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Abstract: Idlers are essential to conveyor systems, as well as supporting and guiding belts to ensure
production efficiency. Proper idler maintenance prevents failures, reduces downtime, cuts costs, and
improves reliability. Most studies on idler fault detection rely on supervised methods, which depend
on large labelled datasets for training. However, acquiring such labelled data is often challenging in
industrial environments due to the rarity of faults and the labour-intensive nature of the labelling
process. To address this, we propose the chroma-augmented semi-supervised anomaly detection
(CASSAD) method, designed to perform effectively with limited labelled data. At the core of CASSAD
is the one-class SVM (OC-SVM), a model specifically developed for anomaly detection in cases where
labelled anomalies are scarce. We also compare CASSAD’s performance with other common models
like the local outlier factor (LOF) and isolation forest (iForest), evaluating each with the area under
the curve (AUC) to assess their ability to distinguish between normal and anomalous data. CASSAD
introduces chroma features, such as chroma energy normalised statistics (CENS), the constant-Q
transform (CQT), and the chroma short-time Fourier transform (STFT), enhanced through filtering
to capture rich harmonic information from idler sounds. To reduce feature complexity, we utilize
the mean and standard deviation (std) across chroma features. The dataset is further augmented
using additive white Gaussian noise (AWGN). Testing on an industrial dataset of idler sounds,
CASSAD achieved an AUC of 96% and an accuracy of 91%, surpassing a baseline autoencoder and
other traditional models. These results demonstrate the model’s robustness in detecting anomalies
with minimal dependence on labelled data, offering a practical solution for industries with limited
labelled datasets.

Keywords: chroma features; semi-supervised anomaly detection; isolation forest; one-class SVM;
idler fault detection; industrial machinery; conveyor systems

1. Introduction

Belt conveyors are critical for transporting materials across varied and often challeng-
ing terrains. Their operation frequently involves hazardous environments where manual
inspections are difficult due to restricted access and risks such as exposure to hot surfaces,
moving parts, noise, heat, and dust [1]. Maintenance of these systems is further compli-
cated by the increasing number of components, such as idlers, required to support longer
conveyor belts [1,2]. Without effective maintenance strategies, the risk of failures escalates,
leading to issues such as belt misalignment, increased friction, and bearing failures. These
faults reduce the overall efficiency of conveyor systems, resulting in costly unplanned
downtime and potential damage to other components.

Researchers have explored various fault detection methods to address these challenges
using microphones, accelerometers, distributed optical fibre sensors (DOFS), and thermal
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imaging [3]. For example, thermal imaging combined with YOLOv4 has achieved high
accuracy (93.8%) in detecting roller faults but struggles with early-stage detection [4].
Vibration-based techniques can detect a wide range of defects but require contact sensors
that are difficult to install and maintain on large-scale systems [1]. Acoustic monitoring has
emerged as a promising alternative, offering a non-contact, non-destructive solution for
detecting subtle anomalies in sound patterns. However, industrial noise often hinders the
effectiveness of acoustic methods, necessitating robust noise filtering and preprocessing to
isolate critical fault signals.

Many studies on intelligent fault detection, such as those by [2,5–8], have focused
on idler fault detection using supervised learning approaches. Signal processing tech-
niques have included methods such as signal mean and standard deviation normalisa-
tion [9,10], wavelet packet decomposition (WPD) [11,12], Mel frequency cepstral coefficients
(MFCC) [7], and fast Fourier transform (FFT) [13], among others [14]. Additionally, dimen-
sionality reduction techniques like PCA, stacked autoencoders, and Pearson correlation
have been applied to improve analysis efficiency [15,16]. These methods have demon-
strated significant potential, particularly in environments with abundant labelled data.
However, they often need help to generalise unseen faults and are limited by the challenges
of acquiring extensive labelled datasets in industrial settings.

Recent advancements in anomalous sound detection (ASD) have shifted from tra-
ditional statistical approaches to machine learning models, such as autoencoders (AEs),
which can model the distribution of normal sound signals and identify faults based on
reconstruction errors [17,18]. A key advantage of AEs is their reliance solely on normal
operational data, eliminating the need for labelled fault data and avoiding the risks as-
sociated with inducing faults artificially. On the other hand, transformer-based models
have demonstrated exceptional fault detection accuracy, with variational mode decomposi-
tion (VMD) and Swin transformers, achieving over 99% diagnostic accuracy [19]. Despite
their success, these approaches are computationally intensive and heavily reliant on large
labelled datasets, making them less practical for real-time industrial applications.

Given the challenges of data scarcity, noise, and the need for computational efficiency,
this paper introduces the chroma-augmented semi-supervised anomaly detection (CAS-
SAD) model, a novel approach tailored to real-world conveyor systems. The CASSAD
model employs one-class SVM combined with chromagram features, which have rarely
been investigated in industrial acoustic anomaly detection. Existing research often uses
individual chroma features, such as Chroma CQT, Chroma CENS, or Chroma STFT. In con-
trast, this work explores the combination of these features, leveraging their complementary
strengths to enhance anomaly detection performance. Chromagram features, known for
their robustness in capturing tonal variations, are particularly suitable for detecting subtle
anomalies in sound patterns. However, their application in fault detection has been limited,
as researchers often prioritize other features or fail to exploit the combined potential of
multiple chroma variants by integrating and optimizing these features alongside noise fil-
tering and data augmentation techniques, such as additive white Gaussian noise (AWGN),
meaning that the CASSAD model offers a unique advantage in acoustic anomaly detec-
tion. Unlike supervised models that depend heavily on labelled fault datasets, CASSAD
leverages only normal operational data, making it more practical for environments where
faults are rare but critical to detect. The CASSAD model is compared against other anomaly
detection techniques, such as local outlier factor (LOF) and isolation forest, to validate the
proposed approach under varying operational conditions. Our results demonstrate that
the CASSAD model improves fault detection robustness and addresses key challenges
like noise interference and data scarcity. This scalability and adaptability make it a highly
effective solution for dynamic industrial environments.

The paper is structured as follows: Section 2 provides an overview of existing anomaly
detection models, including the autoencoder (AE), one-class SVM (OCSVM), isolation
forest (iForest), and local outlier factor (LOF), highlighting their respective strengths, limi-
tations, and applicability to fault detection in industrial settings. Section 3 introduces the
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chroma-augmented semi-supervised anomaly detection (CASSAD) model, explaining its
methodology, feature extraction, and preprocessing steps. Section 4 outlines the experi-
mental setup, including data collection, hyperparameter tuning, and evaluation metrics.
Finally, Section 5 presents the results and discussion, evaluating the performance of the
proposed model, analyzing the impact of noise filtering, comparing it with previous studies,
and offering conclusions and recommendations for future research.

