensionality [133, 134].

Many dimensionality reduction methods have been developed to address this issue,

including feature dropping, wrapper methods, and feature importance with RF. This

study employed recursive feature elimination (RFE) [135], obtaining robust results to

overcome high-dimensional data while retaining possible influential cofounders and

causal variables. The RFE algorithm is widely employed for ranking features since it

provides a method to eliminate features with low weight and establish a threshold and a

set number of top-ranked features.

RFE removes the feature with the smallest ranking criterion using the DJ(i)cost

function,

(5.2) DJ(i)= (1/2)
∂2J
∂w2

i
(Dwi)2

where Dωi is an assigned weight. Evaluating feature weights involves evaluating the

impact of altering the cost function output in weight Dωi by eliminating a particular

feature i using the iterative RFE procedure [135]. The ranking weight criterion for

expanding J in Taylor series to second order can be expressed as

(5.3) J = ∑
x∈X

∥w ·x− y∥2,
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where J (5.3) is the cost function.

The features are divided into subsets Fm for each iteration, from the lowest to the

highest ranked. This thesis also proposes an algorithm to combine SMOTE and RFE

algorithms to circumvent minority class and high-dimension feature space issues. This

strategy ensures that attributes with low variance and weaker predictive capabilities

are removed from the collected data without significantly impacting the causal inference

framework.

5.3 Methodology

5.3.1 Problem statement

Data mining can potentially extract valuable knowledge regarding pattern extraction

from diverse sources, and various feature engineering tools can extract concealed patterns

from vast datasets [136, 137]. Figure 5.3, shows 12 real-world datasets analyzed following

the proposed approach to ensure the model’s effectiveness.

This research addresses a binary classification challenge focused on the minority class.

Each member is represented by a vector with n components or features. The data pattern

P for each member exists in an n-dimensional feature space and is categorized into either

minority or majority class (class 1 or 0, respectively). Therefore, I define a training set

of vectors {x1, x2, x3, . . . , xk, . . . , xn} with corresponding class labels {y1, y2, y3, . . . , yk, . . . , yn},

where yk ∈ {0,1}. A discriminant function, D(x), is employed to distinguish vectors with

n components or patterns. The decision boundary is split into regions where D(x) > 0

and D(x) < 0, enabling classification for each sample into churn (1) or non-churn (0)

categories,

(5.4)

D(x)> 0 ∃ x ∈ class(0)⇔ acc_closetw > acc_closetw −1+ tw

D(x)< 0 ∃ x ∈ class(1)⇔ acc_closetw ≤ acc_closetw −1+ tw

D(x)= 0 or acc_closetw = tw decision_boundary

where x are input patterns or vector components; tw is a 6 month time-window; acc_close_tw

and acc_close_tw −1 are the current and previous 6-month time windows, respectively.

Hence, a linear discriminant function is constructed by calculating the sum of the

training patterns and bias,

(5.5) D(x)= w.x+b,
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Where w is the weight for a pattern and b is bias. Since a singular criterion for defin-

ing the decision boundary has been established, a linear discrimination function can

effectively distinguish the classes without introducing errors.

Figure 5.3: Member accounts (closed and non-closed) for 6 months

Equation (5.4) defines a member as a churner if they closed their account during

the subsequent 6-month time window. Consequently, a binary classification is applied

to each client indicating account closure (1), and 0 indicates its continuation within the

following six-month period.

The data mining approach must align with the problem’s structure, as defined by

the need to analyze churn in member accounts that were either closed or remained

open within a 6-month timeframe. two primary inclusion criteria were established to

streamline the process and reduce dimensionality by eliminating excessive and noisy

data. Only customers with account tenure longer than six months are retained, and those

with account balances below $1500 are considered low-engagement members and are

excluded. The observation window in Figure 5.4 showcases the features used to predict

whether user will churn or not within the subsequent 6-month outcome window.

5.3.2 Churn predictive method

In assessing the efficacy of my novel DFF NNs algorithm, I compared Seven state-of-the-

art classifiers were compared on datasets featuring 12-month observation period and

6-month forecast horizon, as detailed in the problem definition, to assessing the proposed

novel DFF NNs algorithm efficacy. Figure 5.5 shows the operational flow for the proposed

model. The algorithms were used for both training (80%) and evaluation (20%) (post

feature extraction), extracting 193 features from a pool containing 124,363 instances.
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Figure 5.4: Proposed method to extract feature values using a sliding observation win-
dow onto a dataset. The observation and outcome time windows = 12 and 6 months,
respectively.

The synthetic minority oversampling technique (SMOTE) [138] was applied during

preprocessing to create synthetic samples for the minority class, balancing the training

set with an equal number of data points (14031) in each class (1 or 0). Experimental

results confirm that the model performance improved with SMOTE.

A majority voting ensemble mechanism was also applied from the Scikit-learn li-

brary [139] to boost classifier accuracy. Both ensemble hard and soft voting modalities

were explored to assess supervised models. Hard voting tallies the votes from each

classifier to determine the prevalent outcome, whereas soft voting assigns weights to

predictions based on classifier significance, declaring the winner as the label with the

greatest sum of weighted probabilities [139].

Table 5.2 shows the ensemble of ANNs employed to tackle the research question,

deriving the fine-tuned ensemble ANN architecture by hyperparameter optimization.

5.3.3 Causal inference method

Causal graphs were employed to decode assumptions and identify dependency level

granularity between features, using the DoWhy python package [127]. The causal model

first scored attributes according to some measure of their importance for the predictive

model to identify potential causal contributors, then feature weighting was implemented
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Figure 5.5: Framework overview for the proposed churn predictive model

Table 5.2: Ensemble ANNs network architecture for predicting churn.

Network type Deep ANN-1 Deep ANN-2
Hidden layers 4 4
Dense activation 1,2,3 and 4 tanh, and 3

p
ó Relu tanh and 3

p
ó Relu

Dropout 1, 2,3 and 4 0.2, 0.2, 0.2, and 0.2 0.4, 0.4, 0.4, and 0.4
Output activation function Sigmoid Sigmoid
Learning rate 0.000474718 0.000012
Epochs 100 100
Batch size 512 512
Optimization algorithm ADAM ADAM

based on predictive power between close attributes with different labels, SHAP value,

and partial dependence plots (PDPs). Shapley values play a pivotal role by quantifying

the contribution of each feature to the predictive model’s output. By integrating Shapley

values, the model assesses how the presence or absence of a specific feature affects the

prediction outcome, thus isolating the impact of each attribute. Consequently, Shapley

values provide a robust statistical basis to prioritize features for deeper causal analysis,

ensuring that the causal model focuses on attributes that are most likely to drive changes

in the outcome variable.

Figure 5.6 shows an example where the highest feature weights are the most powerful
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predictors. Feature influence on predictions and the correlation between key features

and prediction accuracy were used to form preliminary causal hypotheses. These hy-

potheses were subsequently formulated in a directed acyclic graph (DAG) founded on

prior knowledge from correlation assessments and influential predictor evaluations.

Figure 5.6: Example case for the 10 highest predictive features with influence > 10%

This thesis attempted to combine the ML and causal model to identify and incor-

porate influential predictors into the proposed causal inference framework, creating a

causal inference framework with sturdy results built. A dependency architecture among

predictor variables was also constructed based on relationships among independent

variables. The following procedure was followed to model the causal inference.

1. Construct a causal graph by creating an underlying explicit causal graph for each

causal assumption.

2. Identify causal effect by extracting target estimates based on influential predictors

and causal graph observation.

3. Estimate causal effect employing a backdoor criterion, and subsequent permutation

test to examine the estimated effect’s statistical significance.

4. Refute the obtained estimate to validate the causal effect of the estimate.
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5.4 Experiment Outcomes

5.4.1 Materials

Experiments were conducted using twelve datasets sourced from a local finance company

containing information about customer accounts, demographics, customer engagement,

and financial data. These datasets comprised approximately 250,000 examples, each

containing 88 features, comprising 71 numerical and 17 nominal variables.

5.4.2 Churn Prediction Method

The churn prediction models employed in this research utilized advanced machine

learning techniques to analyze and predict member behavior. The models were rigorously

tested against various datasets to ensure robustness and accuracy. The results indicate

that combining ensemble ANNs and feature selection techniques like RFE significantly

improved the prediction accuracy. This subsection discusses the performance metrics,

the effectiveness of the SMOTE technique in handling class imbalances, and how these

methods contribute to identifying at-risk members effectively.

5.4.3 Causality Analysis Method

The causality analysis focused on identifying the root causes of churn to inform targeted

intervention strategies. By employing advanced causal inference methods, including

DoWhy for constructing and evaluating causal models, this research identified key factors

influencing churn. The findings reveal that certain features such as account tenure and

service usage patterns directly impact member retention. This subsection discusses the

implications of these causal relationships and how they can be leveraged to formulate

effective churn mitigation strategies.

