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A B S T R A C T

Neural Architecture Search (NAS) has garnered significant attention for its ability to automatically design
high-quality deep neural networks (DNNs) tailored to various hardware platforms. The major challenge for
NAS is the time-consuming network estimation process required to select optimal networks from a large pool
of candidates. Rather than training each candidate from scratch, recent one-shot NAS methods accelerate the
estimation process by only training a supernet and sampling sub-networks from it, inheriting partial network
architectures and weights. Despite significant acceleration, the supernet training with a large search space
(i.e., the number of candidate sub-networks) still requires thousands of GPU hours to support high-quality sub-
network sampling. In this work, we propose SparseNAS, an approach for one-shot NAS acceleration by reducing
the redundancy of the search space. We observe that many sub-networks in the space are underperforming, with
significant performance disparity to high-performance sub-networks. Crucially, this disparity can be observed
early in the beginning of the supernet training. Therefore, we train an early predictor to learn this disparity
and filter out high-quality networks in advance. Then, the supernet training will be conducted in this space
sub-space. Compared to the state-of-the-art one-shot NAS, our SparseNAS reports a 3.1× training speedup
with comparable network performance on the ImageNet dataset. Compared to the state-of-the-art acceleration
method, SparseNAS reports a maximum of 1.5% higher Top-1 accuracy and 28% training cost reduction with
a 7× bigger search space. Extensive experiment results demonstrated that SparseNAS achieves better trade-offs
between efficiency and performance than state-of-the-art one-shot NAS.
1. Introduction

In recent years, the fast development of deep learning and deep
neural networks (DNNs) has been widely applied to extensive tasks
including but not limited to image processing [1], robotics [2], recom-
mendation systems [3]. DNNs also empower many hardware devices
to become ‘‘smart’’, such as real-time image analytics [4,5], natural
language recognition [6,7], health monitoring [8], etc.

Different hardware devices, ranging from powerful servers to
lightweight edge devices, have different hardware resource constraints,
such as processing power, memory limitation and latency requirements.
The Cloud-Edge [9,10] DNN deployment scheme has become popular
for mobile intelligence domains, which utilize the powerful computing
ability of cloud servers to train large DNN models and then fine-
tune these models for edge devices. However, manually specializing
well-trained DNNs for various edge devices is labour-consuming and
resource-intensive. Recent popular smart devices, such as smartphones,
tablets, and the Internet of Things (IoTs), require tailored lightweight
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DNNs to meet their hardware limitations [11]. Models for different
platforms need to be adapted accordingly through architectural ad-
justments and model retraining. Therefore, there is a growing need for
efficient model deployment in mobile intelligence domains.

Neural architecture search (NAS) has emerged as a powerful auto-
mated tool for accelerating the process of network lightweight [12–15].
By leveraging advanced search algorithms, NAS can explore different
network architectures for resource-limited devices with less human
labour. However, the repeated train–evaluate process for each can-
didate network necessitates huge computing resources. Recent one-
shot NAS methods reduce the computational overhead by treating all
architecture as different sub-networks of a supernet and sharing net-
work parameters among all sub-networks [16–20]. Thereby, one-shot
NAS only train the supernet, and each sub-network inherits parameter
weights from the supernet without retraining, leading to significant
efficiency gains.
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Fig. 1. A diagram of the procedure of SparseNAS. Given a basic search space, we conduct four steps to train our SparseNAS as follows: (1) we first train an early predictor based
on the architecture knowledge in the basic space; (2) We then leverage the predictor to filter out high-quality architectures (in red) and restructure a sparse search space; (3) We
optimize a supernet based on the sub-space; (4) After training, we search sub-networks from the supernet for hardware deployments.
Despite demonstrating promising results, one-shot NAS confronts
the challenge of training a high-performing supernet to support the
subsequent sampling process. The supernet can be regarded as a set of
various sub-networks or a huge network architecture space. Optimizing
a supernet is equivalent to simultaneously optimizing all sub-networks
in the search space, which can be cast as a challenging multi-objective
problem. Recent one-shot NAS tends to define a large search space to
ensure diversity and explore potential high-quality sub-networks. How-
ever, the more sub-networks there are, the more complex the supernet
will be to optimize and converge, which often requires substantial
computational resources (e.g., over 1200 GPU hours) for the supernet
training process.

To further reduce the cost of the NAS process and accelerate DNN
deployment for mobile intelligence, we propose an efficient one-shot
NAS, SparseNAS, which builds a sparse search space containing only
high-quality networks for network searching. Specifically, we train an
early predictor to extract high-quality sub-networks at the beginning
and then rebuild a sparse search space for supernet training. After train-
ing, SparseNAS can directly sample sub-networks from the sparse space
without employing an evolutionary search [21–23], which also reduces
the search cost compared to the previous method [13,15]. Fig. 1
illustrates the workflow of our SparseNAS. Our overall contributions
are as follows:

1. In this paper, we fully analyze the limitations of training a
supernet in a larger search space from three aspects: the lack of
high-quality sub-networks, the multi-model forgetting problem,
and the disparity of sub-network performance.

2. To alleviate those limitations, we propose SparseNAS, a NAS ap-
proach aimed at constructing a sparse space with potential high-
quality models at the beginning of the NAS process. Specifically,
we develop an early predictor to extract a set of high-quality
networks as a new space based on the performance disparity.

3. Compared to the state-of-the-art (SOTA) one-shot NAS, Sparse-
NAS achieve a 𝟑.𝟏× training speedup with comparable Top-1
accuracy on the ImageNet dataset. Compared to the SOTA accel-
eration method, SparseNAS reports a training cost reduction up
to 𝟐𝟖% within a 𝟕× bigger network search space. Sub-networks
in our sparse space achieve an average of 𝟏.𝟏% and a maximum
of 𝟏.𝟓% higher Top-1 accuracy than their counterparts.

