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Abstract: A point cloud is a representation of objects or scenes utilising unordered points comprising
3D positions and attributes. The ability of point clouds to mimic natural forms has gained significant
attention from diverse applied fields, such as virtual reality and augmented reality. However, the
point cloud, especially those representing dynamic scenes or objects in motion, must be compressed
efficiently due to its huge data volume. The latest video-based point cloud compression (V-PCC)
standard for dynamic point clouds divides the 3D point cloud into many patches using computation-
ally expensive normal estimation, segmentation, and refinement. The patches are projected onto a
2D plane to apply existing video coding techniques. This process often results in losing proximity
information and some original points. This loss induces artefacts that adversely affect user perception.
The proposed method segments dynamic point clouds based on shape similarity and occlusion
before patch generation. This segmentation strategy helps maintain the points’ proximity and retain
more original points by exploiting the density and occlusion of the points. The experimental results
establish that the proposed method significantly outperforms the V-PCC standard and other relevant
methods regarding rate–distortion performance and subjective quality testing for both geometric and
texture data of several benchmark video sequences.

Keywords: dynamic point cloud; compression; segmentation; V-PCC; 3D video

1. Introduction

Recent advances in computer vision have made realistic digital representations of
3D objects and environmental surroundings possible. This allows real-time and realistic
physical-world interactions for users [1–3], enabling real-world objects, people, and set-
tings to move dynamically, applying 3D point clouds [4–6]. A point cloud is a set of
individual 3D points without any order or relationship among them in the space. Each
point has a geometry position and includes several other attributes such as transparency,
reflectance, colour, and normal [7]. Dynamic point clouds are composed of a sequence of
static three-dimensional point clouds, each representing a collection of sparsely sampled
points taken from the continuous surfaces of objects and scenes. This unique structure
serves as a powerful model for rendering realistic static and dynamic 3D objects [4,8–10].
The versatility of dynamic point clouds finds application in a broad spectrum of practical
domains, encompassing geographic information systems, cultural heritage preservation,
immersive telepresence, telehealth, and enhanced accessibility for individuals with disabili-
ties. Furthermore, dynamic point clouds contribute to cutting-edge technologies such as
3D telepresence, telecommunication, autonomous driving, gaming, robotics, virtual reality
(VR), and augmented reality (AR) [2,11]. Over the past decade, augmented and virtual real-
ity have slowly entered the popular discourse and the Metaverse concept. The Metaverse is
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a virtual world that can create a network where anyone can interact through their avatars.
An avatar can be a digital representation of a player and works as the identity of a natural
physical person. If the Metaverse could be seamlessly connected with the physical environ-
ments in real time, it would transform our concept of reality [11]. Hence, the imperative
lies in delivering a 3D virtual environment of the greatest quality, characterised by high
resolution, minimal noise, and exceptional clarity, in order to achieve the highest degree of
authenticity. Nevertheless, creating such high-fidelity 3D content demands a substantial al-
location of resources for storage, transmission, processing, and visualisation. It is especially
critical in sensor-based applications, where accurate and efficient 3D data processing is
essential for the performance and trustworthiness of systems such as autonomous vehicles,
robotics, and telehealth technologies [1,2,12].

Point clouds are categorised into three distinct groups, each with its designated stan-
dard and benchmark datasets to facilitate research comparisons. Category 1 pertains to
static point clouds, exemplified by objects like statues and still scenes. Category 2 en-
compasses dynamic point clouds characterised by sequences involving human subjects.
Lastly, Category 3 is reserved for dynamically acquired point clouds, a prime example
being LiDAR point clouds [6–9]. Notably, recent advancements have given rise to two stan-
dardised approaches within the Moving Picture Experts Group (MPEG): video-based point
cloud compression (V-PCC) and geometry-based point cloud compression (G-PCC) [1,2,4].
G-PCC, in particular, leverages data structures that excel in handling static scenarios, ren-
dering it highly effective for addressing the requirements of both Category 1 and Category 3
of point clouds [13–15], while V-PCC exhibits superior performance in compressing the
dynamic scenes, making it the more suitable choice for Category 2 [13,16,17]. In this study,
the primary focus centres on Category 2, with the aim of enhancing V-PCC.

In the V-PCC method, illustrated in Figure 1, a point cloud is firstly divided into
patches according to the normal directions of the points, then patches are projected and
packed into three key mapping schemes, including texture, geometry, and occupancy.
Figure 1a is one frame of a 3D point cloud named Longdress, and its three different
associated images are shown in Figure 1b. The first and the second rows in Figure 1b
include two layers of maps for geometry and texture. The last row shows an occupancy map
of the point cloud. As seen from the images, V-PCC tries to place the data corresponding to
each patch onto a 2D grid and minimise the space between the patches. Figure 1c shows a
padding process aiming to fill unused spaces between the patches to make the generated
texture and geometry frames more suitable for video coding. Figure 1c includes those three
associated images with background filling for the texture and geometry.

However, there are challenges involved in the V-PCC method: (i) V-PCC loses the
proximity of the patches as the neighbouring pixels can be included in different patches;
(ii) V-PCC sacrifices some 3D points in order to have a limited number of 2D patches due
to coding limitations; (iii) 2D video coding technique cannot compress the 2D projected
images efficiently due to the larger amount of unoccupied space among the patches within
the 2D images; (iv) 3D to 2D projection also introduces data loss as all self-occluded
points cannot be retained due to the limited number of projection layers. All of these
contribute to data loss and undesirable artefacts for inefficient coding and inferior visual
quality [2,17]. Several compression methods have been proposed recently for point cloud
processing; however, they still suffer from distortion issues [18]. The distortion occurs due
to decreasing the number of the original points and changing the points’ position or colour,
resulting in the degradation of the content quality. Tohidi et al. [19,20] manually divided
a point cloud frame into smaller arbitrary-size patches and reported better performance
of 2D video coding for some video sequences. However, without automatic segmentation
and the consideration of occluded points [19,20], the effectiveness of these techniques in
applications and performance is limited. Automatic segmentation significantly enhances
overall performance and practicality in virtual and augmented reality applications.
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Figure 1. The process of patch generation and its three associated projected images by V-PCC.
(a) Longdress point cloud; (b) three different associated projected images, including two layers of the
texture map, two layers of geometry map, and occupancy map; (c) filled unused spaces between the
patches in texture and geometry maps.