5.5 Results and Discussion

This section presents the findings from the analysis of churn prediction methods and

causality analysis methods. Each subsection elaborates on the respective methodologies

applied and discusses the implications of the results in the context of enhancing member

engagement and reducing churn.
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5.5.1 Churn prediction results

The results of my experiment are presented in Figure 5.7 shows the experimental

outcomes for the most recent data and outcome windows. RF outperformed the other

algorithms, achieving AUC = 80%. The proposed ensemble ANNs and RF achieved similar

performance, with 7.5% improved AUC compared with logistic regression. Ensemble

ANNs achieved maximum prediction accuracy on test data and were comparable with

current best-practice classifiers. The evidence base for exploiting ANNs reduced time-

consuming feature engineering, requiring expert knowledge, for these specific financial

datasets. Table 5.3, shows the low Cohen kappa score = 0.86 for the proposed model,

confirming no significant difference between the null error and test accuracy outcomes.

The proposed algorithm also achieved Matthews correlation coefficient (MCC) range <

0.45, confirming the model’s reliability.

Figure 5.7: Churn predictive model performance using several evaluation metrics and
best-practice classifiers. The highest test accuracy was achieved using the proposed
ensemble ANN.

Descriptive methods in statistical analysis define the predictive power for features

and their contribution to improving model output from its base (average output for the

training dataset) to more meaningful values. Figure 5.8 uses SHAP plots to extract the

feature prediction impact on model performance, where red features increase and blue

features reduce the base value model outcome, e.g. feature acc_balance_change_amount

impact reduces, and feature sg_recency increases, model predictive power. Figure 5.9 uses

the PDP plot to show that the most potent predictors all have significant impact on model
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Table 5.3: Model performance metrics for ten classifiers

Model Test accuracy Cohen kappa Matthew coeff.
Naive Bayes 0.74 0.36 0.31
Logistic regression 0.80 0.43 0.40
Decision tree 0.71 0.32 0.26
Random forest 0.86 0.51 0.50
AdaBoost 0.71 0.32 0.27
Extra trees 0.86 0.49 0.49
Gradient boosting 0.85 0.51 0.49
XGboost 0.85 0.51 0.50
Stack ensemble (H.V) 0.81 0.44 0.41
Stack ensemble (S.V) 0.72 0.36 0.30
Ensemble ANNs (ours) 0.86 0.45 0.45

performance. Thus, the PDP and SHAP plots confirm that acc_balance_change_ratio,

login_recency, acc_tenure, cust_tenure, and account_growth_change constitute be strong

causal estimators under the causal hypothesis.

Figure 5.8: The SHAP graph illustrates feature impacts on prediction outcomes. Fea-
ture acc_balance_change_amount and sg_recency are the most important features that
improve prediction accuracy.
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Figure 5.9: The PDP plot shows that six causal assumptions can be related to features
since they are identified as the highest predictive power variables for model prediction
outcomes.

5.5.2 Causality analysis results

Treatment causal effects on churn outcome were identified based on the initial assump-

tions, keeping other potential effects constant while changing the target treatment.

For example, linear regression estimation achieved that estimated effect = −0.033853

corresponds to churn probability reducing ≈ 3% when the member has lower account

growth rate. To verify this assumption, i.e., that it is true, the new estimation effect

should not alter significantly. Therefore, the data subset refuter was applied to disprove

these estimates by rerunning them on a random subset of the original dataset. The

refuting method outcome = −0.033920, almost identical to the estimation result. Thus,

the assumption was correct that high account tenure was a causal feature for churn

outcome.

Treatment effects on the outcome depend on value changes for the treatment variable.

The effect impact degree is determined by statistical analyses, and there are many

suitable statistical methods for assessing the causal effect. The causal experiment

employed propensity score-based inverse weighting (PSIW) and PSM methods [128].

Figure 5.10 displays the causal relationships between various attributes and their

impacts on customer churn, confirming the interconnected factors influencing churn

decisions. The graph validates the causal assumptions, showing how specific variables

directly affect churn outcomes. Table 5.4 shows final and churn probability estimations.

Mean estimation ∼ 0.15 for variable sg_recency, which is equivalent to increasing the
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churn probability ∼ 15% when the customer has longer time-period since the last day of

super guarantee (SG) contribution. Similarly, churn probability increases ∼ 3% when the

customer has negative account growth rate, mean estimation ∼ 0.03 for account_growth.

Although the causal analysis outcomes support the assumptions regarding confounding

factor identifications are accurate to a high degree, several limitations remain in terms of

analyzing the identified confounding effects with other popular causal inference methods,

such as counterfactual analysis. Counterfactual causal analyses offer a distinct approach

to causal inference that can provide valuable insights beyond propensity score-based

methods such as PSIW and PSM. These different approaches complement each other

and can be valuable for gaining a comprehensive understanding of causal relationships

in complex datasets.

Figure 5.10: The causal graph illustrates the causal link between attributes and causal
assumptions, confirming the interconnected factors influencing churn decisions.

Table 5.4: Causality analysis illustrates assumptions that have causal effects on customer
churn are valid

Causal variable Estimate effect Data subset refuter Churn probability
high_bal_change −0.123401 −0.122474 reduced by ∼12%
high_acc_balance −0.091698 −0.091612 reduced by ∼9%
low_account_growth −0.033853 −0.033920 increased by ∼3%
annualrpt_pref 0.144440 0.144457 increased by ∼14%
stmt_pref −0.142732 −0.142614 decreased by ∼14%
high_cust_tenure −0.027969 −0.081893 decreased by ∼3%
high_sg_recency 0.156396 0.156396 increased by ∼15%
promotional_pref −0.086401 −0.088061 decreased by ∼8%
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5.5.3 Discussion

Customer loss or churn is a common challenge faced by member-centric organizations.

However, this thesis has shown that it is possible to mitigate churn by identifying

and investing in customers who are at risk of leaving, ultimately maintaining accept-

able retention levels. One of the core contributions is the development of a novel and

comprehensive churn propensity model. This model incorporates various features and

leverages advanced techniques, including SMOTE sampling, RFE, ensemble artificial

neural networks, and causal inference methods via DoWhy. Combining these approaches

enables accurate churn predictions, and helps understand the root causes for churn.

Experimental outcomes confirmed the proposed ensemble ANNs model effectiveness,

and the proposed ensemble ANNs achieved the highest accuracy on test data compared

with ten current best-practice classifiers. This emphasizes the importance of considering

advanced machine learning techniques for churn prediction, as they can significantly

outperform traditional methods.

The proposed causal inference model provided valuable insights into factors contribut-

ing to customer churn. Variables such as recent SG_contribution, changes_annual_report,

statement_preferences, account_growth_rate, and balance_amount were identified as

confounding factors with high degree of belief, i.e., these variables play exert significant

influence on churn outcomes. For example, customers with active accounts for over a year

exhibited ∼ 3% reduced churn rate, aligning with expert knowledge; and high account

balance greater than 100,000 AUD was associated with ∼ 9% reduced churn probability.

Future work will refine and expand the proposed framework. One avenue for improve-

ment is to extract patterns with smaller outcome windows, which could lead to more

efficient prediction results. Another aspect will be to explore applying counterfactual

causal analysis in churn prediction, which could provide useful alternative perspectives

on causal relationships within the context of churn, ultimately yielding in-depth insights

into customer behavior and retention strategies.

This research advanced our understanding of churn prediction and causal inference

in member-centric organizations and developed a robust framework for addressing

customer churn by combining data mining techniques and causal inference analysis.

Insights gained from this study will help inform proactive retention strategies and

ultimately help organizations reduce churn and enhance customer satisfaction.

The Python implementation for the proposed framework, causal analysis result, and

visualization are available on the GitHub repository1 in the footnote.
1https://github.com/DavidHason/Causal Analysis
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5.6 Summary

Chapter 5 investigated causal analysis for member churn by integrating ANNs with a

causal inference model. The core objective was to explore causal factors behind member

churn and gain more in-depth understanding of this phenomenon. This approach first

emphasizes the connection between member engagement and churn, highlighting the

need to understand how to retain individual users effectively. The methodology covers

data preprocessing, feature selection, and machine learning algorithms, focusing on

addressing class imbalances and a causal mode using propensity score-based methods,

such as PSIW and PSM. Empirical results confirmed the proposed ensemble ANNs

model superior performance for churn prediction, and key causal variables, confounders,

and covariates, such as account_growth_rate and balance_amount were identified. The

discussion highlights future research possibilities, including applying counterfactual

causal analysis to gain more profound insights into churn dynamics.

Thus, Chapter 5 provides a significant contribution to understanding member churn

and valuable insights for improving member engagement and retention.
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CHURN PREDICTION VIA MULTIMODAL FUSION

LEARNING: INTEGRATING MEMBER FINANCIAL

LITERACY, VOICE, AND BEHAVIORAL DATA

This chapter proposes an innovative multimodal fusion learning framework to determine

churn risk levels in financial service organizations, integrating customer sentiment,

financial literacy (FL), and behavioral data to produce more accurate and unbiased churn

predictions.

