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ABSTRACT

As the insurance industry expands into new markets and mass customers, the
volume of data required to process with regards to a customer’s mortality risk
has become significantly exponential. To alleviate this issue, the companies in the

insurance industry have adopted insurance technology (InsurTech), in the industrial
project connected to this study, the company implemented an underwriting rule engine
(URE), which functions as a rule-based system simplifying the underwriting rules to
a hardcoded decision tree model. This tree flow model guides users through a series
of questions, ultimately reaching the final outcome leaf as either a preimium loading
or exclusion code. However, as this process is hardcoded, it becomes less optimal and
lacks personalisation for individual customers. To tackle these issues, this study pro-
poses the development of an Underwriting Knowledge Graph (UKG) that integrates all
customer information received with the existing underwriting manual and explainable
exclusion code system to formulate personalised customer risk profiles. The UKG utilises
interconnected information pertaining to the customers, including historical data, and
explainable exclusion to create customer risk profile, while offering valuable insights and
potential correlations with specific exclusion codes. The study’s deep dive into insurance
domain-specific requirements, current research limitation within automated underwrit-
ing has led to the creation of the first-ever UKG, trained on real-life underwriting data
thanks to the collaboration with our Australian industry partner. In addition to the
UKG, the study also introduces a semi-automated novel method for maintaining the
UKG. This method factors in the multi-label classification nature of the data outcome to
provide explainable exclusion. The UKG as a data structure provides a comprehensive
understanding of the insurance ecosystem, facilitates a representation of information on
customer risk profiles, and enables explainable exclusion classifications. While this study
focuses on its application in insurance, the UKG and application of graph databases
hold promises in enhancing risk assessment and decision-making for other personalised
services beyond the realm of life insurance.

This study explores the development of customer risk profiles in life underwriting
by integrating underwriting knowledge graphs and explainable exclusion multi-label
classification. Traditional underwriting processes, though semi-automated, still heavily
rely on manual intervention, leading to inconsistencies and biases. Hence, this research
identifies challenges such as handling missing values, adopting a more data-driven
approach, and ensuring model explainability. The proposed methodology involves con-
structing underwriting knowledge graphs, implementing multi-label classification for
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explainable exclusions, and providing transparency on feature impact. Contributions
include empirical application of real-life data, semi-automated knowledge graph con-
struction, and transparency enhancement in underwriting rules. This thesis is structed
to chapters covering data requirements, related works, methodology, and discussion of
findings, laying the groundwork for future research in underwriting data innovation.
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1
PROLOGUE

1.1 Background and Motivation

Ever since the 16th century, the insurance industry in general and underwriting

profession in particular has undergone substantial evolution, continuously expanding

into diverse markets and products. A key aspect of life insurance is the underwriting

process, where underwriters assess an applicant’s risk to determine their premium pay-

ments. Traditionally, this process involved manual, paper-based assessments, making

it both labor-intensive and prone to inconsistencies. With the rise of digitalisation and

InsurTech, automated underwriting processes and tools like Underwriting Rules Engines

(URE) have emerged to streamline the risk assessment process. However, the challenge

remains in balancing the need for automation to wrangle millions records of data from

multiple sources with the need for human expertise to ensure risk-minimised and unbi-

ased decisions. This chapter explores the intricacies of the life insurance underwriting

process, current industry trends, and the challenges posed for the automation process.

1.1.1 Insurance Sector and Life Underwriting

Insurance is one of the oldest industries in the world tracing back to the 16th century

with marine insurance integrated to expand the international trade network, from then

on it has gone through multiple transformations of product and market expansion with

high suggestions to be added into the economic history [33]. Life insurance, as one of the
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CHAPTER 1. PROLOGUE

insurance products, [3]. The process of manual life underwriting, as described by Aggour

et al. [2], is a heavy paper-based process with multiple documents to be considered to

determine an applicant’s mortality risk, turning this into a risk management calculation

with the output being the customer’s premium payment. Since the majority of insurance

companies’ premium revenue is then spent back on claims [48], underwriters bear the

burden of accurately assessing and managing applicant risks through initial and ongoing

policy evaluations. The decision-making process follows the rule the underwriting man-

ual, with the risk mitigation output exhibited via two common practices, by applying a

penalty (loading) to the standard premium or process the cover with certain constraints

(exclusions).

1.1.2 Current Industry Headings

In line with other major economic industries, the insurance industry also has taken

digitalisation and technology solutions to automate and improve their existing products

and processes to allow for its extension into lower-income brackets and less developed

markets [50]. This expansion not only has transitioned insurance from a privileged prod-

uct to a necessity with easy access, but also extended the customer base, meaning more

data and sophisticated risks to process for an already highly personalised product as life

insurance. This leads to the inevitable creation of the InsurTech (Insurance Technology)

ecosystem [38], including multiple insurance-prone adoptions of artificial intelligence

(AI) to develop automated decision-making systems to alleviate current insurance in

general as well as underwriting problems specifically [54]. These systems are meant to

assist underwriters and insurance experts with understanding the complex layers of in-

formation derived from underwriting data points and making decisions on an application

to reduce resources put into the procedure. However, compared to banking and finance

with regards to economic applied academia fields, insurance has received little research

attention [33], as well as numerous suggested models still portray limitations, such as

their incapability to adjust to ongoing changes in insurance underwriting policies and

their lack of transparency in offering explainability in automated lending decisions [54].

1.1.3 Underwriting Process and Underwriting Rules Engine

1.1.3.1 The Underwriting Process

The traditional underwriting process for insuring a person starts with a customer

sending an application to the insurance company for the human underwriters to re-

2



1.1. BACKGROUND AND MOTIVATION

view [2]. Underwriters then determine a customer’s risks based on the rules from the

underwriting manual in combination with leveraging the experts’ knowledge through

medical records and personal experience from previous assessed cases. However, Bid-

dle et al. [5] has pointed out a possibility for inconsistencies in different underwriters’

decisions, which can lead to inaccurate rate classification. In particular, while applying

the same rules from the underwriting manual, the knowledge gaps among underwriters

along with the long period of time to fully process the application, with some over 100

pages, can potentially prompt inconsistencies among underwriters. The risk increases

with applications requiring more than one exclusion codes applied.

1.1.3.2 Underwriting Rules Engine

Many carriers have applied an underwriting rules engine (URE) with its code based

directly from the underwriting manual to tackle the aforementioned disparities [2]. The

URE contains a rule base and is set to return a pre-defined result when certain set of

conditions are triggered [54], including decision for exclusion and loading depends on

how specific the rules and conditions are.

Figure 1.1 portrays a simplified look of the underwriting rules engine structure

with multiple question lines (depicted as L) tailed by multiple questions (depicted as Q)

belonging to each group along with their answers (depicted as A), from which a specific

outcome can be determined, in this case, an exclusion code. Multiple question answers

can lead to one exclusion code to be applied, meaning that this result is not fixed to one

specific answer.

1.1.3.3 Automated Underwriting Process With URE

The typical exclusion code decision-making process with the use of URE or any

insurance decision support system follows the three-step process: data capture, auto-

mated decision-making, and human underwriter review, as portrayed in Figure 1.2. The

breakdown of each step is as below:

• Data capture: This is the process of gathering customer information from the

customer disclosure survey, which is the equivalent of the previously mentioned

application. A customer can fill this survey by themselves or with the help of a

financial adviser. The survey should be carefully structured so that data capture

can be standardised and pre-processed before applying any automated model.

3



CHAPTER 1. PROLOGUE

Figure 1.1: URE questionnaire structure

• Automated decision-making: This step is highly enhanced with the Insurtech

applications. Particularly, in the case with the insurance industry partner that

I have been working with while completing this study, the URE is structured as

a multiple tree-based flow diagrams in alignment with the customer disclosure

survey, meaning that each question is a node and customer-provided answers are

used as branches guide to the follow-up questions. Each "tree" leave is a hard-coded

outcome of a chain of choices and answers precedent to it, with this outcome being

either to approve, decline or require more information from this application, along

with which exact exclusion code should be applied.

• Human underwriter review: In this step, the human underwriters review the

output of the automated decision-making model comparing to the survey data

collected in the first step to make a decision on the application. The underwriters

4



1.1. BACKGROUND AND MOTIVATION

have full control over whether to follow the model results or override the model

with their personal expertise when it comes to exclusion code decisions.

1.1.3.4 Examination of Current Process

The examination of existing processes raises a concern, despite the help of the semi-

automated decision-making system as URE, human underwriters must manually input

new decision rules and review both customer disclosures and model decisions to finalise

the outcome. Although this marks the importance of human expertise within the field,

this further confirms the heavy reliance of the existing process on human accuracy, as

well as the potential heavy-biased results from existing rules without a full picture of

customer risks. The review of the current 3-step business process has prompted my three

data-specific concerns as below:

• Identifying domain prerequisites for exclusion analysis and determining how they

can be met using a large dataset,

• Designing a multi-label classifier system to capture label-feature relationships,

identify opportunities, and compare exclusion classification results between the

rules engine and underwriters,

• Developing an approach to explainability in mapping exclusion decisions within

the decision-making process.

These questions are further elaborated later in section 1.2.

Figure 1.2: Exclusion decision process

5



CHAPTER 1. PROLOGUE

1.2 Current Challenges

Our investigation into industry practices reveals several challenges in the exclusion

classification process. Despite the help of the automated rule system, human underwrit-

ers must still review paper-based information. This undermines the aim of a streamlined

process where underwriters can easily review customer disclosures and clearly link

exclusion codes to risk-related responses. With the questionnaire constantly being up-

dated, the volume of information requiring manual review will continually increase.

Embrechts and Wuthrich [13] highlight the necessity for effective optimization tools

and customer portfolio analysis over time to sustain long-term financial guarantees

in the industry, a goal that remains unfulfilled. The automated rule system resolved

classification inconsistencies and standardised decisions, but its simplified logic led to

sub-optimal risk classification. The strict rules and lack of personalised underwriting in

the URE might not be comparable for the futre of the insurance industry, which must

handle larger data volumes and adapt to non-standard situations with insurance rolling

out with more product types covering expanded markets and lower-income branches.

This oversimplification, although effective for commonly used exclusion codes in routine

situations, results in the inadvertent neglect of less common exclusion codes, increasing

underwriting risks due to their infrequent consideration [5, 23].

Combining with the results from the data preliminary analysis conducted above, our

three current challenges are identified as below:

• More focus needed to understand the domain-specific requirements of the life

underwriting (i.e. explainable exclusion code) from a data perspective,

• Handling a large number of missing values from the data survey,

• Handling the trade-off between accuracy and transparency: the current black-

boxing of machine learning models on automated underwriting models make it

difficult to determine which features have an impact on the results, whereas when

applying a tree-diagram approach, the task becomes sub-optimal and potentially

hard-coded.

Thus, the following system requirements, in addition to the challenges above, should

be put into consideration when developing a decision-making tools for analysing exclu-

sion:

6



1.3. RESEARCH PROBLEMS

• The system should allow applicable and optimisable changes to tackle the updates

in data and business for the insurance industry.

• The system should provide an overview of a customer‚Äôs risk profile based on the

information they provided.

• The system should incorporate explainable exclusion classification based on respec-

tive circumstances.

• The system should provide explainability or transparency on an exclusion classifi-

cation decision made by the model.

One point to be made clear in the study is that the designed system aims at improving

the existing UP and assisting human underwriters as well as insurance companies in

managing and decision-making when it comes to customer risks and relations, not

replacing them entirely.

1.3 Research Problems

Based on the highlighted requirements and the defined gaps from current challenges,

our research problem can be concluded into three main issues:

• RP1: How can we handle missing values of existing data survey to account for new

data coming in and less frequent label?

• RP2: How can we better represent a more data-driven approach to identify inferred

relationships when the model result and rules are black-boxed?

• RP3: How do we represent the explainability and transparency of the model?

The research problems identified here are further explored in Chapter 2 and formula-

rised in Chapter 3.

1.4 Research Objectives

The following objectives have been determined from the problems above:

• RO1: Knowledge graph (KG) construction for a general view of all attributes linked

to a customer with specific cases to account for less popular fields
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• RO2: Semi-automated knowledge graph construction and rules identification for

capturing domain knowledge.

• RO3: Provide transparency on which features have an impact on the link prediction

result based on quality assurance report (QAR) and graph mining.

The justification for the choice of modelling (KG) is elaborated in Chapter 5.

1.5 Research Contributions

The contribution of this study is in alignment with the objectives stated above.

As mentioned in previous section, this study is based heavily around the empirical

application of the data set, with the contributions elaborated as:

• RC1: Construction and application of the underwriting knowledge graph (UKG)

based on the two years worth of real-life data from industry to provide a more

in-depth investigation into practical use.

• RC2: Propose a process to semi-automated knowledge graph construction and rules

identification for capturing domain knowledge from data analytics and engineering.

• RC3: Propose an approach to reveal transparency (explainability) on which features

have an impact on the link prediction result based on quality assurance report

(QAR) and graph mining to assist with the maintenance and adjustments of

underwriting rules.

The remaining parts of the thesis provide a view on how the study’s objectives and

contributions have been achieved.