4. Since most of the sub-networks in SparseNAS are high-quality,
the sub-network search process is about 𝟒𝟎× faster than the
process in the SOTA without additional evolutionary search.

5. We further deploy searched sub-networks to several smart edge
devices, including Samsung S22 Ultra, Samsung Tab S8+,
Huawei Mate50 Pro+ and Huawei Watch GT3 for on-device
latency test, where SparseNAS also reports a better latency and
accuracy.
2 
2. Related work

As the demand for designing complex DNN models rapidly grows,
NAS methods are becoming increasingly prevalent in architecture de-
sign and network deployment, gradually replacing partial hand-crafted
processes. Early NAS [21,24–28] automated the network designing
process leveraging reinforcement learning or evolutionary search. How-
ever, early NAS methods [21,27,28] suffer from substantial computa-
tional overhead for network performance estimation, often requiring
thousands of GPU days to train and evaluate a large number of candi-
date models from scratch. This extensive computational burden hinders
the practical applicability of early NAS approaches and makes them less
feasible for real-world scenarios with limited computational resources,
such as mobile intelligence.

Recent one-shot NAS methods alleviate the huge computing over-
head by optimizing a supernet to represent a wide range of candidate
sub-networks. They significantly reduce the computational cost by
sharing parameter weights across all the sub-networks without extra
training. Different one-shot NAS methods differ in how to construct the
supernet. Cell-based methods regard the supernet as a directed acyclic
graph (DAG) and use a continuously differentiable relaxation to param-
eterize the search space [16–18,20,29–32]. For example, DARTS [20]
relax the operation choices to be differentiable and optimize all weights
with a continuous relaxation of in the search space. SWD-NAS [31]
proposed a dual-attention mechanism to alleviate the performance
collapse in DARTS. GENAS [31] introduced an evolutionary frame-
work to relieve the coupling problem in DARTS. However, cell-based
methods suffer from coupled weight in supernet [33] and complicated
optimization with sensitive hyper-parameters [33,34].

To address the coupled problem, architecture-based one-shot NAS
[13,15,33,35,36], decouple the one-shot NAS process in two separated
stages: (1) the supernet optimization stage and (2) the architecture
(sub-network) searching stage. Different from cell-based methods, the
supernet in architecture-based methods takes a well-designed network
(e.g., ResNet or MobileNet-v3) as a prototype with extensive elastic
network hyperparameters, such as the number of blocks, the number
of layers, the number of channels in the convolution kernel and so
on. Random network sub-structures will be involved in each training
iteration during the supernet training stage. This training strategy
successfully supports the sub-network sampling in the second stage.

Different architecture-based one-shot NAS methods explore varying
strategies to sample sub-networks and optimize proper weights for the
supernet. SPOS [33] firstly introduces a random sampling method.
OFA [13] proposes a phased training strategy, progressive shrinking,
which starts training from sampling large networks to smaller ones
by gradually providing smaller architectural configuration choices.
The following work, CompOFA [15], accelerates OFA’s strategy by a
dimension-coupling constraint but results in performance degradation.
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Despite the empirical success of two-stage one-shot NAS, the multi-
model forgetting problem [37,38] remains a significant challenge. We
further discuss this phenomenon in 3.3.

As for the search stage, recent methods [13,15,34–36,39] conduct
an evolutionary search [22,23,25] to explore specialized sub-networks
under given resource constraints. However, it is time-consuming to
evaluate each candidate for comparison within a vast search space.
An alternative is to train a performance predictor [13,15] to estimate
network performance. During the evolutionary search, the predictor
provides approximated network performance for network comparison
and ranking.

3. Motivation

3.1. Problem formalization

As mentioned in Section 2, the architecture-based one-shot NAS
has two stages. The first stage defines a search space  containing
different architectures (i.e., sub-networks 𝛼𝑖). Due parameters sharing,
sub-networks’ weights 𝑊𝛼𝑖 are a sub-set of the supernet weight 𝑊
(i.e., 𝑊𝛼𝑖 ⊆ 𝑊). The goal of this stage is to minimize the loss of every
sub-network by updating the supernet weight, which can be cast as a
multi-objective problem as follows:

min
𝑊

𝑁
∑

𝑖=1
(𝑊𝛼𝑖 ; 𝑋𝑡𝑟𝑛) (1)

where 𝑋𝑡𝑟𝑛 represents the training dataset, and (⋅) represents the loss
function. 𝑁 is the total number of candidate architecture in . Since
weight-sharing, the bigger the 𝑁 , the harder 𝑊 is to optimize. In
practice, since 𝑁 is usually extremely large (e.g., 1019), Eq. (1) is
often approximated by optimizing a set of sampled candidates (𝑛𝑠𝑢𝑏
sub-networks) for each mini-batch input as follow:

min
𝑊

𝑛𝑠𝑢𝑏
∑

𝑖=1
(𝑊𝛼𝑖 ; 𝑋𝑏𝑎𝑡𝑐 ℎ) (2)

where 𝑋𝑏𝑎𝑡𝑐 ℎ represents a mini-batch of input data. As the total training
iterations can span thousands or even millions, a large scale of sub-
networks will be trained and aggregated their gradients for updating
the supernet. A larger 𝑛𝑠𝑢𝑏 allows the supernet to obtain gradients from
different sub-networks for the same number of training iterations but
increases the total duration of training.