The proposed method introduces a novel combination of cross-sectioning and slicing
strategies to divide the entire point cloud into small sets of point clouds by considering
the proximity of similar shapes and the number of self-occluded points. The cross-section
strategy aims to increase the efficiency of 2D video coding by exploiting better spatial
correlation, and the slicing strategy aims to reduce data loss by retaining more self-occluded
points. Thus, these two approaches can reduce the overall artefacts, resulting in a better
quality of the reconstructed point cloud. The cross-section divides the point cloud into
several similar homogeneous cylindrical shapes to keep their proximity. Therefore, it helps
provide patches of more regular shapes and sizes, which can fit together to reduce unused
spaces among patches. At the same time, a 2D map is formed with patches to be encoded
by the traditional 2D-based video coding techniques [21]. In the slicing approach, each
cross-section is further sliced according to the number of self-occluded points in order to
capture more original points and lessen data loss.

For further reduction of the data loss, overlapping slicing is considered. Furthermore,
this paper includes the reconstruction of 3D point clouds and the impact of cross-section
and slicing with analysis and comprehensive objective and subjective quality assessments
with a wide range of point clouds. Therefore, the proposed method can provide greater
temporal correlation with the assistance of these generated cross-sections. The experimental
results demonstrate that the proposed method outperforms the V-PCC standard with a
significant improvement in terms of rate–distortion (RD) performance in both texture and
geometric point cloud compression. The results of the proposed method have also been
compared with the cross-section [19] and slicing [20] approaches individually, showing
that a proper combination of the approaches increases performance.

The key contributions of this paper are summarised below:

• We develop a method to automatically divide a point cloud into smaller segments by
cross-sectioning based on coarse-level shape proximity. This approach enhances video
coding by exploiting temporal and spatial redundancy through the reduction of the
inter-patch spaces while forming 2D frames, i.e., Atlas.
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• We further divide each cross-section into finer segments (i.e., slices) by innovatively
determining the slicing direction within each cross-section based on self-occluded
points so that it can reduce data loss for improving image quality.

• We introduce a variable slicing size based on the self-occluded points to capture more
points in 2D projections for better image quality.

• Finally, we implement a technique to keep the slice sizes below a certain threshold to
limit the required bits for the geometric positions of the slices.

A literature review is conducted in Section 2; the proposed method is outlined in
Section 3; the proposed method’s results and discussion are presented in Section 4. The pa-
per concludes with suggestions for future research directions in Section 5.

2. Literature Review

The first test models to compress point clouds were developed in 2017, and the
available software for Category 2 was named TMC2 and for Categories 1 and 3, TMC13.
MPEG approved the most recent standardisations, G-PCC and V-PCC, in 2020 and early
2021 [22,23]; however, there are certain limitations for both, demonstrating that there is still
an opportunity for future advancement of current technology [24–26]. V-PCC coding relies
on transforming 3D data to 2D data to take advantage of the existing video coding and
being able to compress 3D data using 2D video coding. In contrast, G-PCC encodes the
content directly in the 3D space. While V-PCC applies the existing 2D video compression
approach to a collection of various 2D pictures transformed from the 3D point data, G-PCC
applies Octree and K-D tree data structures to describe the placement of the points and
their vicinities in the 3D space [27–30]. As V-PCC stands as the current state of the art
in dynamic point cloud compression, this section introduces recent literature focused on
enhancing the efficiency of V-PCC.

2.1. Enhancing V-PCC Efficiency Through Improved 2D Video Coding

An input point cloud is broken down into a number of patches using V-PCC, which
may subsequently be individually mapped and packed for video compression techniques
like High-Efficiency Video Coding (HEVC) [21,31]. Researchers are experimenting with
several techniques to increase video coding efficiency, including cuboid partitioning [32,33]
and rate control [34,35]. Additionally, researchers have been working to enhance the patch
production procedure and make it better suited for compressing transformed 3D data.
These approaches include utilising edge detection for orienting motion [36], working on
vacant pixels between patches [26,37] and applying 3D motion estimates [38,39]. Many
studies integrated 2D and 3D information in the domain of bettering 2D map compression
to improve RD performance. Finding matching blocks corresponding to content might be
challenging for a 2D video encoder since packing has low consistency in neighbouring
frames in 2D maps. The works by [38,39] seek to enhance the efficacy of motion estimation
(ME) by merging 3D and 2D picture information in V-PCC. Thus, the scope of papers
like [38] is constrained, limiting their applicability to enhance the efficiency of 2D video
coding. The work outlined in [38] is particularly designed for low bitrates and demonstrates
effectiveness primarily on specific datasets.

2.2. Enhancing V-PCC by Reducing Unused Spaces in 2D Maps

To enhance the V-PCC standard’s RD performance, Costa et al., in [40], suggested a
novel patch-packing technique. Along with accompanying absolute and relative sorting
and placement criteria, a number of unique patch-packing strategies were investigated.
The RD performance improved in colour and geometry utilising the approach proposed by
Costa et al. but could have improved in other domains. The accuracy of the 3D recreated
item has been impacted because they altered the patch arrangement in the 2D maps [41].
Due to the inefficiency of coding idle areas during video compression, L. Li et al., in [42],
have presented a method for reducing vacant pixels among various patches. An occupancy-
map-based RD improvement that Li et al. gave increased compression efficiency, but
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required more RD performance. Since the TMC2 has problems creating a patch with
numerous distinct contextual areas, which affects compression effectiveness, Rhyu et al.,
in [43], suggested a contextual homogeneity-based patch decomposing. Their approach
eliminates the possibility of a single patch having many contextual regions in shape and
colour. However, it is incompatible with extra properties like reflection and material
ID. Another method that aims to diminish unused space in 2D maps introduced in [44]
uses hexahedron segmentation. While this method enhances the efficiency of utilising 2D
frames, it introduces seam-related issues among many hexahedrons in the reconstructed
point cloud.