1.6 Thesis Organisation

The first chapter of my thesis has introduced the current life underwriting landscape

at the beginning of the study and the challenges derived from both the business and

research aspects. The remaining chapters of my thesis are divided into seven parts

to detail the work that has been carried out to further investigate and determine a

solution for the currently identified challenges. The content of the following chapters are

described as below:
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Chapter 2: The Underwriting Data - This chapter portrays the domain requirements

for constructing a model that caters to the life underwriting data as the backbone of this

research study. It highlights the key objectives and limitations faced with regards to

conducting an industry-based research to further explore the data set used within this

research study.

Chapter 3: Related Works - This chapter provides an overview on the existing studies

within related domains to identify the current research progress on constructing a model

for life underwriting. In this chapter, comparison among existing studies is highlighted

to determine the success and notable findings as well as the existing research gaps of

automated underwriting methodologies. The key takeaways from this section shapes the

formation of the proposed methodology for this study.

Chapter 4: Explainable Exclusion Using Multilabel Classification - This chapter

portrays the first approach taken for explainable exclusion using multilabel classification.

This section details the empirical experiment conducted and the result comparison be-

tween multiple multilabel classification models when applying to a real life underwriting

data set to identify the most suitable model for the task with suggestions on further anal-

ysis in future studies. At the time of the study, this is the first application of multilabel

classification to resolve the problem of explainable exclusion in life underwriting.

Chapter 5: Initial Knowledge Graph For Underwriting - This chapter portrays the

second approach taken to alleviating the problem identified in section 2 using knowledge

graph as a base. This chapter details the construction process, including the construction

of nodes and edges of the knowledge graph that caters to the underwriting data and

potential use cases from this initial underwriting knowledge graph. To the best of

my knowledge, at the time of proposal, this is the first attempt of constructing an

underwriting knowledge graph within the research field.

Chapter 6: Risk Profile Using Knowledge Graph and Multilabel Classification - This

chapter presents the proposed methodology of this study. The proposed methodology is

a combination of the explainable exclusion using multilabel classification with the use

of knowledge graph with adjusted weight calculation inspired by the Jaccard similarity

[24]. This includes the proposal of a semi-automated process as a part of the methodology

for underwriting rules identification and maintenance using the adjusted weight and

comparison with subgraphs of customers with similar features recorded.

Chapter 7: Discussion of Approaches Taken and Future Work - This chapter concludes

the thesis with discussion on achievements and limitations throughout the study. These

key points united serves as a baseline direction for future research in the field of applica-
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tions of data innovations within underwriting sector and highly personalised services

with similar data set structure.
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2.1 Automated Underwriting Process Approaches

Artificial intelligence has been "trending" and applied by many industries in the

last decade as simulating human intelligence via the application of machine [29, 30].

Particularly with the insurance industry, business needs regarding underwriting and

claim assessments can be assisted significantly with machine learning and predictive

analysis as part of AI, which further increases its popularity and adaptation. Previous

studies have shown that the assistant of AI allows speeding up the process of under-

writing with enhanced risk selection to improve pricing strategies [31, 40]. Within

an industry characterised by its personalisation of policies, the application of machine

and AI makes life underwriting faster, giving the green light for different insights to

be drawn from the client’s data [43, 44]. Research conducted over recent years on the

integration of technology in the insurance industry has introduced various models to

accelerate the underwriting process, leveraging the use of traditional machine learning

(ML), deep learning (DL), and ensemble learning. Figure 2.1 presents a taxonomy of

the most prevalent AI applications in the insurance sector, organized by their specific

tasks. From an extensive review of the literature and this taxonomy, we identified that

automated underwriting encompasses two primary risk classification tasks:

• categorizing applicants based on the decision outcome;

• identifying claiming patterns to detect potential anomalies.
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Figure 2.1: Taxonomy of automated underwriting approaches

Based on the identified tasks above, exclusion analysis can be deducted as a detail-

specific subcategory of classification underwriting with explicit categories of risks entail.

However, upon our literature review, a gap of coverage on this subtopic can be observed

in current research studies.

Table 2.1 outlines key studies exploring various ML approaches to automate the

underwriting process. It reveals that few studies have successfully addressed exclusion

classification [5] [47]. Arora and Vij [4] proposed a neuro-fuzzy network in 2021 to

classify applicants into five risk levels for premium calculation. However, their work

lacks validation of the experiment and detailed results on how these premiums are

calculated. Contemporary state-of-the-art machine learning models, naming Support

Vector Machines (SVM), random forest algorithms, and Naive Bayes classifiers, have

been adopted to categorise risk levels in insurance applications[22], but there has been

minimal effort to innovate these models or focus on exclusion code classification. Despite

the acknowledgment of the influence of exclusion codes on underwriting decisions [27],

this aspect was addressed as an ancillary consideration rather than being the central

12
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References Key purposes Model Exclusion
classifica-
tion

Arora et
al. [4]

Applying artificial neuro-fuzzy network
to classify insurance application to risk
classes for premium calculation

Hybrid Neuro-
Fuzzy Network

No

Joram et
al. [26]

Developing a knowledge-based system
to output insurance decisions (risk
classes)

Knowledge-
based System

No

Hutagaol et
al. [22]

Speed up the UP with ML application SVM, Random
Forest and
Naive Bayes

No

Kavscelan et
al. [27]

Applying non-parametric data mining
technique to classify insurance claim
sizes and occurrences

Support Vector
Regression, Ker-
nel Logistic Re-
gression

No

Biddle et
al. [5]

Applying ML methods to classify the
application of exclusions in life insur-
ance

Logistic Regres-
sion, XGBoost
and Recursive
Feature Elimina-
tion

Yes

Mourmouris
et al. [47]

Assign a score applications to classify
them to risk classes

Multi-criteria
Decision-
making analysis

Yes

Table 2.1: Key studies: different methods for life insurance label classification in the
insurance industry.

focus. Biddle et al. [5] investigated the exclusion classification process using XGBoost, but

they only managed to concentrate on the top 20 exclusion codes, leaving out less common

ones and not utilising the entire underwriting dataset. From the literature available,

it is evident that most studies on underwriting automation focus on classifying risk

levels. Although exclusion codes are referenced, their classification has not constituted

the primary research focus. To the best of my knowledge, our collaborative research

[63] represents the inaugural study to adapt multi-label classification framework for

explainable exclusion classification within the realm of life insurance.
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2.2 Automated Underwriting Customer Risk Profile

At the time of this literature review, the prevailing method for developing a customer

risk profile involves classifying applicants into specific categories based on the risk levels

indicated by their underwriting data [27]. Table 2.1 has determined the existing efforts

in categorising risk level within the insurance industry. While this method maintains

simplicity, it may overly simplify the risk levels associated with an application and

obscure the decision-making logic. A comprehensive customer risk profile should retain a

degree of complexity, utilising more advanced risk representation systems. Additionally,

the process for creating this risk profile should support scalability and incorporate

guidelines from human underwriters’ manuals. This research study aims to address

these existing gaps via the use of multi-label classifications to maintain the complexity

of customer risks presented by exclusion codes, as well as investigating the underwriting

rules manual knowledge by applying knowledge graph to study underwriting data.

2.3 Domain-specific Knowledge Graph

The examination of the current UP has driven this research study towards the cre-

ation of an underwriting ontology or underwriting knowledge graph, which, while not

applied in a prevalent way within the insurance sector, has been proffered by numerous

scholars for health risk profiling. Wu et al.[69] defined a knowledge graph as an aggrega-

tion of knowledge points rendered in graph form, with nodes and edges symbolising data

entities and their interrelations. This definition interprets that a knowledge graph can be

any graph-based data model, including resource description framework (RDF) datasets,

semantic web knowledge bases, ontologies, and multi-relational graphs comprising nodes

and entities[66].

Research on knowledge graphs can be categorised into two main areas: techniques for

constructing a KG and the applications of KGs [72]. The use of KGs for underwriting falls

under domain-specific KGs. These are specialized applications within the broader field

of KGs, with successful implementations in areas such as medicine [14, 17, 53, 55, 67],

cybersecurity [25, 49], finance [11, 12, 35], education [6, 18], music [56], and religion [68].

The deployment of Knowledge Graphs (KGs) for customer profiling within the finance and

insurance sectors has been advocated by prominent consulting firms such as McKinsey

and Deloitte [8, 9] in recent years due to its application potentials. Nonetheless, this

subject has not yet garnered substantial attention within the domain of insurance and
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Figure 2.2: AIKG model architecture [70]

underwriting-specific research.

Zhang et al. [70] asserted that they were pioneers in applying KGs and creating

an ontology in the insurance sector, specifically for fraud prediction. Figure 2.2 demon-

strated their proposed model architecture, wherein they constructed an Auto Insurance

Knowledge Graph (AIKG) through the extraction of knowledge from a relational in-

surance database. Subsequently, they employed link prediction within the knowledge

graph to discern individual fraud cases and to identify "fraud gangs", characterised by

multiple fraud cases exhibiting resembling attributes. Although their system successfully

applied KGs to the insurance field, it did not provide a comprehensive risk profile for

customers with multiple claims, raising difficulties in applications into life insurance.

Additionally, more work is needed in feature selection and feature engineering to reduce

computational demands and enhance graph scalability.

In his survey over domain-specific knowledge graph in 2021, Abu-Salih [1] have

raised several concerns over the construction and quality of existing domain-specific

knowledge graph, first being the unstandardisation and undisclosure of algorithm in

knowledge graph construction and data capturing process, second being incorrect facts

captured within the graph, and third being the imcompleteness of the graph due to

embedding. These problems will be addressed throughout the study.
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2.4 Knowledge Graph Link Prediction Using
Multi-label Classification

Multi-label classification is explored for its potentials in addressing exclusion pre-

diction and the significant improvements it demonstrates when combined with link

prediction [52, 71]. Martinez, Berzal, and Cubero’s work integrates multi-label classifica-

tion into the classifier-based link prediction task [41]. Although multi-label classification

has previously been applied to link prediction, most current uses are based on deep

learning and focus on unstructured social network data [7, 39, 52, 65, 71]. This presents

an opportunity to apply multi-label classification for link prediction in knowledge graphs

using machine learning algorithms on relational databases.

2.5 Explainability in Artificial Intelligence

Within the context of AI, explainability, interpretability and transparency can be

considered semi-synonymous with subtle differences. Interpretability refers to under-

standing the reasoning behind an AI-based decision-making system, whereas explain-

ability involves the AI system’s ability to provide a clear explanation of how it reached a

decision [34, 46]. Certain ML/AI models, such as decision trees and logistic regression,

are deemed interpretable; however, their nested non-linear architectures can be opaque

and less accurate in comparison with intricate black-box models like deep neural net-

works or ensemble models. Numerous interpretation methodologies have been proposed,

including tree interpreters for random forests and deep decomposition for neural net-

works [46]. These methods range from formalising interpretability mathematically to

offering visual explanations or enhancing task performance through algorithm-generated

explanations [61]. In fields like insurance and credit scoring, numerous studies have

introduced various ML models, but they often overlook the explainability of decisions

made by these models [54]. Considering that these methodologies are tailored to spe-

cific models, additional research is imperative to formulate novel approaches for the

explainability of ML models specifically and AI models in general.

2.6 Summary

Exclusion codes, which represent the risks associated with an insured customer,

are a crucial component in constructing a domain-specific customer risk profile for life
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insurance. The comprehensive literature review in Chapter 2 has unveiled numerous

limitations within this domain. In this section, an evaluation is presented aligning with

the prerequisites outlined in Chapter 1 to determine whether the current methodologies

satisfy the method requirements.

The proposed method should be applicable and optimisable to deal with
the ever-increasing changes in data in the insurance industry. Applicability and

optimisation to handle evolving data in the insurance industry comes in as the first

prerequisite for these approaches. Most studies in the insurance industry meet this

requirement. Various ML and DL models have been parameterised and optimised for

the necessary tasks. Although the basic industry needs are addressed, there is still room

for improvement, particularly in the area of explainable exclusion.

The proposed method should provide a better way to overview a customer’s
portfolio (based on their information) and potential risks. Although the necessity

of maintaining a customer profile portfolio has been acknowledged, the existing method-

ologies for constructing customer risk profiles for underwriting and insurance purposes

remain overly simplistic. Despite efforts to introduce KG applications in insurance, a

domain-specific KG for life insurance has yet to be developed, with a lack of a classifi-

cation systems catered for sophisticated data dimensions. The earliest public research

application of a knowledge graph (KG) within this domain was in auto insurance. Despite

the successful construction of the AIKG [70] model, there remains an imperative for

advancements in the domains of graph feature engineering and the optimisation of link

prediction performance.

The proposed method should have the ability to classify applications into
multiple exclusion codes based on their respective circumstances. There has

been a constrained focus on the researched automated classification and application of

exclusion codes to determine risk factors within the insurance sector, notwithstanding

the fact that this constitutes a critical component of the underwriting process. Existing

studies referring to exclusion code classification reveal gaps that future research should

address, particularly in considering more infrequent exclusion codes. Insufficient infor-

mation to predict exclusion codes can disrupt the procedure of curating a customer risk

profile.

The proposed method should be able to highlight the explanation for an
exclusion classification made by the model. Substantial potential for enhancement

resides in model explainability, particularly given that the prevailing interpretability

techniques are confined to being model-specific. The lack of studies on exclusion code
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classification has also resulted in little focus on explainable exclusion. This requirement

has not been adequately met.

