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ABSTRACT

T
he field of Multi-Agent Reinforcement Learning (MARL) has rapidly evolved,
yet integrating diverse tasks and algorithms into a cohesive system remains a
complex challenge. This thesis proposes a unified framework aimed at improving

adaptability, scalability, and cooperative dynamics among agents across various tasks
and environments. Our research is structured around three primary advancements:
the development of a flexible architecture, the analytical quantification of agent roles,
and the creation of an integrative library for MARL. Initially, we introduce a novel
architectural model capable of accommodating varying task configurations through a
transformer-based approach that separates policy decisions from input observations.
This model enhances transfer capabilities and accelerates training processes, showcasing
substantial improvements in diverse MARL applications. Following this, we delve into
the concept of Role Diversity, which quantifies and utilizes behavioral differences among
agents to optimize policy performance. This analysis highlights how understanding these
diversities can influence and improve key MARL strategies such as parameter sharing,
communication mechanisms, and credit assignment, thereby enhancing overall system
efficiency and adaptability. Finally, we develop a comprehensive MARL library that
standardizes environment and algorithm integration, facilitating the flexible mapping
of policies and streamlined development of multi-agent systems. This tool effectively
simplifies the complexity of deploying diverse learning algorithms and managing multiple
tasks, promoting a more systematic approach to MARL. Together, these innovations
contribute significantly to the MARL field, offering novel insights and methodologies
that advance the unified and efficient implementation of MARL.
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1
INTRODUCTION

R
einforcement Learning (RL) [91] is a cornerstone paradigm for autonomous

decision-making, enabling agents to optimize their behaviors through interac-

tions with their environments [61, 63, 80]. Its application ranges from robotics

[26, 43, 95] to game theory [37, 48, 108], focusing on achieving optimal outcomes through

sequential decisions. As RL is applied to increasingly complex and dynamic scenar-

ios, Multi-Agent Reinforcement Learning (MARL) has emerged as a vital extension

[12, 65, 110]. In MARL, multiple agents operate within a shared environment, engag-

ing in a spectrum of behaviors from competitive [11, 78, 111] to cooperative [5, 46, 79].

This transition from single-agent to multi-agent scenarios introduces new challenges

[45, 89, 92], offering rich opportunities for exploring innovative learning dynamics.

The complexities in MARL primarily stem from agent interactions, which affect

the environmental state and reward structures [66]. These interactions create a non-

stationary environment, complicating the learning algorithms and their implementation

as strategies and actions of agents continuously influence the decision-making context.

Understanding and developing efficient strategies for MARL involves addressing key

issues such as credit assignment [24, 75, 76], formulating stable strategies in adversarial

settings [11, 53, 85], and scaling algorithms to accommodate large number of agents

[103, 113, 116], each posing unique challenges.

Multi-task MARL As the field of MARL continues to evolve, an important devel-

opment has been the integration of multi-task learning strategies [18, 99, 112]. This

1



CHAPTER 1. INTRODUCTION

advancement enables agents to train across multiple tasks simultaneously, enhancing

their generalization capabilities and robustness, and reducing the need for distinct mod-

els for each scenario [35, 36, 106]. Conventional algorithms in MARL require the input

and the output dimensions to be fixed, makes the multi-task learning impossible. Thus

the application of current methods is limited in real-world applications.

A significant contribution to this area is the development of UPDeT [35], a transfor-

mative approach that introduces a scalable and adaptable framework into the multi-task

learning domain, marking a departure from traditional methods. The focus is on develop-

ing architectures and strategies that enable effective knowledge sharing among agents

[55, 60, 82], boosting MARL system efficiency and adaptability. Such multi-task learning

frameworks require innovative algorithm designs to manage the complexities of multiple

agents learning within shared environments [39, 42, 118].

Task-first MARL Current researches focus on developing algorithms on the tasks

they are good at but lack the study of why the performance declines on other tasks

[32, 70, 94]. Sometimes, even adopting the state-of-the-art algorithms does not guarantee

an optimized performance [24, 102, 109]. From this perspective, understanding the

relationship between algorithms and tasks is instrumental. Firstly, it can help elucidate

the strengths and limitations of existing MARL algorithms, providing clear insights

into their performance boundaries and operational effectiveness. Secondly, it emphasize

that the design of more specialized algorithms should be precisely tailored to the unique

dynamics of particular multi-agent environments.

We introduce a metric to help measure the characteristic of different MARL tasks

and its relationship to the algorithms used [33]. We define role diversity as a critical

measurement for analyzing and improving the effectiveness of policies within multi-agent

environments, providing a framework for diagnosing policy performance and guiding the

training process. By systematically evaluating the efficiency of various MARL algorithms

in different contexts using role diversity, this research not only enhances our theoretical

knowledge but also drives practical advancements.

A Unified Library for MARL Single-agent RL has achieved successful unification for

both algorithms (e.g., SpinningUp [2], Tianshou [107], RLlib [54], Dopamine [13], and

Stable-Baselines series [21, 29, 74]) and environments (e.g., Gym [10], Gymnasium [27]).

However, MARL faces unique challenges in developing a comprehensive and high-quality

library.

2



Firstly, MARL algorithms are diverse, targeting group cooperation or individual

competition and varying in agent parameter sharing strategies, such as HATRPO [45]

and MAPPO [109]. They also differ in central information utilization, e.g., VDN [87]

vs. MADDPG [56]. Libraries like EPyMARL [70] attempt to unify MARL algorithms

using independent learning, centralized critic, and value decomposition categorization

but fail to address all these challenges. The diversity of MARL algorithms remains a

major unification obstacle.

Secondly, multi-agent environment interfaces are inconsistent, reflecting their task-

specific designs (e.g., asynchronous interaction in Hanabi, action masks in SMAC [79],

and mixed local observation and global state in MAgent [113]). This inconsistency

complicates unified agent-environment interaction processing, causing coupling issues

between algorithm implementation and task environment. PettingZoo [93] collects di-

verse multi-agent tasks but is inconvenient for CTDE-based algorithms due to missing

global state and action mask information. Solutions like the MAPPO benchmark [109],

which provides unique runner scripts for each environment, pose long-term maintenance

challenges and hinder new task extensions.

Acknowledging the critical need for standardized tools and frameworks, there is an

urgent need for a comprehensive library specifically designed to streamline the develop-

ment and deployment of MARL systems. The primary goal of such a library is to alleviate

the common challenges associated with compatibility and integration that researchers

and practitioners often face. By providing a robust and integrated set of tools, it enables

users to devote more of their efforts towards strategic development and innovation within

MARL [34, 70, 114]. Other benefits include simplifying the technical processes involved

in setting up and running MARL experiments, as well as enhancing the accessibility

and reproducibility of research outcomes [34]. As a result, this accelerates the advance-

ment of MARL technologies by ensuring that enhancements in algorithmic strategies or

environment models can be easily adopted and built upon by the broader community.

We create MARLlib [34], a comprehensive library designed to facilitate the integra-

tion, testing, and deployment of MARL algorithms, marks a significant contribution

to achieving a unified framework for MARL. MARLlib provides robust tools that en-

hance the reproducibility and accessibility of MARL research, allowing enhancements in

algorithmic strategies or environment models to be readily adopted by the community.

Contributions This thesis has made several significant contributions to the field of

MARL, pushing forward the capabilities of these systems in managing complex, dynamic

3



CHAPTER 1. INTRODUCTION

multi-agent environments. The main contributions are outlined as follows:

1. We introduce the Universal Policy Decoupling Transformer (UPDeT), a novel

transformer-based architecture for MARL. UPDeT leverages the self-attention mecha-

nism to address critical challenges such as partial observability and coordination among

multiple agents. This development marks a significant advancement over traditional

methods, enhancing both the scalability and adaptability of MARL systems.

2. We establishe role diversity as a crucial metric for analyzing and improving the

effectiveness of policies in MARL. By systematically studying different dimensions of role

diversity‚Äîaction-based, trajectory-based, and contribution-based‚Äîthis work provides a

nuanced framework for diagnosing policy performance and guiding the training process

within cooperative MARL environments.

3. We build MARLlib, a comprehensive library designed to facilitate the integra-

tion, testing, and deployment of MARL algorithms. MARLlib addresses the prevalent

challenges in the MARL community related to algorithm compatibility and integration,

providing a robust platform that enhances the reproducibility and accessibility of MARL

research.

These contributions are instrumental in advancing theoretical knowledge and practi-

cal applications in MARL, supporting the development of more sophisticated, efficient,

and adaptable multi-agent systems. They align with the overarching goal of this thesis

to move towards a unified framework for MARL, setting a strong foundation for future

research in this rapidly evolving field. The organization of the thesis is as follows:

Chapter 1: Introduction This chapter provides a comprehensive introduction to

the field of MARL. It outlines the significance of MARL, the challenges it addresses, and

the specific objectives and contributions of the thesis. The chapter sets the stage for the

detailed discussions and analyses presented in subsequent chapters.

Chapter 2: Literature Review The literature review covers the foundational

theories and recent advancements in RL and MARL. This chapter discusses key concepts,

methodologies, and the state-of-the-art approaches in MARL, highlighting the gaps and

challenges that this thesis aims to address.

Chapter 3: Universal Multi-agent Reinforcement Learning with Transform-

ers This chapter introduces the novel transformer-based architecture, Universal Policy

Decoupling Transformer (UPDeT), designed to enhance policy learning in MARL. It de-

tails the theoretical underpinnings, the policy decoupling strategy, and the temporal unit

structure of the proposed framework. Experimental results demonstrating the efficacy of

4



UPDeT in various MARL scenarios are also presented.

Chapter 4: Policy Diagnosis via Measuring Role Diversity in Cooperative

Multi-agent RL In this chapter, the concept of role diversity is introduced as a metric for

analyzing and optimizing policy performance in cooperative MARL environments. The

chapter provides a detailed methodology for quantifying role diversity and explores its

impact on various training strategies. Experimental evaluations highlight the benefits of

incorporating role diversity into policy diagnosis.

Chapter 5: One Platform for All: A Unified Multi-agent RL Library This

chapter discusses the development of MARLlib, a comprehensive library designed to

unify and standardize MARL algorithms and environments. It covers the motivation

behind creating the library, its features, and the benefits it offers for MARL research and

development. Comparative analyses with existing libraries and benchmarks demonstrate

the robustness and versatility of MARLlib.

Chapter 6: Conclusion and Future Works The final chapter summarizes the key

contributions of the thesis, reflecting on the advancements made in the field of MARL

through the proposed frameworks and methodologies. It also outlines potential directions

for future research, emphasizing the ongoing challenges and opportunities in developing

more sophisticated and adaptable multi-agent systems.
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LITERATURE REVIEW

2.1 Deep Reinforcement Learning

R
einforcement Learning (RL) is a type of machine learning where an agent learns

to make decisions by performing actions in an environment to maximize some

notion of cumulative reward [40, 91]. RL is modeled as a Markov decision process

(MDP) [6] where the outcomes are partly random and partly under the control of a

decision maker.

The key components of any RL system include the environment, states, actions,

rewards, policies, and value functions. Research in this field has been propelled by

the formulation and solution of the Bellman equation [6], which provides a recursive

decomposition for the value functions associated with optimal policies. This area has

seen extensive application ranging from automated control systems to economics and

game playing, where systems learn to make a series of decisions that maximize a reward

metric over time.

Deep Reinforcement Learning (DRL) has emerged as a powerful technique combining

reinforcement learning principles with deep learning [63]. This integration has facilitated

the creation of models that can process high-dimensional sensory inputs and make

decisions accordingly, thereby handling complex environments that were previously

intractable with traditional RL methods.

The foundation of DRL can be traced back to the seminal work by [62], who introduced

the Deep Q-Network (DQN). This algorithm successfully integrated deep neural networks
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with Q-learning [105], showing remarkable performance on multiple Atari 2600 games,

purely from pixel inputs. This breakthrough underscored the potential of deep learning

architectures in approximating value functions and policies directly from raw sensory

data.

Following this, various improvements and extensions to DQN were proposed. Double

DQN introduced by [98] addressed the overestimation bias of Q-values in DQN. Dueling

Network Architectures for Deep Reinforcement Learning by [104] enhanced the network’s

ability to distinguish between state values and the advantages of particular actions.

The introduction of Policy Gradient methods, specifically those employing Actor-

Critic frameworks such as A3C (Asynchronous Advantage Actor-Critic) by [61], further

expanded the capabilities of DRL. These methods allow direct optimization of the policy

function, offering a more stable and robust learning process in environments with high-

dimensional or continuous action spaces.

Recently, Proximal Policy Optimization (PPO) by [80] has gained prominence due

to its simplicity and effectiveness, reducing the complexity of hyperparameter tuning

while achieving high performance. Furthermore, the integration of DRL with other areas

such as Natural Language Processing [97] and computer vision [51] has opened new

avenues for cross-disciplinary applications. The use of DRL in strategic game playing

was famously demonstrated by AlphaGo [84], which defeated a world champion in

the complex board game of Go, highlighting the technique’s strategic decision-making

capabilities. DRL continues to be a vibrant area of research, with ongoing innovations

that enhance its efficiency, scalability, and applicability across various domains.