6.1 Background and Motivation

A thorough grasp of member engagement and attrition is crucial for financial organiza-

tions [2, 3]. In-depth understanding of member behaviors and needs will require moving

from traditional methods to advanced analytical frameworks. Recognizing the psycho-

logical elements that influence customer decisions also vital for financial organizations.

Cognitive biases, e.g. anchoring bias, availability heuristic, and bandwagon effect, can

significantly impact customer perceptions and decision-making regarding products and

services [4]. Misguided interactions or poor presentation of complex financial products

can amplify these biases, steering customers to focus on potential risks rather than

benefits. Therefore, it is crucial for financial service providers to understand these biases

and to tailor their product design, marketing, and CRM strategies effectively, reducing

negative biases and churn rates.
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One robust solution that helps mitigate cognitive biases and elevate the extent of

member engagement in financial organizations is utilizing customer voice (CV), financial

literacy (FL), and CRM data. Member engagement and churn are two sides of the same

coin. Therefore, this methodological approach aids in formulating effective strategies for

member retention and promoting enduring loyalty for continuous organizational growth.

Members with robust financial understanding can make more informed decisions with

less cognitive bias, reducing the churn likelihood due to misunderstandings or unfulfilled

expectations.

On the other hand, customer data is undergoing sustained and exponential growth,

and traditional churn analysis methods, which heavily rely on historical transactional

and demographic data, are no longer sufficient. More comprehensive approaches are

urgently required to address this data surge across various modalities.

Previous studies have established many useful insights into member behaviors

regarding churn. Nonetheless, these studies have typically missed the opportunity to

connect member engagement with churn by considering a comprehensive perspective

that covers interactions, emotions, FL, and CRM data. Past methods often relied on

singular data sources, such as transactional, demographic, and textual data, which do

not offer a well-rounded view of member behavior. Ongoing research faces three primary

obstacles.

1. Transactional data used in many previous and recent studies only mirrors predic-

tive results without investigating the root causes for churn.

2. Demographic data, although widespread and easily available, is static and fails to

reflect customer satisfaction evolution.

3. Social media data, which is limited to textual content, provides a noisy and imper-

sonal dataset that lacks insight depth, such as those from voice interactions and

financial behavior insights.

Therefore, this chapter proposes a multimodal modeling framework that captures

the complex layers of member engagement, providing a foundation for developing a mul-

timodal hybrid fusion learning model that not only combines FL metrics and behavioral

indicators with emotional nuances of voice data, but also integrates the critical element

of member engagement. This integration markedly improves reliability, accuracy, and

model bias, and provides a cutting-edge model employing diverse neural network designs,

enhanced data enrichment methods, and sophisticated emotion recognition algorithms.
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The proposed approach employs the SMOGN-COREG supervised algorithm to mea-

sure FL from customer financial information, and the baseline churn model utilizes

an ensemble ANN, complemented by oversampling methods, to forecast churn in vast

financial datasets. Additional aspects include a proposed SER model based around VGG-

optiVMD, a novel speech signal processing algorithm, to analyze customer emotions

through acoustic features such as pitch, energy, and tone.

This thesis introduces a groundbreaking approach to churn prediction, incorporating

multimodal machine learning techniques for comprehensive understanding of customer

churn. The proposed method considers multiple aspects of the customer experience,

from service interactions to product engagement. Multimodality in machine learning

integrates different input types recorded in various media formats into a single model,

where these inputs are not straightforwardly interchangeable using an algorithm [6].

Thus, thus thesis proposes a multidimensional fusion learning framework to collect

these inputs into a coordinated feature representation space and subsequently applying

decision-level fusion to assess churn risk.

The approach for sentiment analysis differentiates between paralinguistic methods

using customer voice (CV) analysis and linguistic/text-based methods. Although natural

language processing (NLP) can transcribe and analyze customer service calls, it often

misses meta-information conveyed through tone, pitch, and loudness, aspects that non-

linguistic emotion detection using speech signal processing can capture more robustly.

Negative emotions from customers can be strong indicators for product dissatisfaction,

placing them at higher churn risk, and meriting particular attention.

Financial literacy is an essential factor in churn prediction within the financial

services industry. Customers with higher FL are more likely to understand and choose

suitable financial products, reducing dissatisfaction and churn likelihood. On the other

hand, those with lower FL may struggle with these choices, leading to dissatisfaction

and possible defection to competitors with seemingly superior offerings.

6.1.1 Key contributions

Previously proposed unimodal models’ effectiveness was assessed and several significant

contributions introduced.

- This thesis pioneers a multimodal hybrid fusion model that fuses distinct CRM, CV,

and FL databases. Embedding an essential layer to churn prediction by detecting
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customer emotion from vocal attributes and assessing financial competence from

account performance and survey data.

- A specific coordinated feature representation space and translation matrix to

address output value heterogeneity across modalities using predefined logical

propositions, with the potential to incorporate future modalities, such as textual

features.

- This thesis empirically proves substantial correlations between negative emotions,

low FL, and increased churn risk.

6.2 Preliminary Knowledge

Recent scientific and technological advances have led to a new where data are abundant

and accessible in numerous formats. Consequently, multimodal learning has become

increasingly popular and significant field within the deep learning domain. The funda-

mental principle of multimodal learning is to process and interpret a diverse range of

information types, which is crucial for a comprehensive understanding of real-world

objects and phenomena.

A singular representation mode, whether it be visual, auditory, or textual, provides a

limited perspective, lacking the broad representation required for comprehensive under-

standing. Therefore, multimodal fusion learning has emerged as an important innovation,

aiming to consolidate diverse data streams into a unified analytical framework. This

integration enhances the depth and breadth of data analysis and brings more human-like

dimensions to problem solving by simulating how humans assimilate information from

various senses.

One of the primary challenges for multimodal learning is to efficiently fusion features

from different modalities, while preserving the unique characteristics for each modality

to minimize information loss. This section describes multimodal analysis evolution, and

briefly discusses the main approaches to multimodal fusion, prevalent models, and their

specific applications in the current technological landscape.

The term "multimodality" has its roots in philosophy and the arts, dating back to

the fourth century BC, where it was used to define expressive and rhetorical strategies

that combined different content forms [140]. Fast-forward to the twentieth century and

the growth of the internet and mobile technology has positioned multimodal data as the

most frequent form.
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Multimodal fusion has gained considerable traction with the rapid progression of deep

learning. It can be used in many areas and generally helps to improve application efficacy.

Notable applications include face recognition [141], where multimodal learning facilitates

the analysis of facial features by integrating visual data with other relevant modalities;

visual question answering [142], combining textual and visual data to understand and

respond to queries related to images.; image captioning [143], where multimodal learning

helps to generate descriptive text for images, leveraging both visual cues and linguistic

patterns; sentiment analysis has been enriched by the ability to analyze and interpret

sentiments from text, audio, and video data collectively [144].; and finally, multimodal

retrieval offers far more efficient searching and retrieving information becomes by

indexing and processing multiple data forms concurrently [145]. It is anticipated that

multimodal fusion learning will continue to revolutionize the way we interact with

technology and extract meaningful insights from the ever-growing expanse of data.

6.2.1 Definition and evolution of multimodal learning

"Modality" refers to the various ways humans perceive the world, such as sight and

sound. In computing, a modality represents any data type, like sounds, images, or

text. Unimodal learning translates this data into numerical vectors for computational

analysis, whereas multimodal learning enhances the comprehension of such diverse

data by capitalizing on their complementary attributes and reducing redundancy, often

combining images, text, and audio for a more integrated approach to learning.

Multimodal learning approaches evolution has been significant in numerous in-

telligent data processing areas since the 80s. McGurk et al. clarified visual element

influences on speech perception in 1976, setting the foundation for audio-visual speech

recognition [146]. This discovery, known as the McGurk effect, inspired many computer

scientists to explore multimodal speech recognition systems to integrate visual and

auditory information, such as lip-sound speech recognition systems [147], notably en-

hancing accuracy over audio-only systems. Atrey et al. [148] categorized multimodal

fusion techniques and their level in 2010. Wang [149] subsequently introduced deep

multimodal hashing with orthogonal regularization constraints, aiming to minimize

information redundancy within multimodal representations. Zhang et al. [150] and Wang

et al. [151] greatly help develop cross-modal information matching and retrieval, Liu

et al. [152] integrated visual and haptic data, which has been incorporated into the

integrated robotic perception domain; and Fu et al. [153] advanced the field of semantic

image annotation.
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6.2.2 Multimodal fusion learning methods types

Fusion methods not tied to a specific model are categorized based on the timing of the

fusion process: early fusion (EF) merges features immediately post-extraction, late fusion

(LF) combines outputs from each model, and hybrid fusion blends the benefits of both

approaches.