Overall, the literature review conducted bestows invaluable insights into ongoing

existing studies on customer risk profiles utilising knowledge graphs and multi-label

link prediction. It is evident that current studies on explainable exclusion analysis and

the construction of customer risk profiles is circumscribed. A limited number of studies

have applied advanced data analytics methodologies to address the pragmatic requisites

of the insurance industry, and none have undergone empirical validation on substantial

data sets. These current limitations delineated above serve as a directive to formulate

the research questions and objectives of this study.
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THE UNDERWRITING DATA

3.1 Domain Requirements

A domain-specific knowledge graph tailored for life insurance ought to possess the

capability to comprehend and be applicable to the extensive use cases prevalent in

the UP. As discussed earlier, the primary use case of such a system entails the precise

assessment of a customer’s risk through the classification of exclusion codes. For instance,

a customer exhibiting a heightened propensity for incurring substantial and frequent

claims related to arthritis, predicated on preexisting knee health conditions, is more

inclined to be excluded from payouts pertinent to osteoarthritis. Therefore, it is crucial to

understand how life insurance data is collected, structured, and utilized to determine ex-

clusion decisions. This requires knowledge of the attributes relevant to the underwriters’

decision-making process, potential dilenma, data analysis, and the decision itself.

The UP typically relies on underwriting standards and the expertise and experience of

underwriters. The rules take into account various personal factors gathered from multiple

sources, such as customer survey questionnaires, medical records, and employment

history, depending on their importance to the decision. However, this highly customised

data demands extensive feature engineering before its incorporation to a knowledge

graph system. Specifically, underwriting data is specifically derived from customer

underwriting survey questionnaires, which filter subsequent inquiries based on the

customer’s prior responses. As previously stated in Section 1.1.3.2, the streamlined

view of the questionnaire reveals that questions are aggregated, directing customers
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only to pertinent questions based on their answers. This process results in numerous

unanswered questions, creating data fields with over 75% missing values when translated

into a tabular dataset. This was raised in Section 2.6 as a limitation to the efficacy of

current ML-based risk classification models.

3.2 Data Set Overview

The research methodology and experiment focus on applying real-world life insurance

data from a prominent Australian insurance company. The data provided by our industry

partner includes four datasets: customer disclosure information, ID linkage information,

policy number information, and exclusion codes with subcodes. These datasets are

merged into a single primary dataset using the ID linkage information, where each

row is uniquely identified by a policy number, as a customer may have multiple policies.

Table 3.1 provides a sample view of the attributes in the dataset.

Attribute Type Description
Customer age Number Age in years
Gender String 2 value depicting biological sex
Employment status String Categories of employment status
Occupational status Boolean Is the customer employed?
Smoking status Boolean Does the customer smoke?
Disclosure question-
naires

String Various categories on different
types

Table 3.1: Features of sample data attributes

The dataset is categorised into four types: categorical, date, numeric, and multi-

valued data. Attributes containing personally identifiable information (e.g., email, name,

phone number) are excluded to protect customer privacy and reduce model noise, as these

attributes do not contribute to risk identification. Free text attributes (often found as

clarifications to specific question nodes) are also removed, as they have minimal impact

on the exclusion classification process.

3.3 Data Preliminary Analytics
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Figure 3.1: Top 20 exclusion codes

Figure 3.2:

Applications of 317

exclusion codes on

trauma cover policies

In order to resolve the data-specific question detailed in

Section 1.1.3.4, an understanding of the data set should be

prioritised. This study is based on the real life underwriting

data set that is provided by the University’s industry partner

over the course of 3 years (2019-2021). Prior to approaching the

methodologies, I have conducted preliminary data analysis for an

overview of the data set in line with the business problem. This

section details the key points result from the process, serving as

a deep-dive into the data set to further elaborate the research

problem portrayed in Section 1.4.

3.3.1 Customers With Exclusions Applied

One of the hypotheses for this study is most of the exclusion

codes are specific health related problems. Figure 3.1 portrays

the distribution of exclusion codes applied on the policies exist-

ing in the data set, with 13 out of 20 exclusion codes focus on

detailing health concerns, which is in alignment with our hypothesis. The preliminary
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Exclusion Name Description
MHEX Mental Health Exclusion
SPIN-LSS Spine - lumbosacral spine
PDIC Pre-disability income
SPIN-SPN Spine - spine
SPIN-SCE Spine - cervical spine
MSKL-RKN Musculoskeletal - right knee
MSKL-LKN Musculoskeletal - left knee
SICK Sick leave offset clause
PAND Pandemic illness
MSKL-RSH Musculoskeletal - right shoulder
GUAV Guaranteed agreed clause
MEDI-EED Medical condition - any disease or disorder of either or

both ears including deafness
MSKL-LSH Musculoskeletal - left shoulder
OIOC Ongoing income
MEDI-TIO Medical condition - any disease or disorder of the inner

ear (cochlea, vestibule and semi circular canals)
MEDI-EYB Medical condition - any disorder of either or both eyes

including blindness
CNCR-MEL Cancer-specific - melanoma or other skin cancer
RESI Residential clause
SPIN-STH Spine - thoracic spine
SOTP Second occupation TPD

Table 3.2: Features of sample data attributes

data analysis result also displays that 48292 policies out of a total of 550776 policy

results provided has had an exclusion code applied, which puts the estimates on roughly

8.8%.

Specifically for trauma data set, 12% of customers have more than 1 exclusion code

applied to their application. Over the course of 2 years, more than 65% of exclusion codes

are applied less than 10 times, aligning with the data description of exclusion codes

shown in Figure 3.2. with 75% of exclusions fall into the 1-67 range while the remaining

25% has feature that counted up to 8438 times. This trend can also be observed with

other cover types.
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3.3.2 Feature Value Frequencies

Similarly, a simple feature value counts after preprocessing portrays that 98% of

feature columns have more than 75% missing value cells. This is due to the setup of the

survey, with questions in the original questionnaire grouped into multiple subcategories.

Figure 3.3 shows that even the highest ranking group of questions only accounts for

nearly 5.5% of the total number of questions in the questionnaire.

Figure 3.3: Percentage on total number of questions for most popular question groups
(excluding basic details)

3.4 Algorithmic Problem

The requirements are translated into a data problem based on the findings from the

literature review and the specific needs of the insurance partner. Considering zi as an

instance in the dataset (representing a customer), the following definitions apply:

• X = (X1, X2, ...Xm) represents the attributes derived from customer disclosure

questions used to classify exclusion codes.,
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• X i = (X i1 , X i2 , ...X im) is the set of attribute values associated with the learning

instance,

• Y = (Y1,Y2, ...Yn) is the list of labels (exclusion codes),

• Yi = (Yi1 ,Yi2 , ...Yin) is the list of probabilities that each exclusion code is applied to

customer zi,

• k is the number of exclusion codes applied to customer zi.

Thus, the research problem simplifies to developing an algorithm to classify zi ∈ Z
into yk ⊂Y based on X i. Identifying the yk sub-list of possible labels for each customer

is the core of our multi-label classification phase. Table 3.3 demonstrated a formulated

dataset used in this study for multi-label classification.

X1 X2 ... Xm Y1 Y2 ... Ym

z1 X11 X12 ... X1m Y11 Y12 ... Y1n

z2 X21 X22 ... X2m Y21 Y22 ... Y1n1

... ... ... ... ... ... ... ... ...

zN XN1 XN2 ... XNm YN1 YN2 ... YNn

Table 3.3: Preprocessed demo data set for multi-label classification.

This problem forms the first approach to tackle customer underwriting risk profile

which is elaborated in Chapter 4.
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4
EXPLAINABLE EXCLUSION USING MULTILABEL

CLASSIFICATION

4.1 Background and Motivation

From the domain requirements and results captured in Section 3, along with the lack

of focus pointed out in Section 2, multilabel classification is the first approach taken upon

the dataset to alleviate the existing issues identified. The data chosen for this approach

includes the categorical and binned data due to several reasons including:

• The majority of free text questions are encoded for being customer identified

information,

• The free text questions for additional information are usually precedented with one

or multiple categorical questions above to identify whether more information are

required, hence, we assume that a general free text question will not be triggered

in the URE unless a directly related question is called previously.

• These processed data types can be transformed to fit our multi-label classification

model.

4.2 Key Contribution

The main contributions of this approach can be summarized as follows:

25



CHAPTER 4. EXPLAINABLE EXCLUSION USING MULTILABEL CLASSIFICATION

• Gathered domain-specific requirements for analyzing insurance datasets for ex-

clusion classification, laying the groundwork for a deeper exploration of domain

requirements in our research.

• Utilised a comprehensive two-year dataset from a reputable Australian insurance

company to address exclusion analysis, aligning with the study’s aim of using a

data-driven approach to automate the process.

• Employed four multi-label classifiers (binary relevance, classifier chains, label

powerset, and ensemble learning) along with various ML techniques to tackle the

exclusion problem and determine the most effective model for explainable exclusion.

This model serves as a baseline for future analysis and improvement leading to

the construction of a UKG as mentioned in section 1.1.

• Validated the results by comparing different metrics and involving human under-

writers to assess the proposed model’s performance, ensuring human experts are

part of the evaluation and quality control process.

4.3 Model Methodology

The objective is to determine the appropriate exclusion code(s) to be assigned to a

policy, thereby mitigating insurance risks. Given the preference for considering multi-

ple exclusion codes, we have suggested the use of a multi-label classification method.

Multi-label classification operates similarly to single-label classification, but with the

distinction of accommodating multiple target labels [60]. In this study, the experiment

implements four multi-label classification algorithms utilising five primary classifiers:

Multinomial Naive Bayes, Support Vector Classification, Logistic Regression, Random

Forest, and Decision Tree.

Binary Relevance: Binary Relevance algorithm transforms multi-label classifica-

tion problem to multiple independent single-label binary classifications. As the classes

are considered independent from one another, Binary Relevance can use any binary

classifiers as base learner [45]. However, it is worth noting that the original form of

Binary Relevance do not recognise possible dependency among class labels [36].

Classifier Chains: Similar to Binary Relevance, Classifier Chain transforms the

multi-label classification into multiple binary classifiers for each label [10], though the

main difference is the algorithm forms a series of label relevances using the predictions of

previous label classifiers, hence linking all binary classifiers to a chain. The improvement
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Figure 4.1: Model methodology for explainable exclusion [63]

of Classifier Chain in comparison to Binary Relevance comes with its ability to construct

a correlation system among labels [51].

Label Powerset: Label Powerset takes into consideration potential label correla-

tions to construct unique label set from existing labels provided. Each set of labels is

transformed into a class in Label Powerset classification, from which the problem is con-

verted into a multi-class classification with the output being the most probable class from

the label classes [16]. In comparison to Binary Relevance and Classifier Chains, Label

Powerset sits right in the middle, having the advantages of both previous algorithms. The

setback of Label Powerset comes only when the problem complexity increases, meaning

there are more labels to group and consider.

Ensemble Learning: Ensemble Learning method follows the process of learning

the chosen base classifiers and determining weights for each classifier [36]. Different

classifier applied as base classifier for Ensemble Learning might focus on different steps

of the process.
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4.4 Evaluation and Explainability

In the evaluation process, standard metrics are considered such as precision, recall,

F-score, and hamming loss. A novel evaluation-explanation technique called Quality

Assurance Reports (QAR) is introduced in this study, which involves identifying "missing"

and "unneeded" labels. Shapley Additive Explanations (SHAP) [37] is also leveraged

to interpret the model outcomes and explicate the manner in which various features

impacted the exclusion classification[64]. SHAP leverages coefficients in the context of

linear models or feature importance within tree-based models for each exclusion code,

thereby revealing and visualising the particular impact of each attribute to the model’s

classification results.

4.4.1 Quality assurance report (QAR)

Due to a large number of missing values in this real-life data set, the model could be

biased towards more common and non-specific data attributes (those with fewer missing

values), and low scorings from the four standard evaluation methods are expected. Thus,

QAR is introduced for human underwriter reviews and evaluation.

QAR is computed using the classification probability and feature importance of each

label’s classifier for every data row in the testing set. This process entails generating a

compendium of differential comparison values for each individual row by deducting the

actual label results, represented as binary outcomes (0s and 1s), from their corresponding

classification probabilities, from which "missed" and "unneeded" values can be identified

based on a predefined threshold. Specifically, by denoting Y ′′ as the classified values,

which can assume binary outcomes (0 or 1), p(Y ′′) as the classification probability,

encompassing a continuum from 0 to 1, Y as the authentic label values, also binary (0 or

1), and t as the threshold parameter, spanning a range from 0 to 1:

• A label y is considered "missed" if p(y′′)− y⩾ t (4)

• A label y is considered "unneeded" if p(y′′)− y⩽ t (5)

The primary contributing factors for each missed or unneeded label are hierarchically

ranked according to their feature importance in the classification of that specific data

record. This importance value is obtained either from the coefficients (linear algorithms)

or from the feature importance metrics (tree-based algorithms) for each label’s classifier.