2.2 Multi-agent Reinforcement Learning

Multi-agent Reinforcement Learning (MARL) extends the classical reinforcement learn-

ing framework to scenarios involving multiple agents, each influencing and adapting to

the actions of others. This complexity introduces a non-stationary environment where

conventional single-agent learning algorithms underperform. MARL is crucial in domains

requiring sophisticated agent coordination, such as precision agriculture, underwater

exploration, and autonomous vehicle systems, where the interplay of multiple agents

significantly impacts overall system performance [25, 67, 68].

8
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2.2.1 Multi-agent Systems

There are several different ways to model a multi-agent system, based on Stochastic

Games. Stochastic Games model the interactions among multiple agents and their

environment. Two settings are commonly seen: Fully Observable Stochastic Games

(FOSGs) and Partially Observable Stochastic Games (POSGs).

FOSGs. FOSGs are expanded versions of Markov Decision Processes (MDPs) [77, 108].

MDPs are foundational in reinforcement learning, defined by a tuple 〈S, A,P,R,γ〉 where

S represents the state space, A the action space, P the transition probability function,

R the reward function, and γ the discount factor. In MARL, the interaction of multiple

agents turns an MDP into a stochastic game or Markov game. Here, the game dynamics

are described by the set 〈I,S, A,P, {Ri}i∈I ,γ〉, where I denotes the set of agents, each with

their own actions and rewards, thereby capturing the impact of collective and individual

strategies on the state transitions and outcomes.

POSGs. Transitioning from FOSGs, POSGs significantly extend the complexity of

decision-making processes by introducing uncertainty in state observations. This form

of stochastic game is particularly relevant in real-world scenarios characterized by

information asymmetry or sensor limitations, where agents do not have access to the

complete state of the environment. Conceptually, POSGs are closely related to Partially

Observable Markov Decision Processes (POMDPs) [72].

POMDPs. A POMDP models decision-making challenges under uncertainty with

a formal tuple 〈S, A,T,R,O, Z,γ〉, where S denotes the state space, A the action space,

T : S × A ×S → [0,1] the state transition probabilities, R : S × A ×S → R the reward

function, O the observation space, Z : S ×O → [0,1] the observation function, and γ

the discount factor. In POSGs, each agent deals with its own observation space Oi and

observation function Zi, which define the probability of observing a particular outcome

given the current state and action.

Dec-POMDPs. Decentralized Partially Observable Markov Decision Processes (Dec-

POMDPs) [66] expand on POMDPs by introducing multiple agents that must act based

on their own incomplete and noisy observations. In a Dec-POMDP, described by the tuple

〈I,S, A,T,R,O, Z,γ〉, each agent operates under partial observability of the environment,

influenced by both the joint actions and observations of the group. The challenge lies

in coordinating strategies under uncertainty, requiring agents to infer not just the

environment’s state but also the potential actions of their peers. This model is critical

for designing systems where agents need to autonomously adapt to complex, dynamic

settings without complete information.
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Interact Form. The design of multi-agent systems also needs to account for whether

the interactions among agents occur in a turn-based (Extensive-form) [81] format or

simultaneously (Normal-form). Turn-based games, where agents take actions one after

another, often require strategies that can predict and counteract opponents’ future moves,

as seen in strategic board games like Go or Chess [85]. Here, MARL can be used to learn

complex strategies over a sequence of moves, with each agent’s decision influenced by

the predicted reactions of their adversaries. On the other hand, in simultaneous games,

all agents act at the same time, typically without knowledge of the concurrent decisions

of other agents [79]. This setup is common in many real-world applications like financial

markets or tactical military simulations, where agents must make decisions based on

incomplete information and a prediction of other agents’ actions.

Task Mode. MARL proves highly effective in systems that necessitate coordinated

action among multiple agents in diverse multi-agent task modes, such as cooperative,

competitive, or a combination of both task modes (mixed), depending on the objectives

and operational constraints of the system. In cooperative modes [5, 71, 79], agents work

together towards a common goal, such as in robotic swarms where harmonized move-

ments and tasks are crucial for accomplishing complex activities like area surveillance

or search-and-rescue operations [69]. Conversely, in competitive modes, each agent aims

to maximize its own payoff at the expense of others [4, 56, 78], which is often seen in

resource allocation tasks within telecommunications networks where agents compete

for bandwidth. These systems significantly benefit from the MARL approach by lever-

aging the collective capabilities of agents to achieve tasks that are beyond the scope

of individual actors, demonstrating the power of learning and adaptation in shared

environments.

Regardless of the game structure or the task mode, MARL applications in these multi-

agent systems emphasize the importance of strategic decision-making and adaptability.

Techniques from diverse learning paradigms are utilized to engineer agents capable of

operating effectively in dynamic, often unpredictable environments. This dual capability

not only enhances the performance in specific tasks but also broadens the applicability

of MARL to a wider range of complex problems.

2.2.2 Training Paradigms

Traditional algorithms in RL such as Q-learning are often adapted for scenarios where

agents learn independently - a paradigm known as Decentralized Training with De-

centralized Execution (DTDE) [19, 92]. Each agent independently optimizes its policy,
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which is particularly useful in environments where communication among agents during

execution is either limited or infeasible.

However, the complexities of MARL often require more sophisticated approaches such

as Centralized Training with Decentralized Execution (CTDE) [56, 76, 90]. The CTDE

paradigm allows for the collection and use of global information during the training phase

but requires that each agent only uses its own local observation for decision-making

during execution. This approach is beneficial in scenarios where agents must operate

independently yet benefit from learning in a rich, informative environment during their

training. Techniques such as actor-critic methods and policy gradient strategies are often

employed under CTDE. These methods enable the agents to handle continuous action

spaces and complex policy structures, with a central critic that aggregates global state

information to guide the policy optimization of decentralized actors.

On the other hand, the Centralized Training with Centralized Execution (CTCE)

paradigm [38, 86, 89] involves both centralized training and execution. This approach

is suitable for environments where centralized control during execution is possible and

can be advantageous, such as in tightly coordinated tasks where synchronicity is critical.

Under CTCE, all agents’ actions are chosen based on the full global state, making it

possible to optimize joint strategies directly.

The choice of training and execution paradigms in MARL depends heavily on the

specific requirements and constraints of the application domain, including the need for

real-time decision making, the availability of global state information, and the level of

cooperation or competition among the agents.

2.3 Challenges

MARL presents a unique set of challenges that stem from the complexities of coordi-

nating multiple intelligent agents within a shared environment. These challenges are

amplified by the agents’ need to learn and adapt not only from their interactions with

the environment but also from the actions of other agents. As such, MARL systems must

address several critical issues to effectively implement learning and decision-making

strategies that can cope with the dynamic and often unpredictable nature of multi-agent

scenarios.

Non-Unique Learning Goals In MARL, defining clear learning goals presents a

significant challenge, contrasting sharply with single-agent scenarios where maximizing
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long-term return is typically the sole objective [8, 9, 83]. MARL goals can be multifaceted

and vague, often leading to debates about appropriate success criteria. While convergence

to a Nash Equilibrium (NE) is traditionally valued, its relevance is questioned due to

the bounded rationality of agents who may not achieve perfect reasoning or infinite

mutual modeling [7, 8]. Instead, practical MARL might focus on developing optimal

strategies for agents within a specific class, as suggested in the literature. This shift from

an equilibrium agenda to an AI agenda reflects deeper concerns about the suitability

of NE as the dominant performance criterion. Alternative approaches, such as cyclic

equilibrium concepts, stability and rationality requirements, and no-regret algorithms,

propose different success metrics that accommodate the complex dynamics of MARL

environments.

Non-Stationarity Another profound challenge in MARL is non-stationarity, caused

by the concurrent learning activities of multiple agents, which alters the environment

dynamically [3, 17, 59]. This non-stationarity disrupts the stationary Markovian assump-

tions underlying traditional single-agent RL methods, complicating the direct application

of these techniques. Each agent’s actions influence not only their own rewards but also

affect the state evolution and the rewards of other agents, requiring strategies that

account for the joint behavior of all agents. Although independent learning-where each

agent optimizes its policy as if in a stationary environment-might empirically perform

well, it generally struggles to converge in theory [23, 92, 96]. Non-stationarity is a

well-recognized issue in MARL, extensively reviewed in the literature, highlighting the

necessity for models that effectively address the mutable nature of agent interactions in

these settings.

Knowledge Transfer and Scalability Training agents to perform across various

interconnected tasks increases learning efficiency and agent versatility [18, 99, 112]. This

method leverages transfer learning or multi-task learning techniques to apply knowledge

gained from one task to enhance performance in others. A significant challenge in

this approach is managing the learning balance to prevent negative transfer without

causing overfitting to the nuances of specific tasks [55, 60, 82]. Recent advancements

include modular networks and policy distillation, which allow agents to learn task-

specific strategies while sharing a core knowledge base. The importance of scalable

learning mechanisms is also emphasized, particularly in multi-task environments where

agents confront diverse and changing task demands [35, 36, 106]. Techniques borrowed
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from CTDE strategy, common in cooperative MARL scenarios, are in urgent need for

addressing these complexities. The problem centralized on policy development on task

execution, ensuring that agents dynamically adapt to new challenges while capitalizing

on shared resources and collective learning [39, 42, 118].

2.4 Libraries and Benchmarks

Significant progress has been achieved in single-agent reinforcement learning with

the introduction of robust libraries such as OpenAI Baselines, RLlib, and Tianshou

[21, 54, 107]. However, constructing a comprehensive and high-quality library for MARL

introduces unique challenges. Unlike areas like image classification where standardized

datasets such as ImageNet are prevalent [20], MARL lacks uniform datasets. This field

typically involves highly customizable scenarios that vary in the number of agents, map

dimensions, reward mechanisms, and the status of participating units. This variability

complicates the establishment of a consistent research baseline. While platforms like

PettingZoo [93] and Melting Pot [52] strive to provide unified and scalable test envi-

ronments, MARL research still faces hurdles due to the diverse requirements and data

structures that affect the implementation and performance of learning algorithms.

Additionally, the adaptation of MARL environments to various algorithms poses

another significant challenge. The simultaneous presence of cooperative and competi-

tive goals within the same framework can prevent the straightforward application of

strategies designed specifically for cooperative contexts. Moreover, certain algorithms

that demand comprehensive environmental data like the global state might not function

optimally in settings that do not provide such information. These discrepancies lead to a

situation where existing libraries [32, 70, 109] exhibit limited coverage of tasks and lack

a cohesive algorithmic structure, which ultimately hampers their extensibility and leads

to cumbersome codebases. It is essential to develop a universal MARL framework that

can segregate environments from algorithms effectively, ensure broad compatibility, and

provide a standardized suite for evaluating MARL systems.
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3
UNIVERSAL MULTI-AGENT REINFORCEMENT LEARNING

WITH TRANSFORMERS

3.1 Introduction

M
ulti-task Multi-Agent Reinforcement Learning (MARL) presents significant

challenges to traditional agent training models, demanding that agents adapt

across a diverse range of tasks without the need for retraining from scratch.

This requires architectures capable of dynamically adjusting to the varied characteristic

of different game scenarios or real-world applications.

The current state of MARL methodologies predominantly rely on action-value func-

tions (Q) to develop multi-agent algorithms [57, 76, 90]. However, these algorithms

often struggle to effectively differentiate between observations from various environmen-

tal entities. Typically, these methods combine observations into a single input vector

[22, 76, 115], operating under the assumption that neural networks can inherently

distinguish these inputs to map optimally to policies. This approach can overlook the

detailed physical meanings embedded in each action and the specific correlations be-

tween observations and outputs. Moreover, if observations from different agents are not

clearly separated, it can misdirect individual functions and compromise the efficiency of

a centralized value function. Additionally, the prevalent focus on fixed input and output

dimensions restricts the flexibility necessary for effective transfer learning, thus limiting

the practical deployment of these models in real-world settings.
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Figure 3.1: An overview of the MARL framework. Our work replaces the widely used
GRU/LSTM-based individual value function with a transformer-based function. Actions
are separated into action groups according to observations.

To address these deficiencies, we propose the development of an innovative MARL

framework that surpasses the traditional constraints on input and output dimensions.

Our method is designed to be compatible with existing MARL methodologies while

enhancing system explainability and performance across both single-task and multi-task

scenarios. This approach aims to significantly improve the potential for transfer learning

across a broad spectrum of MARL applications.

3.2 Multi-task MARL

3.2.1 Preliminaries

In this section, we introduce the fundamentals of multi-agent learning paradigm, which is

essential for understanding how individual behaviors impact collective dynamics within

interactive environments. We focus on settings Partially Observable MDPs combined

with Stochastic Games and their decentralized extensions where agents operate with

limited information.

