
International Journal of Data Science and Analytics (2024) 17:359–371
https://doi.org/10.1007/s41060-023-00402-y

REGULAR PAPER

A fast parallel tensor decomposition with optimal stochastic gradient
descent: an application in structural damage identification

Ali Anaissi1 · Basem Suleiman1,2 ·Widad Alyassine1 · Seid Miad Zandavi1

Received: 7 July 2021 / Accepted: 11 June 2023 / Published online: 23 June 2023
© The Author(s) 2023

Abstract
Structural health monitoring (SHM) provides an economic approach which aims to enhance understanding the behavior of
structures by continuously collecting data through multiple networked sensors attached to the structure. These data are then
utilized to gain insight into the health of a structure and make timely and economic decisions about its maintenance. The
generated SHM sensing data are non-stationary and exist in a correlated multi-way form which makes the batch/off-line
learning and standard two-way matrix analysis unable to capture all of these correlations and relationships. In this sense,
the online tensor data analysis has become an essential tool for capturing underlying structures in higher-order datasets
stored in a tensor X ∈ R

I1×···×IN . The CANDECOMP/PARAFAC (CP) decomposition has been extensively studied and
applied to approximate X by N loading matrices A(1), . . . , A(N ) where N represents the order of the tensor. We propose
a novel algorithm, FP-CPD, to parallelize the CANDECOMP/PARAFAC (CP) decomposition of a tensor X ∈ R

I1×···×IN .
Our approach is based on stochastic gradient descent (SGD) algorithm which allows us to parallelize the learning process,
and it is very useful in online setting since it updates X t+1 in one single step. Our SGD algorithm is augmented with
Nesterov’s accelerated gradient and perturbation methods to accelerate and guarantee convergence. The experimental results
using laboratory-based and real-life structural datasets indicate fast convergence and good scalability.

Keywords Tensor analysis · Stochastic gradient descent · Structural health monitoring · Anomaly detection · Online learning

1 Introduction

There has been an exponential growth of data which is gener-
ated by the accelerated use of modern computing paradigms.
A prominent example of such paradigms is the Internet of
Things (IoTs) in which everything is envisioned to be con-
nected to the Internet. One of the most promising technology
transformations of IoT is a smart city. In such cities, enor-
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mous number of connected sensors and devices continuously
collect massive amount of data about things such as city
infrastructure to analyze and gain insights on how to manage
the city efficiently in terms of resources and services.

The adoption of smart city paradigmwill result in massive
increase of data volume (data collected from a large num-
ber of sensors) as well as a number of data features which
increase data dimensionality. To make prices and in-depth
insights from such data, advanced and efficient techniques
including multi-way data analysis were recently adopted by
research communities.

The concept of multi-way data analysis was introduced
by Tucker in 1964 as an extension of standard two-way data
analysis to analyze multidimensional data known as tensor
[22]. It is often used when traditional two-way data analysis
methods such as Non-negative Matrix Factorization (NMF),
Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD) are not capable of capturing the under-
lying structures inherited in multi-way data [9]. In the realm
of multi-way data, tensor decomposition methods such as
Tucker and CANDECOMP/PARAFAC (CP) [22, 30]
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have been extensively studied and applied in various fields
including signal processing [11], civil engineer [20], rec-
ommender systems [30], and time series analysis [10]. The
CP decomposition has gained much popularity for analyzing
multi-way data due to its ease of interpretation. For example,
given a tensorX ∈ R

I1×···×IN , CPmethod decomposesX by
N loadingmatrices A(1), . . . , A(N ) each represents onemode
explicitly, where N is the tensor order and eachmatrix A rep-
resents one mode explicitly. In contrast to Tucker method,
the three modes can interact with each other making it diffi-
cult to interpret the resultant matrices.