2.3. Enhancing Main View Quality in V-PCC

To increase the quality of the reconstructed point cloud, Zhu et al. [41] suggested
allocating extra points to the patches associated with a predefined main view, by utilising
the spots often dropped during patch production in order to optimise the visual experience
for the user’s primary view. However, sacrificing other views can only improve the main
view’s quality. A similar attempt has also been made in [45] to improve the main view for
the user by saving more points for the main view patches. They could keep points from
being seen from other views, improving the main view while boosting the compression
bitrate. A method of dividing a whole point cloud into several portions has been presented
in [19] to improve the effectiveness of 2D video coding and increase the quality of the
main view. Partitioning is performed while considering the main view, shape, and size.
Although it improves only the main view, some artefacts are still in the rebuilt point cloud,
even in the main view, due to self-occluded points in concentrated areas.

2.4. Post-Processing to Eliminate Artefacts in V-PCC

The above-mentioned problems led to various artefacts in a V-PCC reconstructed
point cloud, especially when high quantisation parameters (QPs) are used [46–48]. Cao and
Cosman classified different geometric compression artefacts [49] and provided a detection
and removal technique for each artefact. Jia et al.’s deep learning-based artefact removal is
another proposal made in [50] in 2021. Several learning-based algorithms are also reviewed
in the paper [51], most of which try to rectify the artefacts after appearance. However, this
paper aims to decrease the likelihood of the artefacts appearing instead of rectifying them
later, which can be more reasonable. The improved combination of the cross-section and
slicing can decrease the artefacts and create the opportunity for parallel processing of the
segments, resulting in more time effective.

2.5. Enhancing V-PCC Projection Layer Efficiency

V-PCC usually uses two layers of 2D projection for the whole point cloud to capture
data. Fixed projection planes are considered ineffective for dynamic point cloud coding,
according to the authors of [52]. Hence, a flexible technique is suggested with an adjustable
projection plane number and orientation. Although single-layer mode in V-PCC has the
benefit of fewer 2D maps requiring compression, it contains missing points. On the other
hand, because the two-layer method needs extra bits, it could have a worse coding effi-
ciency. As a result, various academics worked to improve the quality of single-layer mode
encoding [53,54]. Sheikhipour et al. [54] suggested a technique for enhancing video coding
efficiency and reconstruction quality by employing single-layer and patch-creation meth-
ods. This approach identified the distant layer’s most crucial areas and their involvement
in the near layer’s patch creation. In other words, the technique of [54] tries to find the most
critical patches of the far layer to include those in the near layer. As a result, this approach
requires a reduced frame rate and memory buffers than the dual-layer procedure, making
it appear more straightforward. In contrast, adding more data patches to the first layer
enhances coding speed compared to merely considering one layer. However, a rebuilt point
cloud’s geometric quality falls short of the V-PCC method. The approach in [43] recognises
that many points may be overlooked due to the space between the inner and outer surfaces
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of the point cloud exceeding the limitation since the distance of the closest and farthest 3D
points cannot surpass the predefined range boundary. The authors suggest creating a new
patch to address the remaining points. They achieved bitrate savings of 0.5% on average.
However, some points still need to be included to avoid appearing artefacts.

This paper aims to identify and mitigate factors causing artefacts in 3D reconstructed
point clouds. Insufficient data are a crucial factor leading to artefacts, and this work
addresses this by enhancing 2D video coding efficiency and collecting more data. Data are
collected using only two layers of 2D projection; however, to enhance their performance,
this paper concentrates these layers in areas with more self-occluded points. The proposed
method, acting as a preprocessing step for V-PCC, offers the flexibility to incorporate
additional improvement methods for further advancements. The proposed method has
been benchmarked against similar approaches, including cross-section [19], slicing [20],
motion estimation [38], and hexahedron segmentation [44], all aiming to enhance the
efficiency of V-PCC. The proposed method consistently outperforms compared to the cross-
section method [19] and achieves an average BD bitrate reduction of 6.3% and 6%, coupled
with an average BD-PSNR improvement of 0.23 and 0.25 for geometry performance (D1 and
D2). In texture performance, the proposed method achieves an average BD bitrate reduction
of 7.4% and an average BD-PSNR improvement of 0.29 compared to the cross-section [19],
a state-of-the-art approach in enhancing V-PCC.

3. Proposed Methodology

As the proposed method boosts V-PCC performance, this section begins by investi-
gating the limitations of V-PCC. Subsequently, it outlines the strategies employed by the
proposed method to address these limitations. In this section, the methodology of the
proposed research is described.

3.1. Enhancing V-PCC Efficiency with the Proposed Method

V-PCC introduces three projection maps to include the point cloud dimensions: ge-
ometry, texture, and occupancy. A geometry map is created to embed depth values, and a
texture map inserts the related attribute information, e.g., colour and light. An occupancy
map is a binary image showing which location of the 2D maps is occupied and which is
not. Then, all maps are compressed using existing video coding.

3.1.1. Exploring Temporal Correlation in Generated Maps

The 2D maps in V-PCC have less temporal correlation than natural videos due to
applying patch generation and packing, affecting the RD performance of video coding.
In fact, with V-PCC, some blocks with the same content may be packed in different locations
in sequential frames. This issue is illustrated in Figure 2. This figure demonstrates the
poor temporal correlation of V-PCC using the first three frames of the Longdress video.
Since frames obtained by V-PCC processing are not pure video, some strange behaviours
may be seen. Like here, between three consecutive frames of Longdress, a big patch was
indexed as another number in the second frame. Therefore, when the packetisation was
performed, this patch jumped to a new position from its previous position. Similarly,
several patches with the same content in the second and third frames have been packed in
different locations. In Figure 2, red arrows point to these two jumps of the same contents.
This kind of long jumping often happens in consecutive frames. It can cause challenges for
the video decoder because video encoders usually look in the data’s neighbourhood to find
the motion vectors. Due to this content inconsistency in the temporal direction, the video
coding technique could not provide the best RD performance.
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Figure 2. Poor temporal correlation among three consecutive texture frames of Longdress: (a) first
frame, (b) second frame, and (c) third frame, where red lines indicate the blocks with the same content,
but placed in different locations through the patch-generation strategy of the V-PCC standard.