2. Background Information

This section provides an overview of several anomaly detection models. We include
a detailed explanation of the autoencoder (AE) and introduce the key semi-supervised
anomaly detection algorithms: one-class SVM (OCSVM), isolation forest (iForest), and local
outlier factor (LOF). We emphasize OCSVM as our core model because it can define normal
operation boundaries, making it ideal for identifying abnormal acoustic patterns. Isolation
forest and LOF are included for comparison, offering alternative approaches based on data
partitioning and density estimation, respectively. This allows us to evaluate OCSVM’s
effectiveness while exploring the strengths and limitations of other models.

2.1. Autoencoder Architecture

An autoencoder is a neural network that compresses input data into a lower-dimensional
representation (encoding) and then reconstructs it back to its original form (decoding) [20,21].
The main goal is to minimise the reconstruction error, making the autoencoder especially
useful for anomaly detection. In this context, the autoencoder is trained only on normal
data, and anomalies are identified based on higher reconstruction errors [22,23]. Setting an
appropriate reconstruction error threshold is crucial for anomaly detection. This threshold
is derived from the validation set, and any data points with reconstruction errors above this
threshold are classified as anomalies.

The general architecture of the autoencoder, shown in Figure 1, consists of the follow-
ing components:

• Encoder: Compresses input data into a lower-dimensional representation.
• Bottleneck: Holds the compressed input representation, capturing essential features.
• Decoder: Reconstructs the input from its encoded form, attempting to match the

original closely.
• Reconstruction Loss: The difference between the original input and its reconstruction

is evaluated using:

– Mean squared error (MSE), which calculates the average squared difference
between actual and reconstructed values [24–26].

– Mean absolute error (MAE), which measures the average magnitude of errors,
offering less sensitivity to outliers [24].

– Huber loss, which balances MSE and MAE by being quadratic for small errors
and linear for larger ones, making it robust to outliers [27].

The model is trained using backpropagation, continuously minimising reconstruction
loss. This enables the autoencoder to serve as an effective baseline for anomaly detection
by comparing reconstruction errors against the threshold.

2.2. Semi-Supervised Anomaly Detection Models

Semi-supervised anomaly detection techniques, such as one-class SVM (OCSVM),
isolation forest (iForest), and local outlier factor (LOF), offer a practical solution when
labelled data are scarce. These models work well when only a small fraction of the dataset
is labelled, allowing the model to learn from labelled and unlabelled data.
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Figure 1. Autoencoder structure.

Since they do not require a fully labelled dataset of anomalies, they are particularly
useful in situations where abnormal instances are rare. By primarily learning the patterns
of normal behaviour during training, these models become adept at spotting deviations or
anomalies in the data, making them highly effective in real-world scenarios where labelling
every anomaly is often impractical.

2.2.1. One-Class SVM (OCSVM)

The one-class SVM algorithm is specifically designed for anomaly detection, making it
well-suited for high-dimensional data and nonlinear decision boundaries [28]. It constructs
a “maximum-margin hyperplane” based on normal data to distinguish between normal
and abnormal instances:

min
ω,ξ,ρ

1
2
∥ω∥2 +

1
νn

n

∑
i=1

ξi − ρ. (1)

This is subject to the following:

(ω · ϕ(xi)) ≥ ρ − ξi,

where ω is the weight vector of the hyperplane, ϕ(xi) represents the feature mapping of
data points, ξi are slack variables, ρ is the offset from the origin, and ν is a parameter that
controls sensitivity to outliers.

This model has been widely used for detecting anomalies in audio data related to
machine failures [29,30].

2.2.2. Isolation Forest (iForest)

Isolation forest is an efficient algorithm that detects anomalies by isolating them in a
tree structure [31]. The length of the path from the root to the isolated instance indicates
an anomaly:

s(x, n) = 2−
E(h(x))

c(n) , (2)

where h(x) is the path length from the root node to the node isolating x, E(h(x)) is the
expected path length for all points in the forest, and c(n) is a normalisation factor based
on the size of the dataset. Isolation forest has proven effective for anomaly detection in
various contexts, including audio anomaly detection for machine failures [30].
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2.2.3. Local Outlier Factor (LOF)

The local outlier factor (LOF) algorithm identifies anomalies using a density-based
approach, comparing the local density of a point to that of its neighbours [32]. The LOF
value is calculated as follows:

LOF(x) =
1

|N(x)| ∑
y∈N(x)

reachability_distance(x, y)
reachability_distance(y, x)

, (3)

where

• N(x) represents the set of neighbours of x, determined using the k-nearest neighbors
(k-NN) algorithm.

• reachability_distance(x, y) is defined as follows:

reachability_distance(x, y) = max{k-distance(y), distance(x, y)}.

Here, k-distance(y) is the distance from y to its k-th nearest neighbour, and distance(x, y)
is the raw distance between points x and y.

The reachability distance normalises the raw distance by considering the density
around y, ensuring robustness against noise and local variations. This measure compares
the local density at x with the density of its neighbours. A significantly lower density
around x results in a high LOF value, indicating that x is an outlier. In this study, LOF
is applied to chroma coefficients extracted from audio clips. These chroma coefficients
are aggregated using either the mean or standard deviation. As demonstrated in [33],
this approach effectively identifies anomalies in sound signals by leveraging local density
comparisons. The key semi-supervised anomaly detection models explored in this study,
including LOF, are compared in Table 1.

Table 1. A comparison of the anomaly detection models explored.

Model Key Concept Advantages Drawbacks

OCSVM Creates a boundary around
normal data points in
high-dimensional space to
differentiate them from
anomalies [34].

Works well with
high-dimensional data
and can model complex
boundaries.

Requires careful tuning of
parameters like the kernel
type and regularisation. It
can also be sensitive
to noise.

LOF Assesses the local density of
a data point compared to its
neighbours to detect
anomalies [32].

Effectively captures the
local data structure and
is great for detecting
anomalies in
clustered data.

Can be computationally
demanding for large
datasets and requires
careful neighbourhood
size selection.

iForest Detects anomalies by
recursively partitioning the
data with random splits,
leading to shorter paths for
anomalies [35].

Efficient for large
datasets and does not
rely on any assumptions
about data distribution.

Its performance can vary
based on the random
splits and is sensitive to
settings like the number
of trees.

3. The Proposed Anomaly Detection Model

The chroma-augmented semi-supervised anomaly detection (CASSAD) model is
designed to detect anomalies in industrial machinery, particularly focusing on conveyor
belt idlers, by leveraging advanced chroma-based preprocessing and one-class support
vector machines (OCSVM). The goal is to identify subtle acoustic changes that indicate
abnormal behaviour across different operational stages of the machinery. The visual
breakdown of the model is depicted in Figure 2, structured into four stages labelled A–D.
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Figure 2. Overview of the proposed chroma-augmented semi-supervised anomaly detection (CAS-
SAD) model.

The chroma-augmented semi-supervised anomaly detection (CASSAD) model is
designed to detect anomalies in conveyor belt idlers using chroma-based features and one-
class support vector machines (OCSVM). The methodology begins with an audio dataset
from idler machines, split into a training dataset of normal operation data, augmented with
additive white Gaussian noise (AWGN) for robustness, and a test dataset containing both
normal and abnormal conditions (A).