After supernet training, the second stage aims to extract the optimal
sub-network 𝛼∗ under given constraints (e.g., model size limitation or
latency requirements):

𝛼∗ = ar g max
𝛼∈

ACC𝑣𝑎𝑙(𝑊𝛼 , 𝑅; 𝑋𝑣𝑎𝑙) (3)

where ACC𝑣𝑎𝑙 refers to the network accuracy on validation dataset.
𝑅 denotes the resource constraints, and 𝑋𝑣𝑎𝑙 denotes the validation
dataset.

Typical one-shot NAS approaches create a vast search space with di-
verse candidate networks for exploring potential high-performing archi-
tectures. The diversity within the search space allows for a more com-
prehensive exploration of possible architectures, enabling the identifi-
cation of innovative and high-performing network designs that might
not be present in a more constrained search space. However, ap-
proaches require thousands of GPU hours to train a high-performance
supernet due to the large search space. For example, OFA [13] spend
over 1200 GPU hours to optimize a vast search space with 1019 can-
didates. In the following part of this section, we revisit the one-shot
NAS optimization challenge within a large search space and specifically
answer the question: Do we really need a huge search space?
3 
Table 1
A statistical analysis of the search space.
𝑁models 𝐴𝐶 𝐶mean 𝐴𝐶 𝐶std 𝑁high-qlt 𝑅𝑎𝑡𝑖𝑜

500 74.2% 0.49% 83 16.6%
1000 74.0% 0.46% 168 16.8%
5000 74.1% 0.47% 815 16.3%
10000 74.0% 0.47% 1624 16.2%

Fig. 2. An illustration of the multi-forgetting problem in one-shot NAS. Weights from
each sub-network might interfere with each other and damage the optimization of the
supernet.

3.2. The lack of high-quality sub-networks

In addition to the size of the search space, we are concerned about
the interference during supernet training caused by inferior networks.
The target of NAS is to search for high-quality networks. Thus, we try
to figure out how many candidates in a vast space can be regarded
as ’high-quality’. Here, we roughly identify networks with validation
accuracy higher than the sum of mean accuracy and corresponding
standard deviation as high-quality networks.

Table 1 reports a statistical analysis of the search space OFA-
MobileNetV3 [13]. We measure the validation accuracy of networks
on several random-sampled sub-spaces to roughly analyze the vast
search space. Here, 𝑁models denotes the number of randomly sampled
networks. 𝐴𝐶 𝐶mean and 𝐴𝐶 𝐶std represent the average validation accu-
racy and the standard deviation accuracy in each sub-space. 𝑁high-qlt
and 𝑅𝑎𝑡𝑖𝑜 represent the number of high-quality networks and their
percentage of the total. Here, a network will be considered a promising
model if it has better accuracy than 𝐴𝐶 𝐶mean + 𝐴𝐶 𝐶std. About 16%
network can be considered high-quality while other 84% models are
inferior. If we set the threshold to the sum of the mean accuracy
and twice the standard deviation, only 1% models are high-quality
networks.

The presence of low-quality networks can lead to a serious forget-
ting problem, which has several detrimental effects on the optimization
process. Much of the training budget has been wasted on these useless
networks during training. In addition, they also increase the searching
burden in the architecture searching stage for extracting high-performing
sub-networks for deployment.

3.3. The multi-model forgetting problem

The multi-model forgetting problem refers to the performance de-
cline among previous-trained sub-networks in the search space, first
observed in early one-shot NAS [37,38]. Specifically, the training of
subsequent sub-networks in one-shot NAS can lead to the overwriting
of shared weights in the previous sub-networks, resulting in a perfor-
mance decrease in the previous sub-networks and negatively impacting
the overall optimization process. As illustrated in Fig. 2, the current
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Fig. 3. Network performance comparison in a basic space and in a sampled sub-
space. The basic search space is OFA-MobileNetV3 [13], and the sub-space comprises
2000 sub-networks randomly sampled from the basic search space. There are seven
different sizes of networks, ranging from 200M MACs to 500M MACs. MACs stands for
the multiply–accumulate operation, a common step that computes the product of two
numbers and adds that product to an accumulator. We conduct uniform sampling [33]
for supernet training.

sampled sub-network interferes with the previous networks, and the
supernet may ‘forget’ valuable knowledge learned from the previous
one. This phenomenon significantly hinders the optimization of the
supernet, resulting in a longer training period and heavy training
overhead.

This problem also exists in one-shot NAS with two stages. During the
supernet training stage, a random set of sub-networks are involved in
forward-and-backwards propagation for a given data batch as Eq. (2).
Since weight-sharing, the supernet is updated by aggregated gradients
from these sub-networks. Although this optimization process supports
the sub-network sampling with inherited weights in the following stage,
the gradients from high-quality sub-networks are affected by those from
low-quality sub-networks as the number of training iterations increases.
The forgetting problem complicates the optimization of the supernet,
resulting in longer training periods.

To further explore the relationship between the multi-model forget-
ting problem and the search space size, we randomly sample a sub-
space with 2000 networks from OFA-MobileNetV3 search space [13]
and train two supernets within the sub-space and the original space
for the same epoch. In Fig. 3, we illustrated the validation accuracy
of several sub-networks in each of these two spaces. We observe that
sub-networks in the sub-space show higher performance than those in
the basic space with a maximum accuracy improvement of 1.81% at
300 MACs, which indicates that networks in a smaller space are less
interfered with by other networks. Directly reducing the number of
objectives in a multi-objective task can simplify optimization, thereby
benefiting supernet training. Candidates in a smaller search space are
more likely to be randomly selected and have their corresponding
network weights updated during supernet training, leading to more
thorough training. Since the high-quality candidates account for only
a small proportion (see Section 3.2), we prefer to optimize a sparse,
selective space rather than a random sub-space.