Markov Decision Processes (MDPs) In reinforcement learning (RL), agent-environment

interactions are modeled using Markov Decision Processes (MDPs). An MDP is defined

by the tuple 〈S, A,P,R,γ〉:

• S is the state space,
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• A is the set of actions,

• P : S× A×S → [0,1] is the transition probability,

• R : S× A×S →R is the reward function,

• γ is the discount factor for future rewards.

Each time step involves: 1. the agent observing its state, 2. choosing an action, 3. receiving

a reward, and 4. transitioning to a new state. The goal is to develop a policy π that

maximizes cumulative discounted rewards.

Partially Observable MDPs (POMDPs) POMDPs extend MDPs to scenarios with

incomplete state information. Defined by the tuple 〈S, A,O,P, Z,R,γ〉, they include:

• O as the observation space,

• Z : S×O → [0,1] as the observation probability function.

In POMDPs, agents make decisions based on partial observations, making this model

suitable for environments where full state visibility is restricted.

Decentralized POMDPs (Dec-POMDPs) Dec-POMDPs address multi-agent sce-

narios under partial observability. Characterized by the tuple 〈I,S, A,T,R,O, Z,γ〉, they

include:

• I is the set of agents,

• A = A1 × A2 ×·· ·× AN is the joint action space,

• O as the composite observation space of all agents,

• Z : S× A×O → [0,1] as the observation probability.

• R specifies the reward shared by all agents.

Dec-POMDPs require agents to base decisions on both individual observations and in-

ferred information about other agents’ states, aiming to maximize collective or individual

rewards through coordinated policies.

3.2.2 Transformers as Policy

Drawing on the self-attention mechanism [100], we introduce a transformer-based MARL

framework termed Universal Policy Decoupling Transformer (UPDeT). UPDeT orga-

nizes the action space into distinct action groups that correlate with specific observation

17



CHAPTER 3. UNIVERSAL MULTI-AGENT REINFORCEMENT LEARNING WITH
TRANSFORMERS

entities, forming matched pairs of observation entities and action groups. This organi-

zation enables precise alignment of actions with relevant observations. Employing a

self-attention mechanism, UPDeT learns the intricate dynamics between various observa-

tion entities, enhancing the policy’s effectiveness at the action-group level. This method,

which we refer to as Policy Decoupling (detailed in Sec. 3.2.3), leverages the self-attention

maps and embeddings of each observation entity to refine policy decisions within grouped

actions. By integrating the transformer architecture with the policy decoupling strategy,

UPDeT achieves significant performance improvements over traditional RNN-based

models in multi-agent settings.

Here we outline the mathematical formulation of UPDeT, specifically focusing on the

computation of a global Q-function using a self-attention mechanism.

Initially, agent observations are transformed into semantic embeddings to accommo-

date various observation spaces. For instance, if an agent ai at time step t observes k

entities, these observations are embedded using an embedding layer E:

(3.1) et
i = {E(ot

i,1), . . . ,E(ot
i,k)}.

Here, i represents the index of the agent within the set {1, . . . ,n}.

Subsequently, the value functions for each agent are estimated as follows:

(3.2) qt
i =Q i(h

t−1
i , et

i,ut).

In this model, ht−1
i

denotes the historical hidden state from the previous time step,

reflecting the dependency of the POMDP policy on past information. The observation

embedding et
i

and a candidate action ut
i
∈U are also incorporated, with θi defining the

parameters of Q i.

The global Q-function, Qπ, integrates these individual value functions:

(3.3) Qπ(st,ut)= F(qt
1, . . . , qt

n),

where Fi is a credit assignment function, defined by φi for each agent ai, as commonly

applied in value decomposition networks (VDN), summing the individual Q-values.

Following [100], the self-attention mechanism utilizes three matrices-keys (K), queries

(Q), and values (V)-to compute the attention as:

(3.4) Attention(Q,K,V)= softmax

(

QKT

√

dk

)

V,

with dk representing the dimension scaling factor. In our approach, self-attention is

employed to derive meaningful relationships from the embeddings of observed entities
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Figure 3.2: The figure depicts three distinct approaches to policy decoupling (top segment) 
alongside two types of temporal unit variants (lower segment). AR, MA, and EXP 
denote Action Restriction, Multi-task, and Explainable, respectively. The symbols o, e, q, 
and h are used to represent observations, embeddings, Q-values, and hidden states, which 
encompass n observational entities and m potential actions. The symbol G signifies the 
global hidden state, and t indicates the current timestep. Black circles are used to mark 
the variant that includes the respective feature, with variant (d) being our suggested 
UPDeT, which demonstrates superior performance. Comprehensive descriptions of all 
five variants are detailed in Section 3.2.3.

and global temporal information. To adapt this for decentralized MARL, we define

separate key, query, and value matrices for each agent, treating them as identical across

the layers of the transformer. The process is structured as:

R1
i = {ht−1

i , et
i},(3.5)

R l+1
i =Attention(R l

i ,R
l
i ,R

l
i).(3.6)

Finally, the output of the last transformer layer, RL
i

, is projected onto the value function

space using a linear function P:

(3.7) Q i(h
t−1
i , et

i,ui)= P(RL
i ,ui).

3.2.3 Policy Decoupling

Implementing a single transformer with a self-attention mechanism may not sufficiently

address diverse policy distributions. A versatile mapping function P specified in Eq. 3.7

is essential for managing varying input and output dimensions and enhancing represen-

tation capabilities. We introduce a concept called policy decoupling as a fundamental
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component of UPDeT, utilizing correlations between inputs and outputs to refine this

strategy.

The essence of the policy decoupling strategy is distilled into three primary objectives:

• Point 1 : Flexibility in policy dimensions. Traditional transformer blocks require

the output dimension to be equal to or less than the input dimension, which is often

unsuitable for MARL tasks where the number of actions may exceed the number

of entities.

• Point 2 : Simultaneous multi-task handling. A consistent model architecture that

does not necessitate new parameters for each new task is crucial. However, achiev-

ing this often complicates fulfilling the requirements of Point 1 .

• Point 3 : Enhanced model explainability. Replacing conventional RNN-based mod-

els with a structure that provides clearer insights into policy generation is prefer-

able.

In response to these objectives, we propose three methods of policy decoupling:

Vanilla Transformer, Aggregation Transformer, and UPDeT (ours), detailed further

in Fig. 3.2 and discussed in the experiments section as our baselines.

With UPDeT, the challenge lies in establishing a robust mapping from entity features

to the policy distribution. UPDeT begins by aligning each input entity with its relevant

output policy segment. This alignment, typically straightforward in MARL tasks due

to the commonality of interactive actions, significantly simplifies the model’s learning

process. When an entity feature corresponds to multiple interactive actions, we catego-

rize the action space into several groups. Each group contains actions associated with a

specific entity. This process, depicted in the left part of Fig. 3.3, ensures that if an entity

feature’s action-group contains more than one action, a shared fully connected layer is

employed to map these to the action dimension. Conversely, if an entity feature lacks

a corresponding action, it is discarded without loss of information, as the transformer

aggregates essential details into each output. The complete pipeline of UPDeT is illus-

trated in the right part of Fig. 3.3. With this approach, UPDeT imposes no constraints

on action choices and introduces no new parameters for different scenarios, enabling

a single model to be trained and deployed universally across multiple tasks. Moreover,

matching entity features with action-groups as shown provides explainability through

attention heatmaps, aligning with Point 3 .

Policy decoupling in UPDeT allows handling multiple tasks simultaneously by main-

taining a fixed architecture that does not require the introduction of new parameters
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Figure 3.3: The primary architecture of our proposed UPDeT is outlined, where o, e, and 
q symbolize the observation entities, feature embeddings, and Q-values for each action, 
respectively. Three operations‚ ‘preserve’, ‘aggregation’, and ‘abandon’‚ are employed to 
formulate the policy distribution without the addition of new parameters. Further 
information on these operations is available in Section 3.2.3.

for new tasks. The policy is segmented into various action groups according to the corre-

sponding observation entities, enabling the model to adapt its behavior based on specific 
task requirements without overhaul. This strategy significantly reduces the complexity 
traditionally associated with multi-task learning and improves the model’s scalability 
and transfer capabilities across different MARL environments.

3.2.4 Temporal Unit Structure

Transformers equipped with policy decoupling strategies face challenges in Dec-POMDPs 
[66], where each agent a selects actions based on a policy πa(ua|τa), with u and τ repre-

senting the action and action-observation history, respectively. While recurrent models 
like GRUs and LSTMs capture this history through hidden states, integrating these 
states with transformer blocks has been underexplored. We propose two methodologies 
in UPDeT to integrate hidden states:

1) Global Temporal Unit: This method integrates a global hidden state directly 
into the transformer block, as shown in Eq. 3.8:

R1
= {ht−1

G , et
1},

R l
=Attention(R l−1,R l−1,R l−1),

{ht
G , et

L}= RL.

(3.8)
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Here, G indicates a ’global’ context, which simplifies integration and ensures robust

performance across various scenarios.

2) Individual Temporal Unit: In contrast to the global method, this approach

maintains a distinct hidden state for each entity, enhancing control over historical

information:

R1
= {ht−1

1 , . . . ,ht−1
j , et

1},

R l
=Attention(R l−1,R l−1,R l−1),

{ht
1, . . . ,ht

j, et
L}= RL.

(3.9)

Although this method offers precise tracking of history for each entity, it increases the

complexity of learning individual hidden states.

These variants are further evaluated in Section 4.1.2, discussing their performance

and trade-offs.

3.2.5 Optimization

For optimization, we employ the standard squared TD error used in DQNs [63]:

(3.10) L(θ)=
b

∑

i=1

[

(

y
DQN

i
−Q(s,u;θ)

)2
]

,

where b denotes the batch size. In partially observable settings, we extend the concept of

Deep Recurrent Q-Networks (DRQN) [28], replacing traditional GRU [16] or LSTM [30]

units with our transformer-based temporal units to enhance sequential decision-making.

3.3 Results

We evaluate UPDeT and its policy decoupling variants in challenging StarCraft II

micromanagement scenarios, comparing it against a traditional RNN-based model.

UPDeT shows significant performance improvements in both single and multiple scenario

transfer tasks.

3.3.1 Single Scenario

In this series of experiments, we examine the effectiveness of UPDeT across various

scenarios from SMAC [79], including 3 Marines vs 3 Marines (3m, Easy), 8 Marines vs

8 Marines (8m, Easy), 4 Marines vs 5 Marines (4m_vs_5m, Hard+), and 5 Marines vs
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6 Marines (6m_vs_7m, Hard). The scenarios use only the player’s units as agents, and

defeated enemy units are excluded from the action space.

We also review state-of-the-art MARL methods like VDN [90], QMIX [76], and

QTRAN [31], detailed at https://github.com/oxwhirl/pymarl. Although other meth-

ods like COMA [24] and IQL [92] were considered, their inconsistent performance is

documented in several studies [57, 76, 115]. UPDeT is integrated with VDN, QMIX, and

QTRAN, showing enhancements over the traditional GRU-based model. The robustness

of these results is supported by eight replication trials, with the win rate fluctuations

and standard deviations presented in Fig. 3.4.

The results of applying various policy decoupling strategies are detailed in Fig. 3.4.

Vanilla Transformer, serving as our baseline for transformer models, achieves only

partial success. It maps each output embedding either to an action or discards it, yet

fails to converge in our tests. The Aggregation Transformer, an adaptation of the Vanilla

model, consolidates embeddings into a single global one before projecting them onto a

policy distribution. This model meets limited criteria and underperforms compared to the

GRU model, underscoring the necessity for policy decoupling strategies in transformer

models to surpass traditional RNN performance.

We then implement UPDeT to explore the optimal architecture for temporal units,

as shown in Fig. 3.4. Our findings indicate that omitting a hidden state significantly

degrades performance, whereas incorporating a global hidden state fosters faster conver-

gence without sacrificing final results. For a broader evaluation, UPDeT is integrated

with VDN, QMIX, and QTRAN to assess its effectiveness against RNN-based models in

the 5m_vs_6m (Hard) scenario, as illustrated in Fig. 3.4. When combined with UPDeT, all

three MARL methods exhibit notable improvements over the GRU model. This analysis

confirms that UPDeT enhances any contemporary MARL method to achieve superior

outcomes.

Further, UPDeT is integrated with VDN and evaluated across varying scenarios from

Easy to Hard+, as depicted in Figs. 3.4. UPDeT consistently excels in easier settings

and significantly outperforms the GRU model in tougher scenarios. In the 4m_vs_5m

(Hard+) scenario, UPDeT achieves an approximate 80% improvement over the GRU

model. Lastly, an ablation study on UPDeT with matched and mismatched observation-

entity|action-group configurations, as shown in Fig. 3.4, reveals that disrupting the

typical ’attack’ action and enemy unit pairing results in severely diminished performance,

even falling below that of the GRU model. This underscores the importance of combining

policy decoupling with aligned observation-entity|action-group strategies for UPDeT to
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Figure 3.4: Experiment result with different task settings.

formulate effective policies.
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(Transfer from 7 marines to 3 marines)
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(Transfer from 3 marines to 7 marines)

Figure 3.5: Experimental outcomes for transfer learning using UPDeT (labeled as Uni-
Transfer) and a GRU unit (denoted GRU-Transfer), alongside UPDeT training initiated
from scratch (Uni-Scratch), are presented. The models are initially loaded from a source
scenario at the 0 time step and subsequently fine-tuned on target scenarios at 500k time
steps. A circle point in the results marks the performance of the models on new scenarios
prior to any fine-tuning.