6.2.2.1 Early fusion

I have added two paragraph regarding why EF not always suitable method in this

particular multimodal approach. To sum up, EF might not always be optimal for com-

bining multimodal data due to its tendency to create redundant input vectors, leading

to overfitting and increased computational complexity. Although neural networks can

mitigate these issues with advanced techniques like dropout and regularization, EF can

still dilute the unique characteristics of each modality, limiting the model‚Äôs flexibility

and effectiveness in capturing complex cross-modal interactions. This underscores the

need for alternative fusion strategies in complex applications.

6.2.2.2 Early fusion

Early fusion refers to the merging feature and data levels directly following feature ex-

traction, often through a straightforward join operation on the feature sets. Figure 6.1(a)

shows the framework for early fusion methods, where extracted features are immediately

fused, followed by integrating features from different modalities for model training.

This method is particularly beneficial when modalities are closely related, allowing

exploitation of correlations and interactions between low-level elements of each modality.

However, Hinton et al. [154] showed that extracting correlations at the feature and data

levels presents a significant challenge, and in some instances, data from diverse modal-

ities may only exhibit significant correlations at a more abstract level(s). Martinez et

al. [155] argued that early fusion might not effectively exploit the complementary nature

of different modalities, potentially leading to unnecessarily redundant input vectors,

which could lead to issues such as overfitting or increased computational complexity.

However, this concern might be less significant when using neural networks because they

can learn to ignore redundant information through their inherent ability to prioritize

relevant features during the training process. Moreover, advanced neural networks often

incorporate techniques such as dropout, L1/L2 regularization, and batch normalization,

which help mitigate the risk of overfitting even when faced with high-dimensional data.
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Despite neural networks’ ability to handle redundancy through feature prioritization

during training, incorporating techniques like dropout and regularization to combat

overfitting, Early Fusion (EF) may not always be the most effective strategy for combining

multimodal data. EF merges all modalities at the onset, potentially diluting the unique

characteristics of each data type and making the model inflexible, as all data must be

simultaneously available in the same format. This can be particularly limiting when

distinct modalities could benefit from specialized processing methods such as CNNs for

images or RNNs for sequential data. Moreover, EF may hinder the network’s capacity

to learn more abstract and complex cross-modal interactions, which could be more

effectively captured through separate or sequential processing. Therefore, while EF

offers a simplified integration process and utilizes neural networks to manage data

redundancy, it lacks the flexibility, specificity, and efficiency required for optimal learning

from multimodal data in complex applications like churn prediction, highlighting the

importance of exploring alternative fusion strategies like late or hybrid fusion.

6.2.2.3 Late fusion

Late fusion, also known as decision level fusion, involves independently training a

distinct model for each modality before merging their outputs. This fusion category

employs various methods, including Bayesian rule fusion, maximum fusion, mean fusion,

and other rule-based approaches, to integrate outputs from different models [156].

This fusion method offers advantages over early fusion techniques by accommodating

data synchronization and providing the flexibility to choose the most appropriate analysis

method for each modality, such as using hidden Markov models for audio data and SVM

for visual data. However, LF tends to overlook low-level interactions between modalities,

which can complicate the fusion process. Figure 6.1(b) shows a fairly typical framework

for LF methods, where the initial stage trains models on data from each modality

separately, and the subsequent stage combines these models’ outputs through a decision

making rule.

6.2.2.4 Hybrid fusion

Hybrid Fusion methodologies combine the advantages of early and LF, but at the expense

of increased model complexity and a more demanding training process. hybrid fusion is

particularly well-suited for deep learning models due to their adaptable and varied struc-

tures, and has been extensively applied visual question answering and multimedia fields.

For example, Ni et al. [157] proposed a hybrid fusion technique for multimedia analysis,
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Figure 6.1: Multimodal fusion learning method types

introducing an image fusion methodology utilizing multiple back propagation networks.

The proposed method merged video and audio signal components into an audiovisual

deep neural network model to derive predictions, with outcomes produced by combining

each model’s predictions [158]. hybrid fusion strategy effectiveness significantly depends

on the logical coherence of the combination approach, which is crucial for enhancing

model performance. Figure 6.1(c) shows an example hybrid fusion method, integration

early and LF strategies. Each fusion method has its strengths and limitations, early

fusion is adept at capturing inter-feature relationships but may lead to overfitting; LF

addresses overfitting but does not allow simultaneous training on all data; and hybrid

fusion combines early and LF benefits, necessitating careful selection of appropriate

fusion methods that aligns with the specific challenges of practical applications. This

thesis proposed a hybrid fusion model and compared that model’s effectiveness with late

and early fusion methods.

6.2.2.5 Feature representation and challenges

Feature and representation terms are used synonymously, denoting a vector or tensor

that encapsulates input data, whether an image, audio clip, word, or sentence [72].

A multimodal representation integrates data from diverse sources, and representing

multiple modalities can often present challenges, including merging data from diverse

origins, dealing with varying noise levels, and addressing data omission. Constructing

meaningful data representations is essential for multimodal applications and forms the

basis for any model.

Therefore, maintaining semantic similarity presents a significant challenge in mul-

timodal learning due to the complexity to recognize sophisticated relationships among

various modal inputs. This heterogeneity is vital, since ANNs aim to fuse attributes from
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different modes into a unified feature representation space. For example, language is

often represented as symbols, while sounds and pictures are shown as signals. Repre-

sentation quality significantly impacts machine learning model efficacy, e.g. advances

in speech recognition and visual object categorization [159, 160]. Several key charac-

teristics of superior representations, including smoothness, spatial and time coherence,

sparsity, and natural grouping, have been highlighted in previous studies [161]. The

feature representation space should reflect conceptual similarities, be readily derived

when certain modes are absent, and allow for completing missing modes based on what’s

seen [162].

For example, the audio signal processing employed in this thesis has moved away

from traditional acoustic features, such as Mel-frequency cepstral coefficients, and more

towards data-driven deep neural networks for speech recognition and recurrent neural

networks for analyzing paralinguistic features [88, 159]. Despite extensive unimodal rep-

resentation, where most previous multimodal representations were simply concatenated

unimodal models, the landscape is currently evolving rapidly [163].

6.3 Methodology

The proposed method analyzes customer behavior through three distinct modalities:

baseline customer churn, SER, and FL. Subsequent sections provide detailed discussions

of each modality.

6.3.1 Data prepocessing

Several distinct real-world data sources were employed to assess the proposed model’s

effectiveness, including historical financial data, CRM demographic information, and

customer voice (CV) recordings, as shown in Table 6.1. A de-identification technique was

employed to ensure privacy while retaining emotional nuances, and the CV samples

were substituted with analogous samples from established emotion databases. The

constructed CV database exploited correlations between negative emotions and high

churn risk, financially illiterate customers and the converse for positive emotions with low

churn risk customers. Emotion classification was extracted using the EMODB database,

a recognized benchmark for emotion categorization from voice data [114], and the FL

database combined data from financial transactions and customer surveys, resulting in

an enriched training dataset with (4154, 140) dimensionality.
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Table 6.1: Databases employed

Sub Specification
Database No. datasets Sources Attributes / Size

DB1 1 Financial networks 68 / 64K
DB2 12 CRM 87 / 294m
DB3 1 a Audio 4 / 110 min. voice

aEMODB database

To ensure meaningful multimodal learning and alignment of individual customer

records across the diverse datasets, we employ a logical mapping method that systemati-

cally associates customer CRM data, Financial Literacy (FL), and Customer Voice (CV)

data. This approach is critical to mitigating bias in multimodal modeling by accurately

matching related modal inputs for each customer. For instance, the integration of these

datasets follows predefined criteria that correlate negative emotions or complaints in

the CV records with corresponding CRM and FL data. Specifically, the alignment is

conducted under rigorous conditions considering multiple financial and engagement met-

rics such as account balance changes amount, account tenure, current account balance,

engagement factors, and financial literacy scores. These metrics reflect crucial aspects of

customer interaction, financial health, and overall member engagement.

For a customer exhibiting negative emotions like anger or disgust, our model filters

and aligns CRM entries where the account balance change is significantly lower than

the mean, tenure is less than six months, engagement factors are notably below average,

and the financial literacy score is below 25 out of 100. This meticulous alignment

ensures that the sentiment expressed in CV data directly corresponds to the customer’s

actual financial behavior and interaction history as recorded in CRM and FL datasets.

Such detailed and context-sensitive alignment prevents the juxtaposition of incongruent

data‚Äîsuch as pairing a CRM entry of a satisfied customer with a CV record of a customer

complaint‚Äîthereby enhancing the accuracy and effectiveness of the multimodal learning

process.