3.4. The disparity of sub-network performance

Compared to training a standard DNN, a major difference in su-
pernet training is that multiple sub-networks are sampled and trained
simultaneously at each iteration. Prior research [40] reported that
standard DNNs with high-quality network structures perform well even
at the early training epoch. We hypothesize that this phenomenon also
occurs among varying sub-networks during supernet training.

To verify this hypothesis, we train a supernet for 300 epochs and
evaluate 1000 random sub-networks on ImageNet in Fig. 4. As shown
in Fig. 4 (Top), high-quality sub-networks (marked in red) keep their
leading performance both at the beginning and at the convergence.
Fig. 4 (Bottom) further shows validation records of two sub-networks;
one is high-performing while the other has an inferior performance.
The high-performing one shows superior accuracy during training,
indicating that the performance gap is persistent. These observations
4 
Fig. 4. Performance evaluation for sub-networks randomly sampled from the same
supernet. The supernet is trained with uniform sampling [33] for 300 epochs. Top: A val-
idation accuracy comparison of sub-networks in 30 and 300 epochs on ImageNet [41].
High-quality networks are marked in red. Bottom: A validation accuracy record of
a high-quality sub-networks and a low-quality one throughout the supernet training
process.

validate our hypothesis. Due to weight sharing, all candidate networks
are optimized simultaneously, leading to a constant performance dis-
parity. Sub-networks that demonstrate superior performance and lead
the optimization process during the early epochs are highly likely to be
high-quality architectures.

4. Methodology

Motivated by the aforementioned observations, we intend to rebuild
a smaller search space, which maintains the diversity and quality of
sub-networks, alleviating the phenomenon of multi-model forgetting.
After that, the supernet will be optimized in this sparse space.

Here, we give a definition of the sparser space. Considering the
basic search space  with parameter weight 𝑊 , we define a sub-space
∗ ⊂ where networks in this space have a higher network accuracy
than those not in under the same recourse constraint in the basic space
as follow:
∀ 𝛼∗ ∈ ∗, 𝛼 ∈ , 𝛼 ∉ ∗

if R(𝛼∗) = R(𝛼),
then ACC𝑣𝑎𝑙(𝑊𝛼∗ ) ≥ ACC𝑣𝑎𝑙(𝑊𝛼).

(4)

where 𝛼∗ and 𝛼 represent sub-networks from ∗ and , respectively.
ACC𝑣𝑎𝑙 is the validation accuracy. We further rewrite the supernet
optimization (i.e., Eq. (1)) with a sparse space (i.e., Eq. (4)) as below:

min
𝑊 ∗



𝑁∗
∑

𝑖=1
(𝑊 ∗

𝛼𝑖
; 𝑋𝑡𝑟𝑛),

s.t. ∀ 𝛼∗ ∈ ∗, 𝛼 ∈ , 𝛼 ∉ ∗

if R(𝛼∗) = R(𝛼),
then ACC𝑣𝑎𝑙(𝑊𝛼∗ ) ≥ ACC𝑣𝑎𝑙(𝑊𝛼).

(5)

However, it is difficult to guarantee the actual accuracy constraint
ACC𝑣𝑎𝑙(𝑊𝛼∗𝑖

) ≥ ACC𝑣𝑎𝑙(𝑊𝛼𝑖 ) for two issues. Firstly, evaluate all can-
didates within a vase space  (e.g., 1019 candidates) is extremely
time-consuming. Secondly, since the supernet is un-trained, we cannot
evaluate sub-networks to get their actual accuracy.

To address the first issue, we approximate the actual accuracy con-
straint to the estimated accuracy constraint. In Section 2, we mentioned
that the performance predictor is widely used for architecture search.
Previous works train a predictor for sub-network searching during
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Algorithm 1: Training supernet in a sparse space
Input: Search space ; Early predictor 𝑒(⋅); Maximum space size

𝑁∗; Number of sampled sub-networks 𝑛𝑠𝑢𝑏
Create a empty space ∗

for 𝑖 in 1, 2, ..., 𝑁∗ do
Random sample a set of networks {𝛼∗𝑖,0,⋯ , 𝛼∗𝑖,𝑗}
Estimate networks {𝑒(𝛼∗𝑖 ),⋯ ,𝑒(𝛼∗𝑖,0)}}
Evolutionary search the high-quality network 𝛼∗𝑖
Append 𝛼∗𝑖 into ∗

nd
nitialize the supernet weights 𝑊
hile not convergence do

Draw a mini-batch of data
Randomly sample a small set 𝑛𝑠𝑢𝑏 of sub-networks
{𝛼∗1 , 𝛼∗2 ,⋯ , 𝛼∗𝑛} from ∗ for propagation

Aggregate gradients of {𝛼∗1 , 𝛼∗2 ,⋯ , 𝛼∗𝑛}
Update the parameter weights 𝑊 .

nd

supernet training [34] or after supernet training [13,15], while we
intend to leverage accuracy predictor to extract high-quality network
before supernet training. We intend to replace the actual accuracy
comparison with the predicted accuracy comparison to avoid network
valuation. However, the second issue still remains since the training of
 traditional predictor also requires actual network accuracy as ground

truth.
Our solution is to train the early predictor as an alternative choice.

In Section 3.4, we observe that sub-networks with higher accuracy at
he beginning are more likely to show superior accuracy than others
t the convergence. Based on this observation, we train the early
redictor with network accuracy at the early stage to approximate the

traditional predictor. The performance gap between the two kinds of
redictor is small. More practical details of early predictor are illustrated
n Section 5.2.