Within our context, instances devoid of affirmative responses ("YES" answers), indicated
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by the absence of 1s in the data attributes for missed labels, and instances devoid of

negative responses ("NO" answers), indicated by the absence of 0s in the data attributes

for unneeded labels, are excluded from consideration.

4.4.2 Shapley Additive Explanations (SHAP)

SHAP is a comprehensive framework used to interpret a model’s decision by assessing

the importance of each feature in a specific prediction [37]. In this study, SHAP’s visuali-

sation features assist in recognising and prioritising feature combinations influencing

decisions for individual exclusion codes and a set of the 15 most common exclusion codes.

While QAR explains decisions at the granular level of individual data records, SHAP

provides a hierarchical ranking of features across multiple rows classified under identical

exclusion labels. This hierarchical feature ranking can be measured against pre-existing

underwriting rules to enhance explainability and inform refine the decisions in future

underwriting.

4.5 Empirical Experiment

4.5.1 Data collection and processing

This research methodology and experiment focus on applying real-world life insurance

data from a prominent Australian insurance company. The datasets, spanning from 2019

to 2021, include customer disclosure information, policy details, and the exclusion codes

applied based on customer responses. This dataset is then divided into subsets based

on the types of coverage the customers are seeking (such as trauma, total permanent

disability - TPD, disability, and term) to help manage the data effectively as well as

customising for specific covers. This categorisation helps streamline the processing and

reduces the computational burden by focusing on specific cover types.

Each cover type dataset is further divided into four sub-datasets, resulting in a total

of four datasets per cover type. To consolidate the data, all four sub-datasets are merged

into a single primary dataset using ID linkage information, with the policy number

serving as the unique identifier for each row. This approach is illustrated in Figure 4.3,

and a sample of the data attributes is provided in Table 3.1.

For each type of cover, the subset is divided into four groups based on data types:

categorical, date, numeric, and multi-valued. To protect customer privacy, columns

containing personally identifiable information (e.g., email, name, phone number) are
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removed. Additionally, columns containing free text are excluded, as they have minimal

impact on the exclusion categorization process. The model’s input data mainly consists

of columns with binary values (0 and 1).

4.5.2 Experimental setup

Twenty multi-label classification models are developed by substituting five base

classifiers (multinomial Naive Bayes, Support Vector Classifier (SVC), logistic regression,

random forest, and decision tree) into the four multi-label classification algorithms

(binary relevance, classifier chain, label powerset, and ensemble learning). These models

are constructed and parameterised utilising predefined functions available within the

sk-multilearn library [57].

Beyond the standard metric evaluation, QAR is applied investigations into instances

where the model output diverges from human underwriter decisions. For example, a

threshold of 97% can be established, whereby any classification by the model with a

confidence score exceeding 97% that contradicts an underwriter decision will be flagged

for further examination.

4.5.3 Evaluation metrics

The evaluation process employs four widely recognised evaluation metrics prevalent

in the assessment of multi-label classification: precision, recall, f-score, and hamming

loss. Accuracy score was initially considered for the evaluation process, yet later removed

due to the false positives affecting the result.

4.5.4 Evaluation

The evaluation process is conducted by involving human underwriters. They review

the model scores, QAR outputs, cross-reference additional applicant materials, and

compare the final decision in their system. This process helps determine the accuracy of

exclusion label identification by the model and assesses their satisfaction with the QAR

results.
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Algorithm Binary Relevance Classifier Chain
Classifier MNB SVC LG RF DT MNB SVC LG RF DT
Precision 0.26 0.62 0.80 0.93 0.63 0.26 0.94 0.80 0.93 0.61
Recall 0.11 0.46 0.41 0.32 0.56 0.11 0.11 0.41 0.32 0.56
F-Score 0.15 0.53 0.54 0.47 0.60 0.15 0.20 0.54 0.48 0.59
Hamming
Loss

0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Algorithm Label Powerset Ensemble Learning
Classifier MNB SVC LG RF DT MNB SVC LG RF DT
Precision 0.35 0.89 0.76 0.88 0.57 0.26 0.93 0.80 0.92 0.59
Recall 0.45 0.06 0.41 0.40 0.48 0.10 0.10 0.43 0.34 0.54
F-Score 0.08 0.11 0.54 0.56 0.52 0.15 0.19 0.56 0.49 0.56
Hamming
Loss

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 4.1: Precision, recall, and F-score and hamming loss of the multi-label classification
model [63]

4.6 Results Analysis

This section presents the outcomes of the experiments conducted. Initially, accuracy

were proposed as an evaluation metric. However, accuracy only provides an overall

measure of model confidence, which aggregated the results without considering the huge

gap among detailed accuracy of each label. Therefore, the evaluation metrics opted in

the use of precision, recall, and F-measure, with a focus on the F-score, to ensure the

reliability of our classification. Table 4.1 encapsulates the comprehensive results of our

models subjected to cross-evaluation. Generally speaking, a similar trend of Hamming

loss scoring below 0.01 amongst all models signified that the majority of labels were

accurately classified in terms of their relevance.

During the course of the experiments, logistic regression models consistently ex-

hibited commendable baseline performance, showcasing uniformity across various al-

gorithms (approximately 0.54). The experimentation revealed that multinomial Naive

Bayes models yielded a substantially greater Hamming loss score compared to other

conuterparts, indicating subpar performance in the assigned task. It is advisable to

refrain from employing Support Vector Classifier (SVC) models for this task, as they

struggle to manage a considerable volume of missing data. Although initially considered

for their promising scores on smaller datasets with low missing value rates, the SVC
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SN Dataset # features # labels Total size # missed
exclusion

# un-
needed
exclusion

1 Term 8161 85 (57900,8248) 1221 3351
2 Trauma 6643 125 (16971,6770) 35 347
3 TPD 6105 182 (33289,6289) 347 1350
4 Disability 12785 206 (21598,12993) 442 1551

Table 4.2: Description of quality assurance outcome

models failed to function properly on the full dataset, as evidenced by the significant gap

between their precision and recall results in comparison with their counterparts.

Tree-based models emerged as the preeminent performers among the array of models

assessed. Random forest consistently demonstrated precision values ranging from 0.88

to 0.93 across diverse algorithms. Nonetheless, the recall scores and F-scores obtained

when training on the entire dataset were comparatively deficient. Conversely, although

the decision tree could have exhibited heightened precision, its F-scores surpassed

those of its counterparts. Discrepancies in the scores derived from distinct evaluation

methodologies stemmed from data attributes plagued by an excess of 75% missing values.

This underscores the exigency for future endeavors to enhance this study through the

implementation of advanced feature selection techniques and techniques for handling

missing values.

Tree-based models (random forest and decision tree) achieved the highest scores

among the models tested. Random forest consistently achieved a precision of 0.88 to

0.93 across multiple algorithms. However, the recall scores and F-scores obtained when

training on the entire dataset were relatively low. On the other hand, while the decision

tree could have performed better in terms of precision, its F-scores were higher than

those of the other models. Variations in the scores from different evaluation methods

were due to data attributes having more than 75% missing values. This suggests the

need for future work to improve this study by implementing advanced feature selection

and missing value handling techniques.

Using QAR, the exclusion labels were identified as missed or unnecessary by the

models. A summary of this information for the four cover type datasets can be found in

Table 4.2, while Table 4.3 provides a sample outcome of the QAR, intended for review

by human underwriters. IDuring the third-party evaluation phase employing model

scoring and QAR analysis, the outcomes emanating from the best performing model were

deemed applicable for implementation into production by the human underwriters.
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SN Missed/Unneeded Exclusion Reasons Label Conf. Outcome
1 MotorCar One Off - No, Motor Car Prof - No, MotorCar

Marshall - No, MotorCar Intl - No, MotorCar Type1 -
Circuit racing, MotorCar Circuit - Single seater, Motor-
Car Drag - Other, MotorCar Circuit - Saloon cars, Doctor
Main Last - 1-2yrs, MotorCar Type1 - Rallying.

PSTM-
MCR

.99 Unneeded

2 Travel Region Malaysia - Yes, OCCUPATION - Reha-
bilitation consultant, POSTCODE 2096, OCCUPATION
CONFIRM - Unspecified occupation - A3 - Office based
occupations that involve no manual or field work, Nae-
vus Cancer - Yes, Earnings Which Year - No, EMPLOY
STATUS CONFIRM - Employee (permanent or contrac-
tor), Back Occupation - Yes, QV Summary Semp - No,
Back Location - Neck (Cervical Spine).

TRAC-
MAL

.98 Unneeded

3 Melanoma Spread - No, Melanoma Recur - No, Skin-
Cancer Confined - Yes, Recent Ix Disclosed - No,
Melanoma Removed - Yes, CANCER - Yes, Additional
Info - No, Melanoma Surgery - Yes, Melanoma OtherTx -
No, Melanoma Treat Ceased - Yes

CNCR-
MEL.

.98 Unneeded

4 WHICH HEARING - Hearing impairment, InsHx Com-
panyBE - Asteron, MH Lastsym - 2-3yr, PRODUCT -
Business Expense, Snow Comp - No, BE Complete now -
No, Earnings Employee Last Bonus 20 - No, InsHx Pur-
pose LIFE - Personal protection, Deafness Date Resolve
- 1-2yrs, Occ Sick Leave 10 days or less.

MEDI-
EED

.85 Missed

5 PRODUCT SUITE - Active, BackDisc Location - Lower
back (Lumbar Spine), BackDisc Sep Occ - More than
twice or continuously, CVComb Await - No, MH Medi-
cation ongoing - No, MH Medication ongoing - Yes, Occ
Duties Hazard2 - No, Knee OneOff - More than one
episode, TRAVEL PAST - No, Administration - No.

SPIN-
LSS

.96 Missed

Table 4.3: Sample of QAR results

4.6.1 Explainable machine learning analysis

In addition to using QAR for explaining our models’ outcomes, as mentioned in

Section 4.4.2, this experiment uses SHAP to explore the relations and magnitude of the

features for the top 15 exclusion codes. The SHAP summary report, as shown in Figure

4.2, hierarchically orders the data attributes pivotal in influencing the classification

of the top 15 exclusions within the trauma dataset. This facilitates the identification

of features serving as the principal driving forces within their corresponding question

33



CHAPTER 4. EXPLAINABLE EXCLUSION USING MULTILABEL CLASSIFICATION

Figure 4.2: Top 15 most common exclu-
sion codes - SHAP summary report

Figure 4.3: Driving factors of the high-
est applied exclusion code (MHEX) -
SHAP detailed report

groupings. In detail, the SHAP detailed report provides an enhanced understanding of

a designated target label and enables explainability even for less frequently occurring

exclusions. Figure 4.3 specifies the pivotal questions instrumental in the classification of

the exclusion code label.

Deciphering the outcomes of the model necessitates a comprehensive analysis SHAP

results combining with QAR results. While the QAR furnishes the primary rationales

underlying the classification of an exclusion code as either "missed" or "unneeded,"

SHAP visualisations offer supplementary insights into the same exclusion code by

showing the distribution of values for each individual question. These attributes empower

human underwriters to discern the pivotal factors within each unique record while

simultaneously overseeing overarching patterns across records within the same label

category.

In alignment with previous research studies [5, 42], this experiment’s findings sub-

stantiate the assertion that tree-based classifiers, including random forest and decision

tree algorithms, remain the optimal choice for exclusion classification endeavors. No-

tably, within the purview of our investigation, decision tree classifier engined binary

relevance multi-label classification model surpasses all alternative models in terms of

performance metrics. Additionally, the decision tree’s feature importance contributes to
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model transparency and explainability. This notably facilitates the integration of QAR,

where erroneous model classifications manifesting as false positives and false negatives

are construed as missed exclusions and unneeded exclusions, respectively. The hierarchy

of feature importance engenders a systematic ranking of attributes instrumental in

shaping the model’s classification decisions. Analysing The foremost rationales ranked

by each exclusion classifier can reveal noisy features, setting a foundation for future

feature engineering work. Future application of this study could implement a weighting

metric for features, assigning less weight to noisy features and more weight to features

directly correlated with the exclusion code. In addition to the selection of the classifier

itself, the findings also suggest that the algorithmic framework enveloping the classi-

fiers exerts a substantial influence on the outcome, particularly discernible with certain

classifiers. This is evident in the performance discrepancies observed with SVC-based

models when integrated with the binary relevance algorithm, resulting in an F-score of

0.54, as opposed to alternative algorithms yielding F-scores spanning a range from 0.11

to 0.20.

Observing Table 4.1, even with the best-performing model, the F-score recorded is

0.60. it becomes apparent that even with the most optimal model, the recorded F-score

stands at a modest 0.60. This underwhelming performance can be ascribed to one of the

principal challenges encountered throughout the experimental proceedings, stemming

from the arduous task of addressing missing values within the original dataset. Owing

to the bespoke nature of the existing system, each inquiry is meticulously tailored to suit

the unique circumstances of individual customers. This approach means the majority of

inquiries in the survey are dynamically filtered based on the responses provided by the

customer, consequently leading to a plethora of queries featuring null values.

Approximately 75% of the customer disclosure columns contain missing values,

although the information in these columns determines which exclusion codes to apply.