3.1.2. Exploring the Causes of Data Loss

Points may be lost due to generating patches and projecting patches onto the 2D plane
using V-PCC. Consequently, losing points or data loss may degrade the quality of a rebuilt
point cloud and develop artefacts. Self-occlusions are the main reason for losing data when
converting 3D data to 2D. Self-occlusions happen when more than one point has the same
coordinate of dimension, so these points can be hidden by other points while projecting a
3D object onto 2D. Subsequently, the hidden points cannot be properly taken; therefore,
these points will be missed after converting from 3D to 2D. The other reason for losing data
is patch generation, causing data loss in three ways:

• Ignoring some isolated points.
• Losing points around each patch after compression.
• Projecting adjacent points onto different planes since these points are separated by

patch generation.

Figure 3 shows a point cloud named Redandblack compressed by V-PCC. Figure 3
(top) includes the original point cloud at the left-hand side, a 2D texture map in the middle,
and a reconstrued point cloud on the right-hand side. In Figure 3, the bottom of the
figure includes several portions of the reconstrued point cloud, zoomed in to display some
artefacts clearly. These artefacts appeared on the reconstructed point cloud compressed
by V-PCC. The images consist of artefacts marked by different-colour circles according to
their types and reasons for appearance. Yellow circles show cracks occurring at the edge
of patches. These sorts of artefacts are caused by dividing a point cloud into patches for
2D projection, disconnecting points that were once neighbours, and placing them at the
margins of different patches. These nearby points might be projected onto different planes,
and these 2D patches will undergo lossy compression. Thus, the patches’ margins may not
align precisely with the reconstructed point cloud, causing the appearance of cracks. This
can be proven by considering the related patches in the 2D texture map provided in Figure 3
(top-middle). Cracks in green circles are those points that are either self-occluded or ignored
because they are isolated points. There is poor quality in blue dotted circles because only
two layers of 2D projection are not enough since these regions are concentrated.
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Figure 3. Different artefacts appear because of data loss while encoding by V-PCC, where a Redand-
black video frame is used.

3.2. A Detailed Examination of the Proposed Method

The proposed approach involves a two-step preprocessing method for V-PCC, effec-
tively tackling the specific challenges associated with V-PCC. These steps aim to improve
the efficiency of 2D video coding and reduce the number of self-occluded points using
cross-sectioning and slicing in order. Table 1 includes a summary of the equations’ symbols
that have been used in the proposed method.

Table 1. Summary of the equations’ symbols.

Symbol Description

τmin and τmax Minimum and maximum size of segments

Ly Length of the longest axis

κmin and κmax Minimum and maximum number of segments

dy Distance of two points when the value of y is constant

Ω The total area of 2D projection

α The area of 2D projection of a slice

Si The selected slide in the ith side

φ The number of self-occluded points

Ψ The proportion of points captured successfully

Φ Total number of points

According to our final contribution, we implemented a technique to keep slice sizes
within the predefined minimum and maximum thresholds, denoted as τmin and τmax, respec-
tively. The units for both τmax and τmin are the cubes of voxels used to represent the geometry
position. For example, if the geometry position is represented using a 9-bit address space,
the maximum and minimum sizes are calculated accordingly. Therefore, if 9 bits are allocated
to represent the geometry position, the maximum size of each cross-section on any side cannot
exceed 512 units (since 29 = 512). This contrasts with the V-PCC method, which requires
10 bits for a point cloud size of 1024 × 1024 × 1024. It should be noted that, in some cases,
the size of a slice and a cross-section can be the same; however, typically, the size of a slice is
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less than or equal to the size of a cross-section. Therefore, the total number of segments using
the cross-section and slice must be true in the following equation.

κmin = Ly/τmax , κmax = Ly/τmin (1)

where Ly is the length of the longest axis (assuming the y-axis is the longest axis), κmin is
the least number of segments, and κmax is the most number of segments.

3.2.1. The Initial Phase of the Proposed Method for Enhancing Temporal Correlation

The first issue is the inefficiency of video processing because of the irregular shapes
of V-PCC patches, losing proximity, and having wasted space among them. The first
step of the proposed method is to address this problem. The solution to this problem is
cross-sectioning the whole point cloud so that different shapes in the point cloud can be
separated into point cloud components that help maintain the proximity of the data points.
When cross-sectioning, most parts are cut to achieve more regular shapes so they can be
packed more closely, minimising the space between patches. As previously mentioned,
a point cloud consists of a collection of coordinates (x, y, z) in three-dimensional space,
representing the geometric positions of points. Point clouds are primarily defined by their
surface rather than their volume, making it possible to identify similar shapes within them.
Consequently, point clouds often contain multiple semicircular or semioval structures,
forming various elliptical cylinders. To initiate the first step in this process, the point cloud
needs to be cross-sectioned, with each cross-section containing points that belong to a
similarly sized cylindrical shape. For points to be classified within the same cylindrical
shape, the distance of each point from the centre of its corresponding segment should be
approximately equal. The distance between the points on the rings or oval (xi, zi, y) and
their centres (xc, zc, y) must be calculated to find the number of cylindrical segments. This
distance (dy) can be calculated using the following equations (considering the y-axis is the
longest axis and the value of y is constant in each ring):

(xc, zc, y) = ((xmax − xmin)/2, (zmax − zmin)/2, y) (2)

(xi − xc)
2 + (zi − zc)

2 = d2
y. (3)

Once the distances of the points situated on the surface of the point cloud from
the centres are found, similar-sized cylindrical shapes can be achieved considering the
definitions explained earlier as follows:

∆dy = |dyi − dyi+1 | (4)

∆dy is the absolute difference between dyi and dyi+1 as defined in Equation (3). Here, yi+1
are randomly chosen with the constraint that the distance between dyi and dyi+1 is within
the range of τmin and τmax, where dy1 is set explicitly to dYmin representing the minimum
y-value in the point cloud. Once all ∆dy are calculated, the number of “k” (κmin ≤ k ≤ κmax)
of the greatest value of ∆dy can be selected. Then, the point cloud is divided into k cross-
sections from those maximums ∆dy. Next, any cross-section should be considered a new
point cloud. Figure 4 shows that the Longdress point cloud has been cross-sectioned so that
none of the cross-sections are bigger or smaller than the thresholds. The cross-sectioning
Longdress produces more regular shapes with similar sizes that can be packed more closely,
minimising the space between patches.
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Figure 4. Example of four segments by the proposed cross-section process where the Longdress video
sequence has been used.