By this means, we can leverage the early predictor to provide esti-
mated accuracy for given candidate networks. Let 𝑒(⋅) denote the early
predictor, and we can update Eq. (5) into:

min
𝑊 ∗



𝑁∗
∑

𝑖=1
(𝑊 ∗

𝛼𝑖
; 𝑋𝑡𝑟𝑛),

s.t. ∀ 𝛼∗ ∈ ∗, 𝛼 ∈ , 𝛼 ∉ ∗

if R(𝛼∗) = R(𝛼),
then 𝑒(𝛼∗) ≥ 𝑒(𝛼).

(6)

We also conduct an evolutionary search [21] to better sample high-
quality networks. Instead of evaluating candidate network performance
after training in traditional evolutionary-based NAS [21], our early
redictor efficiently provides network estimated performance for the

search.
Algorithm 1 illustrates a workflow of training a supernet within

a sparse search space. A similar idea of building a smaller space has
already been proposed by CompOFA [15]. The difference is that we
carefully consider the balance between the complexity and the diversity
of the new space ∗ by setting  ∗ and applying 𝑒(⋅), rather than a
fixed search space produced by a heuristic strategy in CompOFA. We
provide a detailed comparison of two methods in Section 5.

5. Experiments and results

5.1. Experiment settings

5.1.1. Search space settings
Following OFA [13], we use the OFA-MobileNetV3 as the basic

search space. Table 2 report the network configurations of this search
 w

5 
Table 2
OFA-MobileNetV3 with dynamic network configurations.

Stage Depth Width Expand Kernel

Conv 1 16 – 3
MBConv 1 16 1 3
DMBConv1 {2, 3, 4} 24 {3, 4, 6} {3, 5, 7}
DMBConv2 {2, 3, 4} 40 {3, 4, 6} {3, 5, 7}
DMBConv3 {2, 3, 4} 80 {3, 4, 6} {3, 5, 7}
DMBConv4 {2, 3, 4} 112 {3, 4, 6} {3, 5, 7}
DMBConv5 {2, 3, 4} 160 {3, 4, 6} {3, 5, 7}
Conv 1 960 – 1
Conv 1 1280 – 1

space. There are five dynamic stages named DMBConv, which refer
o inverted dynamic inverted residual block [13]. Depth represents the
umber of dynamic convolution blocks (or layers) in the dynamic stage.
Width and Expand denote the output channel width of each block and
the width’s corresponding expand ratio. The maximum channel width
is calculated by Width × Expand. Kernel is the kernel size of each
block. The dynamic network configurations, which include variations
n network depth 𝐷 = {2, 3, 4}, channel width expansion 𝑊 = {3, 4, 6},
nd kernel size 𝐾 = {3, 5, 7}, result in ((3 × 3)2+ (3 × 3)3+ (3 × 3)4)5 ≈ 2 × 1019
nique candidate architectures. Besides, we also generate SparseNAS to
nother search space in Section 5.10 for an ablation study.

5.1.2. Datasets settings
All the experiment results are measured on ImageNet12 [41], a

large-scale image classification dataset with over one million images
in 1000 classes. All images are preprocessed to 256 × 256 resolutions.

here are about 120,000,000 images for training and about 150,000
images for testing.

5.1.3. Baseline settings
We choose CompOFA [15] as the main baseline. CompOFA is the

tate-of-the-art efficient one NAS which conducts a heuristic network
sampling strategy by coupling the block depth and layer width choices
𝐷 , 𝑊 } to (2, 3), (3, 4) and (4, 6) and fixes the kernel size. This heuristic

strategy led to a narrower search space with 243 candidate networks
in the network family. CompOFA reports empirical experiment results
in the OFA-MobileNetV3 search space. However, this strategy lacks
flexibility and diversity since the coupling rules determine its candidate
networks. Those candidates have not been verified by performance
evaluation or estimation yet, which damages the performance of indi-
vidual subnets and requires much computation to search for an optimal
model.

5.1.4. Implementation details of SparseNAS
Two main stages require DNN training in SpareNAS: (1) training a

roxy supernet for the early predictor and (2) training the supernet on
he sparse search space. The first stage takes 30 epochs with a learning
ate of 0.1, while the second stage takes 150 epochs with an initial
earning rate of 0.008 for the first 5 epochs and 0.08 for the remaining
45 epochs. We trained the model on five NVIDIA RTX 3090 GPUs with
 batch size 128. Other hyperparameters are following CompOFA.

5.2. Implementation details of the early predictor

The early predictor is a vital component for SparseNAS. It predicts
he corresponding performance based on the input network architec-
ure. As mentioned in Section 4, we leverage the early predictor 𝑒(⋅)
o build a sparse search space ∗ based on the disparity between
igh-quality and low-quality sub-networks. In this section, we first
rovide detailed information about the training procedures. After that,
e verify its feasibility by comparing it with a traditional predictor.
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Fig. 5. Predictor performance testing. (a) and (b): Predicted results for 1000 random networks from the early predictor and a traditional predictor. The predictor generates the
predicted accuracy, and the corresponding actual accuracy is evaluated on the ImageNet test dataset. (c): RMSE and Kendell’s 𝜏 of different predictors trained by training materials
(architecture-accuracy pairs) from different supernets. ‘‘X-ep’’ denotes this predictor is trained with the training materials provided by a supernet trained for X epochs.
Table 3
RMSE comparisons of different predictors.