The CP decomposition approach often uses the Alternat-
ing Least Squares (ALS) method to find the solution for a
given tensor. The ALS method follows the batch mode train-
ing process which iteratively solves each component matrix
by fixing all the other components; then, it repeats the pro-
cedure until it converges [19]. However, ALS can lead to
sensitive solutions [4, 12]. Moreover, in the domain of big
data and IoTs such as smart cities, the ALS method raises
many challenges in dealing with data that is continuously
measured at high velocity from different sources/locations
and dynamically changing over time. For instance, a struc-
tural health monitoring (SHM) data can be represented in
a three-way form as location × f eature × time which
represents a large number of vibration responses measured
over time by many sensors attached to a structure at dif-
ferent locations. This type of data can be found in many
other application domains including [1, 5, 23, 37]. The itera-
tive nature of employed CP decomposition methods involves
intensive computational processing in each iteration. A sig-
nificant challenge arises in such algorithms (including ALS
and its variations) when the input tensor is sparse and has
N dimension. This means as the dimensionality of the ten-
sor increases, the calculations involved in the algorithm
becomecomputationallymore expensive, and thus incremen-
tal, parallel and distributed algorithms for CP decomposition
become essential to achieving a more reasonable perfor-
mance. This is especially the case in large applications and
computing paradigms such as smart cites.

The efficient processing of CP decomposition problem
has been investigated with different hardware architecture
and techniques including MapReduce structure [17] and
shared and distributed memory structures [18, 36]. Such
approaches present algorithms that require alternating hard-
ware architectures to enable parallel and fast execution of
CP decompositionmethods. TheMapReduce and distributed
computing approaches could also incur additional perfor-
mance from network data communication and transfer. Our
goal is to devise a parallel and efficient CP decomposition
execution method with minimal hardware changes to the
operating environment and without incurring additional per-
formance resulting from new hardware architectures. Thus,
to address the aforementioned problems, we propose an

efficient solver method called FP-CPD (Fast Parallel-CP
Decomposition) for analyzing large-scale high-order data in
parallel based on stochastic gradient descent. The scope of
this paper is smart cities and, in particular, SHM of infras-
tructure such as bridges. The novelty of our proposedmethod
is summarized in the following contributions:

1. Parallel CP Decomposition. Our FP-CPD method is
capable of efficiently learning large-scale tensors in par-
allel and updating X (t+1) in one step.

2. Empirical analysis on structural datasets. We con-
duct experimental analysis using laboratory-based and
real-life datasets in the field of SHM. The experimental
analysis shows that our method can achieve more stable
and fast tensor decomposition compared to other known
existing online and offline methods.

The remainder of this paper is organized as follows. Sec-
tion2 introduces background knowledge and review of the
related work. Section3 describes our novel FP-CPD algo-
rithm for parallel CP decomposition based on SGDalgorithm
augmentedwith theNAGmethod and perturbation approach.
Section4 presents the motivation of this work. Section5
shows the performance of D-CPD on structural datasets and
presents our experimental results on both laboratory-based
and real-life datasets. The conclusion anddiscussion of future
research work are presented in Sect. 6.

2 Background and related work

2.1 CP decomposition

Given a three-way tensor X ∈ �I×J×K , CP decomposes X
into three matrices A ∈ �I×R , B ∈ �J×Rand C ∈ �K×R ,
where R is the latent factors. It can be written as follows:

X(i jk) ≈
R∑

r=1

Air ◦ Bjr ◦ Ckr (1)

where “◦” is a vector outer product. R is the latent element;
Air , Bjr and Ckr are r-th columns of component matrices
A ∈ �I×R , B ∈ �J×Rand C ∈ �K×R . The main goal of CP
decomposition is to decrease the sum square error between
the model and a given tensor X . Equation2 shows our loss
function L needs to be optimized.

L(X , A, B,C) = min
A,B,C

‖X −
R∑

r=1

Air ◦ Bjr ◦ Ckr‖2f , (2)

where ‖X‖2f is the sum squares of X and the subscript f is
the Frobenius norm. The loss function L presented in Eq.2
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is a non-convex problem with many local minima since it
aims to optimize the sum squares of three matrices. Several
algorithms have been proposed to solve CP decomposition
[25, 31, 38]. Among these algorithms, ALS has been heavily
employed which repeatedly solves each component matrix
by locking all other components until it converges [29]. The
rational idea of the least square algorithm is to set the partial
derivative of the loss function to zero with respect to the
parameter we need to minimize. Algorithm 1 presents the
detailed steps of ALS.