3.2.2. The Second Phase of the Proposed Method for Reducing Data Loss

The second step addresses the second V-PCC issue mentioned before, data loss, by slic-
ing each cross-section in a way that the number of self-occluded points decreases. On the
one hand, slicing each cross-sectioned segment produced from the first step on its own
can assist in including those points V-PCC might have ignored because of the restriction
on the number of generated patches. On the other hand, in the second step, there is more
attention on the areas that may lose data after projection. These regions would require
increased maps for converting to 2D because they are highly at risk of self-occlusion. Self-
occluded points mostly exist in the more concentrated areas or where there are changes in
the normal direction of the points. These regions may need more than two layers of 2D
maps for projection.

Figure 5 shows a cross-section of the Loot point cloud and its points’ normals. Normal
estimation is performed for the points available in this new point cloud (produced from
step one), shown in blue at the bottom. Figure 5 illustrates areas that risk losing data after
2D projection, such as two spots in circles on the Loot. The normals’ image is enlarged
twice on the right-hand side of Figure 5 and one time enlarged on the left-hand side.
The first circle, shown in yellow and identified by “A”, includes the points with normals
in different directions. Therefore, they need more planes with different angles for 2D
projection; consequently, those points need to be sliced to project them into different planes,
minimising data loss. Circle “B” on the point cloud in Figure 5, coloured red, is an example
of the concentrated area, meaning that it includes more points per volume than the rest;
therefore, extra layers of 2D projection might be needed in this position.

As mentioned before, V-PCC normally uses two layers of 2D projection, which is
insufficient in concentrated regions. Therefore, slicing should be performed in these areas
to capture more points. Since there are concentrated areas in any point cloud and some
that are sparse, more layers of 2D projection will be needed in concentrated areas of the
point cloud to capture all points. However, using slicing in the second step, the proposed
method can handle covering more points without adding any extra layer. Slicing will be
performed where the layers are needed, aiming to reduce the number of self-occluded
points and increase the performance of the layers. Similar to step one, the sizes of all slices
are between τmin and τmax. The following procedures should be performed for any new
point cloud produced from step one:

• Each side (direction) of the new point cloud (except the side already cross-sectioned in
the first step) should be sliced from where the created 2D projection is the most.

ΩS(i,j) =
2

∑
k=1

αk(i,j) ,

{
1 ≤ i ≤ 5
τmin ≤ j ≤ n/2

(5)

αk(i,j) is the area of the 2D projection of the connected component of the jth slice in the
ith side (direction). At most, the maximum number of sides the point cloud can be
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sliced from that direction can be five instead of six because one side has already been
cross-sectioned using step one. It is assumed that the length of the point cloud in the
ith side is n. From each side of the new point cloud, select a single, appropriate slice
labelled as Si using conditions (5) and (6), aiming to generate the largest 2D projection
data area in that direction.

Max(ΩS(i,j)) ⇒ Si (6)

• All selected slices will be compared in terms of the proportion of self-occluded points
that can be calculated using the following formula:

ΨPi = ΩSi/ΦPi (7)

where ΨPi is the proportion of points captured successfully after 2D projection for the
ith side. Si is the selected slide in the ith side and ΩSi is the area of the 2D projection
of Si. ΦPi is the total number of points positioned in the selected slice of the ith side
of the new point cloud. Thus, the most proportion value produced from (7) should
be selected to find the best slice, and then, the rest can be considered a new point
cloud, then slicing can be repeated to find the other best slice.

Figure 5. Normal estimation of Loot point cloud cross-sectioned and the areas (A, B) that risk data
loss, where there is a change in the directions of the normals or a high density of the points.

The repetitions can continue as long as the size of the slice is not less than τmin. After slic-
ing, the whole number of self-occluded points can be obtained by the following formula:

φP = ΦP −
m

∑
k=1

αk (8)

φP is the number of self-occluded points in the new point cloud, and ΦP is the total number
of points in the new point cloud. αk is the number of points captured successfully by the kth
slice and can be achieved by calculating the areas of 2D projections of that slice, and “m” is
the total number of created slices. In fact, the second step in this paper focuses on lessening
the amount of φP for each new point cloud created in step one.

In the proposed method, overlapped slicing assists in keeping more original points
and having more regular shapes of patches to be fit better in 2D maps. In addition, it can
capture more points in concentrated regions. Overlapping is the repetition of solely the
last line of each segment, encompassing the cross-section and slicing in the subsequent
segment. Figures 6 and 7 show how a cross-section produced by step one can be further
sliced. Figure 6a displays a new point cloud, which is the biggest cross-section of Longdress



Sensors 2024, 24, 4285 12 of 23

shown in Figure 4. Figure 6b illustrates the points at risk of loss because of occlusion.
The green points are the points that can be captured successfully using 2D projection,
whereas the rest are self-occluded points. To be able to capture more points, a new point
cloud will be sliced so that two layers of 2D projection can have their highest performance.
Figure 7 displays the point clouds sliced from the concentrated regions where the risk of
self-occluding could be high. This second step results in a considerable decrease in data loss
and, consequently, decreases the incidence of artefacts in the rebuilt point cloud. The whole
point cloud is segmented according to the two steps above, considering that each final
segment size must not exceed a threshold in any direction. In this paper, the threshold
for a maximum size of slicing is 512; therefore, the number of bits required to address
each segment can be less than 10 (as usual), helping to decrease the required bitrate and
compensate for the bitrate, which is supposed to be spent for overlapped regions. The rest is
the same as V-PCC. Therefore, the proposed method is considered a preprocessing method
to improve V-PCC performance. Since none of the proposed method’s cross-sectioning and
the slicing steps estimate normals, the time consumed is tiny and incomparable to the time
spent for patch generation in V-PCC.