Predictor Time Cost (s) RMSE (%)

FFN 12.9 0.53
LSTM 17.5 0.41
RF 1.05 0.29
GBDT 0.71 0.27
XGBoost 0.25 0.30

5.2.1. The training procedures for the early predictor
The function of a predictor is to give a prediction of the corre-

sponding performance based on the input network architecture. In
other words, the input of the predictor is the network architecture,
and the output is the predicted performance (e.g., the accuracy in the
classification task).

The training steps of the early predictor are: (1) Train a proxy
supernet on the original search space for 30 epochs; (2) Randomly sam-
ple and evaluate 1000 sub-networks and obtain architecture-accuracy
pairs; (3) Train the predictor based on the evaluation pairs.

The proxy supernet is trained with uniform sampling [33] on Ima-
geNet, which randomly samples two sub-networks for optimization in
one data batch with a learning rate of 0.1 and the batch size is 128. The
training cost of the proxy supernet is about 30 GPU hours on a single
RTX 3090 GPU.

As for the predictor, we experimented with different types of mod-
els to build the predictor, including a three-layer feedforward neural
network (FNN) in OFA [13] and CompOFA [15], the LSTM filter in
GreedyNASv2 [42], the random forest regressor (RF) in Attentive-
NAS [34], and two machine-learning-based regressors GBDT [43] and
XGBoost [44]. Table 3 reports the root-mean-square error (RMSE)
between the predicting accuracy and the actual accuracy. The RF,
GBDT and XGBoost regressor contain 100 estimators trained with a
learning rate of 0.01. Other models use the original settings. The time
cost is measured on an Intel Xeon Platinum 8255C CPU. In this case,
ML-based approaches, RF, GBDT and XGBoost, report a lower RMSE
and less time cost than other approaches, and GBDT reports the lowest
RMSE. Therefore, we choose GBDT as our early predictor.

5.2.2. The feasibility analysis for the early predictor
To verify the feasibility of our early predictor, we measure its pre-

dictive accuracy by comparing it with a traditional predictor generated
from a 300-epoch supernet for comparison. All other hyper-parameters
are the same except for the proxy supernet. The experiment results are
reported in Fig. 5(a). The horizontal coordinate indicates predicted ac-
curacy, and the vertical coordinate indicates actual accuracy evaluated
on the test dataset. The traditional predictor is thoroughly the better
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one in predicting accuracy for the test set, while the early predictor also
performs well with competitive performance.

Moreover, we further calculate the root-mean-square error (RMSE)
and Kendell’s 𝜏 ranking correlation between the predicted and actual
accuracy for different predictors, as shown in Fig. 5(b). For RMSE,
we shift the data domain of predicted accuracy to the domain of
actual accuracy by calculating the difference in the mean of predicted
accuracy and actual accuracy. RMSE and Kendell’s 𝜏 for the 30-ep
predictor (i.e., the early predictor) are 0.266% and 0.712, while 0.219%
and 0.775 for the 300-ep predictor (i.e., the traditional predictor). The
experiment results indicate that the early predictor is as reliable as a
traditional predictor with similar predictive accuracy.

5.3. Implementation details of the sparse space

To enhance the generalization for varying deployment scenarios, we
conduct a uniform MACs interval sampling, which divides the basic
search space into groups of equal MACs and then samples the same
number of high-quality networks from each group. In practice, we
sample five networks from each 1M MACs from 150M to 500M MACs
by evolutionary search [21]. The population size is 50, and the number
of iterations is 100 for the evolutionary search. We use multi-processing
with Intel Xeon Platinum 8255C CPU to accelerate the search, and
the cost is less than four hours. There are a total of 1750 candidate
networks in the new space. We note that candidate networks can be
flexibly sampled according to demand.

5.4. Complexity analysis of NAS

In general, NAS processes are very time-consuming because their
evaluation and ranking require training all networks in the search space
from scratch. The training cost is the most critical factor in determining
the time cost of the NAS process. Considering there are 𝑁 candidate
networks, we analyze the time complexity with the notation (⋅) of
SparseNAS against other NAS methods in Table 5. Similar to recent
one-shot NAS methods, such as SSRNAS [15] and CompOFA [15],
SparseNAS trains a supernet and shares network parameter weights
with all sub-networks in the search space, rather than training each can-
didate networks from scratch as MnasNet [12]. Although our method
trains a proxy supernet for the early predictor, the complexity of
SparseNAS is (1), which is irrelated with 𝑁 . For more details on the
supernet training, please refer to Section 5.5.
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Table 4
Training stage and duration comparison for three methods.

Model Stage 𝑛𝑠𝑢𝑏 Epochs GPU Hours

Teacher – – 180 153.0

OFA

Kernel Training 1 125 97.9
Depth Warm-up 2 25 31.7
Depth Training 2 125 135.4
Width Warm-Up 4 25 42.9
Width Training 4 125 200.0

Total Hours: 507.9

CompOFA
Compound Warm-Up 4 25 37.1
Compound Training 4 125 185.4

Total Hours: 222.5

SparseNAS
Early Predictor 2 30 25.5
Sparse Training 3 150 175.3

Total Hours: 200.8

SparseNAS†
Early Predictor 2 30 25.5
Sparse Training 2 150 135.0

Total Hours: 160.5

Table 5
Complexity analysis of different NAS methods.