6.3.2 Modalities

6.3.2.1 Customer financial literacy modeling

Considering the significant role that inadequate FL plays in customer attrition, the

first modality focuses on FL. The SMOGN-COREG semi-supervised regression model
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was developed previously (see chapter 3) to quantify FL from large and unlabeled real

data sets collected from financial network data. The learning process was enhanced by

creating synthetic samples for minority classes. The SMOGN technique was integrated

with COREG, a non-parametric multi-learner semi-supervised regression, to improve

model performance by evening out the response variate distribution, i.e., amplifying the

presence of infrequent yet critical instances within the data [118]. The output of this

model is an FL score ranging from 0 to 1.

6.3.2.2 Emotion recognition modeling

The second modality employs voice-based sentiment to distinguish between positive and

negative member emotions during call center engagements. The proposed model analyzes

vocal attributes, including tone, pitch, and rhythm, extracting acoustic features from

the percussive and harmonic components of the Mel spectrogram [82]. A CNN-VGG16

model pretrained to construct a framework for recognizing emotions from a CV was

incorporated with a feature map generator function in the proposed framework to extract

harmonic and percussive components by applying a median filter to the signal spectrum

axes. The log Mel spectrogram was computed after averaging these components and

creating two feature vectors, and the subsequent 2D image feature map was used as

input to the CNN-VGG16 network to classify emotions into binary outcomes, i.e., positive

or negative.

6.3.2.3 Baseline churn modeling

The third modality assessed customer churn risk by analyzing demographic and financial

behavior data extracted from CRM systems. This model combined recursive feature

elimination, SMOTE, and deep learning ANNs to develop a classifier for predicting

churn. The proposed model utilizes historical data spanning the previous 12 months

to forecast churn likelihood for the following six-month period. In this framework, a

’churner’ is identified if an account is discontinued within the six-month forecast window,

with binary outcome (0 or 1) signifying an active or terminated account, respectively, for

that upcoming period.

6.3.3 Proposed multimodal fusion learning

The proposed multimodal fusion learning model is adept at analyzing organizational

member engagement through an extensive range of data sources, which helps to under-
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Figure 6.2: Proposed multimodal hybrid fusion learning method workflow to integrate
various modalities

stand the intricate interplay among various aspects of customer behavior. This framework

comprises several elements: three independent unimodal models, a feature representa-

tion space, a mechanism for translating or mapping these unimodal outputs, and a hybrid

fusion strategy. Figure 6.2 shows how the framework containing these three models

predicts member FL, emotional response, and churn likelihood to categorize members

into low (loyal or non-churner), mid (possible churner), and high (likely churner) risk.

Broadly, a high-risk churn customer has limited FL, negative emotions towards company

services, and demonstrates significant churn propensity.

The proposed model integrates a multi-level, hybrid fusion strategy incorporating

early and LF principles. This hybrid fusion provides informative and enriched features for

the base churn model by fusing predictive insights resulting from FL and SER unimodal

models into the CRM dataset. A prototype multimodal learning model employing only

LF was also developed to provide a benchmark to measure the proposed novel hybrid

fusion strategy effectiveness against. Several late fusion multimodal methods were also

employed for model comparison purposes by combining different unimodal models.

6.3.4 Feature representation space and translation

Identifying particular features unique to each modality is a complex task, given the

natural variations in scale, measurement, and distribution. Therefore, a multimodal

model was designed that merges these diverse features into a coordinated feature

104



6.3. METHODOLOGY

representation space while preserving their distinct contributions to churn prediction. It

can encapsulate data similarities, capturing inter-modal interactions. The coordinated

feature representation space can be expressed as

(6.1) f (xi)∼ c(xi)∼ v(xi),

where xi is the modalities; functions f , v, and c are the independent unimodal learning

networks corresponding to FL, SER, and the baseline churn model, respectively, all

within the coordinated representation space; and ∼ indicates similarity or coordination

in this space’s projection.

A considerable segment of multimodal machine learning focuses on translating

or mapping between modalities. This involves producing a corresponding entity in

a different modality from one that exists in another. For example, the aim could be

to recognize and quantify various emotions from an audio signal, or to generate a

corresponding score in a text based online survey. Multimodal translation issues have

been extensively explored, with pioneering research encompassing speech synthesis,

generating visual speech, video description, and cross-modal retrieval [164–167].
A translation dictionary was employed to map features from each modality, ensuring

similarity and relevant patterns were preserved. The mapping matrix was articulated
through various logical propositions, determined by domain experts, each corresponding
to specific condition(s) on the unimodal features. Outputs from each unimodal data struc-
ture were transposed into two-level numeric nominal variables, based on a predefined
prediction confidence P(pred) threshold, establishing a coordinated representation space
via logical propositions. Constant weights were assigned to each matrix array Ci, Fi, and
Vi, reflective of the unimodal feature’s weight in multimodal learning, expressed as

∀xi,P1(xi) : f (xi)< P(pred) =⇒ Fi = 1;¬P1(xi) =⇒ Fi = 0

∀xi,P2(xi) : c(xi)≤ P(pred) =⇒ Ci = 0;¬P2(xi) =⇒ Ci = 2

∀xi,P3(xi) : v(xi) ∈ {’Happiness’, ’Neutral’} =⇒ Vi = 0;

¬P3(xi) : v(xi) ∈ {’Sadness’, ’Anger’} =⇒ Vi = 1,

where P1(xi), P2(xi), and P3(xi) correspond to the propositions associated with each

unimodal model output.

Allocating appropriate weights for each feature indicator presents a complex endeavor.

The proposed methodology assigned weights to the indicators by utilizing insights from

105



CHAPTER 6. CHURN PREDICTION VIA MULTIMODAL FUSION LEARNING:
INTEGRATING MEMBER FINANCIAL LITERACY, VOICE, AND BEHAVIORAL DATA

experts with industrial domain knowledge, e.g. superannuation fund industry. This

provided subtle alignment of feature translation, a crucial intermediary phase in data

mapping and essential for any subsequent analytical procedure.

6.3.5 Hybrid fusion strategy

Based on the experimental study of different multimodal and fusion frameworks, a strat-

egy was selected that employed a hybrid approach drawing on complementary insights

from unimodal model outputs while preserving logical consistency. This incorporated

late and decision level fusion, creating a multi-level fusion framework. Constant fusion

weight Ci +Fi +Vi ≥ 0 and Fi = Vi was enforced and fusion weights for FL and SER

models were assumed to have equal influential contributions to enhance baseline model

performance. Therefore, a decision fusion D i was defined to integrate complementary

information and rank churn risk (low, mid, or high),

(6.2) D i =


Ilowrisk

Imidrisk

Ihighrisk

= I ∗


C1 +F1 +V1

C2 +F2 +V2
...

Ci +Fi +Vi


where D i ∈ {0,4} is the fusion output weight that represents the risk rank for each

member i; Ci is the baseline customer churn model prediction outcome from historical

data; Fi is the baseline customer churn model member’s FL level; Vi is a qualitative

indicator of the member’s emotional disposition and satisfaction, detected from telephone

interactions with the call center; I(·) is an indicator, where I(·)= 1 if a specified condition

holds true, and 0 otherwise. These relationships are subject to fusion conditions as

follows.

• Low risk churner.

Ilowrisk = I(D i = 0) · I(Ci = 0) · I(Fi = 0) · I(Vi = 0)

+I(D i = 1) · I(Ci = 0) · I(Fi = 1) · I(Vi = 0)

+I(D i = 1) · I(Ci = 0) · I(Fi = 0) · I(Vi = 1)

If Ilowrisk = 1, customer is classified as low risk.

• Mid risk churner.

Imidrisk = I(D i = 2) · I(Ci = 2) · I(Fi = 0) · I(Vi = 0)

+I(D i = 2) · I(Ci = 0) · I(Fi = 1) · I(Vi = 1)

If Imidrisk = 1, customer is classified as mid risk.
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• High risk churner.

Ihighrisk = I(D i = 4) · I(Ci = 2) · I(Fi = 1) · I(Vi = 1)

+I(D i = 3) · I(Ci = 2) · I(Fi = 1) · I(Vi = 0)

+I(D i = 3) · I(Ci = 2) · I(Fi = 0) · I(Vi = 1)

If Ihighrisk = 1, customer is classified as high risk.

Hence, the logical operators are structured to ensure that only one of Ilowrisk, Imidrisk,

or Ihighrisk is 1, i.e., true, for a particular member or customer risk level query, guaran-

teeing that each customer is exclusively assigned to one risk category. Combining these

modalities generates a multimodal co-learning environment that presents a coordinated

representation where the FL and SER modalities jointly enhance one another’s training.

Consequently, this co-learning approach overcomes drawbacks from depending solely on

one data type and thus mitigates model bias.

Figure 6.3 shows that the proposed hybrid fusion framework includes three indepen-

dent unimodal models, a coordinated feature representation space, feature mapping, and

decision fusion mechanisms. The primary contribution is introducing a hybrid fusion

approach to combine various data inputs into a unified feature representation space,

effectively addressing heterogeneity across different modalities. This strategy is aimed

at mitigating model bias. The critical challenge addressed here was formulating a hybrid

fusion method that synergistically combined LF and decision fusion aspects, categorizing

specific member churn into low, medium, or high risk.