ALGORITHM 1: Alternating Least Squares for CP
Alternating Least Squares
Input: Tensor X ∈ �I×J×K , number of components R
Output: Matrices A ∈ �I×R , B ∈ �J×R and C ∈ �K×R

1: Initialize A, B,C
2: Repeat
3: A = argmin

A

1
2‖X(1) − A(C � B)T ‖2

4: B = argmin
B

1
2‖X(2) − B(C � A)T ‖2

5: C = argmin
C

1
2‖X(3) − C(B � A)T ‖2

(X(i) is the unfolded matrix of X in a current mode)
6: until convergence

Zhou et al. [42] suggests that ALS can be easily paral-
lelized for matrix factorization methods, but it is not scalable
for large-scale data especially when it deals with multi-
way tensor data. Later Zhou et al. [41] proposed another
method called onlineCP to address the problem of online CP
decomposition using ALS algorithm. The method was able
to incrementally update the temporal mode inmulti-way data
but failed for non-temporal modes [19] and not parallelized.

2.2 Stochastic gradient descent

A stochastic gradient descent algorithm is a key tool for
optimization problems. Here, the aim is to optimize a loss
function L(x, w), where x is a data point drawn from a dis-
tribution D and w is a variable. The stochastic optimization
problem can be defined as follows:

w = argmin
w

E[L(x, w)] (3)

The stochastic gradient descent method solves the above
problem defined in Eq.3 by repeatedly updates w to min-
imize L(x, w). It starts with some initial value of w(t) and
then repeatedly performs the update as follows:

w(t+1) := w(t) + η
∂L

∂w
(x (t), w(t)) (4)

whereη is the learning rate and x (t) is a random sample drawn
from the given distribution D. This method guarantees the
convergence of the loss function L to the global minimum
when it is convex. However, it can be susceptible to many
local minima and saddle points when the loss function exists
in a non-convex setting. Thus it becomes an NP-hard prob-
lem. Note, the main bottleneck here is due to the existence of
many saddle points and not to the local minima [13]. This is
because the rational idea of gradient algorithm depends only
on the gradient information which may have ∂L

∂u = 0 even
though it is not at a minimum.

Previous studies have used SGD for parallel matrix fac-
torization. Gemulla [14] proposed a new parallel method for
matrix factorization using SGD. The authors indicate the
method was able to handle large-scale data with fast con-
vergence efficiently. Similarly, Chin et al. [8] proposed a
fast parallel SGD method for matrix factorization in recom-
mender systems. The method also applies SGD in shared
memory systems but with a careful consideration to the load
balance of threads. Naiyang et al. [16] applies Nesterov’s
optimal gradientmethod to SGD for non-negativematrix fac-
torization. This method accelerates the NMF process with
less computational time. Similarly, Shuxin et al. [40] used
an SGD algorithm for matrix factorization using Taylor
expansion and Hessian information. They proposed a new
asynchronous SGD algorithm to compensate for the delay
resultant from a Hessian computation.

Recently, SGD has attracted several researchers work-
ing on tensor decomposition. For instance, Ge et al. [13]
proposed a perturbed SGD (PSGD) algorithm for orthogo-
nal tensor optimization. They presented several theoretical
analysis that ensures convergence; however, the method is
not applicable to non-orthogonal tensor. They also did not
address the problem of slow convergence. Similarly, Mae-
hara et al. [26] propose anewalgorithm forCPdecomposition
based on a combination of SGD and ALS methods (SALS).
The authors claimed the algorithm works well in terms of
accuracy. Nevertheless, its theoretical properties have not
been completely proven and the saddle point problem was
not addressed. Rendle and Thieme [32] propose a pairwise
interaction tensor factorization method based on Bayesian
personalized rank. The algorithm was designed to work only
on three-way tensor data. To the best of our knowledge, the
first work applies a parallel SGD algorithm augmented with
Nesterov’s optimal gradient and perturbation methods for
fast parallel CP decomposition of multi-way tensor data.