In preprocessing, key chroma features, e.g., chroma CQT, chroma STFT, and chroma
CENS, are extracted from the audio signals to capture harmonic content over multiple
time frames (376), each represented by 12 chroma coefficients. These chroma features
are smoothed with a median filter to reduce noise and stabilise temporal variations, then
concatenated into a single feature set. Dimensionality is reduced by computing statistical
summaries, such as the mean and standard deviation, across time frames to transform the
chroma features into compact one-dimensional representations (B). The processed chroma
features are then fed into an OCSVM model and trained on normal data to learn the typical
operational sound patterns of the machinery. The model identifies deviations from these
patterns during testing, detecting potential anomalies that indicate machine faults (C).

Finally, the model’s performance is evaluated using AUC, accuracy, precision, recall,
and F1 score metrics. Raw and smoothed chroma features are compared to assess the
impact of preprocessing on detection accuracy (D). This comprehensive model enhances
anomaly detection capabilities, even in noisy environments.

3.1. Feature Extraction Chromagram

The chromagram is a method for extracting features from music audio signals, em-
phasising the analysis of audio pitch [36]. The basic concept of chroma features combines
all spectral data related to a specific pitch class into one single value [37]. Chroma-based
properties are especially beneficial in recognising the strength of each of the 12 unique
musical chroma within an octave at every time frame. These properties can distinguish
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between audio signals’ pitch class profiles and have succeeded in classifying industrial
sounds, including those from fans, sliders, and valves [38]. Our model employs chroma
CENS, chroma STFT, and chroma CQT as features, utilising 12 chroma bands for analy-
sis.These features are extracted with a consistent hop length of 512 samples, which results
in 376 time frames for the given audio segment.

3.1.1. Chroma STFT

Chroma STFT employs the short-time Fourier transform (STFT) to extract chroma
features, as depicted in Figure 3. The chromagram STFT provides insights into pitch
classification and signal structure, highlighting areas of high intensity in red and low
intensity in blue, as indicated by the colour bar next to the graph. Figure 3a illustrates
four processing stages: original, harmonic, filtered, and smoothed, each displaying distinct
patterns. In the original stage, the raw chroma characteristics are captured; the harmonic
stage isolates harmonic content; the filtered stage reduces noise; the smoothed stage further
refines the prominent chroma features. The filtered and smoothed stages will be explained
in Section G. These patterns tend to be uniform and consistent for normal idler sounds.
In contrast, the patterns show more variability and dispersion for abnormal idler sounds.

(a) STFT Analysis (b) CQT Analysis (c) CENS Analysis
Figure 3. Analysis of different chroma features across four stages: original, harmonic, filtered, and
smoothed, showing (a) STFT, (b) CQT, and (c) CENS.

3.1.2. Chroma CQT

The chroma CQT, shown in Figure 3b, uses the technique of constant-Q transform
(CQT). It modifies the STFT to have a logarithmic space between frequency bins. The central
frequency is changed with a window function, which enables an increase in bin width at
lower frequencies and a decrease at higher ones for easing computational load [39]. Unlike
the Fourier transform, this CQT keeps the buffer size the same across all frequencies and sets
fundamental frequencies geometrically. Normal idler sounds show concentrated and steady
patterns, while abnormal idler sounds display broader and more erratic distributions.

3.1.3. Chroma CENS

Chroma CENS, shown in Figure 3c, adds another layer of complexity by incorporating
the short-term statistical analysis of chroma band energy distributions. This variation,
known as chroma energy normalised statistics (CENS), is designed to be more resilient to
temporal and timbre variations [40]. CENS features are created by quantising and smooth-
ing chroma vectors, with optional downsampling. This approach is closely linked to the
short-term harmonic characteristics of fundamental audio signals, capturing elements such
as rhythm, intonation, musicality, note classes, and slight timing deviations. The lower spa-
tial resolution of CENS is particularly effective for analysing the 12 pitch classes commonly
recognised in Western music. In this context, normal idler sounds exhibit more uniform
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and well-defined chroma energy distributions, while abnormal idler sounds display less
consistent and more varied energy patterns.

3.2. Statistical Analysis of Chroma Features

To further enhance our analysis, we compute statistical features from the chromagram,
specifically focusing on chroma features’ mean and standard deviation across time frames.
These statistics provide insights into the average behaviour and variability of pitch intensity
within the audio signals.

Each of the chroma features, chroma CQT, chroma STFT, and chroma CENS, yields a
similar output in the form of a matrix with dimensions of 12 × 376, where the first dimension
(12) represents the chroma frequency bins corresponding to the 12 pitch classes (C to B),
and the second dimension (376) represents the time frames derived from segmenting the
audio signal based on the chosen hop length. This segmentation allows for the detailed
analysis of harmonic content across time.

We compute each chroma bin’s mean and standard deviation across the time axis
(376 frames) to reduce dimensionality while preserving key information. This operation
condenses the time-varying chroma features into a single vector of length 12 for each feature
extraction method (chroma CQT, chroma STFT, and chroma CENS). By concatenating these
vectors, the final feature vector consists of 36 values, encompassing the statistical summary
of all three chroma feature sets.

The mathematical formulations for the mean µ and standard deviation σ of the chroma
features are calculated as follows:

µ =
1
N

N

∑
i=1

xi, (4)

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2, (5)

where xi represents the intensity values of chroma features at each time frame, and N is
the total number of frames. These computations enable us to quantify chroma features’
central tendency and dispersion, enhancing our understanding of their distribution and
aiding in the robust classification of audio signals. Figure 4 visually demonstrates the mean
and standard deviation distribution for CQT, CENS, and STFT features in both normal and
abnormal signals.

Principal component analysis (PCA) is an essential statistical technique for reducing
data dimensions in data analysis and machine learning [41]. PCA transforms the original
set of variables into a new set of variables that are not correlated with each other. These new
variables, called principal components, capture the most data variability using the fewest
components. The process involves calculating the eigenvalues and eigenvectors of the
data’s covariance matrix, with the principal components corresponding to the eigenvectors
associated with the largest eigenvalues. This transformation is particularly beneficial for
visualising high-dimensional data, improving computational efficiency, and reducing noise.

3.3. Enhanced Chroma Feature Analysis Through Filtering and Smoothing

In our study, we use median filtering to enhance the extraction and analysis of chroma
features from idlers. This approach, based on methodologies outlined in the librosa docu-
mentation [42] and the work of Cho et al. [43], uses nearest-neighbour smoothing to reduce
noise and remove irregularities.

This processing is essential for isolating the distinct acoustic signatures of idler compo-
nents, enabling a precise evaluation of their operational condition. By identifying anomalies
early, it facilitates the detection of potential issues before they develop into major failures.
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Figure 4. Distribution of mean and standard deviation (STD) of chroma features (CQT, CENS, and
STFT) for normal and abnormal signals.