3.3.2 Multiple Scenarios

In this section, we explore UPDeT’s transfer capabilities relative to RNN-based models.

The models are initially trained in the 3m scenario and subsequently used to train further

in the 5m and 7m scenarios, with a reverse training sequence from 7m to 3m. Despite
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UPDeT’s architecture remaining unchanged, the RNN model requires adjustments to

the source model’s architecture to accommodate the new scenario dimensions during

training on target scenarios. The GRU cell parameters are retained, while the fully

connected layer is reinitialized to suit the new scenario dimensions.

The final outcomes, shown in Figs. 3.5, demonstrate UPDeT’s considerable superiority

over the GRU model, requiring significantly fewer timesteps to converge compared to

the GRU and training from scratch. Moreover, UPDeT exhibits robust generalization

capabilities without the need for finetuning, suggesting that it acquires a durable policy

with meta-level skills.

3.4 Conclusion

The introduction of UPDeT marked a notable shift from traditional RNN-based models

to a more dynamic and scalable transformer-based approach. By leveraging the unique

self-attention mechanism of transformers, UPDeT effectively addresses the challenges

of partial observability and multi-agent coordination. This shift not only enhances the

learning efficiency and decision-making accuracy of individual agents but also fosters

better cooperative strategies among agents in decentralized settings.

Our experimental evaluations, conducted in the challenging micromanagement sce-

narios of StarCraft II, have demonstrated the superior performance of UPDeT compared

to conventional models. UPDeT’s ability to generalize across different scenarios without

the need for extensive retraining underscores its potential for real-world applications

where adaptability and robustness are critical. Moreover, the policy decoupling technique

introduced by UPDeT has proven instrumental in aligning specific agent actions with cor-

responding environmental cues, thereby improving the interpretability and effectiveness

of the learned policies.

The success of UPDeT in these complex scenarios provides promising directions for

future research. The flexibility and scalability of the transformer architecture invite

further exploration into other areas of reinforcement learning, such as dynamic task

allocation and real-time strategy games. Additionally, this work sets a new benchmark

for practical implementations of deep learning models in multi-agent environments. The

continued refinement and adaptation of UPDeT will play a crucial role in harnessing the

full potential of multi-agent systems across various domains.
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POLICY DIAGNOSIS VIA MEASURING ROLE DIVERSITY

IN COOPERATIVE MULTI-AGENT RL

4.1 Introduction

M
ulti-Agent Reinforcement Learning (MARL) achievements have largely been

empirically driven [5, 46, 88]. A fundamental challenge is the fair evaluation of

various algorithms in MARL, as illustrated in Fig. 4.1a. Current research often

focuses on algorithmic performance in specific tasks while neglecting their degradation in

others [31, 76, 102, 109]. Additionally, advanced algorithms does not guarantee optimal

results [24, 90, 102], largely due to the diverse attributes and objectives of agents in

different scenarios. This indicates that a single algorithm may not be universally effective,

necessitating tailored policy adjustments or training modifications.

For example, Parameter Sharing is a common strategy in MARL, where agents share

model parameters [31, 76, 90]. While this can enhance policy optimization through a

shared experience buffer, its effectiveness varies across different scenarios [15, 70, 94]. In

some cases, selective or no parameter sharing significantly boosts performance over full

parameter sharing. The underlying causes for these variations in effectiveness, however,

are not well understood. This research explores how role diversity can influence the

selection of parameter sharing strategies.

Communication is another critical aspect of MARL, enabling agents to share vital

information to coordinate their actions effectively [38, 41, 49, 56, 89]. While sometimes
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constrained [56, 79], communication often offers flexibility in how and when information

is integrated [41, 86]. Our analysis delves into the relationship between role diversity

and communication, showing how the former dictates the latter’s necessity.

Credit Assignment also receives substantial attention in MARL. Techniques often

integrate Q-learning or policy gradient methods with additional modules like value

decomposition [31, 76, 90, 102] or shared critic functions [24, 56, 109] to optimize individ-

ual policies. While some argue that direct use of reward signals is unnecessary [70, 92],

selecting the optimal credit assignment method, including independent learning (IL), is

challenging due to varying performance across tasks. This work posits that role diversity

significantly impacts the effectiveness of credit assignment strategies.

A well-conceived MARL policy should avoid any of these strategies that can lead to

substantial performance setbacks, referred to as the barrel effect. This motivates the

need for a metric to evaluate the characteristics of various MARL tasks. We introduce

Role Diversity as such a metric, quantifying behavioral differences among agents via

action-based, trajectory-based, and contribution-based dimensions, collectively termed

as role distance. Our theoretical and experimental analyses confirm that distinct types

of role diversity distinctly affect algorithmic, approximation, and statistical errors across

the main MARL training strategies-underscoring the utility of role diversity.

Role diversity provides guidelines for identifying policy weaknesses and assessing

whether a superior training strategy based on role diversity is feasible, thereby enabling

more accurate algorithm performance comparisons across different MARL tasks.

4.2 Role Diversity

This section elucidates how role diversity is defined and measured within a multi-agent

task, highlighting its utility in evaluating existing policies and determining the necessity

for policy revisions.

Role diversity serves as a key differentiator of agent characteristics in MARL, as

evidenced by several studies [15, 50, 101, 102]. Traditional definitions of an agent’s role-

such as roles perceived as high-level options within a hierarchical RL framework [102],

or based on environmental impact similarities under a random policy [15]-fall short in

capturing the full spectrum of behavioral differences among agents. Our approach aims

to comprehensively delineate roles across three dimensions: action-based, trajectory-

based, and contribution-based. This refined definition facilitates the measurement of

role distance between agents and employs this metric to quantify role diversity for each
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Figure 4.1: (a) Algorithms 1 and 2 serve as illustrative examples demonstrating the
assembly of MARL policies via diverse training methodologies. These methodologies
encompass three distinct aspects of MARL: parameter sharing, communication, and
credit allocation. It is important to note that the effectiveness of Algorithms 1 and
2 varies across tasks from 1 to n. (b) Employing Role Diversity as a metric for each
task facilitates the identification of any inappropriate applications of specific training
strategies in the existing policy. This evaluation aids in selecting an optimal mix of
training strategies, thereby enhancing overall policy performance.

MARL task, establishing a robust link between role diversity and optimization efficacy

in MARL.

4.2.1 Action-based Role

In MARL, distinct actions performed by agents, given their specific states, inherently

define their roles. Although actions at a single timestep might suggest different roles
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Figure 4.2: Illustration of action-based role diversity within a single episode.

[102], consistent behavior across a series of actions is a more accurate indicator of role

differentiation. For instance, two soccer players passing the ball might perform differing

actions at each timestep, yet exhibit similar roles over the course of play, as shown in

studies like [46]. Hence, we focus on a sequence of actions to define the action-based role,

utilizing frequency statistics of actions over an interval encompassing h steps before and

after a specific timestep. The action-based role difference is mathematically defined as:

(4.1) ri
t =

1
2h+1

t+h
∑

t−h

πi,

where t denotes the current timestep, h the interval, and i the agent index. The distance

between the action-based roles of two agents, i and j, is quantified using the symmetrical

Kullback-Leibler divergence:

(4.2) d
i, j

(act)t = KL(ri
t‖r

j
t)+KL(r j

t‖ri
t),

where d
i, j

(act)t represents the action-based role distance at timestep t, and KL denotes the

Kullback-Leibler divergence.

4.2.2 Trajectory-Based Role

Trajectory-based role diversity extends beyond mere action variance to include agents’

movement paths, which can reveal substantial differences in roles over time. In a scenario

such as a soccer match, where players frequently exchange passes, their actions might

appear similar, yet their trajectories-paths taken over the field-highlight their distinct

roles. This differentiation is crucial in many cooperative MARL settings, particularly

under partial observation conditions [79, 88, 113], where agents’ limited vision scopes

reduce commonality in perceived information. The trajectory-based role is therefore

assessed by comparing agents’ movement paths.
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4m_vs_5m3s_vs_5z

Figure 4.3: Trajectory-based role diversity observed in one episode.

1s1m1h1M_vs_5z4m_vs_3z

Figure 4.4: Contribution-based role diversity in one episode.

Trajectory differences between two agents i and j at timestep t, denoted as d
i, j

(tra j)t,

are measured using the observation overlap percentage, a direct metric reflecting the

proportion of shared space in their movements. This method provides a straightforward,

scalable measure of role diversity based on agents’ trajectories, as demonstrated in

Figure 4.3.

To explore the practical applications of these metrics, we extend our analysis to

real-world scenarios, incorporating both controlled game environments and realistic

settings where agents operate based on actual imagery and semantic data. This holistic

approach not only underscores the theoretical constructs of our role diversity metrics

but also highlights their versatility and adaptability in varying MARL contexts.
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4.2.3 Contribution-Based Role

In modern MARL environments, agents often start with diverse attributes to create a

varied and realistic multi-agent system [46, 56, 79, 88]. For instance, in simulations

like those in [46], roles such as forward and goalkeeper have significantly different

observation ranges, action capabilities, and reward structures. While these differences

are apparent, quantifying the distance between such roles presents a challenge.

To tackle this, we introduce the concept of contribution, reflecting each agent’s dif-

ferential impact within a cooperative setup. In MARL, the goal is to develop an optimal

joint policy from the individual policies of N agents, making the quantification of each

agent’s contribution towards the collective outcome crucial. Techniques in [24, 76, 90]

optimize individual policies effectively by using role-specific reward signals. We measure

an agent’s contribution using their Q value or state value, indicative of their role in

the team’s success. The contribution-based role diversity between any two agents is

calculated as follows:

(4.3) d
i, j

(cont)t =
|vt

i
−vt

j
|

max(vi,v j)
∀i, j ∈ N,

where v represents the Q or state value of an agent, and |vt
i
−vt

j
| is the absolute difference

in values between two agents at timestep t, normalized against the maximum value

difference among all agents, thus maintaining the diversity scale from 0 to 1.

4.2.4 Distance to Diversity

The overall role diversity within a multi-agent system (MAS) is quantified by averaging

the role distances among different agent pairs, covering various aspects of roles. For a

system with N agents, this overall diversity is computed as:

(4.4) Dt =
1

N(N −1)/2

N−1
∑

i=0

N
∑

j=i+1
d

i, j
t ,

where d
i, j
t could represent any of the role distances, such as action-based d

i, j

(act)t, trajectory-

based d
i, j

(tra j)T , or contribution-based d
i, j

(cont)T . This formula provides a comprehensive

measure of action-based, trajectory-based, and contribution-based role diversity within

the team.
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4.3 Policy Diagnosis

This section leverages role diversity metrics to assess the efficacy of selected training

strategies within a MARL framework. We present case studies demonstrating how

variations in role diversity types impact policy outcomes during an episode and highlight

deficiencies in current training methodologies. We examine three prevalent training

strategies in MARL: parameter sharing, communication, and credit assignment.

For action-based role diversity, an illustration is provided in Fig. 4.2. We analyze

a battle scenario from SMAC, designated 4m_vs_3z, identifying three critical phases:

Securing Optimal Positions, Concentrating on a Common Adversary, and Developing Indi-

vidual Tactics. Initially, agents seek strategically advantageous positions, enhancing role

diversity. In the subsequent phase, as agents focus on a common target, their strategies

converge, reducing role diversity. The final phase sees agents adapting individually to

enemy maneuvers, leading to increased role diversity. The decision to share or segregate

model parameters greatly affects policy optimization, with high role diversity favoring

individual policies in the first and last phases, while the middle phase suggests that a

shared policy could be more effective.

The example of trajectory-based role diversity is detailed through observation overlap

percentage curves in Fig. 4.3 for scenarios 3s_vs_5z and 4m_vs_5m. As the gameplay

progresses, the noticeable divergence in these curves indicates differing strategic ap-

proaches. In 3s_vs_5z, pronounced trajectory-based role diversity suggests a need for

individual observations and limited agent communication, enhancing training outcomes.

Conversely, in 4m_vs_5m, lower trajectory-based diversity supports shared observations,

facilitating learning.

Regarding contribution-based role diversity, as depicted in Fig. 4.4, there is significant

variance in the Q value curves across scenarios. In 4m_vs_3z, contribution-based role

diversity is relatively subdued compared to 1s1m1h1M_vs_5z, suggesting that a learnable

credit assignment module is advantageous in the former but detrimental in the latter.

This emphasizes the need to tailor credit assignment strategies according to the specific

role diversities encountered in different scenarios.