Figure 6. Cross-section created in step one of the proposed method and showing those points at risk
of self-occlusion. (a) A Longdress’s cross-section; (b) green points can be captured accurately while
the rest (mostly in blue) are at risk of self-occlusion.

Figure 7. Creating a slice where the points are more at risk of self-occlusion to be able to capture
more points (in the Longdress point cloud).
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4. Result and Discussion

The proposed performance is determined under common test conditions (CTCs) [22]
using Test Model Category 2 (TMC2) to compare V-PCC and the performance of the
proposed methods. We followed the common test condition of MPEG and JPEG standardis-
ation of point cloud compression (PCC), which provides several representative dynamic
point cloud sequences, including human beings’ point clouds, organised as full bodies and
upper bodies. The 3D point cloud sequences defined by the MPEG PCC CTCs contain
three categories [23], including type A, which contains the lowest complexity point cloud
sequences (such as Loot, RedandBlack, and Soldier); type B (Longdress); and type C, which
includes the highest complexity (Basketball Player). To ensure a comprehensive evaluation,
we utilised various samples from different categories. The selected samples were drawn
from sources such as 8i Voxelized Full Bodies (8i VFB) [55], Owlii [56], and the JPEG Pleno
database, including Microsoft Voxelized Upper Bodies [57]. These diverse samples collec-
tively contribute to a robust verification of the results, ensuring the reliability and relevance
of our proposed approach in diverse scenarios and effectively allowing us to compare the
performance of V-PCC and our proposed method. The proposed method has been bench-
marked against similar approaches, including the cross-section [19], slicing [20], motion
estimation [38], and hexahedron segmentation [44], all aiming to enhance the efficiency
of V-PCC.

The proposed method and Kim et al.’s method [38] aim to improve V-PCC’s effi-
ciency by reducing projection errors. Therefore, Kim et al.’s method [38] is included in
the comparison section in addition to V-PCC. It [38] (motion estimation) employs a 3D
motion estimation method to generate a reference point cloud frame, utilising it to enhance
coding by mitigating projection errors. In contrast, the proposed method reduces error by
segmenting point clouds into smaller parts.

Similarly, the cross-section [19] and slicing [20] employ manual division, focusing
on similar shapes and occlusion. Furthermore, hexahedron segmentation [44] utilises
hexahedrons to segment a point cloud and boost video coding efficiency within V-PCC.
The results have been achieved after applying both steps of the proposed method, including
several visual and objective comparisons.

This paper sets τmax to 512 units and τmin to 32 units, requiring 9 bits to address the
geometry, which is less than the 10 bits required by the standard V-PCC. While adjusting
τmax to a smaller size can improve quality, it also increases segmentation time. Similarly,
setting τmin too small can enhance quality by reducing self-occluded points, but it also
raises the bitrate and processing time. There is a trade-off between the threshold sizes and
the resulting bitrate and time complexity. This trade-off must be balanced according to the
specific requirements of the application.

Several visual comparisons are provided and displayed in Figures 8–11.
Figure 8 shows two consecutive texture frames from the ‘Longdress’ sequence pre-

sented in Figure 8a,b, aiming to illustrate the enhanced temporal correlation and reduced un-
used space achieved by the proposed method using the same frames shown in Figure 8d,e.
The visual comparison within the figure offers a qualitative assessment of the improved
time correlation resulting from the proposed method. This improvement can be seen in
the third column of the figure, so the difference between two consecutive frames using
V-PCC is 50% (Figure 8c). In contrast, this difference by the proposed method decreased
to 42% (see Figure 8f), proving improved temporal correlation by the proposed method.
The reason is that, with V-PCC, some blocks with the same content may be packed in differ-
ent locations in sequential frames, as illustrated in Figure 2. After packing all patches in a
2D map, some patches may jump to a new position from their previous position because
there is not enough room in the same place. However, this kind of long jumping may not
happen in consecutive frames when the cross-sectioning preprocessing has been performed.
With cross-sectioning, similar body parts will be arranged in the same or neighbouring
areas in the 2D map. Moreover, Figure 8 displays that the proposed method, unlike V-PCC,
generates patches with enhanced regularity in shape, featuring at least one straight-line
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side and relatively modest in size. This characteristic facilitates more efficient packing
of the patches. Therefore, the patches can fit together more closely, decreasing unused
space among patches. Reducing unused space in the frames is also visually supported by
Figure 8. The unused space is reduced from 64% with V-PCC to 47% with the proposed
method. Consequently, the proposed method achieves a smaller frame size of 1280 × 896,
in contrast to V-PCC’s frame size of 1280 × 1320.

Figure 8. Two consecutive texture frames of Longdress to demonstrate improved temporal correlation
and reduced wasted space by the proposed method compared with V-PCC. (a) V-PCC first frame, size:
1280 × 1320, unused space: 64%. (b) V-PCC second frame, size: 1280 × 1320. (c) Difference between these
two frames: 50%. (d) The proposed method first frame, size = 1280 × 896, unused space: 47%. (e) The
proposed method second frame size = 1280 × 896. (f) Difference between these two frames: 42%.

Figure 9 shows the reconstructed point cloud of Redandblack by V-PCC in Figure 9a
and the proposed method in Figure 9b. Figure 9 includes a comparison with the original
point cloud so that those points that are the same as the original points are marked in
green, and the rest are in pink. A yellow circle on the face of the Redandblack point cloud
marks the comparison area. More green points in Figure 9b than in Figure 9a mean that the
proposed method has kept more original data than V-PCC, e.g., in the face.

A comparison can be made using Figure 10, especially where artefacts appeared,
e.g., for those marked in Figure 3, proving the proposed method improved the quality
of the rebuilt point cloud. Figure 10 demonstrates those noticeable cracks on the face,
neck, and shoulder of Redandblack using V-PCC, as shown in Figure 3 (marked by yellow
circles), rectified using the proposed method. Using V-PCC, data are lost at the edges of
patches; furthermore, patches for the face are projected onto different planes, losing their
connection and proximity. In this case, applying overlapping slices decreases data loss,
especially at the edge of the patch, resulting in amending the cracks. Figure 11 shows
other artefacts explained in Figure 3 (marked by green and blue dotted circles), which
still need rectification even using the proposed method. However, the proposed method’s
quality of the reconstructed point cloud is better than that of V-PCC because it considers
those points that may be self-occluded by V-PCC. Table 2 compares the proportion of
data loss between V-PCC and the proposed methods across various point cloud sequences.
The results highlight the efficacy of the proposed methods in preserving a higher proportion
of original points compared to V-PCC.
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Figure 9. Comparison of data loss, (original data are in green, and the rest are artificial). (a) V-PCC
and (b) the proposed method, demonstrating that the proposed method includes more original data.