Mathematically, given an original chroma feature matrix C(t, f ), where t represents
time frames and f represents frequency bins, we apply a median filter M over a sliding
window. This process smooths data while preserving important edges. The filtered chroma
matrix, Cfiltered(t, f ), is computed as follows:

Cfiltered(t, f ) = Median(C(t − w : t + w, f )), (6)

where w is the window size that determines the neighbouring data points considered during
smoothing. By averaging the chroma features over time, this operation effectively reduces
transient noise while retaining the harmonic structures necessary for accurate analysis.

Visual representations are crucial in this analysis, particularly when comparing the
original chroma features with their harmonic-enhanced counterparts. Using matplotlib,
we generate visualisations highlighting the improvements in clarity and focus achieved
through harmonic processing in Figure 3, making identifying patterns in the data easier.
Although this technique significantly reduces noise, some residual artifacts may still exist
in the harmonic chroma features.

To further refine the chroma features, we apply a non-local filtering technique, which
compares cosine similarities between neighbouring data points and aggregates them using
a median filter. This process is mathematically expressed as follows:

Cnon-local(t, f ) = Min(Charmonic(t, f ), NN_filter(Charmonic(t, f ))), (7)

where Charmonic(t, f ) represents the harmonic-enhanced chroma feature matrix, and NN_filter
refers to the nearest-neighbour filtering operation based on cosine similarity. The “Min” op-
eration helps eliminate outliers by taking the element-wise minimum between the original
harmonic chroma features and the filtered version, enhancing the robustness of the features
used in the model. These improvements are visually demonstrated in Figure 3, where the
final subplots highlight the enhanced clarity and focus achieved through our filtering and
smoothing techniques. The refinements ensure a more accurate and reliable representation of
the acoustic signatures, leading to more effective predictive maintenance and fault detection in
industrial settings.
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3.4. Data Augmentation Using Additive White Gaussian Noise

Data augmentation is crucial in audio signal processing, especially when the goal
is to improve machine learning models’ robustness [44]. One frequently used strategy
involves additive white Gaussian noise (AWGN) augmentation, which adds Gaussian
noise into audio signals. This technique simulates real-world noisy conditions, allowing
models to generalise better across various noise levels. AWGN adds Gaussian noise
n(t) to the original waveform x(t), with the signal-to-noise ratio (SNR) being carefully
where lower SNRs indicate more challenging conditions due to the dominance of noise,
making fault detection more difficult [45] and controlled to vary between a minimum and
maximum value. Adding white noise has significantly improved the accuracy of various
fault detection and audio classification tasks [46,47].

Given a waveform x(t) of length L, Gaussian noise n(t) is added to the waveform to
achieve a desired SNR, ranging between SNRmin and SNRmax. In our case, we chose SNR
values of 15 and 30.

Normalised signal power: The original waveform is normalised using a constant
C = 2(b−1), where b is the bit depth (for instance, 16 bits in this case). The normalised
waveform xnorm(t) is given by the following:

xnorm(t) =
x(t)

C
. (8)

The signal power is computed as follows:

Psignal =
1
L

L

∑
t=1

x2
norm(t). (9)

Noise power: Noise n(t) is sampled from a Gaussian distribution n(t) ∼ N(0, 1).
The normalised noise nnorm(t) is as follows:

nnorm(t) =
n(t)

C
. (10)

The noise power is computed as follows:

Pnoise =
1
L

L

∑
t=1

n2
norm(t). (11)

SNR and covariance calculation: A random SNR SNRrand is chosen within the range
[SNRmin, SNRmax]. The covariance factor σ is computed to scale the noise as follows:

σ =

√
Psignal

Pnoise
× 10−SNRrand/10. (12)

This factor scales the noise to match the desired SNR, simulating different environ-
mental conditions.

Augmented waveforms: The augmented waveform xaug(t) is generated by adding
the scaled noise to the original waveform:

xaug(t) = x(t) + σ · n(t). (13)

This process is repeated four times to generate augmented versions of the waveform,
increasing the variability in the dataset.
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4. Experiments

This section describes the experimental setup, data collection process, hyperparameter
selection, and evaluation metrics for implementing the proposed model for anomaly
detection in conveyor belt idlers.

4.1. Experimental Setup

The proposed model was implemented in a Windows 11 environment, utilising Python
3.7.16 and TensorFlow 2.10.0. An NVIDIA RTX 4080 GPU, manufactured by NVIDIA
Corporation, Santa Clara, CA, USA. was used for acceleration to enhance computational
efficiency. The system was powered by high-performance hardware, featuring a 13th-
generation Intel(R) Core(TM) i9-13900HX processor, manufactured by Intel Corporation,
Santa Clara, CA, USA, with a base clock speed of 2.20 GHz, hyper-threading across 32 cores,
and supported by 32 GB of RAM for optimal performance.

4.2. Dataset

Data were collected by driving a vehicle along a conveyor belt, with the recording
device positioned outside the car window. When a loud noise was detected, the vehicle
was stopped, maintaining a distance of approximately 2–4 m from the sound source.
This method was carefully designed to capture a diverse range of operational scenarios,
including normal operation and multiple fault stages, ensuring variability in the acoustic
signals. This variability was informed by domain knowledge of the system’s behaviour,
ensuring the dataset reflects realistic operating conditions. The approach is critical for
the automated identification of faults in belt conveyor idlers. Permission was granted by
Port Waratah Coal Services (PWCS) in New South Wales, Australia, to gather high-quality
data for this research. The B&K Type 2250 Hand-Held Analyzer, manufactured by Brüel &
Kjær, Nærum, Denmark [48] was used. The B&K Type 2250 is known for its precision and
is widely used in industrial acoustic measurements. The focus was on capturing sounds
from idler bearings, which are critical to idler functionality and often linked to faults [1].
The recordings, which captured a range of sounds from normal operation to various stages
of bearing faults, were stored in the .WAV format.

The subsequent step in analysing the audio data of conveyor idlers involved cate-
gorising the data into distinct classes based on their conditions: normal, stage 1, stage
2, and stage 3. To ensure that each audio clip corresponds to a specific class and to stan-
dardise the duration for machine learning purposes, each audio recording was split into
4-s segments. Following this processing, the data were labelled as either “normal” or
“abnormal”, with normal as normal and all other segments classified as “abnormal”. This
categorisation is crucial for the one-class classification task as it enables the model to be
trained exclusively on normal sounds, allowing for the accurate identification and detection
of faults in idlers, which typically manifest as abnormal conditions in the data. Table 2
summarises the distribution of samples across different conditions.

Table 2. Number of samples by condition.

Condition Description Files

Normal Baseline measurements or standard operation conditions of idlers. 257

Abnormal Includes stage 1, 2, and 3 faults in bearings, indicating deviations
from normal conditions.