The process to fuse knowledge from each modality using the proposed hybrid fusion

learning approach comprises four steps as follows:

1. Map heterogeneous unimodal models f (x), c(x), and v(x) data onto two-level nu-

meric variables in a coordinated feature representation space (FRS).

2. Fused the unimodal feature values obtained from f (x) and v(x) and transfer them

to c(x) using LF.

3. Assign constant weights to each mapped modality feature value using logical

propositions Pn(xi) to maintain pattern integrity.

4. Utilized the decision fusion matrix D i to merge the weighted unimodal features,

categorizing churn risk as low, mid, or high.
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Figure 6.3: Proposed hybrid fusion process

The proposed hybrid fusion approach offers several advantages that are particularly

beneficial for complex analytical tasks, such as customer or member behavior analysis in

financial organizations.

1. Hybrid fusion provides a comprehensive analysis by capturing relationships at

both low and high levels within the data, allowing for more in-depth understanding

of underlying patterns. Using multiple data modalities also enhances prediction

accuracy, since it leverages a broader range of information compared to single-

modality models.

2. Hybrid fusion contributes to the model robustness by reducing overfitting risk

through integrating EF, LF, and DF fusion techniques.

3. The hybrid fusion method provides a holistic view of customer and member behavior,

offering 360-degree insights that enable more informed decision making based on

a complete map of customer interactions and preferences.

These advantages make hybrid fusion an optimal choice for researchers and practitioners

seeking to improve their predictive analytics efficacy.

6.4 Experiment Outcomes

6.4.1 Materials

The material for this study involved several real-world data sources, including financial

transactions, CRM demographic details, and customer voice recordings. As mentioned in
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section 6.3.1, the privacy-preserving de-identification method was applied to the voice

data, with emotional nuances retained by substituting original samples with analogous

entries from established emotion databases. Moreover, datasets were carefully aligned

based on customer behavior metrics from CRM and financial literacy scores, ensuring

the model effectively matched customer records across different data modalities, crucial

for reducing bias and enhancing multimodal learning outcomes.

6.4.2 Evaluation metrics for multimodal modeling performance

The mean average precision (MAP) metric was utilized for an objective assessment of

the proposed method’s effectiveness in ranking churn quality,

(6.3) MAP = 1
Q

Q∑
q=1

1
mq

n∑
k=1

P(k) · rel(k),

where Q is the total number of queries; q is the specific query under consideration; mq

is the count of relevant churn risks for the q-th query; P(k) is the precision at the k-th

cutoff in the list; and rel(k) an indicator function, where rel(k)= 1 signifies that churn

risk at the k-th rank is relevant, otherwise rel(k)= 0.

Thus, MAP is computed by averaging precision for all instances across different risk

levels (low, mid, high), with MAP = 1 indicates perfect system performance to identify

churn risks. Average precision (AP) for individual risk rank queries is determined by the

precision of each relevant risk rank retrieved and averaged across all queries to measure

overall performance. The macro-averaged F1 score (MA-F1) was employed to address

imbalances commonly found in the datasets. MA-F1 equally considers smaller and larger

class performances, computed independently for each class as

(6.4) Macro-Averaged F1 Score= 1
N

N∑
i=1

F1 Scorei,

where F1 Scorei is the F1 score for the i-th class, and N is the total number of classes.

Table 6.2 shows an example case to illustrate the MAP evaluation metric, simulating

churn risk prediction outcomes from a multimodal system.

Retrieved items are categorized as {low, mid, high}, and MAP is derived by computing

the mean of the precision scores for each relevant item. In an ideal scenario, MAP =

1.0 indicates that the system can accurately identify all churn risk levels. The MAP

calculation for the example data (six members) in Table6.2 is (1+0.5+0.33+0.5+0.6+
0.5)/6 = 0.57 , which suggests that, on average, system’s predictions are 57% accurate

at each cut-off level in the list. MAP is a crucial metric since it considers predictions
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Table 6.2: Example evaluating churn risk prediction using MAP metrics

Member ID Risk Predicted Relevant Cumulative Precision
(Actual) Churn risk (1, 0) rel(K) Relevant @K : P(K)

1 Mid Mid 1 1 1/1=1.0
2 High Mid 0 1 1/2=0.50
3 Low Mid 0 1 1/3=0.33
4 Low Low 1 2 2/4=0.5
5 High High 1 3 3/5=0.6
6 Mid Low 0 3 3/6=0.5

precision across all churn risk levels, offering insights into the system’s overall ability

to member’s rank churn risk accurately according to their likelihood of churning. The

efficiency of each unimodal model within the framework was also assessed using other

standard evaluation metrics, including the area under the curve (AUC), test accuracy,

and recall. Combining these metrics provides a comprehensive performance evaluation

for the effectiveness of each individual unimodal model in the overall multimodal system.

6.5 Results and Discussion

The empirical findings support the effectiveness of using multimodal data to enhance

predictive accuracy, validating the thesis that a multidimensional approach to data

analysis yields more reliable and actionable insights. By leveraging the strengths of

each individual data modality, the hybrid fusion model not only improves the accuracy of

churn predictions but also enriches the strategic decision-making process, providing a

robust framework for enhancing customer retention and satisfaction.

6.5.1 Results

The proposed method was thoroughly evaluated regarding how integrating modality

influenced overall performance, employing various evaluation metrics, including test

accuracy, recall, F1 score, AUC, MAP, and MA-F1. Figure 6.4(a) shows the highest level

of performance, achieving 91.2% test accuracy, was the hybrid fusion method utilizing

the collective strengths of all modalities, namely FL, Churn, and SER. FL has the most

pronounced influence on enhancing performance, surpassing that of SER. Figure 6.4(b)

shows that implementing hybrid fusion optimized churn risk categorization, effectively

reclassifies customers from low to mid and high risk categories. This confirms the hybrid
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f u si o n st r at e g y r o b u st n e s s a n d c a p a cit y t o p r o vi d e a m o r e n u a n c e d a n al y si s of c h u r n

ri s k, w hi c h i s pi v ot al f o r st r at e gi c c u st o m e r r et e nti o n eff o rt s.

Fi g u r e 6. 4: ( a) M ulti m o d al m o d el p e rf o r m a n c e si g ni fi c a ntl y i m p r o v e d b y c o m bi ni n g L F

a n d D F f u si o n (i. e., h y b ri d f u si o n); a n d ( b) m o r e m e m b e r s w e r e i d e nti fi e d a s mi d a n d

hi g h ri s k u si n g t h e p r o p o s e d h y b ri d f u si o n m et h o d.

Fi g u r e 6. 5 c o m p a r e s R O C c u r v e s f o r l at e f u si o n a n d h y b ri d f u si o n. T h e hi g h e r A U C

( Fi g. 6. 5( b)) c o n fi r m s t h e a d v a nt a g e s of c o m bi ni n g m ulti pl e m o d aliti e s a n d utili zi n g

m ulti-l e v el f u si o n b e n e fit s.

Fi g u r e 6. 5: H y b ri d f u si o n a c hi e v e s hi g h e r A U C t h a n t h e ot h e r m et h o d s c o n si d e r e d

T a bl e 6. 3 c o m p a r e s ri s k i d e nti fi c ati o n a c c u r a c y f o r M A P a n d M A- F 1 m et ri c s. T h e

m ulti m o d al l e a r ni n g a p p r o a c h, i n c o r p o r ati n g t h e h y b ri d f u si o n st r at e g y, a c hi e v e d si g ni fi-

c a ntl y e n h a n c e d o ut c o m e s; M A P = 6 6 a n d M A- F 1 = 5 4. T hi s s u b st a nti al i m p r o v e m e nt

1 1 1
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compared with the other strategies confirms hybrid fusion superior capability to accu-

rately identify and categorize churn risk.

Table 6.3: Fusion method performance metrics

Metricsa Fusion method
None DF (excludes LF) hybrid fusion (LF+DF)

MAP % ± STD 51±0.8 65±0.7 66±0.1
MA F1 % ± STD 47±0.1 47±1.1 54±0.6
a Higher value implies superior result

6.5.2 Discussion

This thesis presented a multimodal fusion learning framework that synergistically

integrates customer’s voice (CV), financial literacy (FL) survey data, and CRM records

to predict churn risk across three categorizations: low, mid, and high. This multimodal

approach marks the first attempt to include a multimodal hybrid fusion model to capture

churn triggers better in a dynamic domain.

The SMOGN-COREG supervised model was used for the FL modality to extract

FL levels from extensive unlabeled financial network data and questionnaire based

survey data regarding financial behavior among members. The proposed multimodal

model was critical to identify customers at higher churn risk due to inadequate FL. The

baseline churn model leveraged a combination of SMOTE and ensemble ANN algorithms,

achieving remarkable prediction accuracy for churn from large-scale, high-dimensional

data. The SER model, which exploited the Mel Spectrogram components and a pre-

trained CNN-VGG16, was instrumental in decoding emotional cues from member vocal

interactions, adding a significant layer of behavioral insight.