Figure 10. Improving the cracks around the face’s patch, marked by the yellow colour in Figure 3.
(a) Original point cloud; (b) reconstructed by V-PCC; (c) reconstructed by the proposed method.

Figure 11. Improving the artefacts marked by the green and blue dotted colours in Figure 3. (a) Origi-
nal point cloud. (b) Reconstructed by V-PCC. (c) Reconstructed by the proposed method.

Table 2. Comparison of the proportion of data loss using V-PCC and the proposed method.

Sequence V-PCC Proposed Method

Redandblack 9.4% 7.9%

Loot 12% 10.4%

Longdress 9.8% 8.1%

Soldier 11% 10.1%

Basketball Player 10.7% 9.9%

Ricardo 9.6% 9.5%

Average 10.4% 9.3%

The capacity of the proposed method to establish increased temporal correlation
between frames, coupled with its ability to preserve a larger volume of original data, leads to
superior performance. This means an enhancement in the quality of the reconstructed point
cloud, achieved with a reduced bitrate when compared to V-PCC, as clearly illustrated in
Figures 12–14. The proposed method excels in creating RD curves compared to the existing
methods by strategically employing the cross-section for improved temporal correlation
and preserving more original points through slicing. Figures 12 and 13 represent the
geometry RD curves, evaluating the proposed method against the V-PCC, cross-section [19],
slicing [20], motion estimation [38], and hexahedron segmentation [44] methods for various
standard video sequences, explicitly focusing on point-to-point (D1) and point-to-plane
(D2) distance metrics. These metrics assess the geometric quality of a reconstructed point
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cloud by measuring the peak signal-to-noise ratio (PSNR) to calculate the average distances
between each point in the original cloud and its nearest neighbour in the decompressed
cloud. Specifically, D1 relies on point-to-point distances, while D2 incorporates point-to-
plane distances. Additionally, Figure 14 illustrates texture (YUV) RD curves for the same
methods and video sequences. The corresponding BD bitrate and BD-PSNR values can
be found in Tables 3–5, aligning with six standard video sequences introduced earlier to
complement the graphical representation. The BD bitrate, or Bjontegaard Delta Rate, is
a valuable metric for comparing bitrates between video codecs or coding configurations,
offering insights into their RD performance difference. Negative values indicate a reduction,
while positive values signify an increase in the bitrate.

The RD curves shown in Figures 12–14 prove that the proposed method can perform
better than the other methods, except for Soldier at a lower bitrate, for which Kim et al.’s
method [38] performs better. There are two reasons for this exception: firstly, the Sol-
dier sequence includes many irregular shapes that can hardly be divided using cross-
sectioning, and secondly, the 3D motion between frames in the Soldier sequence is very
small. Kim et al.’s method [38] can find them better using its 3D motion search. The
results presented in the tables emphasise a substantial improvement in both the BD-PSNR
and BD bitrates with the proposed method. The suggested approach demonstrates the
ability to reconstruct a higher quality point cloud even when operating at a lower bitrate.
These comparative analyses reinforce the viability and superiority of our proposed method,
establishing it as a robust solution for efficient point cloud compression with improved
geometry and texture preservation. To elaborate on the determination of thresholds τmax
and τmin, these values were selected to be 512 and 32 considering the dimension size of
the point cloud, specifically the size of the smallest and largest sides of the point cloud.
Altering these values can impact performance; reducing the sizes increases processing time,
while increasing the size can lead to a performance decline.
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Figure 12. Geometry (D1) RD curves using the proposed method and the V-PCC, cross-section [19],
slicing [20], motion estimation [38], and hexahedron segmentation [44] methods for various standard
video sequences.
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Figure 13. Geometry (D2) RD curves using the proposed method and the V-PCC, cross-section [19],
slicing [20], motion estimation [38], and hexahedron segmentation [44] methods for various standard
video sequences.
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Figure 14. Texture (YUV) RD curves using the proposed method and the V-PCC, cross-section [19],
slicing [20], motion estimation [38], and hexahedron segmentation [44] methods for various standard
video sequences.
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Table 3. BD bitrate and BD-PSNR of geometry performance (point to point = D1) of the proposed method against the V-PCC, cross-section [19], slicing [20], motion
estimation [38], and hexahedron segmentation [44] methods for various point cloud sequences.

Sequence

BD Bitrate BD-PSNR (dB)

V-PCC [19]
Cross-Section

[20]
Slicing

[38]
Motion

Estimation

[44]
Hexahedron

Segmentation
V-PCC [19]

Cross-Section
[20]

Slicing

[38]
Motion

Estimation

[44]
Hexahedron

Segmentation

Redandblack −15.8% −7.8% −11.4% −24.0% −15.8% 0.53 0.26 0.39 0.85 0.54

Loot −8.8% −4.2% −7.4% −18.4% −8.0% 0.45 0.18 0.35 1.04 0.39

Longdress −9.7% −5.0% −5.1% −23.4% −7.3% 0.44 0.21 0.20 1.1 0.32

Soldier −9.4% −6.6% −2.8% −1.2% −6.7% 0.54 0.32 0.15 0.45 0.41

Basketball Player −15.8% −7.8% −11.4% −17.0% −12.9% 0.53 0.26 0.39 0.61 0.42

Ricardo −16.9% −6.5% −11.3% −27.5% −15.3% 0.44 0.17 0.30 0.76 0.40

Average −12.7% −6.3% −8.2% −18.6% −11.0% 0.49 0.23 0.30 0.80 0.41

Table 4. BD bitrate and BD-PSNR of geometry performance (point to plane = D2) of the proposed method against the V-PCC, cross-section [19], slicing [20], motion
estimation [38], and hexahedron segmentation [44] methods for various point cloud sequences.