211

4.3. Hyperparameters

The hyperparameters for each model, such as contamination levels and kernel types,
are carefully selected based on empirical testing to ensure optimal performance, as shown
in Table 3. The models are trained on the augmented and non-augmented datasets and
evaluated using the test dataset. The results, including confusion matrices and execution
times, provide insights into the best-performing model for detecting anomalies in idler
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machinery. Overall, the proposed methodology effectively combines chroma feature ex-
traction with traditional machine learning models, demonstrating robust performance in
detecting subtle anomalies in industrial audio data.

Table 3. Hyperparameters used for each model in our experiments.

Model Parameter Value

Autoencoder

Encoder Layers 128, 64, 32, 16
Decoder Layers 32, 64, 128
Dropout 0.2
Activation ReLU
Loss Functions MAE, MSE, Huber
Epochs 30
Batch Size 4

iForest Contamination 0.01

LOF Contamination 0.01
Novelty True

OCSVM
Nu 0.005
Gamma 1
Kernel RBF

4.4. Evaluation Metrics

Several metrics were used to assess the effectiveness of the developed semi-supervised
detection model for idler components. Often used in situations of binary classification,
these measures comprise the accuracy, precision, recall, unusual F1-score, and area under
the ROC curve (AUC). These metrics help to confirm that the created model correctly
detects irregularities while keeping false alerts at a minimal level. The key metrics are
defined as follows:

• Accuracy: The overall proportion of correctly classified instances, including normal
and anomalous observations.

Accuracy =
TP + TN

TP + TN + FP + FN
, (14)

where TP denotes true positives, TN denotes true negatives, FP refers to false posi-
tives, and FN indicates false negatives.

• Recall (sensitivity or true positive rate): The fraction of actual positives correctly identified.

Recall =
TP

TP + FN
. (15)

• Precision: The ratio of true positive predictions to the total predicted positives.

Precision =
TP

TP + FP
. (16)

• Abnormal F1-score: A specific F1-score is calculated for detecting abnormal instances,
emphasising accurately identifying anomalies. It provides a focused evaluation of
how well the model captures abnormal behaviours.

Abnormal F1-Score = 2 × Abnormal Precision × Abnormal Recall
Abnormal Precision + Abnormal Recall

. (17)

• The receiver operating characteristic (ROC) curve: This is a visual display used for
assessing the effectiveness of a binary classifier [49]. It shows the true positive rate
(sensitivity) versus the false positive rate (1-specificity) at different threshold levels.
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The ROC curve aids in seeing how changes to decision thresholds impact balances
between true positives and false positives.

• Area under the ROC curve (AUC): The AUC is a metric to measure the model’s
overall ability to differentiate between classes. It supplies one numerical value, sum-
marising how well the model performs across all classification limits. If the AUC gets
a higher score, it means better performance by the model, with 1 signifying an ideal
classification and 0.5 showing no power for discrimination.

4.5. Threshold Selection Process

Selecting an appropriate decision threshold is critical to our anomaly detection model
for conveyor belt idlers. The choice of decision boundary decides when the model labels
any sample as normal or abnormal. Picking the suitable boundary can help recognise
problems early and reduce false positives, which is vital for effective maintenance tasks.
We follow a structured approach to optimise the selection of the best threshold, ensuring a
balance between performance and accuracy. This process involves analysing the model’s
decision scores and leveraging key evaluation metrics, such as the ROC curve and Youden’s
J statistic, to determine the optimal cutoff point.

• Youden’s J statistic and ROC curve analysis: We compute Youden’s J statistic for each
potential threshold. This statistic helps us identify where we achieve the best trade-off
between detecting true positives (faults) and minimising false positives (incorrect fault
detections). The formula for Youden’s J is as follows:

J = True Positive Rate (TPR) − False Positive Rate (FPR). (18)

The optimal threshold maximises this statistic, ensuring a balance between sensitivity
(the ability to detect faults) and specificity (the ability to avoid false positives).

• Visualising the ROC curve: The ROC curve lets us see the model’s performance at
various levels by showing the true positive rate (TPR) versus the false positive rate
(FPR). The AUC offers a comprehensive evaluation of how good the model is. A higher
AUC means better performance. The ROC curve also helps us choose a threshold that
aligns with the operational goals of high sensitivity and minimal false alarms.

4.5.1. Optimal Threshold Selection

Based on the ROC curve and Youden’s J statistic, we select the threshold that best
balances detecting faults and minimising false positives. Once this threshold is determined,
the model classifies each sample as follows:

prediction =

{
1 if the decision score ≥ threshold
−1 if the decision score < threshold

. (19)

This threshold ensures that the system identifies faults early while keeping the rate of false
positives low, allowing for effective and timely maintenance without unnecessary interventions.

4.5.2. Threshold Validation

We validate the threshold by assessing model performance across key metrics like
AUC to ensure it is effective. This involves analysing the ROC curve to confirm that the
chosen threshold maximises the detection of true faults while minimising false positives.
Table 4 below shows the performance of various models at their optimal ROC thresholds
based on sample data selected randomly. By evaluating and validating these thresholds, we
ensure that our model strikes the right balance between detecting real faults and minimising
false alarms. Figure 5 shows the ROC curves for the best-performing models, highlighting
their AUC values and best ROC thresholds. This allows us to maintain a high level of
operational efficiency while effectively managing potential faults in conveyor belt idlers.
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Table 4. Best ROC thresholds and AUC for LOF, isolation forest, and one-class SVM models across
different feature sets.

Features Model Best ROC Threshold AUC

CQT LOF 0.59 0.876

CQT Isolation Forest 0.24 0.883

CQT One-Class SVM −0.02 0.912

STFT LOF 1.26 0.825

STFT Isolation Forest 0.10 0.829

STFT One-Class SVM −0.02 0.924

CENS LOF 0.83 0.840

CENS Isolation Forest 0.20 0.867

CENS One-Class SVM -0.04 0.891

Figure 5. ROC curves with the best AUC for LOF, isolation forest, and one-class SVM models.

5. Results and Discussion

This section presents the proposed model’s results, beginning with baseline detection
using the autoencoder. It then covers the detection outcomes of isolation forest and LOF,
followed by the proposed model’s performance evaluation. Additionally, the section pro-
vides a visual analysis of the leading anomaly detection techniques, explores the impact
of noise filtering, and compares the findings with previous studies, concluding with a
brief discussion.

5.1. Baseline Detection Results Using an Autoencoder

In our study on anomaly detection with autoencoders, we utilised chroma features
with dimensions of 12 × 376 (12 chroma bins and 376 timeframes) as input to the autoen-
coder model. We tested different loss functions to determine the most effective configu-
ration for identifying anomalies in idlers. The training set, after augmentation, contained
512 normal samples, while the testing set included 211 abnormal and 129 normal samples.
We trained the autoencoder using the Adam optimiser with a learning rate of 0.01 to opti-
mise its performance. The model was trained for 30 epochs with a batch size of 4, as shown
in Table 3, using shuffled data and a 10% validation split to track progress. After training,
we used the reconstruction error from the normal samples in the training set to estimate
a classification threshold, calculated as the mean reconstruction error plus one standard
deviation. This threshold was then applied to the test data, classifying samples as normal or
anomalous based on whether their reconstruction error was below or above the threshold.
This approach allowed the autoencoder to act as a classifier, systematically evaluating how
well different configurations detected anomalies.