4.4 Experiments

In this section, we investigate how role diversity influences model performance and

informs adjustments in training strategies within cooperative MARL settings. Our key
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findings are: 1. Parameter sharing strategies’ performance strongly correlates with

Action-Based Role diversity (Sec. 4.4.1); 2. The effectiveness of communication mecha-

nisms is linked to Trajectory-Based Role diversity (Sec. 4.4.2); 3. The success of credit

assignment methods depends on Contribution-Based Role diversity (Sec. 4.4.3); 4. Train-

ing strategy decisions should align with the observed role diversity in different scenarios.

We primarily utilize the Multi-Agent Particle Environment (MPE) [56] and StarCraft

Multi-Agent Challenge (SMAC) [79] as experimental platforms, adapting them to suit

specific parameter sharing and communication needs. All experiments are conducted

using eight random seeds, with role diversity metrics derived from our baseline policy,

VDN [56], without parameter sharing or communication to ensure training robustness

and efficiency.

4.4.1 Parameter Sharing

Action-based role diversity significantly influences the speed and efficacy of parameter

sharing strategies in cooperative MARL. We select diverse scenarios from MPE and

SMAC benchmarks to capture a range of action-based role diversities. The performance

of various parameter sharing configurations and their corresponding model performance

curves are depicted in Table 4.1, Fig. 4.5, and Fig. 4.6. For SMAC, we employ two metrics

to quantify ru
t in Eq. 4.1: real action diversity and semantic action diversity, with the

latter categorizing actions into semantic groups such as move & attack. MPE scenarios

are limited to movement actions, thus do not feature semantic action diversity. Action-

based role diversity is calculated per Eq. 4.2. Our baseline MARL credit assignment

strategy, as detailed in Table 4.1, utilizes VDN [90] combined with full, partial, or no

parameter sharing. We also evaluate other popular credit assignment methods like

IQL [92], IA2C, MADDPG [56], MAPPO [109], MAA2C, and QMIX [76] under various

parameter sharing settings in Figs. 4.6 and 4.5. IA2C and MAA2C extend A2C [61] to

multi-agent contexts.

Table 4.1 shows the performance of three training strategies: No Shared, Partly

Shared, and Fully Shared using the VDN method. As action-based role diversity in-

creases, the Shared strategy experiences a decline in convergence speed (measured

in half the training steps) and in final reward (full training steps). Notably, scenarios

with identical agent types (e.g., 3s_vs_5z, 4m_vs_4z) do not necessarily correlate with

minimal action-based role diversity, and vice versa (e.g., 1s1m1h1M_vs_3z), indicating

the importance of role identification prior to establishing an effective policy. Figs. 4.5 and

4.6 illustrate model performances for two parameter sharing strategies: No Shared and
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Shared, across different credit assignment methods. For policy gradient-based methods,

we extend training from the standard 2M steps to 20M steps (a tenfold increase) due

to the slower convergence rates of these methods (e.g., MAPPO, MAA2C) compared

to Q-value-based approaches. Our results indicate that while different credit assign-

ment methods have a marginal impact on parameter sharing strategies, a consistent

trend emerges where non-parameter sharing strategies outperform as action-based role

diversity increases.

In conclusion, scenarios with significant action-based role diversity typically favor a

non-parameter sharing strategy to enhance convergence speed and peak performance,

whereas scenarios with minimal diversity benefit more from shared parameters.

Table 4.1: Evaluation of three parameter sharing approaches across various scenarios.
The term Warm-up denotes the point at which the reward values begin to diverge
among the strategies. The symbol + indicates the additional reward obtained from the
baseline established during the warm-up phase. The figures to the left and right of the
/ indicate the rewards obtained at halfway through the training and upon completion
of the training, respectively. The optimal performance for each scenario is highlighted
in bold red. The Role Diversity column is shaded in gradient grey, with darker shades
indicating greater diversity in roles. A comprehensive analysis is provided in Sec. 4.4.1.

Benchmark Scenario Role Diversity Warm-up No shared Partly shared Shared
SimpleSpread 14.1 -598.3 +137.0 / +142.9 +149.0 / +176.4 +154.1 / +198.0

Tag 17.8 3.8 +43.4 / +57.3 +47.0 / +60.9 +48.8 / +59.2
Adversary 18.3 10.7 +5.2 / +5.7 +6.2 / +6.6 +5.4 / +5.9

DoubleSpread-2 17.6 7.3 +47.8 / +53.2 +28.6 / +34.6 +3.6 / +15.9
MPE

DoubleSpread-4 19.5 22.0 +29.5 / +192.4 +12.0 / +91.3 +11.4 / +5.3
2m 3.1 / 12.2 6.0 +9.2 / +11.1 +15.5 / +15.6 +18.1 / +17.6

4m_vs_4z 3.3 / 19.3 4.4 + 8.8 / +12.7 + 10.5 / +14.7 +5.4 / +8.4
4m_vs_3z 3.8 / 12.1 7.2 +12.4 / +12.1 +12.5 / +12.5 +11.9 / +12.3

1c1s1z_vs_1c1s3z 8.7 / 22.0 11.8 +4.1 / +6.1 +3.7 / +5.9 +2.7 / +5.4
SMAC

1s1m1h1M_vs_5z 6.2 / 22.5 6.2 +6.4 / +9.1 +4.2 / +8.5 +3.7 / +6.1

4.4.2 Communication

In fields like computer vision and natural language processing, it is generally accepted

that more information leads to better model optimization, due to larger datasets with

more detailed and accurate annotations enhancing model training. However, in rein-

forcement learning, where data sampling depends on a potentially randomly initialized

policy, excessive information might complicate policy optimization and degrade data

quality, creating a counterproductive cycle. It is crucial to determine when and how

additional information through communication mechanisms should be integrated in
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Figure 4.5: Performance trends in Q-value based credit allocation using Shared and No

Shared parameter sharing approaches.

cooperative MARL. The necessity for this extra information heavily depends on the

similarity of support sets used for policy optimization among agents, largely influenced

by their trajectory-based role diversity as defined in Sec. 4.2.2. Scenarios with minimal

trajectory-based role diversity indicate uniform support set patterns, suggesting that

unified input through communication could benefit policy optimization. Conversely, our

experiments show that scenarios with significant observation overlaps, indicative of

substantial trajectory-based role diversity, better accommodate communication.

Additional experiments to explore how the pattern of input observations (support

sets) affects model performance when altering the scope of vision are detailed in Table 4.2.

These results confirm that model performance strongly correlates with the scope of vision

and depends on trajectory-based role diversity. Scenarios with low trajectory-based

role diversity are conducive to a broader vision scope, indicating that similar support

set patterns enhance policy optimization. In contrast, scenarios with high trajectory-
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Figure 4.6: Performance curves on policy gradient-based(row three and four) credit
assignment.

based role diversity benefit from a reduced vision scope, promoting diverse pattern

inputs advantageous for policy optimization. This supports the notion that in cases

with minimal trajectory-based role diversity, additional information provided through

communication can help form a consistent pattern of support sets, generally preferable.

4.4.3 Credit Assignment

The efficacy of various credit assignment methods in MARL is closely linked to the

contribution-based role diversity within scenarios. We focus on three main Q value-based

MARL algorithms: VDN [90], QMIX [76], and IQL [92], evaluating their performance

across different setups with varying levels of contribution-based role diversity, as mea-

sured by the Q values (Eq. 4.3). In scenarios with low Q diversity (approximately 0.5),

QMIX tends to outperform VDN under both shared and non-shared parameter strategies.
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Table 4.2: The impact of varying vision scopes (6-9-18) on model performance is evident.
The smallest scope, denoted by 6, corresponds to the agents’ attack range. Optimal
performance is highlighted in red. Columns representing vision scope feature a gradient
of red, with deeper shades indicating superior policy performance. A comprehensive
analysis is provided in Sec. 4.4.2.

scenario obs overlap scope performance scenario obs overlap scope performance
6 15.6 / 19.5 / 19.5 6 6.3 / 9.2 / 10.4

1s1m1h1M_vs_3z 0.41 9 16.4 / 19.5 /19.7 4m_vs_5m 0.47 9 6.5 / 10.1 / 10.9
18 16.1 / 19.6 / 19.9 18 6.8 / 10.9 / 11.1
6 8.4 / 15.3 / 18.8 6 11.5 / 15.1 / 17.6

1s1m1h1M_vs_4z 0.25 9 8.4 / 15.7 / 19.7 1c1s1z_vs_1c1s3z 0.40 9 12.3 / 16.0 / 17.8
18 7.8 / 11.8 / 15.9 18 12.4 / 15.3 / 17.6
6 6.6 / 14.2 / 17.7 6 6.0 / 15.1 / 17.5

1s1m1h1M_vs_5z 0.18 9 6.3 / 12.6 / 15.3 3s_vs_5z 0.21 9 5.4 / 12.9 / 16.4
18 5.9 / 8.9 / 10.4 18 5.2 / 9.0 / 12.1

Table 4.3: The influence of action-based role diversity on the effectiveness of various
parameter sharing strategies is observed in the MPE [56] and SMAC [79] benchmarks.
Optimal performance in each case is indicated by a ✓in a red-colored cell. Algorithms
marked with asterisks are statistically comparable in performance.

no shared shared
scenario Q diversity

vdn qmix iql vdn qmix iql
1c1s1z_vs_1c1s3z 12.3 / 15.9 / 17.9 12.9 / 17.8 / 19.4 ✓ 10.8 / 12.3 / 12.2 11.2 / 14.5 / 17.2 12.5 / 15.8 / 18.4 ✓ 9.8 / 11.2 / 11.9

3s_vs_5z 5.4 / 12.9 / 16.4 4.6 / 13.5 / 17.0 ✓ 4.6 / 5.1 / 7.9 6.0 / 13.6 / 17.2 4.2 / 12.9 / 20.0 ✓ 4.3 / 5.3 / 7.8
4m_vs_4z

<0.1
4.3 / 13.2 / 17.1 4.3 / 18.3 / 18.8 ✓ 3.3 / 3.2 / 3.7 4.6 / 9.8 / 12.8 4.3 / 14.8 / 16.5 ✓ 2.6 / 3.2 / 3.2

4m_vs_5m 6.5 / 10.1 / 10.9 * 7.0 / 9.9 / 10.9 * 4.8 / 7.6 / 8.1 6.8 / 11.9 / 12.6 * 6.9 / 12.4 / 13.3 * 5.1 / 8.1 / 8.5
4m_vs_3z

0.1-0.5
7.5 / 19.6 / 19.3 * 6.5 / 19.7 / 19.3 * 4.5 / 5.7 / 11.1 6.3 / 19.1 / 19.5 * 6.1 / 19.7 / 19.7 * 4.2 / 4.5 / 5.7

1s1m1h1M_vs_3z 16.4 / 19.6 / 19.6 ✓ 6.5 / 7.5 / 7.8 11.1 / 16.9 / 19.2 16.1 / 19.6 / 19.8 ✓ 9.9 / 9.8 / 8.9 12.2 / 17.9 / 19.6
1s1m1h1M_vs_4z 8.4 / 16.0 / 19.8 ✓ 4.9 / 5.1 / 6.1 7.4 / 9.0 / 10.7 8.1 / 13.5 / 18.2 ✓ 5.5 / 5.0 / 5.0 7.1 / 8.5 / 8.5
1s1m1h1M_vs_5z

>0.5
6.3 / 12.6 / 15.3 ✓ 4.2 / 4.2 / 3.6 5.5 / 6.1 / 6.5 6.2 / 9.9 / 12.3 ✓ 4.0 / 2.5 / 4.2 5.4 / 6.3 / 6.3

However, as Q diversity increases, QMIX’s performance begins to decline. For instance,

in scenarios with markedly diverse Q value distributions, such as 1s1m1h1M_vs_3/4/5z,

VDN significantly surpasses QMIX. Meanwhile, IQL, although generally underperform-

ing relative to VDN and QMIX, shows robustness in scenarios with minimal Q diversity

and performs adequately in simpler settings like 1s1m1h1M_vs_3z.

The findings suggest that QMIX, which incorporates a learnable neural network for

value decomposition, may not be ideal in scenarios with substantial contribution-based

role diversity due to the network’s inability to effectively minimize approximation errors

for Qtot under diverse reward conditions. This complexity adds unnecessary burden,

particularly when the contribution to the overall reward varies significantly among

agents. Unlike QMIX, IQL treats each Qtot as an individual Q value and does not

suffer from these drawbacks. Hence, in environments with high contribution-based role

diversity, it is advisable to avoid credit assignment methods that employ learnable value
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decomposition modules, opting instead for strategies that allow for more straightforward

and direct credit assignment. This approach can prevent potential performance issues

caused by complex value decompositions in diverse agent settings.

4.5 Conclusion

We have established role and role diversity as fundamental metrics for evaluating and

diagnosing policies in cooperative multi-agent tasks. Through both theoretical analysis

and practical experiments on established MARL benchmarks, we have demonstrated a

pronounced correlation between role diversity and model performance.