3 Fast parallel CP decomposition (FP-CPD)

Given an Nth-order tensor X ∈ R
I1×···×IN , we solve the

CP decomposition by splitting the problem into a convex N
sub-problems since its loss function L defined in Eq.1 is
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non-convex problem which may have many local minima. In
case of distributing this solution, another challenge is raised
where the value of the w(t) must be globally updated before
computingw(t+1) wherew represents A, B andC . However,
the structure and the process of tensor decomposition allows
us to exploit this challenge. For illustration purposes, we
present our FP-CPDmethod based on three-way tensor data.
The same logic can be naturally extended to handle a higher-
order tensor, though.

Definition 1 Two training points x1 = (i1, j1, k1) ∈ X and
x2 = (i2, j2, k2) ∈ X are interchangeable with respect to the
loss function L defined in Eq.1 if they are not sharing any
dimensions, i.e., i1 �= i2, j1 �= j2 and k1 �= k2.

Based on Definition 1, we develop a new algorithm,
called FP-CPD, to carry the tensor decomposition process
in parallel. The core idea of FP-CPD algorithm is to find
and run the CPD in parallel by considering all the defined
interchangeable training points in one single step without
affecting the final outcome of w. Our FP-CPD algorithm
partitions the training tensorX ∈ �I×J×K into set of poten-
tially independent blocks X1, . . . ,Xb. Each block consists
of t interchangeable training points which are identified by
finding all the possible combinations of each dimension of a
given tensorX . To illustrate this process, we consider a three-
order tensor X ∈ R

3×3×3 as shown in Fig. 1. This tensor is
partitioned into d independent blocks which cover the entire
given training data Dd

b=1Xb. The value of d = i× j×k
min(i, j,k) .

Each Xb contains a parallelism parameter p which deduces
the possible number of tasks that can be run in parallel. In
our three-way tensor example p = 3 interchangeable train-
ing points.

3.1 The FP-CPD algorithm

Given the set of independent blocks Dd
b=1Xb, we can

decompose X ∈ �I×J×K in parallel into three matri-
ces A ∈ �I×R , B ∈ �J×R and C ∈ �K×R , where R
is the latent factors. In this context, we reconstitute our
loss function defined in Eq.2 to be the sum of losses per
block:L(A, B,C) = ∑d

b=1 Lb(A, B,C). This new loss
function provides the rational of our parallel CP decomposi-
tion which will allow SGD algorithm to learn all the possible
interchangeable data points within each block in parallel.
Therefore, SGD computes the partial derivative of the loss
function Lb(A, B,C) = ∑

(i, j,k)∈Db
Li, j,k(A, B,C) with

respect to the three modes A, B and C alternatively as fol-
lows:

∂Lb

∂A
(X (1); A) = (X (1) − A × (C ◦ B)) × (C ◦ B)

∂Lb

∂B
(X (2); B) = (X (2) − B × (C ◦ A)) × (C ◦ A)

∂Lb

∂C
(X (3);C) = (X (3) − C × (B ◦ A)) × (B ◦ A) (5)

where X (i) is an unfolding matrix of tensorX in mode i . The
gradient update step for A, B and C is as follows:

A(t+1) := A(t) + η(t) ∂Lb

∂A
(X (1,t); A(t))

B(t+1) := B(t) + η(t) ∂Lb

∂B
(X (2,t); B(t))

C (t+1) := C (t) + η(t) ∂Lb

∂C
(X (3,t);C (t)) (6)

3.1.1 Convergence

Regardless if we are applying parallel SGD or just SGD,
the partial derivative of SGD in non-convex setting may
encounter data points with ∂L

∂w
= 0 even though it is not

at a global minimum. These data points are known as saddle
points which may detente the optimization process to reach
the desired local minimum if not escaped [13]. These saddle
points can be identified by studying the second-order deriva-

tive (akaHessian) ∂L
∂w

2
. Theoretically, when the ∂L

∂w

2
(x;w) 	