As shown in Table 5, the MSE model applied to chroma CQT features achieved the
best overall results, with an AUC of 0.7437, precision of 0.5795, recall of 0.8760, accuracy
of 0.7118, and abnormal F1 of 0.7247. These results demonstrate that the MSE model with
chroma CQT is highly effective for detecting anomalies in sound data, making it the best
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candidate for use as a baseline model. In comparison, the Huber model also performed well,
especially in recall, reaching an impressive 0.9225 when applied to both chroma CQT and
chroma CENS features. However, the slightly lower overall AUC and accuracy compared
to the MSE model suggest that while Huber captures more anomalies (as seen in recall), it
may not generalise as well across all metrics.

Table 5. Autoencoder detection results with the best metrics highlighted.

# Model Chroma Features Accuracy Precision Recall Abnormal (−1) F1 AUC

0 MAE chroma CQT 0.6735 0.5425 0.8915 0.6726 0.7159

1 MSE chroma CQT 0.7118 0.5795 0.8760 0.7247 0.7437

2 Huber chroma CQT 0.6882 0.5535 0.9225 0.6845 0.7338

3 MAE chroma CENS 0.6441 0.5174 0.9225 0.6231 0.6982

4 MSE chroma CENS 0.6529 0.5238 0.9380 0.6313 0.7083

5 Huber chroma CENS 0.6500 0.5219 0.9225 0.6316 0.7030

6 MAE chroma STFT 0.6118 0.4928 0.7907 0.6163 0.6465

7 MSE chroma STFT 0.6735 0.5529 0.7287 0.7087 0.6842

8 Huber chroma STFT 0.5912 0.4777 0.8295 0.5749 0.6375

Note: Bolded values indicate the best-performing metrics for each evaluation criterion.

The MAE model showed moderate results. Its best performance was in the chroma
CQT feature set, where it achieved an AUC of 0.7159 and an accuracy of 0.6735. Although its
results are reasonable, they fall short of those of MSE and Huber. The chroma STFT features
consistently showed lower performance across all models than chroma CQT and chroma
CENS. The MSE model, for instance, achieved an AUC of 0.6842 with chroma STFT,
which is notably lower than its performance with chroma CQT. However, the results
also highlight limitations in the autoencoder’s ability to accurately reconstruct the input
features, as illustrated in Figure 6. Even after 30 epochs of training, the reconstructed
outputs diverged from the original inputs, suggesting that the model may not capture
all the necessary patterns for robust anomaly detection. This is further supported by the
loss distribution plots, where a significant overlap between normal and abnormal data
was observed, making it difficult for the model to differentiate between them. Given the
promising results from the MSE model with chroma CQT features, this configuration will
serve as our baseline for future comparisons. We aim to refine and enhance the model by
comparing it with the proposed CASSAD model, incorporating additional preprocessing
techniques to improve detection accuracy and robustness in real-world applications.

5.2. Detection Results Using Isolation Forest

We also applied the isolation forest model to the same dataset used for the autoen-
coder, maintaining the same split for training and testing: 512 normal, 211 abnormal, and
129 normal samples for testing. We extracted the mean and standard deviation from the
features and standardised the values using MinMax scaling between −1 and 1. The iso-
lation forest model demonstrated strong performance across various chroma features for
anomaly detection in idler components, as shown in Figure 7.

When applied to CQT features, the isolation forest algorithm achieved an AUC of
0.8568, with a recall of 0.7941, precision of 0.7926, and accuracy of 0.7941. This shows
robust capabilities in distinguishing between normal and abnormal conditions, significantly
outperforming the autoencoder, which had an AUC of 0.7437 and an accuracy of 0.7118 for
the same features. Similarly, isolation forest’s performance on CENS features was notable,
achieving an AUC of 0.8544 compared to the autoencoder’s lower performance of 0.7030.
For STFT features, isolation forest achieved an AUC of 0.8576, slightly higher than the
autoencoder’s result of 0.6842. One consistent finding across all feature sets was the stability
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of isolation forest’s results. Unlike the autoencoder, whose performance varied based on the
feature set and loss function used, isolation forest delivered strong and consistent results
across different chroma features with minimal variability.

Figure 6. Analysis results from training the autoencoder on chroma features. (Top Row): Original
and reconstructed spectrograms (Left) and the loss distribution for chroma_cens_features using the
mean absolute error (MAE) function (Right). (Bottom row): Training and validation loss curves over
30 epochs showing minimal gap and no significant overfitting or underfitting.

Figure 7. Isolation forest detection results for idler components (mean vs. standard deviation
with/without PCA). This figure highlights the model’s performance across different chroma features
and aggregation methods.

The application of PCA with isolation forest generally led to a slight decrease in
performance. For instance, when using CQT features, the AUC dropped from 0.8568
to 0.7423 after applying PCA. This suggests that while PCA helps with dimensionality
reduction, it may obscure critical feature patterns needed for accurate anomaly detection,
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leading to reduced model performance. This trend was consistent across all chroma features.
For STFT and CENS, PCA similarly reduced performance slightly, but the model’s ability
to detect abnormalities remained competitive. The results highlight the significance of
retaining important feature patterns that may be lost during PCA, especially in complex
datasets like rotating machinery.

5.3. Detection Results Using LOF

Figure 8 highlights the LOF model’s strong performance across various feature sets,
particularly with CENS features. For CENS features, the model achieved an AUC of 0.8395
when mean values were included and 0.8122 when only standard deviation values were
used. This emphasises the importance of using mean aggregation to improve anomaly
detection performance. This performance is comparable to the isolation forest model, which
achieved an AUC of 0.8544 with mean values and 0.8177 without mean values for CENS
features, suggesting that LOF and isolation forest are well-suited for anomaly detection
using CENS features. The application of PCA further improved the LOF model’s perfor-
mance, increasing the AUC to 0.8692 with mean values, showing that LOF benefits from
both the inclusion of mean values and dimensionality reduction. However, the autoencoder
model showed a slightly lower performance with CENS features, achieving a maximum
AUC of 0.7083 when using the MSE loss function, indicating that LOF and isolation forest
are more effective in handling this feature set.

Figure 8. LOF detection results for idler components (mean vs. standard deviation with/without
PCA). This figure highlights the model’s performance across different chroma features and
aggregation methods.