Our comprehensive analysis suggests that role diversity is an invaluable metric for

identifying policy weaknesses and selecting appropriate training strategies within a

cooperative MARL framework. Specifically, we advocate for strategic adjustments based

on role diversity measurements:

• Action-Based: High diversity indicates the suitability of a non-parameter sharing

strategy to allow for greater individual agent flexibility, while low diversity suggests

that parameter sharing could enhance overall efficiency.

• Trajectory-Based: High diversity implies that limiting communication could

prevent complications arising from conflicting agent trajectories, whereas low

diversity supports the use of enhanced communication to streamline collective

agent actions.

• Contribution-Based: High diversity favors the use of independent learning or

fixed credit assignment methods to cater to the varied contributions of individual

agents, while low diversity benefits from integrated strategies that consolidate

these contributions.

Furthermore, the utility of role diversity extends beyond fully optimized policies:

Role diversity metrics can provide critical insights into policy effectiveness even before

policies are fully trained. Preliminary analysis at early training stages (e.g., after 100k

timesteps) can reveal significant differences in role diversities, guiding early intervention

and strategic adjustments. Additionally, when policy diagnosis indicates a preferable

strategy, it is not always necessary to restart the training process from scratch. For

instance, if a switch from a parameter-sharing to a non-sharing strategy is advised,

existing models can be redistributed among agents and fine-tuned individually, thus

preserving prior learning while aligning with new strategic directions.

39





C
H

A
P

T
E

R

5
ONE PLATFORM FOR ALL: A UNIFIED MULTI-AGENT RL

LIBRARY

5.1 Introduction

W
hile single-agent RL has achieved substantial integration of both algorithms

(e.g., SpinningUp [2], Tianshou [107], RLlib [54], Dopamine [13], and the

Stable-Baselines series [21, 29, 74]) and environments (e.g., Gym [10], Gymna-

sium [27]), MARL encounters unique challenges in establishing a unified, high-quality

library system. The main challenge stems from the diverse range of MARL algorithmic

pipelines, which vary in their objectives-some promote cooperation among agents, while

others encourage competition to maximize individual gains at the expense of others.

These algorithms also differ in their approaches to parameter sharing; for example,

HATRPO [45] requires independent parameters, whereas MAPPO [109] benefits from

shared parameters. Furthermore, the application of centralized information varies; some

algorithms integrate value functions (e.g., VDN [87]), and others centralize them entirely

(e.g., MADDPG [56]). Although platforms like EPyMARL [70] attempt to harmonize

MARL algorithms by categorizing them into independent learning, centralized critic,

and value decomposition frameworks, they fall short in addressing the full spectrum of

these challenges.

Moreover, the diversity of interfaces in multi-agent environments, tailored to specific

tasks (e.g., asynchronous interactions in Hanabi, action masks in SMAC [79], and the
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blend of local observation with global state in MAgent [113]), leads to significant incon-

sistencies. These inconsistencies hinder the creation of a uniform agent-environment

interaction framework, complicating the alignment between algorithm implementations

and task environments. Consequently, an algorithm developed for one environment may

not seamlessly transition to another due to these interface discrepancies. While plat-

forms like PettingZoo [93] offer a diverse set of multi-agent tasks, they do not adequately

support CTDE-based algorithms, as they lack explicit provisions for critical data like

global state and action masks. Alternative approaches, such as the MAPPO benchmark

[109], which equips each environment with a distinct runner script, introduce their own

challenges, including increased maintenance complexity and difficulties in extending to

new tasks.

5.2 Existing Libraries

Creating a unified platform for MARL research is valuable yet challenging. The field has

evolved from simple, single-task libraries to more sophisticated tools and APIs capable

of handling a variety of tasks and advanced algorithms.

PyMARL [79], the first and most recognized MARL library, was originally developed

for the SMAC [79] environment and focuses on team-based cooperative learning to

achieve higher team rewards. However, PyMARL has not been updated recently and

fails to incorporate recent advancements in the field. Extensions such as PyMARL2 [32]

and EPyMARL [70] have been developed to address these limitations.

PyMARL2 [32] enhances the original by introducing a fine-tuned version of QMIX

[76], providing state-of-the-art performance on SMAC. It expands the library to include

ten algorithms, integrating numerous code-level enhancements.

EPyMARL [70] aims to provide a comprehensive framework for unifying cooper-

ative MARL algorithms. It categorizes algorithms into independent learning, value

decomposition, and centralized critics, although it remains limited to cooperative con-

texts. EPyMARL implements nine algorithms and has added three more cooperative

environments for broader algorithm testing.

While these libraries build on the centralized training decentralized execution (CTDE)

paradigm set by PyMARL, other MARL libraries have been developed with different

focuses.

MARL-Algorithms [58] covers a broader array of topics including improved credit

assignment, communication-based learning, graph-based learning, and multi-task cur-
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Table 5.1: A comparison between current MARL libraries and our MARLlib. (x) stands
for the number of available algorithms. * denotes that the benchmark has a unique
framework of its own.

Library
Task

Mode

Supported

Env
Algorithm

Parameter

Sharing

Async

Sam-

pling

Framework

PyMARL [73] cooperative 1
Independent Learning (1)

Centralized Critic (1)
Value Decomposition (3)

full-sharing *

PyMARL2 [32] cooperative 1
Independent Learning (1)

Centralized Critic (1)
Value Decomposition (9)

full-sharing PyMARL

MARL-Algorithms [58] cooperative 1

CTDE (6)
Communication (1)

Graph (1)
Multi-task (1)

full-sharing *

EPyMARL [70] cooperative 4
Independent Learning (3)

Centralized Critic (4)
Value Decomposition (2)

full-sharing
non-sharing

PyMARL

MAlib [117] self-play
2 +

PettingZoo [93]
OpenSpiel [47]

Population-based
(9)

full-sharing
group-sharing
non-sharing

✓ *

MAPPO
benchmark [109]

cooperative 4 Multi-agent PPO (1)
full-sharing
non-sharing

✓
pytorch-a2c-

ppo-acktr-gail [44]

MARLlib

cooperative
collaborative
competitive

mixed

10 +
PettingZoo

Independent Learning (6)
Centralized Critic (7)

Value Decomposition (5)

full-sharing
group-sharing
non-sharing

✓ Ray [64]/RLlib [54]

riculum learning, featuring nine algorithms but primarily tested on SMAC.

MAPPO benchmark [109], the official repository for MAPPO, focuses on cooperative

MARL across four environments, aiming to establish a robust baseline with its singular

focus on MAPPO.

MAlib [117] introduces a newer library that integrates game theory with MARL for

population-based solutions across a spectrum of multi-agent tasks.

Although these existing libraries provide solid platforms for MARL research, they

exhibit significant limitations, notably in task coverage and environment diversity, as

highlighted in Table 5.1. Furthermore, these libraries often neglect the organizational

structure of algorithms, resulting in limited extensibility and cumbersome codebases.

5.3 MARLlib: A Scalable MARL Library

To address the inherent challenges of MARL, we introduce MARLlib, a comprehensive

library built on top of Ray [64] and RLlib [54]. MARLlib leverages the core strengths of

RLlib and introduces four innovative features, positioning it as a pivotal resource for the

MARL research community.
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1. Unified algorithm pipeline with a novel agent-level distributed dataflow:

MARLlib is architected around the principle that all MARL paradigms can effectively

be decomposed into a series of single-agent processes, where each agent independently

manages its dataflow and policy optimization. This framework supports a wide array of

task types-cooperative, collaborative, competitive, and mixed-within a single algorithmic

framework. Algorithms are categorized based on their use of centralized information,

enhancing modularity and extensibility. This design is illustrated in Figure 5.1, where

MARLlib successfully integrates multiple algorithms using the proposed distributed

dataflow architecture.

2. Unified multi-agent environment interface: MARLlib introduces a standard-

ized interface that follows the Gym convention, designed to be compatible with a broad

range of existing multi-agent environments. This interface supports asynchronous inter-

actions and provides all necessary data for various algorithms, effectively decoupling

the algorithms from the environment specifics. MARLlib is compatible with ten diverse

environments, such as SMAC [79], MAMuJoCo [71], and others, each selected for their

unique characteristics and the variety of MARL challenges they present.

3. Effective policy mapping: To accommodate different task requirements, MARL-

lib offers flexible parameter sharing options-full-sharing, non-sharing, and group-sharing-

through an easy-to-use policy mapping API, originally developed in RLlib. These settings

can be adjusted via a configuration file, allowing users to experiment with different

strategies effortlessly. This feature is crucial for adapting the same algorithm to various

scenarios without modifying the underlying codebase.

4. Exhaustive performance evaluation: We conducted extensive testing across

23 different scenarios from five distinct environment suites, averaging results over four

random seeds. This rigorous testing, involving over a thousand individual experiments,

not only validates the functionality of MARLlib but also provides a reliable benchmark for

the community. The results are accompanied by detailed hyper-parameter documentation

to ensure reproducibility and facilitate further analysis, discussed in Section 5.4.

Through these features, MARLlib establishes itself as a versatile platform for devel-

oping, training, and evaluating MARL algorithms, promising to drive both theoretical

and practical advancements in the field.

5.3.1 Agent-level Dataflow

Centralized Training with Decentralized Execution (CTDE) is a widely recognized ap-

proach for addressing multi-agent challenges, where agents independently execute and
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Configurations

MARLlib Environment Interface

Ray / RLlib

Grid World & Toy Task: LBF, RWARE, MAgent, MPE, etc. 

Gaming & Simulation: MAMuJoCo, Pommerman, Hanabi, Starcraft, etc. 

Real World Problem: MetaDrive, Google Research Football, etc. 

MARLlib Algorithms

Algorithm

Hyperparameter

Agent

Architecture

Independent Sampling

(data collection)
Optimization

Ray/RLlib

Settings

Policy Mapping (parameter sharing)

Independent 

Learning

Value 

Decomposition

Centralized 

Critic

IQL IPG 

IA2C IDDPG 

ITRPO IPPO

MAA2C COMA MADDPG 

MATRPO MAPPO 

HATRPO HAPPO

VDN QMIX

FACMAC

VDA2C VDPPO

Postprocessing

(data sharing)

Task/Scenario 

Parameter

Agent-Level Distributed Dataflow

Figure 5.1: An overview of Multi-Agent RLlib (MARLlib). MARLlib unifies environment
interfaces to decouple environments and algorithms. Beyond, it unifies independent
learning, centralized critic, and value decomposition algorithms with an agent-level
distributed dataflow, and allows flexible parameter sharing by means of policy mapping.
The whole pipeline can be fully determined by configuration files. To our best knowledge,
with the widest coverage of algorithms and environments, MARLlib is one of the most
comprehensive MARL research platform.

optimize their policies while utilizing central data during training to align their updates.

In this paradigm, the learning process is generally divided into two phases: data collec-

tion and model refinement. During model refinement, all data acquired in the collection

phase are accessible, facilitating centralized training. Nonetheless, this integration of

data selection and model optimization into a single phase complicates adapting the

algorithm for various operational modes such as cooperative and competitive scenarios,

necessitating a complete redesign of the learning workflow.

MARLlib effectively tackles this complexity by reorganizing the collective dataflow

into a distributed system at the agent level. It treats each agent as a separate entity

in both data gathering and optimization, while still allowing for the sharing of central

data during the postprocessing phase (a feature in RLlib API that processes data prior

to optimization, adapted here to support varied algorithms) to maintain consistency.

During postprocessing, agents exchange both observed data (environmental samples) and

predicted data (derived from their actions or Q-values). Each agent possesses its own data

repository, collecting their individual experiences and shared information. Once learning

commences, agents no longer need to share information and can independently optimize

their strategies. This restructured dataflow ensures that agents are fully independent in
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data management and optimization, enhancing the framework’s ability to handle diverse

task types.

Furthermore, while CTDE frameworks typically employ a similar agent-level dataflow,

specific data processing techniques remain distinct. Drawing inspiration from EPyMARL,

we categorize these techniques into three types: independent learning, centralized critic,

and value decomposition, which facilitates the sharing of modules and broadens the

framework’s applicability. Independent learning allows for solo agent learning; cen-

tralized critic methods employ shared data to refine the critic, which in turn directs

the decentralized agents’ optimization; and value decomposition approaches derive a

combined value function and dissect it for individual agent use during decision-making.

These categorizations dictate our data-sharing tactics in the postprocessing phase, as

depicted in Figure 5.2.

Thus, by maintaining the distinctive attributes of each algorithm and adopting

an agent-level distributed dataflow, our approach demonstrates its effectiveness in

harmonizing various algorithms under the CTDE umbrella, capable of addressing all

modes of tasks while matching the efficacy of traditional implementations.

5.3.2 Universal Interface

In numerous reinforcement learning frameworks, the OpenAI Gym protocol involving

observation, reward, done, and info is typically employed. However, this standard

interface does not easily extend to MARL, where distinct challenges arise due to the

presence of multiple agents, each experiencing individualized data streams. Additionally,

in MARL, supplementary data such as action masks and global states are often available,

and the reward structure can vary significantly, sometimes represented as either scalar

values or dictionaries. Moreover, agent interactions with the environment may not occur

simultaneously, introducing further complexities.