A key empirical finding was the significant correlation between negative emotions

and low FL with increased churn risk, identifying the psychological underpinnings

for customer retention challenges. Comparing performance for the different modalities

confirmed the distinct advantage from the hybrid fusion technique, achieving MAP =

66 and test accuracy = 91.2%, signaling its superiority to both non-fusion (single input

model) and multimodal LF methodologies.

Despite these promising outcomes, some limitations remain for the proposed ap-

proach. The coordinated representation within multimodal fusion may fail to capture the

rich intermodal information. Therefore, future study will explore joint representation
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strategies that can concatenate features from various modalities at the outset of the

learning process.

Future study will develop the multimodal modal input spectrum by incorporating

textual features as a fourth modality into the coordinated representation space, as shown

in Figure 6.6. This addition will greatly enrich the analytical framework, allowing for

more comprehensive analytic thinking about organizational member behavior. This

approach excels in extracting semantic meaning and sentiment from text, which can

provide additional layers of insight into customer satisfaction and intentions.

For example, in the context of the proposed framework, textual analysis could be

aligned with data from customer voice (CV) and financial literacy (FL) assessments to

provide a more nuanced view of customer emotions and potential churn triggers. Textual

data could help clarify ambiguous vocal expressions or provide additional context to

financial behaviors, enhancing the prediction accuracy of the churn model.

This thesis has contributed a novel framework for churn prediction and opened

avenues for future innovations in multimodal learning. A step towards more empathetic,

human-centric models that reflect customer’s complex decision making processes of

customers in the financial domain is to fuse diverse data types.

Python code for the proposed framework and further result visualization is available

on the GitHub repository detailed in the footnote1. This resource simplifies reproduction

and enhancement of the study’s experimental results.

Figure 6.6: Incorporating textual features to represent member review and feedback
from webpages and emails

1https://github.com/DavidHason/multimodal_churn_model
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6.6 Summary

This chapter discussed is the concept for the thesis: employing distinct data sources to

represent organizational member engagement for better churn prediction. The proposed

hybrid fusion approach improved churn prediction in financial institutions by fusing

emotional feedback from audio calls, historical CRM data, and FL levels. The main

contributions from this study can be summarized as follows.

1. An innovative multimodal hybrid fusion framework that integrates CV, FL, and

CRM data, offering an unprecedented approach to churn prediction.

2. Comprehensive analysis of customer behavior utilizing advanced machine learning

techniques to extract insights from diverse data modalities, resulting in more

accurate churn risk prediction.

3. Empirical validation of the correlation between emotional feedback from voice data,

FL scores, and churn propensity, enhancing understanding of customer retention

factors,

4. Confirmed superiority of the hybrid fusion model over traditional single-modality

models using meaningful evaluation metrics, including mean average precision

(MAP) and macro-averaged F1 Score (MA-F1), which confirm its effectiveness in

predicting churn.

This study bridges the gap in churn prediction methods and sets the stage for a new

era of customer retention strategies in financial organizations. This study contributes

greatly to human-centric analytical model development and the innovative methodologies

introduced will assist future studies to extend these models by incorporating additional

modalities and exploring the potential for deep learning algorithms to further enhance

prediction accuracy and understanding for member behavior.
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7.1 Contributions

This thesis presents a comprehensive overview of quantitative research to analyze mem-

ber engagement and churn in financial organizations and professional associations. Data

mining offers various widely utilized methodologies to evaluate member engagement,

which is crucial for maintaining customer relationships, effectively managing human

resources, and making informed decisions.

Current methods cannot accommodate various situations due to the growing desire

to explore more in-depth insights into member behavior.

Recent studies have explored useful information to analyze member behavior for

churn. However, they often overlooked the importance of bridging the gap between mem-

ber engagement, behavior, and churn through a holistic view of member’s interactions,

emotions, FL, and CRM. Strategies employing single data sources to address these issues

have limitations, e.g. transactional, demographic, and textual data that do not provide

a comprehensive image of member engagement and behavior. Therefore, this thesis

investigated and proposed an innovative multidimensional data mining approach toward

organizational member engagement, intending to capture the diverse insights required

to bridge the current gap. Therefore, this thesis focused on the following aspects.

1. Chapter 1 described the overall thesis structure. Motivation and challenges for the

previous studies were illustrated as essential issues for customer churn analysis
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from a financial organization perspective. Several objectives were identified, and

various churn propensity models to address the identified issues were proposed,

evaluated, and discussed (including their limitations).

2. Chapter 2 examined member engagement and highlighted the pivotal role for FL to

influencing member loyalty to an organization. Consequently, critical examination

of member emotion recognition and its progressive methodologies emphasized

the need to decode emotional influences on churn, emphasizing the essential

impact from FL on informed decision-making, linking FL to member retention, and

recommending a comprehensive churn prediction model that integrates an array

of member engagement dimensions.

3. Chapter 3 explored speech emotion recognition (SER) approaches. SER signifi-

cantly influences member engagement and churn within organizations. Although

SER frameworks have evolved with integrating CNNs, the full potential for Mel

spectrogram components as CNN inputs remains to be fully explored. Previous

studies have yet to fully explore the application of variational mode decomposition

in speech signal processing for emotion recognition, indicating a knowledge gap

in the field. Chapter 3 presented the pioneering insight to use VMD for dynamic

data augmentation in SER, introducing an innovative hybrid acoustic feature map

technique that employs the CNN-VGG16 model for emotion extraction from speech

signals. This marks the first approach of this type, and validates the model through

empirical experiments. Combining prosodic and acoustic features enhanced SER

model generalization, achieving state-of-the-art results, and setting new bench-

marks for feature extraction and classification in emotion recognition from speech.

4. Chapter 4 investigated a significant step toward predicting financial literacy and

has implications for member churn. Financial literacy is fundamental to enhancing

member engagement within financial organizations, where informed decisions

correlate with member satisfaction and churn. However, previously proposed (and

implemented) methods, such as surveys and supervised learning, are limited by

their reliance on labeled data and often overlook the multifaceted factors influenc-

ing FL, often hidden within unlabeled recorded data in financial network platforms

and socio-economic status data. This oversight constrains the depth of FL anal-

ysis and its predictive accuracy for member churn. To address these limitations,

this thesis proposed the SMOGN-COREG model, an innovative semi-supervised

regression framework that exploits unbalanced and largely unlabeled financial
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datasets. The proposed method significantly improved the model’s predictive power.

Pioneering the use of semi-supervised learning for FL prediction, the new model

enhanced the FL performance accuracy, successfully labeling 64% of previously

unlabeled data.

5. Chapter 5 considered how the significance of causal inference versus traditional

churn prediction methods lies in not just predicting churn but understanding

the reason behind it, enabling proactive member retention strategies. Several

recent studies focused on leveraging causal Bayesian networks and counterfactual

reasoning to explore deeper into churn triggers, but employing propensity score

matching with DoWhy remains rarely considered for causal discovery, especially

within financial organizations.

Current studies often fail to link causality with churn predictions, a gap that

motivated this thesis to develop an approach combining deep learning with PSM/-

DoWhy for more robust analysis. This thesis also introduces a comprehensive

churn propensity model incorporating SMOTE sampling, RFE, ensemble ANNs,

and causal reasoning model, enhancing predictive accuracy and offering insights

into churn root causes. Contributions include the first empirical investigation of

causal Bayesian networks with PSM/DoWhy impacts on churn. This innovative

methodology improves churn prediction and paves the way for applying counter-

factual causal analysis, promising more profound insights into customer retention

and behavior.

6. Chapter 6 considered how understanding member behavior, gauging engagement,

and predicting churn could be achieved with multimodal modeling approaches.

Previous studies almost exclusively utilized unimodal models with single data

sources, e.g. textual features on social media, CRM data, transactional data, and

demographic data separately for churn prediction. Traditional methods relying

on singular data sources fall short of presenting an integrated view of member

behavior, often failing to capture the dynamic nature of customer satisfaction and

the detailed experiences behind churn.

The proposed methods and models were motivated by the need to bridge the gap

between member engagement and churn and address limitations for previous re-

search that often overlooked the holistic nature of member interactions. This led to

a multimodal hybrid fusion learning model combining various member engagement

metrics, including CV, FL, and CRM data. The model explicitly considered their
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combined impact on member or client decisions and loyalty and offers an advanced

churn prediction method.

Thus, this thesis aims to improve member retention strategies, helping to develop

human-centric analytical models for the financial sector.

7.2 Future Work

Chapter 3 proposed a novel hybrid acoustic feature map technique that integrates

harmonic and percussive components of Mel Spectrograms, utilizing the CNN-VGG16

model for advanced SER. The proposed second SER method is the first use of VMD for

dynamic data augmentation in SER, significantly improving model generalization with

notable test accuracy.