Another issue is that infrequent exclusion codes are applied fewer than 10 times over

3 years, creating a historical data problem. This impacts model accuracy as the recall

score does not match the precision score. These challenges in data preparation, including

data cleaning and feature selection, present opportunities for future studies to focus on

data wrangling and classification with limited values. Approximately 75% of the columns

pertaining to customer disclosures harbor missing values, notwithstanding their pivotal

role in dictating the applicability of exclusion codes. Additionally, another complication

arises from the infrequent application of exclusion codes, with some codes being invoked

fewer than 10 times over a span of 3 years, thereby engendering a historical data
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conundrum. This predicament exerts a palpable impact on the accuracy of the model, as

evidenced by the incongruity between the recall and precision scores. These inherent

challenges intrinsic to data preparation, including data cleansing and feature selection,

consequently present opportunities for prospective future investigations to focus on the

intricacies of data manipulation and classification within the confines of limited values.
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5
KNOWLEDGE GRAPH FOR UNDERWRITING

5.1 Background and Motivation

Considering the current limitations identified in the literature review, domain re-

quirements as well as the limitations on missing values highlighted in Chapter 4, the

Underwriting Knowledge Graph is proposed to address these challenges. This methodol-

ogy is chosen due to several critical reasons:

• Insurance underwriting data contains varied features and is tailored for each

customer, requiring a flexible and adaptable approach,

• The structure of the dataset adheres to a unique feature pattern, indicating knowl-

edge graphs as an intuitive and effective methodology for encapsulating multi-

dimensional data relationships,

• The personalised essence inherent within the dataset is ideal for the application of

knowledge graphs. Building the knowledge graph from preexisting data facilitates

the discernment of individualised connections for each customer and the explo-

ration of regulatory frameworks through the prism of graph mining techniques.

In summary, a knowledge graph stands as a formidable instrument for managing com-

plex insurance data, modeling convoluted relationships, and providing bespoke insights

tailored to individual clientele. The representation of multilabel relationships within

the knowledge graph improvesthe precision and pertinence of our analysis, enhancing
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Figure 5.1: Underwriting Ontology Workflow Design

the methodology’s robustness and insightfulness. The following sections captures the

exploration into building a knowledge graph for underwriting.

5.2 Key Contribution

This section of the research study contributes directly to the research contribution

RC1 highlighted in Chapter 1. From the initial construction, I propose the inception

to the link prediction task with the use of metrics taken directly from the multilabel

classification model to resolve research problem RP3, hence contributing to research

objective RC3. This can also be portrayed as using multilabel classification for knowledge

graph link prediction, which has yet to be investigated within the industry sector. In the

following subsections, the details of this application and improvement are explained.
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5.3 Methodology

5.3.1 Ontology Design

This section describes the entire process of building the UKG, integrating underwrit-

ing data with the underwriting rules manual. This methodology involves three primary

stages: 1) constructing the initial graph, 2) applying explainable exclusion classification

for predictive linkage, and 3) identifying rules and perpetually refining the knowledge

graph.

5.3.1.1 Initial Graph Construction

Underwriting data undergoes collection via customer survey questionnaires, subse-

quently undergoing preprocessing and one-hot encoding to convert categorical attributes

into binary format, thereby denoting the presence (1) or absence (0) of each attribute.

The result processed dataset assumes a tabular format, with individual customers repre-

sented in rows and attributes represented in columns. Each entry is associated with a

distinct policy number, thus constituting the customer node within the knowledge graph.

Attributes are depicted as nodes, and associations between customers and attributes are

forged based on the binary values enshrined within the dataset.

Figure 5.2: Node layers of UKG
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A pivotal requisite of the UKG entails the portrayal of underwriting data attributes

alongside the representation of underwriting rules distilled from the underwriting

manual. Figure 5.2 illustrates the three node types in this knowledge graph - customer,

attributes, and exclusion, defined as follows:

• The customer node uniquely identifies each customer;

• Attribute nodes emerge through the process of one-hot encoding the underwriting

customer disclosure dataset, with each attribute endowed with characteristics

signifying the rule groups to which they pertain in the underwriting manual; these

properties serve as a reference point used as a benchmark to compare the top 20

attributes that influence the decision to assign a label;

• The exclusion node mirrors the target label exclusion codes enumerated in the

underwriting manual.

The graph includes three types of relationships that are crucial:

• The customer-attributes relationship represents the personalised attributes perti-

nent to an individual’s risk profile.

• The attributes-exclusions relationship delineates the attributes contributing to

the classification of one or more exclusions, which is imperative for discerning

rules. While most of these associations can be inferred from the tabular dataset,

comparisons between attribute nodes and exclusion nodes must also be made

against rules stipulated in the underwriting manual. The links between attribute

nodes and label nodes are initialised with a predetermined weight, reflecting the

initial significance of the attribute to the decision-making process.

• The customer-exclusions relationship takes precedence in our link prediction task.

This connection is classified into three categories: "potential" links, "accurate"

links, and "outlier" links, serving as a foundation for establishing a benchmark

and adjusting the weight of links for any novel predictions integrated into the

knowledge graph.

5.3.1.2 Link Prediction for multilabel classification

The aim of this phase is to ascertain the suitable exclusion code(s) to be assigned

to a customer’s policy, thereby mitigating insurance risks for the company. This entails
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training the processed dataset utilising a multi-label classification methodology. Multi-

label classification operates akin to single-label classification, but it accommodates

multiple target labels concurrently [60]. The dataset is partitioned into subsets, each

corresponding to a distinct label within the original dataset, enabling the classifier

model to glean insights and identify key attributes influencing the classification for that

particular label.

The training phase yields n classifiers, each aligned with one of the n target labels

(exclusion codes) in our dataset. These classifiers, denoted as Cy in Figure 4.3 above and

Figure 5.3 below, are term label classifiers. uring the classification phase, the trained

model predicts the labels to be assigned to an unlabelled record by initially estimating

the applicable exclusion codes, followed by refining these predictions using the label

classifiers.

Figure 5.3 illustrates how the multi-label classifier addresses the link prediction

problem within the KG. The UKG also utilises the explainable results from the QAR

to identify prospective link prediction opportunities. The QAR outcomes aid in identi-

fying "potential" links (representing missed exclusions), "accurate" links (the exclusion

classifications by human underwriters align with the model results), and "outlier" links

(indicating unnecessary exclusions). Essentially, the current predicament can be concep-

tualized as a graph feature problem, with z ∈ Z symbolises the customer node, xz ⊆ X
symbolises an attribute node for z, and yz ⊆ Y symbolises an exclusion node for the

Figure 5.3: Link prediction
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customer z. Consider a set of relationships as (h, r, t):

(5.1) zx = f (hz, r, tx) with r as a constant

(5.2) xy = f (hx, r′, ty) where r′ =µ(Cy)

(5.3) zy = f (hz, r′′, ty) where r′′ = p(y)

The link weight ωzy is calculated as:

(5.4) ωzy = lim
p(y)→p(yδ)

∑
n( f (hz, r, txn)+ f (hxn ,µ(Cy), ty))

f (hz, p(y), ty)

In other words, for the first attempt of the UKG construction, the metrics calculated

from the model in Chapter 4 is applied directly as the weight for each link with a

slight moderation using the QAR results. In particular, the proximity of a new customer-

exclusion association to a classified link (represented as δ) determines the likelihood of

this new link being assigned a weight akin to that of the classified link. For instance,

upon detecting a resemblance to an "outlier," the original weight of the link undergoes

adjustment and reduction according to the provided equation.

5.4 Construction of Knowledge Graph

5.4.1 Exclusion Classification and Link Prediction

The initial graph is constructed using the results assimilated from running the multi-

label classification model from the previous study [63] in Chapter 4. The initial graph

includes three classes of nodes as stated in previous section:

• Customer: each instance of the customer node is identified by enquiry ID under

the assumption that each customer has 1 enquiry ID,

• Attributes: instances of attribute nodes are represented by appending question

name to the answer given to include information included in each enquiry under

the same attribute class,
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• Exclusion: instance of this are exclusion nodes applied to the customer.

Based on the relationship identified through the enquiry data, three types of triples

are added in with its weight:

• (customer, has, attribute)

• (attribute, leads to, exclusion) with ωleads−to = µ(Cy)

• (customer, receives, exclusion) with ωreceives = p(y)

Table 5.1: Simplified example of knowledge graph triples constructed for UKG in a case
of lumbar spine exclusion

Source Link Weight Destination
Customer 1 has 0 BackDisc Location -

Lower back (Lumbar
Spine)

Customer 1 has 0 BackDisc SepOcc - More
than twice or continu-
ously

BackDisc SepOcc - More
than twice or continu-
ously

leads to 0.85 SPIN-LSS

Customer 1 receives 0.9 SPIN-LSS

In particular, after incorporating QAR results to the relationships of the graph, the

(customer, receives, exclusion) triple is then divided into three subtypes:

• (customer, receives accurate, exclusion): links that have been previously identified

by the underwriters that the model result agrees with.

• (customer, receives potential, exclusion): links based on missed report on the QAR,

meaning the exclusions that the model has picked up that was not identified by

the underwriters.

• (customer, receives outlier, exclusion): links previously identified by underwriters

that the model disagrees with.
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5.4.2 Automated knowledge graph creation, update and
maintenance

The outcome of the multi-label classification, comprising the training set, testing set,

and QAR outcomes, is employed to ascertain the guidelines for establishing the UKG.

By using a customised Python script that leverages the NetworkX library, the encoded

dataset is loaded into the graph with predefined links. A custom function then converts

the graph into RDF triples for standardized application, enabling a semi-automated

approach to building a knowledge graph compared to the traditional Web Ontology

Language (OWL) process. Prior to being utilised in the construction of the UKG, the

QAR findings necessitate reviews and validation from human underwriters.

Upon the addition of each fresh entry to the knowledge graph post-creation, the

link weight is computed employing equation 5.4 in conjunction with the existing entry

possessing the highest match score. Following the adjustment of the weights for the new

entries, all corresponding attribute-label links are revised to generate an updated roster

of attributes exerting the most pronounced influence on a specific label.

At this stage, the initial graph includes three layers of nodes, as depicted in Figure

5.2. Figure

5.5 Results Analysis and Discussion

This section presents the findings from our experiments, which involved two primary

tasks:

• Evaluating the multilabel link prediction task using QAR to establish a benchmark

for identifying new rules,

• Verifying the benchmark results through the knowledge graph update method.

Table 5.2 provides an example of our evaluation. This process suggests that in order

for the rules identification and update process to commence, the new record z and its

most akin existing record δ must achieve a minimum similarity score of 0.8 to uphold the

existing rules derived from the underwriting manual. Setting the benchmark too low (e.g.,

0.6) results in merely 7 attributes from the top 20 impact list being recognised as relevant

to the exclusion code, which corresponds to the initial list. On the other hand, if the

benchmark is too high (above 0.9), the top 20 impact list shows little change, potentially

reinforcing existing biases in the UKG and limiting its adaptability. This pattern was
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Table 5.2: Changes between top 20 impact attribute list when using different benchmarks
for exclusion code SPIN-LSS

Benchmark Attributes similar to
initial top 20 impact

Attributes related to
label (out of 20)

0.6 7 7
0.7 11 14
0.8 17 18
0.9 18 20
0.95 20 20

observed in 96 out of 108 exclusion codes evaluated. Labels deviating from this pattern

were flagged for review by human underwriters, offering transparency into the decision-

making process. The periodic updating of the top 20 impact list ensures the graph retains

its dynamism and adaptability to diverse scenarios. Any newly incorporated attribute

associated with the exclusion code is retained within the list; otherwise, it is flagged for

potential rule discovery by underwriters, integrating human expertise into the process

and making UKG a supportive tool for decision-making and updates to the underwriting

manual.

However, because of the predetermined initial weight, the method for calculating link

weight cannot be promptly applied to newly added attribute nodes within the graph. This

means new attribute nodes are less likely to be considered in the impact attribute list

until sufficient historical records are trained and loaded into the graph. This issue, which

depends heavily on the availability of historical data, suggests that multiple updates

may be necessary for a new attribute to be considered impactful. Further study and

development of the UKG could focus on addressing this challenge.

Another problem that was found after this study case is the unreliability of the model,

as the heavy reliance of the link weight on the model result, the case of an overfitted

model may create systemic false positive results, which goes against the issues identified

in Chapter 2. Moreover, this methodology has yet to provide a way for underwriting rules

identification.
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6
RISK PROFILE USING KNOWLEDGE GRAPH AND

MULTILABEL CLASSIFICATION

6.1 Background and Motivation

Based on the previous approaches detailing in Chapter 4 and 5, the UKG is refined to

alleviate the identified issues in order to establish a customer risk profile. The proposed

methodology in this chapter is a combination of the advantage points from existing

approaches to further enhance the UKG for the rules identification process.

One key factor to note is the definition of risk profile in this study is different from

previous researches. Differ to prvious previous research studies that aim to classify

customers into overall risk classes, the risk profile in our study aims to pinpoint which

particular aspects contribute to the customer’s risks, based on the preliminary statistics

on exclusion code application mentioned in Chapter 3, those with exclusion codes are

in high risks factor with regards to their exclusions. In other words, instead of ranking

a customer based on an overview high risk and low risk, we are ranking customers

with regards to the specific exclusion cases they fall into. This objective is achieved

by combining the explainable exclusion QAR introduced in Chapter 4 as a part of the

reasoning process and updating the link weight calculation method for rules identification

and suggestions.
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6.2 Key Contribution

Although the application of proposed methodology for this use case can be assigned to

the risk classification task of automated underwriting, this study elevates from existing

researches with a more sophisticated risk classification system based on explainable

exclusion. In comparison to the existing approach of classifying customers into high-low

risk classes, the categorisation of the classification process using UKG focuses on the

exclusion codes, providing a more sophisticated and personalised view into which exact

risks should be paid attention to.