Method MnasNet SSRNAS CompOFA SparseNAS

Complexity (𝑁) (1) (1) (1)

5.5. Training stages and costs

In this section, we compare the streamlining and speedup of the
supernet training processes. Following CompOFA and OFA, SparseNAS
also adopt knowledge distillation [45] to assist supernet optimiza-
tion by training the biggest sub-network for 180 epochs as a teacher
network. The teacher network provides network parameters for the
supernet initialization and soft labels in each training iteration. In
Section 2, we have mentioned that in the supernet training stage, one-
shot NAS optimize 𝑛𝑠𝑢𝑏 sub-networks to update network parameters in
each data batch (see Eq. (2)). SparseNAS contains a bigger ratio of high-
quality networks, allowing us to speed up the training using a smaller
𝑛𝑠𝑢𝑏 = 3. Additionally, SparseNAS† reports a further acceleration by
setting 𝑛𝑠𝑢𝑏 = 2, but sub-network performance decreases slightly.

Table 4 reports the comparison of training schedules and time costs.
The training cost is measured by an NVIDIA RTX 3090. There is a
complex five-step training order in OFA known as progressive shrinking,
which is complex and time-consuming. CompOFA and SparseNAS re-
duce the supernet training to two steps and one step, respectively. For a
fair comparison, we also take the training cost of the early predictor into
account. Within a high-quality search space, SparseNAS no longer need
the 25-epoch warmup stage. Compared to OFA, our method reaches
a maximum 3.1× speedup. Compared to CompOFA, our SparseNAS
reports a 28% training cost reduction. In Section 5.7, we show that,
even with less time cost, the sub-network in our search space does not
encounter an obvious performance degradation as CompOFA.

5.6. Searching stages and costs

As for the search stage, SparseNAS reports a faster search procedure
for two reasons. First, our search space is sparse and easily traversable.
Second, candidate networks in our space have already been verified
as high-quality networks before supernet training. Thus, given the
constraints of different MACs, SparseNAS can quickly select target sub-
networks without an evolutionary search. Table 6 reports a search cost
comparison, where #𝑒𝑣𝑜, #𝑒𝑣𝑜∗ and #𝑢𝑛𝑒𝑣𝑜 denote evolutionary search,
evolutionary search with fewer iterations, and not using evolutionary
search, respectively. 200∼ denotes the MACs constraints from 200M to
300M MACs, 300∼ and 400∼ are similar. SparseNAS reduce the search
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Table 6
An average time cost of the sub-network searching process.

Model Search Method Avg Cost (100M MACs interval)

200∼(M) 300∼(M) 400∼(M)

OFA #𝑒𝑣𝑜 129.4 (s) 125.9 (s) 137.1 (s)
CompOFA #𝑒𝑣𝑜∗ 582.5 (ms) 573.1 (ms) 608.0 (ms)
SparseNAS #𝑢𝑛𝑒𝑣𝑜 12.9 (ms) 13.1 (ms) 13.3 (ms)

Table 7
A Top-1 accuracy comparison of models on ImageNet.

Model MACs Top-1 ACC(%)

MobileNetV2 [46] 300M 72.0
MnasNet [12] 317M 75.3
ProxylessNAS [14] 320M 74.6
SPOS [33] 328M 74.7
FairNAS [47] 321M 74.7
FBNet [48] 375M 74.9
MobileNetV3 [4] 356M 75.2
SWD-NAS [31] – 75.5
GreedyNAS [36] 284M 76.2
CompOFA [15] 300M 76.3
EfficientNet-B0 [49] 390M 76.3
GENAS [32] – 76.1
OFA [13] 300M 76.7

SparseNAS† 295M 76.5
SparseNAS 295M 76.7

Fig. 6. A validation accuracy comparison of the network family from SparseNAS and
CompOFA.

time to 13 ms by 𝟒𝟎× faster than CompOFA in different MACs intervals.
Meanwhile, SparseNAS does not need to further train a performance
predictor for estimation [13] since we create the early predictor at the
beginning.

5.7. Sub-network performance

We evaluate the accuracy of sub-networks by measuring their Im-
ageNet Top-1 accuracy. In Table 7, we illustrated the highest sub-
network performance of different NAS methods with similar constraints
of MACs. Here, † represents 𝑛𝑠𝑢𝑏 = 2, reducing the supernet cost
with a slight decrease in subnetwork performance. Our SparseNAS
and SparseNAS† report 76.7% and 76.5% Top-1 accuracy, better than
other architecture-based one-shot NAS methods except OFA. According
to Sections 5.5 and 5.6, SparseNAS show a better balance between
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Fig. 7. Comparisons of latency-accuracy trade-off on four edge devices. Sub-networks sampled from SparseNAS, CompOFA and OFA have the same MACs and batch size = 1. The
model accuracy is evaluated on the ImageNet validation dataset.
network performance and cost than OFA. Compared to the latest cell-
based methods, SparseNAS reports a 1.2% and 0.6% higher accuracy
than SWD-NAS and GENAS, respectively.

5.8. Search space comparison

Fig. 6 demonstrates the performance of all sub-networks within
the search space of SparseNAS and CompOFA. SparseNAS provide a
larger network family containing 1750 networks, which is 7× bigger
than CompOFA. Over 𝟕𝟎% sub-networks in SparseNAS achieve higher
network performance than CompOFA’s with an average of 𝟏.𝟏% and
a maximum 𝟏.𝟓% accuracy gap under similar MACs constraints. Sub-
networks of SparseNAS† also show higher model performance than
CompOFA and CompOFA†. We further compare the model performance
of three approaches that share the same basic search space.

5.9. Sub-network performance on smart devices

Considering the application in mobile intelligence domains, Sparse-
NAS can provide specialized DNN models for diverse mobile devices to
meet hardware resource constraints. We extensively verified the effec-
tiveness of SparseNAS on the latest smart devices, including Samsung
Galaxy S22 Ultra, Samsung Galaxy Tab S8+, HUAWEI Mate 50 Pro
and HUAWEI Watch GT3. Fig. 7 shows a detailed accuracy-latency
comparison. Sub-networks from different supernets have similar MACs.
We measure different latencies by resizing the image resolution of the
model inputs. SparseNAS demonstrates a similar model accuracy to
OFA and outperforms CompOFA with approximate MACs.