For CQT features, LOF performed with an AUC of 0.7188 (with mean) and 0.7809
(without mean). After applying PCA, the AUC increased to 0.7390 with mean values and
0.8011 without mean values, indicating that PCA enhances the model’s ability to balance
precision and recall, especially in the absence of mean values. This is consistent with the
results from isolation forest, which also saw a slight drop in performance after PCA was
applied to CQT features, where the AUC decreased from 0.8568 (without PCA) to 0.7423
(with PCA) for mean values. The autoencoder, however, achieved an AUC of 0.7437 with
CQT features using MSE, demonstrating slightly better performance than LOF when mean
values were considered but lower than LOF’s performance without mean values. When
compared to the LOF model and isolation forest, both performed well across various feature
sets, with LOF showing greater flexibility when PCA was applied. In contrast, isolation
forest generally performed better without PCA. Meanwhile, while competitive in some
instances, the autoencoder model does not consistently match the performance of LOF or
isolation forest.



Sensors 2024, 24, 7569 18 of 25

5.4. Detection Results Using the Proposed Model (CASSAD)

The detection results using the proposed CASSAD model demonstrate significant
improvements across various feature sets compared to traditional models such as one-
class SVM, the local outlier factor (LOF), isolation forest, and autoencoder. As shown in
Table 6, the proposed CASSAD model consistently achieves higher performance metrics
regarding AUC, recall, precision, abnormal (−1) F1, and accuracy. This superiority is
particularly evident with high-dimensional features like “All Chroma Features”, where
the proposed model outperforms all other models. For “All Chroma Features” with mean
values, the proposed CASSAD model achieves an AUC of 0.96, significantly improving
over the previous one-class SVM results. Even when employing PCA, the model maintains
a high AUC of 0.94, indicating its robustness in managing high-dimensional data while
preserving essential information. These results highlight the model’s capability to capture
complex datasets’ characteristics effectively. When examining “Std” features, the proposed
CASSAD model delivers superior results with an AUC of 0.83 without PCA and 0.73 with
PCA. These metrics suggest the model is highly effective across different feature processing
approaches, confirming its adaptability in detecting anomalies within idler components.

Overall, the proposed CASSAD model demonstrates proficiency in handling temporal
frequency and high-dimensional data patterns, making it a suitable choice for anomaly
detection in industrial applications. It consistently outperforms LOF, isolation forest,
and autoencoder models, which show comparatively lower performance metrics, especially
when dealing with the intricacies of chroma features.

Table 6. Detection results for idle components using CASSAD with one-class SVM, comparing mean
and standard deviation with/without PCA.

Chroma Features Aggregation Model Accuracy Precision Recall Abnormal (−1) F1 AUC

CQT

Mean
One-Class SVM 0.6971 0.6949 0.6971 0.7588 0.7571

One-Class SVM + PCA 0.6794 0.6692 0.6794 0.7604 0.7536

Std
One-Class SVM 0.5941 0.5881 0.5941 0.6806 0.6331

One-Class SVM + PCA 0.6029 0.5922 0.6029 0.6939 0.6485

STFT

Mean
One-Class SVM 0.8441 0.8448 0.8441 0.8804 0.9241

One-Class SVM + PCA 0.7912 0.7888 0.7912 0.8368 0.8649

Std
One-Class SVM 0.7324 0.7288 0.7324 0.7898 0.7385

One-Class SVM + PCA 0.6676 0.6612 0.6676 0.7414 0.7034

CENS

Mean
One-Class SVM 0.7500 0.7459 0.7500 0.8098 0.8906

One-Class SVM + PCA 0.7706 0.7675 0.7706 0.8211 0.8725

Std
One-Class SVM 0.5176 0.5205 0.5176 0.6077 0.5363

One-Class SVM + PCA 0.5294 0.5308 0.5294 0.6190 0.5469

All Features

Mean
Proposed Model 0.9059 0.9059 0.9059 0.9242 0.9629

Proposed Model + PCA 0.8735 0.8731 0.8735 0.8988 0.9474

Std
Proposed Model 0.8000 0.8025 0.8000 0.8150 0.8350

Proposed Model + PCA 0.6941 0.6872 0.6941 0.7647 0.7362

Note: Bolded values represent the best performance across all models and feature aggregation techniques.

5.5. Visual Analysis of the Anomaly Detection Model

To directly present the diagnostic outcomes of the proposed CASSAD model, com-
pared to the best results from LOF and Isolation Forest, we employ visual tools such
as the confusion matrix, precision–recall curve, and t-distributed Stochastic Neighbor
Embedding (t-SNE).
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As illustrated in Figure 9, we employed a set of visual tools to evaluate the perfor-
mance of various anomaly detection models. In the top row, the confusion matrices provide
a detailed breakdown of the classification results for each model, highlighting the distribu-
tion of true positives, false positives, true negatives, and false negatives [50]. This helps us
evaluate the model’s accuracy in distinguishing between normal and abnormal conditions.
The bottom row presents ROC curves, precision–recall curves, and t-SNE visualisations.
The ROC and precision–recall curves demonstrate the trade-offs between sensitivity and
specificity, which are particularly useful for imbalanced datasets [51]. The t-SNE plots,
on the other hand, visualise the class separability, showcasing how well each model distin-
guishes between normal and abnormal operational states. Together, these visualisations
offer a robust model for assessing the performance of the models under study [52].

Figure 9. Visualisation of the best results for LOF + PCA, isolation forest, and the proposed CAS-
SAD model. (Top row): Confusion matrices showing classification results. (Second row): ROC curves,
with the proposed CASSAD model reaching the highest AUC of 0.96. (Third row): Precision–recall
curves, where the proposed CASSAD model without PCA shows the best balance. (Bottom row): t-SNE
plots illustrating data separability, with the proposed CASSAD model achieving the clearest distinction.
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5.6. Effect of Noise Filtering

Noise filtering has significantly improved model performance in acoustic-based
anomaly detection for rotating machinery components. This analysis evaluated the impact
of noise filtering on various machine learning models, including the proposed CASSAD
model, using OCSVM, focusing on two critical metrics: AUC (area under the curve) and
accuracy. The comparison was done across several feature sets using the combined all
chroma features dataset. The results were assessed before and after applying noise filtering
to understand its influence on the model’s ability to detect anomalies.

Filtering and smoothing noise are essential steps in achieving high-performance
metrics, as they help isolate meaningful patterns in the data by reducing ambient noise
interference. Evaluating the proposed model’s effectiveness by measuring performance
before and after noise filtering provides a clearer understanding of the contribution to
model improvements. The findings indicate that noise filtering consistently improves
model performance across all feature sets, with significant gains in AUC and accuracy.
For example, with the CASSAD model applied to the all chroma features dataset, the AUC
increased from 0.8529 to 0.9629 after noise filtering, and the accuracy improved from
0.7759 to 0.9059. This demonstrates the value of combining noise filtering with feature
enhancement techniques to boost the robustness of anomaly detection models.

The comparative plot in Figure 10 clearly highlights the improvements in both AUC
and accuracy for the proposed model following the application of noise filtering. The bar
plots clearly illustrate how the model benefits from this preprocessing technique. Noise
filtering, combined with mean computation, proves essential for enhancing the precision,
reliability, and overall performance of anomaly detection models in noisy environments.