This methodology assist in resolving the existing research problems in several ways:

• The UKG at this stage should have a view of the attributes linked to the customers

as well as the exclusion code that is applied to them (divided into three types:

accurate, potential, outlier). This aligns to research contribution RC1.

• Multiple additional nodes and relationships are defined in comparison to the exist-

ing initial graph to assist with the auto-construction of the inferred relationships

to represent the business rules to resolve RO2.

• Provide transparency on which features have an impact on the link prediction

result based on QAR and graph mining in regards to RO3.

6.3 Revised Methodology

Figure 6.1: Model Methodology
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6.3.1 Automated UKG Construction

Following the construction of the initial UKG from previous section, multiple new

nodes and relationships have been added in to deeper layers of the UKG. Table 6.1

depicts the current triples within the UKG. In the revised version, attribute nodes in the

previous model are broken down into question and question answer to better represent

the question groups. Predicting and calculating the link weight for the relationships

between question answer - exclusion code and customer - exclusion code remain the

priority.

Table 6.1: Revised relationships in UKG

Source Link Destination
Customer gives answer Question answer
Question answer is an answer of Question
Question belongs to Question group
Question answer leads to Exclusion code
Exclusion code belongs to Exclusion type group
Exclusion code is applied to Policy number
Policy number is provided to Customer
Customer has Exclusion code

At this stage, the process of creating nodes and links within the UKG is enhanced by

separating the data to multiple subsets. Each of these subsets are then tranformed into

subgraphs parallelly by using multiprocessing for faster runtime prior top join multiple

subgraphs together to create one centralised knowledge graph.

6.3.2 Explainable Exclusion

This phase is a direct application of the explainable exclusion presented in Chapter 4.

Section "Exclusion Classification" in 6.1 provides further details on how the multi-label

classifier tackles the link prediction issue within the UKG. Prior to integrating the

multi-label classification outcome into the UKG, we generate the explainable exclusion

result utilising the QAR. In essence, the QAR utilises the classification probability of

each label in a data row from the testing set and the feature importance determined by

each label’s classifier to identify the "missed" and "unneeded" labels within a multi-label

classification, based on a specific threshold. Subsequently, these are translated into

"potential" and "outlier" links within our UKG.
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6.3.3 Rules Identification and Knowledge Graph Maintenance

This section remains the most delicate part of the automation process. Traditionally,

both domain-specific knowledge graphs rules reasoning generally and underwriting rules

identification requires business expertise and manual insertion, providing concerns as

well as room for development.

The rules identification analysis in this investigation concentrates on two primary

focus:

• Establishing a baseline reference point for rule identification based on the under-

writing manual, whereby all freshly formulated rules link weight are compared

with this benchmark within an allowed threshold to ensure consistency with estab-

lished guidelines.

• Employing a weight calculation approach to prioritise nodes that substantially

impact link predictions, bridging the knowledge gaps in comprehending the signifi-

cance of each attribute to a customer’s risk profile.

Given the necessity for the UKG to be adaptable and capable of seamlessly integrating

new data, a pioneering algorithm is proposed for maintaining the knowledge graph. This

includes updating both new and existing nodes and refining the rules analysis to highlight

potential pattern-based rules deemed significant to underwriters.Upon the addition of

a new customer record, the knowledge graph undergoes updates to incorporate the

associated attributes and relationships of the new customer node. This process also

entails revising existing nodes, recalibrating the weights of their relationships to mirror

the evolving relevance of attributes to each customer’s risk assessment. Consequently,

the knowledge graph serves as a continuously evolving tool, perpetually enhancing and

fine-tuning the rules identification process as new data is assimilated.

The previous experiment shows that coefficients and feature importance alone is

insufficient to identify the link should a model be overfitted (which is highly likely with

the case of multilabel classification). Hence, the formula adjustments are introduced to

further improve the results while still preserving the the transparency of the output.

The adjustments construction is inspired and derived from Bayesian statistical theory

[32, 32] to account for the ever-evolving potentials of the UKG through each new data

batch load. The inherent semi-automated mining functions of the UKG’s graph database

structure can also be leveraged using this traditional approach.
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6.3.3.1 Weight adjustments: attributes to exclusion code

Consider the following values:

• FI(X z → Yz) as the feature importance of attribute xz for each label yz from our

multilabel classification model,

• n as the number of similar neighbors of customer z

• ρ(x→y) = |z∈Z:{z→y,z→x}|
|z∈Z:{z→x}| as the probability of a customer answering a question having

the exclusion

We can formulate the calculation as:

(6.1) ωxy = ρ(x→y) ×FI(x1→n → y1→n) if FI> 0

6.3.3.2 Weight adjustments: customer to exclusion code

With:

• J1→k(z)= range
(
lim1→k

(
J(z, z′k)

))
as the Jaccard similarity score range of customer

z

• Top k most similar customers based on features existence to identify Z(zδ)⊂ Z as

most similar customers to the existing

• ρ(z→y) as prediction probability from the model

Then:

(6.2) ωzy = range

(
lim
1→k

(∑k
1 ωzδ y

k
×Pzy

))
if Pzy > 0

Using this weight adjustment, instead of mapping a new customer to the most similar

existing customer, a group of k most similar customers are established for comparison.

6.4 Experiment Setup

Figure 6.2 outlines the process flow for the UKG set up across three main phases: Data

Collection and Preprocessing, Exclusion Classification and Initial Graph Creation, and

Rules Identification and Maintenance. The experiment employs a structured, tripartite

framework to synthesize and refine a knowledge graph from customer survey datasets
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Figure 6.2: Experiment setup

spanning 2020-2021. The initial phase, Data Collection and Preprocessing, involves

the extraction of customer information from the data as well as removing personally

identifiable information to uphold data privacy norms, followed by the application of

one-hot encoding to facilitate computational data wrangling for a structured dataset.

The second phase, Exclusion Classification and Initial Graph Creation phase utilise

the data from the first phase to run the Binary Relevance Decision Tree multilabel

classification model, along with creating the QAR metric. In parallel, the structured

one-hot encoded data is also used for the creation of an initial knowledge graph. The final

stage, Rules Identification and Maintenance, is characterized by a rigorous analytical

regime that evaluates feature importance, ratio, and predictive probability, instrumental

in calibrating link weight for nuanced link classification within the graph. The result of

this phase is a maintained UKG, of which data can be mined and extracted for evaluation.

6.5 Results Analysis

As the UKG can be utilised as a graph database, to properly evaluate its functions for

customer risk profiles, three main points are examined in alignment with the research

objectives identified in section 1.5. The angles of examination analysis are determined

below:
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• Customer risk profile using classified exclusion codes and their attached link types

(aligns with RO1).

• Rules identified via automatic rules identification after graph adjustments (aligns

with RO2).

• Updated explainable exclusion after graph adjustments (aligns with RO3).

These points are elaborated in the following subsections.

6.5.1 Customer risk profile using UKG

Customer ID Exclusion code Classification Link weight
a8c92c4d-0b82-
4431-ae6b-
72d7081c01ba

MSKL-RAN accurate 1

a8c92c4d-0b82-
4431-ae6b-
72d7081c01ba

PSTM-SCU accurate 1

a8c92c4d-0b82-
4431-ae6b-
72d7081c01ba

PDIC accurate 1

a8c92c4d-0b82-
4431-ae6b-
72d7081c01ba

MEDI-TIO potential 0.82

Table 6.2: Customer risk profile captured by the UKG for a sample customer

The use of exclusion codes linked to customer nodes in UKG to portray an overall

view of a customer’s risk profile is paramount. This categorisation aids in refining the

assessment of the risk associated with a customer using their relevance and accuracy -

ranging from directly applicable ("accurate link") from the human underwriter decisions,

to those that might be speculative ("potential") or even unneeded ("outlier") as specified

in Chapter 6. The examples provided in Table 6.2 represents the exclusion codes and

link weights connected to a customer as their risk profile, from which the risks related to

a customer are portrayed not just on a blanket-level of risk classification but detailed

into the different categories of the exclusion code, which allows for multiple risk factors

to be shown and ranked. For existing customers, all links have been verified by human

underwriters with accurate links imported from the historical data, as well as potential

and outlier links imported from QAR. To put it into perspective, the UKG assists in
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managing retained customer with updated link weights for existing links, creating an

improved personalised ranking system for existing customers. Whereas in the case of a

new customer, as stated previously in Section 1.2, UKG’s provided ranking and QAR aims

to assist underwriters in their decision-making, meaning that the new links resulted

from the UKG should be presented to human underwriters before the final decision

outcome.

6.5.2 Automatic rules identification after graph adjustments

Secondly, the impact of modifications within the knowledge graph on the hierarchy of

rules is another vital area of focus. Adjustments to the graph can lead to shifts in the

ranking of rules, which in turn might alter the interpretation and application of these

rules in risk profiling. This dynamism necessitates continuous monitoring to ensure

that the rule application remains valid and reflective of the current data structure and

insights.

Link weight serves as a pivotal metric in bench-marking the underwriting knowledge

graph. By analysing the distribution and magnitude of link weights between nodes, we

can identify potential rule patterns and correlations. Higher link weights signify stronger

relationships between nodes, indicating significant factors influencing underwriting

decisions. By scrutinizing the link weight distribution, we aim to uncover hidden insights

and refine decision-making processes.

Definition Accurate Link # of Potential
Link

# of Unneces-
sary Link

Initial KG Inferred relationships formed
either from preliminary data
analytics or graph mining

NA NA
After graph min-
ing adjustment

NA NA

After multilabel
model adjust-
ment

Edges predicted accurately by the
model

Edges pre-
dicted as
missed

Edges pre-
dicted as
unneeded

After link weight
adjustment

Add/remove edges based on
weight benchmark

Add/remove
edges based
on weight
benchmark

Add/remove
edges based
on weight
benchmark

Table 6.3: Graph edges after each adjustments

From the previous study conducted (refer to Section 5), a benchmark is required

for the suggested rules to be implemented. To remove statistical coincidence, question
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answers that are connected to general questions groups (such as basic details, questions

marked as general) will be excluded from this process.

6.5.3 Updated explainable exclusion from graph mining

Lastly, identifying the specific attributes that most significantly influence the decision

to exclude a customer from services is crucial. For a more granular understanding,

examining both commonly and rarely invoked exclusion codes provides valuable insights.

For instance, a common health-related exclusion code might be routinely applied and

serve as a standard metric for exclusion. In contrast, a mental health exclusion code

applied less frequently - such as less than ten times in the past two years - could indicate

a nuanced criterion that requires specific conditions to be met. Analysing these attributes

helps in pinpointing the decisive factors in customer risk profiling, thus enabling more

targeted and effective risk management strategies.

In our previous research in Section 5, the initial UKG weight is calculated using only

the model’s classifiers’ confidence (µ(Cy)), which is prone to misleading results should

the model be overfitted. This section focuses on comparing the results between the two

versions of the UKG for room of improvement among common and less common exclusion

codes. The classification of common and less common exclusion codes is based primarily

on frequency statistical analysis, meaning an exclusion code is defined as common or less

common based on how often they are applied within the course of 2 years.

6.5.3.1 Handling Common Exclusion Codes

As common exclusion codes are those that are frequently applied, the data available

for these groups are more in-depth for UKG attribute-exclusion evaluation. Table 6.4 puts

the top 20 attributes related to exclusion code MEDI-EYB (medical - eyeball) coming from

the initial UKG in Section 5 in comparison with the updated UKG. The initial UKG link

weights are normalised from the model’s classifiers’ feature importance that ranks over

6000 data attributes, whereas the updated UKG uses the formula 6.1 presented above. In

this case, the updated UKG results portrayed more attributes directly related to visions,

with first 12 having the link weight of 1, meaning that the multi-label classification model

ranked these attributes as unimportant even though the majority of customers having

exclusion code MEDI-EYB assigned have these attributes. Another point worth noting

is that 75% of the top 20 attributes related to MEDI-EYB all comes from the question

group "WHICH VISION", with additional attributes on benign paroxysmal positional
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vertigo (BPPV) receiving the maximum link weight, whose connection to nystagmus - a

condition in which the patient shows involuntarily repetitive rapid eye movements - has

been proven [15, 28].