Sequence

BD Bitrate BD-PSNR (dB)

V-PCC [19]
Cross-Section

[20]
Slicing

[38]
Motion

Estimation

[44]
Hexahedron

Segmentation
V-PCC [19]

Cross-Section
[20]

Slicing

[38]
Motion

Estimation

[44]
Hexahedron

Segmentation

Redandblack −15.4% −9.1% −12.1% −27.8% −13.8% 0.62 0.38 0.51 1.18 0.56

Loot −12.1% −3.2% −7.2% −21.2% −9.9% 0.67 0.18 0.41 1.03 0.55

Longdress −9.2% −5.0% −6.1% −24.9% −7.5% 0.41 0.20 0.23 1.18 0.34

Soldier −10.1% −6.9% −3.3% −0.3% −8.5% 0.48 0.29 0.13 0.18 0.42

Basketball Player −15.3% −9.1% −12.1% −20.1% −13.9% 0.62 0.38 0.51 0.92 0.56

Ricardo −11.2% −2.7% −7.0% −30.4% −9.3% 0.31 0.07 0.20 0.86 0.25

Average −12.2% −6.0% −7.9% −20.8% −10.5% 0.52 0.25 0.33 0.89 0.45
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Table 5. BD bitrate and BD-PSNR of texture performance of the proposed method against the V-PCC, cross-section [19], slicing [20], motion estimation [38],
and hexahedron segmentation [44] methods for various point cloud sequences.

Sequence

BD Bitrate BD-PSNR (dB)

V-PCC [19]
Cross-Section

[20]
Slicing

[38]
Motion

Estimation

[44]
Hexahedron

Segmentation
V-PCC [19]

Cross-Section
[20]

Slicing

[38]
Motion

Estimation

[44]
Hexahedron

Segmentation

Redandblack −13.3% −6.1% −9.6% −24.6% −11.7% 0.51 0.23 0.37 1.08 0.44

Loot −13.9% −6.0% −7.5% −24.2% −11.8% 0.57 0.29 0.30 1.12 0.48

Longdress −18.4% −10.6% −14.0% −29.0% −16.4% 0.75 0.43 0.57 1.22 0.67

Soldier −16.5% −9.0% −9.1% −2.4% −17.0% 0.67 0.36 0.37 0.15 0.69

Basketball Player −13.3% −6.1% −9.6% −20.6% −16.8% 0.51 0.23 0.36 0.89 0.66

Ricardo −14.2% −6.6% −10.3% −26.1% −16.6% 0.50 0.22 0.37 1.06 0.62

Average −14.9% −7.4% −10.0% −21.1% −15.0% 0.58 0.29 0.39 0.92 0.59
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The proposed method exhibits flexibility in the number and size of cross-sections
and slices, intelligently adapting to the proximity of shapes and self-occluded points.
This dynamic adjustment enhances temporal correlation and effectively mitigates data
loss. Moreover, since the proposed method acts as a preprocessing step for V-PCC, it
may also offer the flexibility to incorporate additional pre-processing methods for further
advancements. The time spent on the proposed method is not much, thanks to not using
normal estimation and refining processes to generate cross-sections or slices. The proposed
method requires an additional time of approximately 8.86% compared to only the patch
generation phase in the V-PCC process. However, the proposed approach facilitates parallel
processing by generating independent segments, substantially reducing patch-generation
time. Moreover, if we consider the extra time requirement against the whole V-PCC
encoding process, it is only around 4% as patch generation takes less than 50% of the
encoding time. Table 6 provides the requirement of the time by the proposed preprocessing
method to create segments by the cross-section and slicing steps using different video
sequences. The comparison criterion is based on the time required for V-PCC coding.

Table 6. Extra time required for combined cross-section and slicing using the proposed methods
versus the V-PCC patch generation process.

Sequence Step 1
Cross-Section

Step2
Slicing

Total
Extra Time

Redandblack 2.90% 6.50% 9.40%

Loot 2.50% 5.20% 7.70%

Longdress 3.20% 6.60% 9.80%

Soldier 3.45% 6.55% 10.00%

Basketball Player 2.65% 5.50% 8.15%

Ricardo 2.15% 5.95% 8.10%

Average 2.81% 6.05% 8.86%

5. Conclusions

The focus of this paper is to propose a method to address the limitations of the existing
standard of dynamic point cloud compression (V-PCC), including increasing the efficiency
of 2D video coding and decreasing data loss. The most concerning reasons for V-PCC
problems are patch production and the subsequent conversion of 3D patches to 2D, creating
artefacts on the rebuilt point cloud. Therefore, the proposed method focuses on these areas
to deliver greater temporal correlation and reduce data loss while captured data are being
processed. This goal has been achieved using two segmentation steps by the proposed
method providing similar shapes with decreased self-occluded points to overcome the V-
PCC issues. Each segment produced while applying two segmentation steps is considered
with one line overlapped to rectify data loss at the edge of the segment.

The proposed method consistently outperforms the standard V-PCC, as well as recent
advancements represented by the cross-section [19], slicing [20], motion estimation [38],
and hexahedron segmentation [44] methods across diverse point cloud sequences. Notable
enhancements include an average BD bitrate reduction of 6.3% and 6%, coupled with an
average BD-PSNR improvement of 0.23 and 0.25 for geometry performance (D1 and D2),
surpassing the state-of-the-art cross-section method [19], which currently stands as the
most effective in improving V-PCC’s performance. Regarding texture performance, the pro-
posed method achieves an average BD bitrate reduction of 7.4% and an average BD-PSNR
improvement of 0.29 when compared to the cross-section [19], a state-of-the-art approach
for enhancing V-PCC. These findings underscore the effectiveness of our approach in pre-
serving both geometry and texture, positioning it as a robust solution for efficient point
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cloud compression. The demonstrated ability to provide a more accurate representation of
the original point clouds further solidifies the efficacy of our proposed method.

In the initial phase of the proposed method, the point cloud is segmented based on
similar shapes without accounting for the sparsity and density of that region. Future
improvements could focus on incorporating considerations for the density and sparsity of
the segmented region during the cross-section process.
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