To navigate these complexities, MARLlib has redefined the multi-agent interaction

interface in two primary ways:

Firstly, MARLlib has standardized the interface data structure. By adapting the

conventional Gym API, MARLlib introduces a modified interface, obs, reward, done,

info, which is versatile enough to accommodate various multi-agent scenarios. Specifi-

cally, the observation from the environment is encapsulated in a dictionary with keys

observation, action_mask, global_state, making it suitable for a broad range of

applications and consistent with RLlib’s data handling conventions. Additional obser-

vational details are stored under info. The reward is structured as a dictionary keyed

46



5.3. MARLLIB: A SCALABLE MARL LIBRARY

MARLlib interface

Multi-agent Tasks / Environment Engine

Agent

(a) Independent Learning (b) Centralized Critic (c) Value Decomposition

target agent

observed data predicted data

collect/predictsampling

share

Agent
Agent

critic

actor

other agents

Agent
Agent

Agent
actor

Agent
Agent

Agent
critic

Agent
Agent

Agentactor

critic

Agent
Agent

Agent
mixer

Agent
Agent

Agent
Q

Agent
Agent

Agent
Q

Agent
Agent

Agent
Q

Agent-Level Optimization Agent-Level Optimization Agent-Level Optimization

self data others data

postprocessingon-policy off-policy

Figure 5.2: Illustration of MARLlib’s agent-level distributed dataflow. Observed data
include environmental samples like rewards or global states, while predicted data com-
prise agent-generated metrics such as Q-values or selected actions. The postprocessing
stage serves as the data sharing medium. Each agent upholds its distinct learning
process, utilizing collected data for personal policy optimization, thereby achieving a
distributed dataflow. The figure outlines three distinct dataflow models- independent
learning, centralized critic, and value decomposition-each differentiated by their use of
central data. Independent learning approaches, like IQL, inherently bypass data sharing,
depicted in (a). Centralized critic models, such as MAPPO, amalgamate and disseminate
both observed and predicted data during postprocessing to support distributed learning,
as shown in (b). Value decomposition methods, like FACMAC, mandate the sharing
of predicted data, with observed data sharing being optional based on the algorithm’s
specific needs, represented in (c).

by the agent ID. For cooperative endeavors, a scalar team reward is replicated across

agents in this dictionary format. The done key is also a dictionary, featuring a singular

key "__all__" to indicate the termination of all agents’ activities.

Secondly, MARLlib enhances support for both synchronous and asynchronous inter-

actions between agents and environments. Unlike previous MARL frameworks such

as PyMARL that focus primarily on synchronous interactions, MARLlib accommodates

the dynamics of asynchronous tasks, which are prevalent in complex games like Go

and Hanabi. This is facilitated by Ray/RLlib’s robust data collection system, where data

are gathered and cataloged by agent ID. The entire dataset is only processed when a

termination signal done is received, indicating the end of an episode.
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reward

agent i

agent j

agent k

……

MARL Env
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agent i

agent k
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agent j
Transition Data

done

infoobs

observation action_mask global_state

agent a

agent n

Figure 5.3: The agent-environment interaction in MARLlib integrates various environ-
mental interfaces into a cohesive framework by introducing a Gym-inspired interface
consisting of obs, reward, done, info. This unified interface caters to the complex-
ities of multi-agent systems by structuring each component as a dictionary keyed by
agent ID, ensuring that each agent’s specific data is neatly organized and accessible.
MARLlib is particularly versatile in supporting both synchronous and asynchronous
interactions between agents and their environments, accommodating diverse operational
scenarios. The done component serves as a universal signal that indicates the termina-
tion of all agents, ensuring a synchronized conclusion to the episode. Data is meticulously
organized by agent within the figure to provide a clear visual representation of how
MARLlib manages agent-specific information, illustrating the framework’s capacity to
handle intricate multi-agent dynamics efficiently.

This refined approach, depicted in Figure 5.3, ensures that MARLlib can effectively

manage both the varied data needs of multi-agent environments and the different modes

of agent interaction, thereby offering a unified and flexible platform for developing MARL

applications.

5.3.3 Policy Mapping

In multi-agent settings, an effective parameter sharing strategy can significantly enhance

the performance of algorithms. Unfortunately, many existing approaches offer limited

sharing options and tend to involve redundant implementations. For instance, the

MAPPO benchmark redesigns its architecture for both shared and separate parameter

settings, whereas EPyMARL duplicates model structures to accommodate both sharing
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modes.

MARLlib addresses these inefficiencies by introducing a versatile policy mapping

API from RLlib, which supports three primary modes of parameter sharing: full-sharing,

where all agents share the same parameters; non-sharing, where no parameters are

shared among agents; and group-sharing, where agents within a designated group share

parameters. This is achieved through the innovative use of a policy mapping function

that links each agent’s virtual policies to physical policies that are actively maintained,

utilized, and optimized. Agents assigned to the same physical policy automatically share

parameters.

This policy mapping is transparent to agents, allowing them to sample data and

undergo optimization as if they were interacting with their individual policies. Such

a system enables diverse parameter sharing configurations without complicating the

underlying algorithmic framework. In practical terms, MARLlib requires only a simple

maintenance of a policy mapping dictionary for each environment, containing all nec-

essary details to facilitate various sharing modes. Moreover, further customization of

the parameter sharing strategy is feasible by adapting the policy mapping API to meet

specific requirements, providing a flexible and efficient solution for complex multi-agent

environments.

5.3.4 Equivalence Analysis

In this section, we endeavor to validate the proposition that any multi-agent learning

framework can be effectively transformed into a unified single-agent learning process.

Our objective is to establish that the data employed in optimizing the target entity

is consistently the same across various methodologies. To this end, we will examine

the well-recognized PyMARL and EPyMARL frameworks, noted for their efficiency.

These frameworks are built around three core processes: data sampling, centralized data

aggregation, and one-step training. We will juxtapose these frameworks with MARLlib’s

methodology, which is distinguished by its unique sampling method, sharing mechanism

(post-processing), and agent-specific training. This comparative analysis will focus on

three distinct learning methodologies as outlined below.

Independent Learning: Figures 5.4 and 5.5 display the independent learning

strategies of (E)PyMARL and MARLlib. In (E)PyMARL, agents gather data collectively

and store it in a central buffer prior to training. During training, agents from (E)PyMARL

retrieve necessary data from this central repository, whereas MARLlib agents utilize
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their own individual buffers. Ultimately, the same dataset is employed to refine each

agent’s policy, demonstrating that both approaches are fundamentally equivalent.

Independent Learning Centralized Critic Value Decomposition

Figure 5.4: Illustration of the learning processes for independent learning, centralized
critic, and value decomposition in (E)PyMARL. Note that only one agent is shown
in the training phase for clarity, although in practice, (E)PyMARL trains all agents
concurrently.

Centralized Critic: The comparison of centralized critic models between (E)PyMARL

and MARLlib is depicted in the middle sections of Figures 5.4 and 5.5. In (E)PyMARL,

all gathered data is fed to the agents during training, where non-essential data is filtered

out to optimize critical components, such as the critic/Q function. Conversely, in MARLlib,

all pertinent data for different model components is prepared during the postprocessing

phase before training. This preprocessing facilitates a smoother optimization process,

adaptable to various learning styles (e.g., using the same objective for independent PPO

and MAPPO). Ultimately, the identical dataset optimizes each agent, ensuring that the

learning pipelines of (E)PyMARL and MARLlib are equivalent.

Value Decomposition: The right sections of Figures 5.4 and 5.5 illustrate the

value decomposition models of PyMARL and MARLlib. Similar to the centralized critic

scenario, in PyMARL, agents receive all collected data, select the necessary portions, and

optimize various model components. In contrast, MARLlib’s framework shares essential

data, including Q/critic values, in the postprocessing stage. Each agent then optimizes

its model independently using the maintained data, without the need to coordinate with

others. This demonstrates that both learning methodologies employ the same data for

policy updates, thus affirming their equivalence in the value decomposition approach.
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Independent Learning Centralized Critic Value Decomposition

Figure 5.5: Learning pipelines of MARLlib for independent learning, centralized critic,
and value decomposition.

5.3.5 Usage and Extensibility

from marllib import marl

# prepare env

env = marl.make_env(environment_name="mpe", map_name="simple_spread")

# initialize algorithm with appointed hyper-parameters

mappo = marl.algos.mappo(hyperparam_source="mpe")

# build agent model based on env + algorithms + user preference

model = marl.build_model(env, mappo, {"core_arch": "mlp", "encode_layer": "128-256"})

# start training

mappo.fit(

env, model,

stop={"timesteps_total": 1000000},

checkpoint_freq=100,

share_policy="group"

)

# rendering

mappo.render(

env, model,

local_mode=True,

restore_path={'params_path': "checkpoint_000010/params.json",

'model_path': "checkpoint_000010/checkpoint-10"}

)

MARLlib offers an API that combines user-friendliness with flexibility, simplifying

library usage while maintaining its adaptability for user-specific modifications. This
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design enables researchers to concentrate on their scientific inquiries without delving

into complex implementation details.

The flexibility of MARLlib is supported by its modular architecture, comprising five

main components: configuration, training script, algorithm, model, and environments.

Each component is thoroughly documented with corresponding APIs, methods, or in-

structions, which facilitate straightforward customization and enhancement. We detail

how MARLlib’s flexibility can be exploited in various aspects of MARL research:

• To extend an algorithm’s applicability to a broader range of task modes, such as

transitioning from purely cooperative to mixed scenarios, researchers can modify

scripts in the marl/algo/scripts directory. Adapting to new task modes may

involve changing the policy mapping function within these scripts.

• To tailor an algorithm for complex or partially observable task structures, attention

should be directed to the marl/models directory. For example, handling advanced

tasks like Neural-MMO, which offers both 3D and 1D state observations, would

necessitate modifications here.

• To develop a new algorithm, researchers can utilize the foundational elements

found in the marl/algos/core and marl/utils directories.

• To establish baselines for novel multi-agent tasks, the envs directory should be

considered. This directory facilitates the seamless integration of new tasks through

the MARLlib agent-environment interface, enabling the testing of all existing

MARLlib algorithms on these new scenarios.

The extensive adaptability of MARLlib supports a wide range of MARL experiments,

marking it as a valuable resource for MARL research. Further capabilities are showcased

in the examples directory of the MARLlib repository.

5.3.6 Linking with RLlib

MARLlib builds upon the robust foundation of RLlib to enhance and extend its function-

alities specifically for (MARL. By leveraging RLlib’s multi-agent task interface, MARLlib

develops a cohesive and compatible agent-environment interface tailored for MARL

experiments, enabling both researchers and developers to utilize the comprehensive

functionalities of RLlib while benefiting from MARLlib’s specialized optimizations for

MARL tasks.
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Challenges Presented by RLlib’s Multi-Agent Functionality Despite RLlib’s solid

infrastructure for reinforcement learning, its multi-agent functionality poses several

challenges, which is crucial for advancing research in MARL:

1. Lack of a standardized unified agent-environment interface: The complexity

of MARL involving multiple agents within an environment, requires a well-defined

agent-environment interface, which RLlib does not currently provide.

2. Complexity and barrier to entry for newcomers: The multi-agent aspect of

RLlib can be daunting for those new to the field, necessitating a deep understanding

of its core functionalities.

3. Absence of a central integration point for diverse algorithms: Without

a centralized framework, RLlib struggles to provide a cohesive environment for

comparing and integrating different MARL algorithms.

MARLlib Enhancements Over RLlib MARLlib not only builds on but also signifi-

cantly refines RLlib’s multi-agent capabilities, introducing key improvements to enhance

its utility in MARL research. The relationship between MARLlib and RLlib is analogous

to that between TensorFlow [1] and Keras [14], where Keras provides a high-level API

that simplifies the use of TensorFlow’s powerful backend. Similarly, MARLlib uses RL-

lib’s infrastructure to facilitate the development of sophisticated multi-agent systems

through an accessible, user-friendly interface. Key contributions of MARLlib include:

1. Unified and Compatible Agent-Environment Interface: MARLlib standard-

izes agent-environment interactions, streamlining data handling across various

multi-agent tasks, thereby enhancing research efficiency.

2. Simplified Abstraction and Algorithm Categorization: MARLlib refines the

information sharing stage, promoting effective data exchange and algorithm com-

patibility.

3. Enhanced Accessibility for Newcomers: The user-friendly API of MARLlib

eases entry for new researchers into MARL.