Initial

UKG

Rank-

ing

Attribute Link

Weight

(scaled)

Updated

UKG

Rank-

ing

Attribute Link

Weight

1 WHICH VISION -

Keratoconus

1 1 WHICH VISION -

Partial loss of vision

1

2 WHICH VISION -

Glaucoma Mild

0.74 2 WHICH VISION - vi-

sual snow

1

3 VISION - Yes 0.17 3 WHICH VISION -

vitelliform macular

dystrophy

1

4 CYSTS GROWTHS -

Yes

0.11 4 WHICH VISION -

Macular degeneration

1

5 WHICH VISION - Op-

tic neuritis

0.11 5 WHICH VISION - Pa-

pilloedema

1

6 WHICH VISION - Oc-

ular Albinism

0.09 6 WHICH VISION -

Loss of vision

1

7 FAMILY HISTORY -

Don’t Know

0.08 7 WHICH VISION - Op-

tic atrophy

1

8 Back Physio Date -

5+yrs

0.08 8 WHICH VISION -

Congenital caratact

1

9 ALCOHOL ADVICE -

No

0.07 9 WHICH BACK PAIN -

Mild muscular pain in

back

1

10 WHICH VISION -

Corneal transplant

0.07 10 WHICH HEARING -

Benign paroxysmal

positional vertigo

1

11 Cystit Last Symptom

- 5+yrs

0.07 11 Cataract Operation

When - 1-2years

1

12 WHICH BACK PAIN -

Ache in back

0.07 12 Sarcoid Diagnosis

When - 2-3 years

1
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13 WHICH VISION -

High pressure in eye

0.07 13 WHICH VISION -

Glaucoma Mild

0.74

14 WHICH VISION - De-

tached lens

0.07 14 WHICH VISION - Ble-

pharitis

0.50

15 RECENT TREAT-

MENT - No

0.07 15 WHICH VISION -

Uveitis

0.50

16 GHQ Diagnosis Date -

5+yrs

0.07 16 Haematur Last - 3-

5years

0.50

17 Osteoa Sx Date -

5+yrs

0.07 17 WHICH VISION -

Dry Eyes

0.33

18 MENTAL SERIOUS -

No

0.06 18 WHICH VISION

- Central serous

retinopathy

0.33

19 KIDNEY FEMALE -

No

0.01 19 WHICH VISION - In-

flammation of eye

0.33

20 CONGENITAL - No 0.01 20 WHICH VISION -

Keratoconus

0.27

Table 6.4: Attribute rankings before and after updated

UKG for exclusion code MEDI-EYB

Considering the potential data saturation created by the popularity of the common

exclusion codes, question group nodes have been added to the underwriting knowledge

graph to bring more in-depth layers to the attributes connected to these codes. The

view of question group alongside the attributes itself, especially in health exclusion

codes, provides a higher level view of which potential factor groups are contributing to

the exclusion code assignment, similar to a diagnosis process. This approach enables a

more granular analysis of attributes associated with highly prevalent exclusion codes,

facilitating targeted risk assessment and decision-making.

6.5.3.2 Handling Less Common Exclusion Codes

For less popular exclusion codes, we apply a similar evaluation process by comparing

the initial top 20 most popular attributes tied to the exclusion code with the updated

top 20 exclusion code attributes. This analysis provides insights into shifting trends and

emerging risk factors associated with less frequently encountered exclusion codes. By
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identifying changes in attribute distributions, underwriters can adapt their strategies

accordingly and mitigate potential risks. Table 6.5 shows the top 20 attributes contributed

to the exclusion code MEDI-GOS (medical - esophagitis), which is applied less than 20

times over the last 2 years.

Initial

UKG

Ranking

Attribute Link

Weight

(scaled)

Updated

UKG

Ranking

Attribute Link

Weight

1 WHICH LUNG - Nose

blockage

1 1 WHICH LUNG - Nose

blockage

0.5

2 Occupation Change -

0-6mths

0.83 2 WHICH BACK PAIN -

Scoliosis

0.07

3 Chest Pain Last

Symptom - 1-2yrs

0.17 3 WHICH HEART -

Chest pain

0.004

4 NA 0 4 GHQ Treatment Date

- 1-2yrs

0.004

5 NA 0 5 GHQ Diag Date - 1-

2yrs

0.03

6 NA 0 6 Cholesterol Test Date

- 6-12mths

0.02

7 NA 0 7 GHQ Symptom Date -

1-2yrs

0.02

8 NA 0 8 Mental Health Medi-

cation Last - 3-5yrs

0.02

9 NA 0 9 Mental Health Talk

Therapy Last - 1-2yrs

0.01

10 NA 0 10 Shoulder Treatment

Date - 5+yrs

0.006

11 NA 0 11 Shoulder Symptoms

Date - 5+yrs

0.005

12 NA 0 12 Occupation Employed

Start - 1-2yrs

0.004

13 NA 0 13 WHICH SKIN -

Eczema

0.004
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14 NA 0 14 Occupation Change -

0-6mths

0.003

15 NA 0 15 Heart Problems - Yes 0.003

16 NA 0 16 Back Last Sx - 1-2yrs 0.003

17 NA 0 17 Bowel - Yes 0.003

18 NA 0 18 Precancer Fem - Yes 0.002

19 NA 0 19 Cancer - Yes 0.002

20 NA 0 20 Chest Pain Last

Symptom - 1-2yrs

0.01

Table 6.5: Attribute rankings before and after updated

UKG for exclusion code MEDI-GOS

A recurring pattern that can be seen among less common exclusions in the initial UKG

is that most of these exclusions only has less than 5 attributes with feature importance

greater than 0, meaning the results might be highly skewed and fairly unreliable for

rules prediction. This is a point of improvement from the updated UKG that resolved

the limitation on less common exclusion mentioned in Section 1.2. In particular, the

initial UKG only list three seemingly unrelated answers to attribute to the exclusion

code, whereas the updated UKG provides a better overview of attributes with attributes

related to back pain, heart pain and mental health, all are either symptoms related to

esophagitis conditions or a condition that esophagitis has been found to be connected

to [20, 21, 58, 59]. As the link weight is calculated using formula 6.1 based on the

probability of a customer answering this question having the exclusion code, due to the

limited samples provided for this exclusion code, it is mathematically understandable

that the link weights are significantly lower than their common counterpart while

keeping the same logic to provide better ranking results.

6.6 Summary

The analysis of exclusion codes in risk profiling identifies key attributes influencing

customer exclusions. Common exclusion codes, such as those for health issues, have

more data available, allowing detailed insights into contributing factors, like vision-

related conditions. Less common codes are more difficult to analyse due to limited data,

but updates to the Underwriting Knowledge Graph (UKG) improved attribute ranking
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and relevance. This refined approach enhances decision-making by enabling a clearer

understanding of both prevalent and rare exclusion codes, leading to better-targeted risk

management strategies. This method follows the logic structure of
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7
DISCUSSION OF APPROACHES TAKEN, USE CASES AND

FUTURE WORK

7.1 Results Finding

The study is based on a case study of our industry partner using real-life insurance

dataset from 2019-2021, with each iteration trying to resolve the limitations found in the

previous one. Comparing to previous attempts to build a personalise reliable customer

risk profile using underwriting data, the UKG has been able to resolve the limitations set

out in Section 1.3 and 2.6, with the most apparent improvement in explainable exclusion

and customer risk profile stated in Section 6.5. The upgraded version incorporates refined

algorithms and data processing techniques to enhance the accuracy and reliability of

link weights. By comparing the two versions, we can assess the effectiveness of these

enhancements and identify areas for further improvement.

7.2 Use Cases

7.2.1 Recalculating life table

In the dynamic landscape of insurance underwriting, the integration of an under-

writing knowledge graph presents a transformative approach to refining life tables, a

cornerstone for risk assessment and premium determination. This innovative use case

involves recalculating life tables by leveraging the nuanced link weights between various
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attributes and exclusion codes within the graph. Essentially, each attribute - such as age,

medical history, or lifestyle choices - and its associated exclusion codes are interconnected

within the graph with specific weights that signify their impact on mortality risk. By

analyzing these weighted links, insurers can dynamically adjust life tables based on real-

world data and emerging trends, ensuring more accurate, personalized, and fair pricing

for policyholders. This methodology not only enhances the precision of risk assessment

but also allows for more granular insights into the factors affecting longevity, thereby

refining the actuarial models that underpin the entire insurance industry.
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7.2.2 Adding a new customer

Algorithm 1 Pseudo Code: Adding a new customer
Input: New customer records with question answers X into the knowledge graph
Output: Calculated link weights between customers and exclusion codes

1. Load new customer records with question answers X into the knowledge graph.

2. For each customer c in the knowledge graph:

a) For each question answer qa of c:

i. If qa node does not exist in the graph:
A. Create a new question answer node qa and connect it to the customer

node and related question group.
ii. Connect the customer node to existing attribute nodes if the qa node

already exists in the graph.

3. Find customers with the most similar record based on similarity in question
answers.

4. Calculate link weights using the formula:

• Weight adjustments: customer to exclusion code

• Input: Jaccard similarity score range J1→k(z), top k most similar customers
Z(zδ), prediction probability ρ(z → y)

5. For each customer z:

ωzy = range

(
lim
1→k

(∑k
1 ωzδ y

k
×Pzy

))
if Pzy > 0

6. Create a link between the customer node and the exclusion code node.

7. Create links between the customer node and existing exclusion code nodes based
on QAR results.

8. Return calculated link weights between customers and exclusion codes.

Incorporating a new customer with unique attributes and a new exclusion code into

an underwriting knowledge graph represents a significant advancement in personalising

insurance policies and streamlining the underwriting process. This use case highlights

the graph’s capability to assimilate new information seamlessly, enabling insurers to

tailor their risk assessment and policy pricing with unprecedented precision. When a new
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customer’s data enters the system, bringing along its attributes (question answers), UKG

dynamically integrates this information using Algorithm 1, expanding its nodes and

edges to reflect these additions. This expansion not only enriches the graph with fresh

insights but also aids in identifying patterns and correlations among attributes and risks.

Consequently, insurers can offer policies that are more accurately priced according to

the individual’s unique risk profile, fostering a more equitable and efficient underwriting

process. This adaptability ensures that the knowledge graph remains a robust, evolving

tool that continuously enhances the accuracy and fairness of insurance underwriting.

For the application of Algorithm 1, let:

• n be the number of customers in the knowledge graph.

• q be the number of question answers per customer.

• k be the number of most similar customers considered for weight adjustments.

• m be the number of exclusion codes.

The computational complexity for each part of the algorithm is as follows:

• Adding customer records: O(n× q)

• Finding similar customers: O(n2 × q)

• Calculating link weights: O(n×k)

Based on the analysis above, the most expensive part in terms of computational

complexity within the function lies in finding similar customers, which can be a point of

improvement for future iterations.
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7.2.3 Adding a new rule

Algorithm 2 Pseudo Code: Adding a new rule
Input: New customer records with question answers X and exclusion codes Y into the
knowledge graph
Output: Calculated link weights between attributes and exclusion codes

1. Load new customer records with question answers X and exclusion codes Y into
the knowledge graph.

2. For each customer z in the knowledge graph:

a) For each question answer x of z:

i. If x node does not exist in the graph:
A. Create a new question answer node x and connect it to the customer

node and related question group.
ii. Connect the customer node to existing attribute nodes if x node already

exists in the graph.

b) For each exclusion code y of z:

i. If y node does not exist in the graph:
A. Create a new exclusion code node y and connect it to the customer

node and related exclusion group.
ii. Connect the customer node to existing exclusion code nodes if y node

already exists in the graph.

3. Calculate link weights using the following formula:

• For each attribute x connected to exclusion code y:

ωxy = ρ(x → y)×FI(x1→n → y1→n) if FI > 0

4. Return calculated link weights between attributes and exclusion codes.

The addition of a new rule based on the graph link weight using Algorithm 2, calcu-

lated by the probability of an attribute being linked to an exclusion code, showcases the

dynamic and adaptive nature of underwriting knowledge graphs in refining insurance

processes. This use case illustrates how the graph’s architecture facilitates the incorpo-

ration of new underwriting rules as relationships or links between specific attributes

and exclusion codes. When the graph algorithm identifies a statistically significant

weight or probability that associates a particular attribute with an exclusion code, it
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can autonomously generate a new rule. This rule then becomes a critical part of the

decision-making framework, guiding underwriters in evaluating risks more accurately.

For instance, if data analysis reveals that a certain lifestyle choice (attribute) has a high

probability of leading to a specific health condition (exclusion code), the knowledge graph

automatically formalizes this correlation into a new underwriting rule. This process not

only enhances the precision of risk assessment but also ensures that the underwriting

rules evolve in tandem with emerging data trends, maintaining the relevance and effec-

tiveness of the underwriting process. One additional note, to reduce the risk of data bias

coming from limited sample data, before an exclusion is automatically updated using the

graph function, there should be at least 5 data records of that particular exclusion code

prior to adding in the graph.

For the application of Algorithm 2, let:

• n = number of customers in the knowledge graph.

• q = number of question answers per customer.

• m = number of exclusion codes per customer.

• a = number of attributes related to question answers.

The complexities for each step are as follows:

• Load new customer records: O(n)

• Loop through each customer and their question answers: O(n× q)

• Loop through each customer and their exclusion codes: O(n×m)

• Calculate link weights: O(n× q×m)

The total complexity of Algorithm 2 is O(n) + O(n×q) + O(n×m) + O(n×q×m), with

the potential to over-expand in the worst-case scenario that all customers answered all

questions given. However, as presented in the preliminary findings in Section 3.3.2 as

well as the questionnaire structure in Section 1.1.3.2, this is an impossible edge case.
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7.2.4 Recalculating graph link weight

As mentioned in Chapter 6, following the concept of Bayesian theory[62], the graph

requires recalculation after each new batch load of data to incorporate new attributes

and update link weights. This continuous re-calibration ensures that the graph remains

accurate and up-to-date with the latest information. The use of a graph structure in this

model assists in reducing computational power requirements comparing to rerunning

the whole system every update, as only the links attached to impacted nodes need

to be recalculated. This selective updating process enhances efficiency, allowing for

a more organised system update schedule. By alternating between data batch load

updates and exclusion classification functions for new customers, the system maintains

its performance and adaptability, ensuring both accuracy and efficiency in its operations.