0, x must be a local minimum; if ∂L
∂w

2
(x;w) ≺ 0, then we are

at a local maximum; if ∂L
∂w

2
(x;w) has both positive and nega-

tive eigenvalues, the point is a saddle point. The second-order
methods guarantee convergence, but the computing of Hes-
sian matrix H (t) is high, which makes the method infeasible
for high-dimensional data and online learning. Ge et al. [13]
show that saddle points are very unstable and can be escaped
if we slightly perturb them with some noise. Based on this,
we use the perturbation approach which adds Gaussian noise
to the gradient. This reinforces the next update step to start
moving away from that saddle point toward the correct direc-
tion.After a randomperturbation, it is highly unlikely that the
point remains in the same band and hence it can be efficiently
escaped (i.e., no longer a saddle point). We further incorpo-
rate Nesterov’s method into the perturbed-SGD algorithm to
accelerate the convergence rate. Recently, Nesterov’s accel-
erated gradient (NAG) [27] has received much attention for
solving convex optimization problems [15, 16, 28]. It intro-
duces a smart variation of momentum that works slightly
better than standard momentum. This technique modifies the
traditional SGD by introducing velocity ν and friction γ ,
which tries to control the velocity and prevents overshoot-
ing the valley while allowing faster descent. Our idea behind
Nesterov’s is to calculate the gradient at a position that we
knowourmomentum is about to take us instead of calculating
the gradient at the current position. In practice, it performs
a simple step of gradient descent to go from w(t) to w(t+1),
and then it shifts slightly further than w(t+1) in the direction
given by ν(t−1). In this setting, we model the gradient update
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Fig. 1 Independent blocks for
X ∈ �3×3×3

(1,1,3),(2,2,1),(3,3,2)(1,1,1) (2,2,2) (3,3,3) (1,1,2),(2,2,3),(3,3,1)

(1,2,1) (2,3,2) (3,1,3) (1,2,2) (2,3,3) (3,1,1) (1,2,3) (2,3,1) (3,1,2)

(1,3,1) (2,1,2) (3,2,3) (1,3,2) (2,1,3) (3,2,1) (1,3,3) (2,1,1) (3,2,2)

step with NAG as follows:

A(t+1) := A(t) + η(t)ν(A,t) + ε − β||A||L1,b (7)

where

ν(A,t) := γ ν(A,t−1) + (1 − γ )
∂Lb

∂A
(X (1,t), A(t)) (8)

where ε is a Gaussian noise, η(t) is the step size, and ||A||L1,b

is the regularization and penalization parameter into the
L1 norms to achieve smooth representations of the out-
come and thus bypassing the perturbation surrounding the
local minimum problem. The updates for (B(t+1), ν(B,t))

and (C (t+1), ν(C,t)) are similar to the aforementioned ones.
With NAG, our method achieves a global convergence rate of
O( 1

T 2 ) comparing to O( 1
T ) for traditional gradient descent.

Based on the above models, we present our FP-CPD algo-
rithm 2.

4 Motivation

Numerous types of data are naturally structured as multi-
way data. For instance, structural health monitoring (SHM)
data can be represented in a three-way form as location ×
f eature × t ime. Arranging and analyzing the SHM data

ALGORITHM 2: FP-CPD algorithm

Input: Tensor X ∈ �I×J×K , number of components R
Output: Matrices A ∈ �I×R , B ∈ �J×R and C ∈ �K×R

– Initialize A, B,C
– Repeat

– Form d blocks {X1, . . . ,Xb}
– for b = 1, . . . , d do

– I P = Find all interchangeable data points in block
Xb (Definition 1)

– for each p in I P do in parallel
– Compute the partial derivative of A, B and C

using Equation 5
– Compute ν of A, B and C using Equation 8
– Update A, B and C using Equation 7

– end for each
– end for

– until convergence

in a multidimensional form would allow us to capture the
correlation between sensors at different locations and at the
same timewhichwasnot possible using the standard two-way
matrix t ime × f eature. Furthermore, in SHM only posi-
tive data instances, i.e., healthy state, are available. Thus, the
problem becomes an anomaly detection problem in higher-
order datasets. Rytter [33] affirms that damage identification
also requires also damage localization and severity assess-
ment which are consideredmuchmore complex than damage
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detection since they require a supervised learning approach
[39].