Figure 10. Comparison of AUC and accuracy metrics for the proposed model using all chroma
features, both with and without noise filtering. The figure highlights the performance improvements
achieved by the proposed model (CASSAD).

5.7. Training and Evaluation Time Analysis

The training and evaluation times of LOF, isolation forest, and the proposed model
were analysed across feature extraction methods (CQT, STFT, CENS, and all chroma fea-
tures) with and without PCA. The proposed model consistently demonstrated lower
training times than LOF and isolation forest, highlighting its computational efficiency. This
is illustrated in Figure 11.

All models performed well for evaluation, with times generally remaining below
0.1 s, suggesting that the evaluation phase is less sensitive to model complexity and
more reflective of the number of data points being processed. Applying PCA further
reduced training and evaluation times, with isolation forest showing the most significant
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reduction, particularly when using all chroma features. As feature complexity increased,
the computational cost rose for training in all models, reflecting a trade-off between feature
richness and efficiency. These results highlight the proposed model’s suitability for real-
time applications due to its faster training times, while all models demonstrated efficient
evaluation performance.

Figure 11. Consumption time comparison across models and features.

5.8. Comparison with Previous Work

In this study, we evaluate the proposed CASSAD model compared to adaptations of
the YAMNet model adjusted for binary classification tasks [5], utilising the same subset of
255 audio samples originally used for YAMNet. YAMNet, initially designed for multiclass
tasks, has been modified using advanced neural network techniques such as bidirectional
long short-term memory (BiLSTM) and bidirectional gated recurrent unit (BiGRU) networks
to enhance its effectiveness in binary detection, which is crucial for detecting anomalies
in idlers.

Our analysis focuses on identifying normal and abnormal sounds within the dataset,
which consists of 101 normal and 154 abnormal samples. After data augmentation, the train-
ing set included 200 normal samples to help the model better recognise standard sound
patterns. The test set consisted of 51 normal and 154 abnormal samples, providing a
comprehensive performance evaluation.

The proposed CASSAD model achieved an AUC of 0.93 and an accuracy of 93.25%
using all chroma features, setting a new benchmark for comparison against the adapted
YAMNet models. As shown in Table 7, the proposed CASSAD model exceeds the YAMNet
adaptations in accuracy and demonstrates superior performance across other key metrics
such as recall and F1 score. This highlights the model’s robustness in recognising complex
patterns in audio data, with the significant contribution from all chroma features emphasis-
ing their importance in effectively distinguishing between normal and abnormal sounds.

Table 7. Performance metrics for machine learning models handling audio classification in a binary
format. Abbreviations: Acc. = accuracy, Prec. = precision, Rec. = recall, and F1 = F1 score.

Model Name Acc. (%) Prec. (%) Rec. (%) F1 (%)

YAMNet BiLSTM with Attention 91.59 94.56 90.29 92.37
YAMNet BiGRU with Attention 91.59 94.07 91.00 92.51
YAMNet with LazyAdam Optimiser 92.18 94.25 91.79 93.00
Proposed Model (CASSAD) 93.00 94.50 92.00 93.25

Note: The best performance for each metric is highlighted in bold.
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While the YAMNet adaptations show promise, their need for extensive computational
resources and preprocessing could limit their practical application in real-time scenarios.
The proposed model offers a more efficient solution, achieving high performance without
the same computational overhead. This comparative analysis advances the discussion on
employing binary detection for effective anomaly detection, particularly in contexts where
multiclass models struggle due to class imbalances or the rarity of anomalies.

5.9. Discussion

This study evaluated four different anomaly detection models: autoencoder, LOF,
iForest, and the proposed CASSAD model using OCSVM. Each method has its advantages
and limitations when detecting faults in machinery sound data.

Compared to traditional models such as autoencoder, LOF, and iForest, the CASSAD
model demonstrated superior performance in identifying faults in idler sound data. As a
neural network-based approach, the autoencoder learns to reconstruct normal data and
detects anomalies through reconstruction errors. While it excels at modelling complex
patterns in high-dimensional data, its performance is highly dependent on hyperparameter
settings and requires substantial training data for effective anomaly detection [53].

LOF assesses the isolation of data points by comparing their local density to that of
their neighbours, which makes it effective in detecting anomalies within clustered data.
However, its computational complexity and sensitivity to parameter tuning, such as the
neighbourhood size, can pose challenges, particularly when dealing with large datasets.
iForest identifies anomalies by randomly partitioning the data, with points with shorter
paths considered potential outliers. Although efficient for large datasets and free from
assumptions about data distribution, its performance can vary significantly depending on
parameter settings, such as the number of trees [31].

The CASSAD model has shown strong performance in detecting localised faults by
effectively identifying anomalies in specific regions of the sound data. However, capturing
global patterns remains challenging, particularly in noisy environments where overlapping
noise can obscure broader anomalies. While preprocessing steps like noise filtering help
mitigate some interference, the model’s current emphasis on local patterns may limit
its ability to detect global anomalies, especially in high-dimensional datasets. Future
studies need to look into incorporating more sophisticated strategies, like variational
autoencoders (VAE) [53] or transformer-based models [54]. These are better prepared
to understand the base data distribution and provide a broader approach for detecting
anomalies. Such models can boost the model’s capability to distinguish between local and
global irregularities. This way, they increase the precision of fault detection in complicated
conditions with much noise.

6. Conclusions and Future Work

This study proposes the chroma-augmented semi-supervised anomaly detection (CAS-
SAD) model for identifying anomalies in industrial machinery, specifically in conveyor
belt idler components. By leveraging OSVM and chromagram audio features such as
CENS, CQT, and STFT, the CASSAD model effectively addresses the challenge of anomaly
detection in noisy environments with limited labelled data. Integrating mean values with
OSVM yielded the highest accuracy and AUC scores, demonstrating the potential of unsu-
pervised approaches for one-class industrial fault detection tasks. Incorporating feature
filtering and augmentation with AWGN further improved performance, highlighting the
significance of robust preprocessing techniques. These findings indicate that the CASSAD
model offers a practical and scalable solution for anomaly detection in real-world industrial
settings, even without extensive labelled data. Future work will focus on integrating the
CASSAD model into real-time monitoring systems to enable continuous and automated
fault detection. Additionally, exploring advanced semi-supervised learning techniques,
such as pseudo-labelling and self-training, will allow for incorporating stage labels to
enhance decision boundaries. Efforts will also be directed towards expanding the dataset
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to include diverse operational conditions and conducting comprehensive evaluations, such
as learning curve analyses and cross-validation consistency checks, to ensure the model’s
adaptability and reliability. This research provides a foundation for developing scalable,
efficient, and reliable anomaly detection systems for industrial applications, especially in
conveyor belt systems where minimising downtime and improving operational efficiency
is crucial.
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