Future studies will develop this methodology by modifying the network architecture,

with the intent to combine outputs from various neural networks, each trained on dis-

parate acoustic features, creating an integrated model that captures a broader spectrum

of emotional cues. Subsequently, including call transcripts, i.e., CV, as textual features

will further reduce model bias in detecting emotion in different languages and improve

model generalizability. Since the expressing emotions through vocal interaction varies

across different cultures, the emotional acoustic features of speech signals do not directly

match for different languages.

Model efficiency is also important, and future work will consider method(s) to opti-

mize the VGG-optiVMD algorithm parameters, reducing computational demands while

maintaining high accuracy, and exploring how best to include the most informative

decomposed modes and their role(s) in acoustic feature extraction. Ultimately, this will

identify a family of methods or frameworks to identify those decomposed modes that have

informative emotional features, and creating an upper energy band filter will isolate

those time frames of speech signals that carry significant emotional content. Initially,

the speech signal will need to be separated into various related frames and the energy

calculated for each frame to establish the median energy. This will then provide a suitable

threshold, e.g. 50% of the median energy, to identify voiced frames. The identified voiced

segments can then be arranged in a sequence to form a unified informative data frame.

Finally, this voiced signal can be divided into overlapping frames and VMD applied to

decompose only high-energy signals.

Chapter 4, introduced the SMOGN-COREG model, an innovative semi-supervised

regression framework to analyze FL as a churn predictor. This model explicitly handled

118



7.2. FUTURE WORK

unbalanced and unlabeled datasets and integrated oversampling strategies with co-

regression algorithms, significantly enhancing model predictive power by combining

labeled and unlabeled data. The proposed SMOGN-COREG model significantly enhanced

prediction accuracy, correctly labeling 64% of previously unlabeled data.

Future study will look to improve this model by incorporating additional data sources,

such as behavioral and transactional records, to better understand member financial

behaviors, which I have collectively called financial X-Ray. This will help develop more

comprehensive framework(s) supporting organization member engagement strategies.

There is also potential benefits from integrating SSL with other advanced data mining

methods, to enhance financial behavior analysis, opening an exciting avenue for future

work.

Chapter 5 proposed a new churn prediction technique by integrating causal analysis

with machine learning techniques. Future study will expand this approach, first fine-

tuning the proposed churn propensity model and employing smaller outcome windows to

increase model sensitivity to ultimately detect instantaneous churn signals. Subsequent

study will explore counterfactual causal analysis to deepen understanding of churn,

offering a dynamic view of customer retention. The long-term goal is to introduce an

advanced tool that can be embedded in existing CRM platforms to measure member

engagement in real time and provide more insightful and actionable solutions for churn

prevention.

Chapter 6 proposed an innovative multimodal hybrid fusion learning framework, a

significant step forward in churn prediction methodologies. This framework combines CV,

FL, and CRM databases to accurately determine churn risks. Future study will develop

this framework further by addressing the now current limitations of current coordinated

feature representation space methods. A suitable joint representation strategy could

seamlessly concatenate features from various unimodal models before starting the

learning process.

Incorporating textual features into the existing multimodal fusion framework can

significantly enhance the model‚Äôs capacity to understand and predict customer behav-

ior comprehensively. By utilizing large language models like GPT-4 or BERT, textual

data from customer interactions such as emails, chat logs, or social media posts can

be analyzed. These models are adept at extracting semantic meaning and sentiment,

providing additional layers of insight into customer satisfaction and intentions. In the

context of the proposed framework, textual analysis aligned with data from customer

voice (CV) and financial literacy (FL) assessments can offer a nuanced view of customer
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emotions and potential churn triggers. Textual data can clarify ambiguous vocal ex-

pressions or provide additional context to financial behaviors, thereby enhancing the

prediction accuracy of the churn model.

Further studies will explore incorporating textual features as a fourth unimodal

model into the multimodal framework, a richer understanding of member behavior and

engagement. This enhancement will create a more holistic picture of customer engage-

ment, advancing a more human-centered approach in financial service organizations.

Extending the framework to other business sectors like education, where churn can

manifest as student dropout or disengagement, could prove beneficial. This approach

would integrate data from student interactions, academic performance, and textual

feedback from evaluations. Future work will involve adapting the framework to include

educational engagement metrics and communication logs, which could significantly

improve retention and satisfaction in educational institutions. Such explorations validate

the framework’s versatility and enhance its robustness across various industry-specific

challenges.
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[61] A. Bilal Zorić, “Predicting customer churn in banking industry using neural net-

works,” Interdisciplinary Description of Complex Systems: INDECS, vol. 14,

no. 2, pp. 116–124, 2016.

[62] A. De Caigny, K. Coussement, K. W. De Bock, and S. Lessmann, “Incorporating

textual information in customer churn prediction models based on a convolu-

tional neural network,” International Journal of Forecasting, vol. 36, no. 4, pp.

1563–1578, 2020.

[63] B. Culbert, B. Fu, J. Brownlow, C. Chu, Q. Meng, and G. Xu, “Customer churn pre-

diction in superannuation: a sequential pattern mining approach,” in Databases
Theory and Applications: 29th Australasian Database Conference, ADC 2018,
Gold Coast, QLD, Australia, May 24-27, 2018, Proceedings 29. Springer, 2018,

pp. 123–134.

[64] A. Mishra and U. S. Reddy, “A novel approach for churn prediction using deep

learning,” in 2017 IEEE international conference on computational intelligence
and computing research (ICCIC). IEEE, 2017, pp. 1–4.

[65] R. Mohan, S. Chaudhury, and B. Lall, “Temporal causal modelling on large volume

enterprise data,” IEEE Transactions on Big Data, vol. 8, no. 6, pp. 1678–1689,

2021.

[66] Y. Huang and M. Valtorta, “Identifiability in causal bayesian networks: A sound

and complete algorithm,” in Proceedings of the national conference on artificial
intelligence, vol. 21, no. 2. Menlo Park, CA; Cambridge, MA; London; AAAI

Press; MIT Press; 1999, 2006, p. 1149.

[67] J. Ahn, J. Hwang, D. Kim, H. Choi, and S. Kang, “A survey on churn analysis in

various business domains,” IEEE Access, vol. 8, pp. 220 816–220 839, 2020.

127



BIBLIOGRAPHY

[68] F. Lattimore and C. S. Ong, “A primer on causal analysis,” arXiv preprint
arXiv:1806.01488, 2018.

[69] P. Gopal and N. B. MohdNawi, “A survey on customer churn prediction using

machine learning and data mining techniques in e-commerce,” in 2021 IEEE
Asia-Pacific Conference on Computer Science and Data Engineering (CSDE).
IEEE, 2021, pp. 1–8.

[70] N. N. Vo, S. Liu, J. Brownlow, C. Chu, B. Culbert, and G. Xu, “Client churn predic-

tion with call log analysis,” in Database Systems for Advanced Applications:
23rd International Conference, DASFAA 2018, Gold Coast, QLD, Australia,
May 21-24, 2018, Proceedings, Part II 23. Springer, 2018, pp. 752–763.

[71] T. Kimura, “Customer churn prediction with hybrid resampling and ensemble

learning.” Journal of Management Information & Decision Sciences, vol. 25,

no. 1, 2022.

[72] R. A. de Lima Lemos, T. C. Silva, and B. M. Tabak, “Propension to customer churn

in a financial institution: A machine learning approach,” Neural Computing
and Applications, vol. 34, no. 14, pp. 11 751–11 768, 2022.

[73] R. Liu, S. Ali, S. F. Bilal, Z. Sakhawat, A. Imran, A. Almuhaimeed, A. Alzahrani,

and G. Sun, “An intelligent hybrid scheme for customer churn prediction

integrating clustering and classification algorithms,” Applied Sciences, vol. 12,

no. 18, p. 9355, 2022.

[74] A. Guitart, P. P. Chen, and Á. Periáñez, “The winning solution to the ieee cig 2017

game data mining competition,” Machine Learning and Knowledge Extraction,

vol. 1, no. 1, pp. 252–264, 2018.

[75] J. T. Kristensen and P. Burelli, “Combining sequential and aggregated data for

churn prediction in casual freemium games,” in 2019 IEEE Conference on
Games (CoG). IEEE, 2019, pp. 1–8.

[76] O. Pierre-Yves, “The production and recognition of emotions in speech: features

and algorithms,” International Journal of Human-Computer Studies, vol. 59,

no. 1-2, pp. 157–183, 2003.

128



BIBLIOGRAPHY

[77] J. Q. Wang, T. Nicol, E. Skoe, M. Sams, and N. Kraus, “Emotion and the auditory

brainstem response to speech,” Neuroscience letters, vol. 469, no. 3, pp. 319–323,

2010.

[78] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz,

and J. G. Taylor, “Emotion recognition in human-computer interaction,” IEEE
Signal processing magazine, vol. 18, no. 1, pp. 32–80, 2001.
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