7.2.5 Standardise and transpose UKG into RDF and OWL
structure

As mentioned previously in Chapter 2, many domain-specific knowledge graphs are

not up to par with the standardised format due to its way of construction. Although the

UKG is built using Python and networkx [19] for a smoother calculation function incor-

poration, the graph itself after construction can be transposed to OWL for standardised

preservation using Algorithm 3 below:
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Algorithm 3 Pseudo Code: Update OWL Graph with NetworkX Graph Data
Input: UKG in NetworkX form
Output: UKG in OWL standard

1. For each node in UKG:

a) If not owl.search(iri="*".node."*"):

i. new ← create(node, (Thing))
ii. owl.append(new)

2. For each edge in nx.edges:

a) Let source, target ← edge

b) If not owl.search(iri="*".source."_to_".target."*"):

i. new ← create_object_property(source, target)
ii. source ← owl.search(iri="*".source."*")[0]

iii. target ← owl.search(iri="*".target."*")[0]
iv. add_relation(source, new, target)

3. Return null.

7.2.6 Insurance Fraud Prediction

As a benefit of the structure of the graph, finding insurance fraud claims clusters can

be made easier by tracking fraud gangs via clusters of fraud cases linked to certain doctor

practices, which has already provided as an attribute node in the knowledge graph. This

is not within the scope of this research, however, the idea has been proposed by [70] in

the sub-field of auto insurance.

7.3 Current Limitations and Future Headings

7.3.1 Current Limitations

Due to the time limitation for Masters’ degree of this study, the potentials of the UKG

in its various use cases have yet to be fully explored. These limitations include:

• Limitation in fully automated process for new rules identification: As

stated in Chapter 5, this model still relies on a fixed benchmark (currently set at

0.8 for statistical reliance - proven by manual review of the results) in order for a
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link between an attribute and an exclusion to be established, though this problem

has been partially resolved with the adjustment on UKG link weight calculation

in Chapter 6 via the use of probability statistics and Bayesian theory [32]. This

indicates that the model’s current functionality is limited at rules identification

and suggestions, hence more industrial research efforts into model evaluation and

automated reasoning are required for the model to truly achieve the state of fully

automated identification.

• Rules evaluation: The model at its current state relies on the companies’ un-

derwriters’ expertise (in the form of utilising ML and data analytics for pattern

recognition from historical decisions) without other sources of truth for verification.

That being said, as the scope set out for this study did not aim to replace human un-

derwriters, this limitation can potentially be resolved by either having the UKG’s

suggested rules identified through changes in the top 20 rankings should be regu-

larly reviewed by underwriting experts for regular maintenance. The evaluation

framework can be as simple as presented in Figure 7.1.

Figure 7.1: Proposed Validation Framework

7.3.2 Use of Exclusion Code within Underwriting Knowledge
Graph

Insurance data represents one of the most comprehensive and personalized datasets

available on an individual, encapsulating myriad details that paint a vivid portrait
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of a person’s life and potential risks. Given its depth and scope, the application and

interpretation of exclusion codes within the UKG framework is pivotal for the nuanced

classification and segmentation of this data. Particularly in the context of health ex-

emptions, it is advisable to leverage these codes not merely as tools for exclusion but

as instrumental guides to identifying potential health risks a customer may face. By

doing so, insurance policies can be combined with health recommendations and products

aimed at mitigating these risks at an early stage. This approach marks a paradigm shift

towards utilising machine learning and data-driven methodologies not just for enhancing

the insurance company’s risk assessment and mitigation strategies but also for signifi-

cantly improving the care provided to customers and further drive the personalisation

effort. Through the repurposed use of exclusion codes, insurance entities can transcend

traditional benefits, offering a more holistic and preventative care model as well as

personalised policies that prioritises the well-being of the insured, thereby fostering a

more nurturing and protective insurance ecosystem. This usage of UKG and explanable

exclusions can be harnessed to deliver mutual benefits to both insurance companies and

their customers, enhancing care while optimising risk management.

In events of a pandemic such as the case of COVID-19, the UKG can be utilised for

a view of multiple exclusion codes to identify potential mental health issues with the

customer risk profile for early forecast of customers who are likely to make a claim (those

with high ranking for multiple combination exclusion codes). This can help the insurance

industry to better their personalisation experience with early risk intervention efforts.

7.3.3 Future Headings

The current version of the UKG adopts a simpler method to maintain accuracy in

order to effectively reducing the risk of "hallucination" or errors in data interpretation.

This streamlined approach ensures a decently reliable output, leaving more room for

improvement on improving link weight calculations. Enhancing these calculations is

crucial for advancing the process of automated reasoning, particularly in the identifi-

cation of rules within the knowledge graph. Additionally, since the UKG functions as

a graph database, there is significant potential to establish and explore a wider range

of use cases for this model. Investing efforts in these areas will enable us to unlock

new applications and drive further advancements in data processing and knowledge

representation, ultimately expanding the utility and impact of the UKG across various

domains.
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CONCLUSION

In conclusion, this thesis explored innovative approaches to enhance customer risk

profiling in life underwriting by leveraging an underwriting knowledge graph and

multi-label classification for explainable exclusions. The study addressed significant

challenges in traditional underwriting processes, such as handling missing values and

ensuring model transparency. By constructing a UKG based on real-life data and intro-

ducing a semi-automated process for rules identification and maintenance, the research

provided valuable insights into customer risk profiles and potential correlations with

exclusion codes. The proposed methodology demonstrated the effectiveness of integrating

a knowledge graph structure with multi-label classification to improve accuracy and

transparency in underwriting decisions.

This study serves as one of the continuous efforts to set the steppingstone in the

race to put technological models that have been created and researched within academia

momentarily to real-life practice. Due to time limitations of my degree, my research barely

scraps the surface of the full potential of knowledge graph application within this field, as

the purpose is to explore potential approaches and to produce a functioning model within

the time frame allowed. That being said, future research should focus on expanding use

cases of the UKG, refining the algorithms for better performance and further the process

of automated reasoning in knowledge graph, ultimately contributing to the broader

application of data-driven approaches in the insurance industry and other personalised

services. Though the application of the model and its results eventually relies on the

insurance industry and companies themselves, the risk profile created from the UKG
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should be used to drive the personalised efforts to offer personalised packages instead of

outright exclusions for customers, and additionally, thanks to the comprehensive view

that insurance data covered on a person’s life, including but not limited to their health,

lifestyle and income, the risks interpreted from the model’s exclusion code results can

serve as an early-on warning for customers as well as healthcare personnel partners

to provide and cover precaution treatments and first-aid practices for prevention of

potential risks.
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[57] P. SZYMAŃSKI AND T. KAJDANOWICZ, A scikit-based Python environment for per-
forming multi-label classification, ArXiv e-prints, (2017).

[58] J. TACK, A. BECHER, C. MULLIGAN, AND D. JOHNSON, Systematic review: the
burden of disruptive gastro-oesophageal reflux disease on health-related quality
of life, Alimentary pharmacology & therapeutics, 35 (2012), pp. 1257–1266.

[59] T. TAFT, E. KERN, M. KWIATEK, I. HIRANO, N. GONSALVES, AND L. KEEFER,

The adult eosinophilic oesophagitis quality of life questionnaire: a new measure
of health-related quality of life, Alimentary pharmacology & therapeutics, 34

(2011), pp. 790–798.

[60] E. A. TANAKA, S. R. NOZAWA, A. A. MACEDO, AND J. A. BARANAUSKAS, A multi-
label approach using binary relevance and decision trees applied to functional
genomics, Journal of biomedical informatics, 54 (2015), pp. 85–95.

[61] E. TJOA AND C. GUAN, A survey on explainable artificial intelligence (xai): Toward
medical xai, IEEE transactions on neural networks and learning systems, 32

(2020), pp. 4793–4813.

[62] R. VAN DE SCHOOT, S. DEPAOLI, R. KING, B. KRAMER, K. MÄRTENS, M. G.

TADESSE, M. VANNUCCI, A. GELMAN, D. VEEN, J. WILLEMSEN, ET AL.,

Bayesian statistics and modelling, Nature Reviews Methods Primers, 1 (2021),

p. 1.

[63] K. VAN NGUYEN, M. R. ISLAM, H. HUO, P. TILOCCA, AND G. XU, Explainable
exclusion in the life insurance using multi-label classifier, in 2023 International

Joint Conference on Neural Networks (IJCNN), IEEE, 2023, pp. 1–8.

78



BIBLIOGRAPHY

[64] N. N. VO, S. LIU, X. LI, AND G. XU, Leveraging unstructured call log data for
customer churn prediction, Knowledge-Based Systems, 212 (2021), p. 106586.

[65] M. WANG, L. QIU, AND X. WANG, A survey on knowledge graph embeddings for
link prediction, Symmetry, 13 (2021), p. 485.

[66] Q. WANG, Z. MAO, B. WANG, AND L. GUO, Knowledge graph embedding: A survey
of approaches and applications, IEEE Transactions on Knowledge and Data

Engineering, 29 (2017), pp. 2724–2743.

[67] D. S. WISHART, Y. D. FEUNANG, A. C. GUO, E. J. LO, A. MARCU, J. R. GRANT,

T. SAJED, D. JOHNSON, C. LI, Z. SAYEEDA, ET AL., Drugbank 5.0: a major
update to the drugbank database for 2018, Nucleic acids research, 46 (2018),

pp. D1074–D1082.

[68] T. WU, C. GAO, G. QI, L. ZHANG, C. DONG, H. LIU, AND D. ZHANG, Kg-buddhism:
The chinese knowledge graph on buddhism, in Joint International Semantic

Technology Conference, Springer, 2017, pp. 259–267.

[69] T. WU, G. QI, C. LI, AND M. WANG, A survey of techniques for constructing chinese
knowledge graphs and their applications, Sustainability, 10 (2018), p. 3245.

[70] L. ZHANG, T. WU, X. CHEN, B. LU, C. NA, AND G. QI, Auto insurance knowl-
edge graph construction and its application to fraud detection, in The 10th

International Joint Conference on Knowledge Graphs, 2021, pp. 64–70.

[71] Y. ZHAO, L. LI, AND X. WU, Link prediction-based multi-label classification on
networked data, in 2016 IEEE First International Conference on Data Science

in Cyberspace (DSC), IEEE, 2016, pp. 61–68.

[72] X. ZOU, A survey on application of knowledge graph, in Journal of Physics: Confer-

ence Series, vol. 1487, IOP Publishing, 2020, p. 012016.

79




	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	Prologue
	Background and Motivation
	Insurance Sector and Life Underwriting
	Current Industry Headings
	Underwriting Process and Underwriting Rules Engine

	Current Challenges
	Research Problems
	Research Objectives
	Research Contributions
	Thesis Organisation

	Related Works
	Automated Underwriting Process Approaches
	Automated Underwriting Customer Risk Profile
	Domain-specific Knowledge Graph
	Knowledge Graph Link Prediction Using Multi-label Classification
	Explainability in Artificial Intelligence
	Summary

	The Underwriting Data
	Domain Requirements
	Data Set Overview
	Data Preliminary Analytics
	Customers With Exclusions Applied
	Feature Value Frequencies

	Algorithmic Problem

	Explainable Exclusion Using Multilabel Classification
	Background and Motivation
	Key Contribution
	Model Methodology
	Evaluation and Explainability
	Quality assurance report (QAR)
	Shapley Additive Explanations (SHAP)

	Empirical Experiment
	Data collection and processing
	Experimental setup
	Evaluation metrics
	Evaluation

	Results Analysis
	Explainable machine learning analysis


	Knowledge Graph For Underwriting
	Background and Motivation
	Key Contribution
	Methodology
	Ontology Design

	Construction of Knowledge Graph
	Exclusion Classification and Link Prediction
	Automated knowledge graph creation, update and maintenance

	Results Analysis and Discussion

	Risk Profile Using Knowledge Graph And Multilabel Classification
	Background and Motivation
	Key Contribution
	Revised Methodology
	Automated UKG Construction
	Explainable Exclusion
	Rules Identification and Knowledge Graph Maintenance

	Experiment Setup
	Results Analysis
	Customer risk profile using UKG
	Automatic rules identification after graph adjustments
	Updated explainable exclusion from graph mining

	Summary

	Discussion of Approaches Taken, Use Cases and Future Work
	Results Finding
	Use Cases
	Recalculating life table
	Adding a new customer
	Adding a new rule
	Recalculating graph link weight
	Standardise and transpose UKG into RDF and OWL structure
	Insurance Fraud Prediction

	Current Limitations and Future Headings
	Current Limitations
	Use of Exclusion Code within Underwriting Knowledge Graph
	Future Headings


	Conclusion
	Bibliography