5.10. Generalize to other search space

We generalize SparseNAS to another search space, ProxylessNAS
[50], which also contains a large number of different networks ranging
from 256M to 968M MACs. We compare SparseNAS with CompOFA in
this search space. The training stages of the two methods are identical
to the stage in OFA’s search space. The number of sub-networks in
CompOFA is 243 due to CompOFA’s coupling strategy. To build a sparse
space, we sample 10 sub-networks for every 10M MAC from 300M to
900M, and the total number of candidates in this new space is 1200.

Table 8 reports the training schedule and training duration of two
methods in the space in ProxylessNAS. Both methods first train the
biggest network in the search space as a teacher network for knowl-
edge distillation. Our SparseNAS-𝑝 takes 12% less training time than
CompOFA-𝑝. Fig. 8 depicts the model performance of all sub-networks
generated by two methods. Despite the change in basic search space,
the sub-space built by SparseNAS also shows higher efficiency and
accuracy than CompOFA’s.
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Table 8
Training duration comparison of CompOFA and SparseNAS applied in ProxylessNAS’s
space.

Model Stage 𝑛𝑠𝑢𝑏 Epochs GPU Hours

Teacher – – 180 163.0

CompOFA-𝑝
Compound Training-1 4 25 38.8
Compound Training-2 4 125 193.8

Total Hours: 232.6

SparseNAS-𝑝
Early Predictor 2 30 37.0
Sparse Training 2 150 157.5

Total Hours: 194.5

Fig. 8. A network performance comparison between SparseNAS-𝑝 and CompOFA-𝑝.

5.11. Ablation study for space size

In this section, we further explore the influence of setting different
space sizes as shown in Fig. 9. There are three supernets with different
space sizes, including 𝑁 = 1750, 𝑁 = 7000, and 𝑁 = 24, 500.
𝑁 = 1 represents a standard DNN. We use the same early predictor to
sample sub-networks and standard DNNs. All candidates have the same
search space settings, network hyper-parameters and the number of
training epochs. After training, we randomly sampled a set of different
sub-networks from each space for evaluation and comparison.

As the search space becomes bigger, the accuracy of sub-networks
shows a slight decrease. This observation strongly verifies our hypothe-
sis in 3.3 that the multi-model forgetting problem has a negative impact
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Fig. 9. Network accuracy of sampled sub-networks in different sizes of space. 𝑁 is the
number of candidate sub-networks in the search space.

Fig. 10. Performance comparison of supernet training with warm-up epoch and
without warm-up in SparseNAS.

on supernet optimization and can be alleviated by narrowing the search
space.

5.12. Ablation study for warm-up epoch

In Section 5.5, we mentioned that OFA [13] and CompOFA [15]
conduct a warmup training for 25 epochs with a lower learning rate.
However, we observe that SparseNAS using warmup epochs results in
a slightly lower model accuracy (about 0.1% on average) than without
warmup epochs, as shown in Fig. 10. Therefore, we abandoned the
25-epoch warmup in our SparseNAS.

5.13. Ablation study for supernet initialization

As mentioned in Section 4, we create a sparser search space via
an early predictor that is generated by a 30-epoch proxy supernet (see
Section 5.2). After that, we train a supernet based on the sparse space.

One intuitive idea for initializing the new supernet is inheriting the
network weights from the 30-epoch supernet since the new supernet
9 
Fig. 11. Performance comparison of two different initialization methods in SparseNAS.

can be regarded as a subset of the 30-epoch one. However, our exper-
iments(see Fig. 11) report that initialized by the proxy supernet leads
to a significant performance degradation compared to initialized by the
teacher network (i.e., the biggest network for knowledge distillation).

6. Conclusion and future works

6.1. Conclusion

In this work, we introduce SparseNAS, a novel approach for acceler-
ating NAS training by sparsifying the search space. SpraseNAS reduces
up to 𝟐𝟖% training cost and speeds up network search by a factor of
𝟒𝟓× with higher network performance compared to the SOTA space
simplification approach. Sub-networks provided by SparseNAS achieve
an average of 𝟏.𝟏% and a maximum of 𝟏.𝟓% higher Top-1 accuracy than
their counterparts. These networks also demonstrate better accuracy-
latency balance on smart mobile devices. We also generalize SparseNAS
to another search space and prove its efficiency and effectiveness. We
hope our approach will inspire more NAS researchers toward a deeper
understanding of supernet optimization.

6.2. Limitations and future work

There are limitations to this research that point to promising areas
for future investigation. Firstly, our work mainly focuses on
convolution-based network architecture since we are interested in
lightweight network deployment. Other types of neural architecture
frameworks (e.g., transformer-based architecture) should be under-
taken for further research. In SparseNAS, we build the convolution-
based search space based on three dynamic hyperparameters: depth,
width expansion and kernel size, as discussed in Section 5.1.1. Each
hyperparameter has three different search options. As for transformer-
based search space, which excludes the hyperparameter of kernel size,
we plan to expand the number of search options of the other two
hyperparameters to explore the diversity of the network architectures.

Secondly, the setting of the early predictor is based on empirical
experiment results on specific search space. Further analysis should be
undertaken to study more general predictor settings. Thirdly, our on-
device evaluation ranges from server-based hardware to smart mobile
devices, but IoT devices or on-chip systems are not included. More work
should be done to explore these lighter hardware platforms.
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