Given a positive three-way SHM data
X ∈ R

f eature×location×time, FP-CPD decomposes X into
three matrices A, B and C . The C matrix represents the tem-
poral mode where each row contains information about the
vibration responses related to an event at time t . The analysis
of this component matrix can help to detect the damage of the
monitored structure. Therefore, we use the C matrix to build
a one-class anomaly detection model using only the positive
training events. For each new incoming Xnew, we update
the three matrices A, B and C incrementally as described
in Algorithm 2. Then the constructed model estimates the
agreement between the new event Cnew and the trained data.

For damage localization, we analyze the data in the
location matrix B, where each row captures meaningful
information for each sensor location. When the matrix B is
updated due to the arrival of a new event Xnew, we study the
variation of the values in each row of matrix B by computing
the average distance from B’s row to k-nearest neighboring
locations as an anomaly score for damage localization. For
severity assessment in damage identification, we study the
decision values returned from the one-class model. This is
because a structure with more severe damage will behave
much differently from a normal one.

5 Evaluation

In this section we present the details of the experimental
settings and the comparative analysis between our proposed
FP-CPD algorithm and the alike parallel tensor decompo-
sition algorithms: PSGD and SALS. We first analyze the
effectiveness and speed of the training process of the three
algorithms based on four real-world datasets from SHM.We,
then, evaluate the performance of our approach, along with
other baselines using the SHM datasets, in terms of damage
detection, assessment and localization.

5.1 Experiment setup and datasets

We conducted all our experiments using a dual Intel Xeon
processors with 32 GB memory and 12 physical cores. We
use R development environment to implement our FP-CPD
algorithm and PSGD and SALS algorithms with the help of
the two packages rTensor and e1071 for tensor tools and
one-class model.

We run our experiments on four real-world datasets, all
of which inherently entails multi-way data structure. The
datasets are collected from sensors that measure the health
of building, bridge or road structures. Specifically, these
datasets comprise of:

1. bridge structure measurement data collected from sen-
sors attached to a cable-stayed bridge inWestern Sydney,
Australia (BRIDGE) [5].

2. building structure measurement data collected from sen-
sors attached to a specimen building structure obtained
from Los Alamos National Laboratory (LANL) [24]
(BUILDING).

3. measurements data collected from loop detectors in Vic-
toria, Australia (ROAD) [34].

4. road measurements collected from sensors attached to
two buses travelling through routes in the southern region
of New South Wales, Australia (BUS) [3].

All the datasets are stored in a three-way tensor rep-
resented by sensor × f requency × t ime. Further details
about these datasets are summarized in Table 1. Using these
datasets, we run a number of experiment sets to evaluate our
proposed FP-CPD method as detailed in the following sec-
tions.

5.2 Evaluating performance of FP-CPD

The goal of first experiment set is to evaluate the performance
of our FP-CPD method in terms of training time error rate.
To achieve this, we compare the performance of our pro-
posed FP-CPD and PSGD and SALS algorithms. To make
a fair and objective comparison, we implemented the three
algorithms under the same experimental settings as described
in Sect. 5.1. We evaluated the performance of each method
by plotting the time needed to complete the training pro-
cess versus the root-mean-square error (RMSE). We run the
same experiment on the four datasets (BRIDGE, BUILD-
ING, ROAD and BUS). Figure2 shows the RMSE and the
training time of the three algorithms resulted from our exper-
iments. As illustrated in the figure, our FP-CPD algorithm
significantly outperformed the PSGD and SALS algorithms
in terms of convergence and training speed. The SALS algo-
rithm was the slowest among the three algorithms due to the
fact that CP decomposition is a non-convex problem which
can be better handled using scholasticmethods. Furthermore,
another important factor that contributed to the significant
performance improvements in our FP-CPDmethod is the uti-
lization of the Nesterov method along with the perturbation
approach in our FP-CPD method. From the first experiment
set, it can be concluded that our FP-CPD method is more
effective in terms of RMSE and can carry on training faster
compared to similar parallel tensor decomposition methods.