Additionally, MARLlib introduces innovative features such as pipeline auto-adaptation

and compatibility testing for training setups, complemented by detailed documentation to

aid users in navigating the complexities of MARL. These enhancements empower users

to customize their experiments extensively, fostering a more adaptable and inclusive

MARL research environment.
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Table 5.2: Comparative Analysis of MARLlib and RLlib

Features MARLlib RLlib

Data Handling Structured Broad & Flexible
Support for Multi-Agent Algorithms Enhanced CTDE Extended Single-Agent RL
Policy Mapping & Implementation Automated Requires Manual Effort
System Scalability and Integration Derived ✓

User Friendliness High Moderate
Adaptability & Testing for Compatibility ✓ ×

Research and Performance Evaluation ✓ Constrained
Support Resources Extensive Basic

5.4 Results

This section evaluates the performance of seventeen algorithms across twenty-three

tasks from five prominent MARL test beds: SMAC [79], MPE [56], GRF [46], MAMuJoCo

[71], and MAgent [113]. These test beds were selected due to their prominence in MARL

research and their diversity in task modes, observation shapes, additional information

provided, action spaces, reward density (sparse versus dense), and agent homogeneity

versus heterogeneity. We present the average returns from these experiments, conducted

using four random seeds, totaling over one thousand experiments. The results are

depicted in Table 5.3 and Figure 5.6, validating the quality of implementation and

providing a detailed analysis.

To demonstrate the correctness of MARLlib, we compare its performance on SMAC

against that reported by EPyMARL, maintaining consistency in important hyperpa-

rameters. EPyMARL’s results utilize 40 million steps for on-policy algorithms and four

million for off-policy algorithms. MARLlib, in contrast, requires only half these steps

for training convergence. Despite fewer training steps, MARLlib matches most of the

performances reported by EPyMARL, as illustrated in Table 5.3. For all performance

comparisons available, MARLlib achieves similar results in 63% of cases (with total

reward differences under 1.0), superior results in 25% of cases, and inferior outcomes in

the remaining 12%. The consistent expected performances across algorithms, without

resorting to task-specific optimizations, underscore the implementation’s correctness.

This table also introduces, for the first time, the performances of five algorithms on

SMAC and MPE, twelve on GRF, and ten on MAMuJoCo, serving as a reference for the

community.
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Table 5.3: Algorithmic performances for cooperative tasks across a range of control
environments, including both discrete (SMAC, GRF, MPE) and continuous (MAMuJoCo)
control tasks. Specifically, SMAC environments are highlighted with dual-row entries
for each scenario. The initial row, styled in italics, reports performance metrics from
EPyMARL, whereas the subsequent row provides data from experiments using MARLlib.
For the remaining environments, performance metrics are exclusively reported for
MARLlib. The symbol - denotes the absence of reported data, and cells with darker
shading represent the top two performances in each scenario.

Env Scenario
Independent Learning Centralized Critic Value Decomposition

IQL IPG IA2C ITRPO IPPO MAA2C COMA MATRPO MAPPO VDN QMIX VDA2C VDPPO

S
M

A
C

2s_vs_1sc
16.72 - 20.24 - 20.24 20.20 11.04 - 20.25 18.04 19.01 - -

16.09 20.07 20.07 20.16 20.18 20.09 10.32 20.23 20.21 16.3 17.25 15.61 20.24

3s5z
16.44 - 18.56 - 13.36 19.95 18.90 - 19.91 19.57 19.66 - -

16.73 10.78 13.49 10.04 14.3 15.21 9.78 12.1 19.52 19.38 19.32 8.58 13.15

MMM2
13.69 - 10.70 - 11.37 10.37 6.95 - 17.78 18.49 18.40 - -

12.08 9.21 10.17 8.04 10.37 16.08 6.7 7.62 16.86 19.31 18.34 2.72 9.31

3s_vs_5z
21.15 - 4.42 - 19.36 6.68 3.23 - 18.17 19.03 16.04 - -

16.78 5.6 10.79 3.39 7.95 12.14 4.79 13.32 17.24 18.55 19.84 9.6 14.61

M
P

E simple_spread -197.61 -63.83 -63.16 -78.16 -65.74 -63.37 -71.64 -77.63 -66.26 -190.5 -189.27 -190.66 -213.99
simple_speaker_listener -44.07 -261.65 -29.06 -50.17 -38.29 -27.76 -67.6 -44.01 -34.41 -35.26 -25.68 -54.37 -64.61

simple_reference -75.36 -36.3 -35.95 -57.79 -50.92 -35.05 -56.5 -47.71 -37.89 -70.56 -31.53 -69.35 -73.82

G
R

F pass_and_shoot -0.17 0.6 -0.03 0.6 0.5 -0.02 -0.01 0.48 0.74 -0.06 -0.24 0.05 0.01
run_pass_and_shoot -0.15 0.07 -0.07 -0.05 -0.07 -0.05 -0.03 -0.02 -0.03 -0.24 -0.11 -0.09 -0.13
3_vs_1_with_keeper 0.02 0.33 0.01 0.37 0.05 0 0.03 0.13 0.45 -0.08 -0.06 0 0

IPG IA2C IDDPG ITRPO IPPO MAA2C MADDPG MAPPO HAPPO FACMAC VDA2C VDPPO

M
A

M
u

Jo
C

o 2AgentAnt 143.22 -268.02 44.60 527.10 -153.46 730.8 18.53 -57.02 330.12 -1224.6 449.19 -98.74
2AgentHalfCheetah -133.06 -457.11 -197.85 1652.49 -644.89 -493.3 -313.95 -357.78 153.2 -433.61 -423 -644.53

2AgentWalker 50.67 114.1 95.76 272.41 8.71 103.65 153.93 -4.12 164.45 -7.88 125.49 -3.76
4AgentAnt 584.75 49.36 -971.28 750.96 -127.43 -1005.30 -419.93 149.1 151.85 -457.68 -338.21 -164.72

6AgentHalfCheetah -140.96 -302.99 -196.46 1492.24 -653.78 -257.76 -207.49 -529.43 442.48 -151.95 -588.66 -544.29

Performance Inheritance in Single-Agent RL Our empirical analysis indicates

that basing MARL algorithms on robust single-agent RL algorithms is beneficial. For

instance, PPO, which outperforms both vanilla PG and A2C in single-agent settings,

yields more effective MARL versions-MAPPO and VDPPO show superior performance

compared to MAA2C and VDA2C in various configurations. This advantage is supported

by the effectiveness of value iteration methods, which exhibit less sensitivity to hyper-

parameter variations and demonstrate greater sample efficiency than policy-gradient

approaches. The multi-agent adaptations of Q learning, such as IQL, VDN, and QMIX,

also benefit from these advantages, displaying strong performance in environments like

SMAC and MPE.

Effectiveness Across MARL Algorithms Table 5.3 illustrates that different algo-

rithms excel in specific tasks that align with their strategic designs. Independent learning

proves advantageous in scenarios where centralized information is unnecessary. Despite

theoretical concerns about its suboptimality in MARL contexts, research [19] shows that

independent approaches can outperform centralized critics in tasks like simple_spread

and pass_and_shoot, where similar agent behaviors do not require centralized data
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f) simple_tage) simple_crypto g) simple_adversary h) simple_push

a) battlefield b) battle c) adversarial_pursuit d) tiger_deer

Figure 5.6: Return curves for eight mixed scenarios (agents compete in groups) in MAgent
(a-d) and MPE (e-h) are displayed. Various styles of curves represent different groups
of agents. These return curves depict a dynamic equilibrium throughout the learning
process, with the equilibrium point being influenced by both the algorithms used and the
specific tasks. For enhanced clarity, zoom in on the curves.

for policy optimization. Conversely, independent learning faces challenges in coordina-

tion tasks such as simple_speaker_listener and simple_reference, where a global

perspective is crucial. Centralized critic strategies excel in tasks requiring diverse yet

coordinated actions. These approaches, exemplified by MAPPO and its heterogeneous

variant HAPPO, effectively leverage both local observations and global information,

achieving robust results in cooperative environments across SMAC, MPE, and GRF.

These algorithms set strong benchmarks for tasks where agent roles are distinct and

varied. Value decomposition methods dominate in most cooperative benchmarks but fall

short in two specific areas: continuous control tasks, where algorithms like VDN and

QMIX are less effective, and scenarios requiring long-term planning with sparse rewards,

such as those found in GRF. Here, the performance of value decomposition algorithms

lags behind other strategies like ITRPO and MAPPO, primarily due to their preference

for dense rewards and difficulties in decomposing near-zero Q values. Aside from these

exceptions, value decomposition approaches generally deliver robust performance with

optimal sample efficiency.

Evaluating Algorithms in Mixed Scenarios Assessing algorithms in mixed tasks,

where agents must cooperate and compete simultaneously, presents unique challenges.
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Determining the superiority of an algorithm from reward metrics alone is difficult, as

the effectiveness of one policy often negatively impacts the performance of competing

policies. In such mixed environments, algorithms are evaluated based on the total reward

accrued by all involved policies. An optimized policy prompts competitors to enhance their

strategies, thereby increasing the collective reward. This metric, depicted in Figure 5.6[a-

d], serves as the primary indicator of an algorithm’s effectiveness. However, exceptions

occur, as shown in Figure 5.6[e-h], where the total reward remains constant, and the

learning curves of competing policies mirror each other, reaching equilibrium swiftly.

Identifying a consistent and fair evaluation criterion for these constant-sum tasks

remains an ongoing area of research.

5.5 Conclusion

The introduction of MARLlib marks a significant advancement in MARL research. By

addressing the prevalent challenges in current libraries, MARLlib offers a comprehensive,

unified platform that eases the integration, testing, and deployment of MARL algorithms

across diverse environments and task scenarios.

MARLlib introduces several innovative features: agent-level distributed dataflow,

a unified multi-agent environment interface, efficient policy mapping, and thorough

performance evaluations. These features establish MARLlib as an essential tool for

both newcomers and seasoned researchers in the field. It effectively bridges the gap

between the complexity of multi-agent interactions and the need for a modular, scalable

framework that supports robust experimentation and development.

The refined interface and structured algorithm integration approach of MARLlib

enable a more systematic exploration of MARL algorithms. This allows researchers to

extend the limits of what is possible in scenarios ranging from strictly cooperative to

highly competitive. Additionally, the adaptability of the library and its comprehensive

documentation allow users to customize the framework to their specific needs with

minimal overhead, fostering innovation and creative solutions to intricate challenges.

Moreover, the performance of MARLlib, demonstrated through extensive testing

across various settings, highlights its efficiency and dependability. By achieving compa-

rable or superior results to existing benchmarks while reducing computational demands,

MARLlib redefines the standards of feasibility in MARL research.

As MARL gains relevance in diverse fields such as autonomous vehicles, robotics, fi-

nance, and healthcare, MARLlib emerges as a pivotal resource. It will enable researchers
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and developers to pioneer new concepts, collaborate more efficiently, and realize ground-

breaking achievements in AI and machine learning. The continued evolution of MARLlib

is set to significantly impact the trajectory of MARL research, promoting a deeper

understanding and more innovative applications of these complex systems.

In conclusion, MARLlib not only meets the current needs of the MARL community

but also lays the groundwork for future innovations. Its comprehensive strategy for

addressing the complexities of multi-agent environments and algorithms will serve as

a foundational element for the next generation of MARL research. This will lead to

more durable, scalable, and effective solutions applicable to a wide array of real-world

challenges.
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CONCLUSION

T
his thesis has made significant strides towards developing a unified framework

for Multi-Agent Reinforcement Learning (MARL), addressing the complexities

and challenges associated with the coordination and learning of multiple agents

within diverse and dynamic environments.

UPDeT A cornerstone of this unified framework is the introduction of UPDeT (Univer-

sal Policy Decoupling Transformer), a novel transformer-based model that significantly

advances the capabilities of MARL systems. By leveraging the self-attention mechanism,

UPDeT enhances the adaptability, scalability, and efficiency of learning in environments

characterized by partial observability and sophisticated multi-agent coordination require-

ments. Its superior performance has been validated in complex simulation environments

such as StarCraft II, highlighting its potential for broad real-world applications.

Role Diversity The examination of role diversity is pivotal in our pursuit of a unified

MARL framework. This exploration offers a robust method for both evaluating and

refining policies. By identifying and leveraging variations in role diversity, our frame-

work promotes the development of more tailored and effective training strategies. This

approach not only enhances the performance of MARL systems but also bolsters their

robustness, contributing significantly towards the unification of MARL practices and

methodologies.
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CHAPTER 6. CONCLUSION

MARLlib The development of MARLlib, a comprehensive library, supports the frame-

work’s goal of unification by providing tools that simplify the integration, testing, and

deployment of various multi-agent tasks and MARL algorithms. MARLlib bridges the

gap between theoretical research and practical application, enabling researchers to easily

explore and deploy advanced MARL strategies in a range of environments and scenarios.

This thesis lay a solid foundation for future advancements in MARL, aligning closely

with the goal of creating a unified, scalable, and highly adaptable MARL framework.

Future research can further this goal by expanding the application domains of UPDeT,

refining the metrics of role diversity for even deeper insights, and continuing to enhance

the capabilities of MARLlib to support a wider array of MARL algorithms and environ-

ments. In essence, the progress made in this thesis not only pushes the boundaries of

current MARL technologies but also sets a pathway for achieving a truly unified frame-

work that could revolutionize how multi-agent systems are designed and implemented

across various domains.
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