5.3 Evaluating effectiveness of FP-CPD

Our FP-CPD method demonstrated better speed and
RSME in comparison to PSGD and SALS methods. How-
ever, it is still crucial to ensure that the proposed method is
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Fig. 2 Comparison of training time and RSME of FP-CPD, SALS and PSGD on the four datasets
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Fig. 3 Damage estimation applied on Bridge data using decision values obtained by one-class SVM
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Table 1 Details of datasets
Datasets Size Slice size S = ∏N−1

i=1 Ii Source

BRIDGE X ∈ �24×1200×262 28,800 [5]

BUILDING X ∈ �24×8192×240 196,608 [24]

ROAD X ∈ �96×4666×1826 447,936 [34]

BUS X ∈ �2×2000×5346 4000 [3]

also capable of achieving accurate results in practical tensor
decomposition problems. Therefore, the second experiment
set aims to demonstrate the accuracy of ourmodel in practice,
specifically building structures in smart cities. To achieve
this, we evaluate the performance of our FP-CPD in terms of
its accuracy to detect damage in build and bridge structures,
assessing the severity of detected damage and the localization
of the detected damage. We carry on the evaluation on the
BRIDGE and BUILDING datasets which are explained in
the following sections. For comparative analysis, we choose
SALS method as a baseline competitor to our FP-CPD. This
is because PSGD has similar convergence as FP-CPD but the
later takes less time to train as illustrated in Sect. 5.2.

5.3.1 The cable-stayed bridge dataset

In this dataset, 24 uni-axial accelerometers and 28 strain
gauges were attached at different locations of the cable-
stayed bridge to measure the vibration and strain responses
of the bridge. Figure7 illustrates the positioning of the 24
sensors on the bridge deck. The data of interest in our study
are the accelerations data which were collected from sensors
Ai with i ∈ [1; 24]. The bridge is in healthy condition. In
order to evaluate the performance of damage detection meth-
ods, two different stationary vehicles (a car and a bus) with
different masses were placed on the bridge to emulate two
different levels of damage severity [7, 21]. The three different
categories of data were collected in that study are: “Healthy-
Data” when the bridge is free of vehicles; “Car-Damage”
when a light car vehicle is placed on the bridge close to
location A10; and “Bus-Damage” when a heavy bus vehi-
cle is located on the bridge at location A14. This experiment
generates 262 samples (i.e., events) separated into three cate-
gories: “Healthy-Data” (125 samples), “Car-Damage” data
(107 samples) and “Bus-Damage” data(30 samples). Each
event consists of acceleration data for a period of 2 s sam-
pled at a rate of 600Hz. The resultant event’s feature vector
composed of 1200 frequency values. Figure7 illustrates the
setup of the sensors on the bridge under evaluation.

5.3.2 The LANL building dataset

These data are based on experiments conducted by LANL
[24] using a specimen for a three-story building structure as

shown in Fig. 8. Each joint in the building was instrumented
by two accelerometers. The excitation data were generated
using a shaker placed at corner D. Similarly, for the sake of
damage detection evaluation, the damage was simulated by
detaching or loosening the bolts at the joints to induce the
aluminum floor plate moving freely relative to the Unistrut
column. Three different categories of data were collected
in this experiment: “Healthy-Data” when all the bolts were
firmly tightened; “Damage-3C” data when the bolt at loca-
tion 3C was loosened; and “Damage-1A3C” data when the
bolts at locations 1A and 3C were loosened simultaneously.
This experiment generates 240 samples (i.e., events) which
also were separated into three categories:Healthy-Data (150
samples), “Damage-3C” data (60 samples) and “Damage-
1A3C”data(30 samples). The accelerationdatawere sampled
at 1600 Hz. Each event was measured for a period of 5.12 s
resulting in a vector of 8192 frequency values.

5.3.3 Feature extraction

The raw signals of the sensing data collected in the afore-
mentioned experiments exist in the time domain. In practice,
time domain-based features may not capture the physical
meaning of the physical structure. Thus, it is important to
convert the generated data to a frequency domain. For all the
datasets, we initially normalized the time-domain features to
have zeromean and one standard deviation. Thenwe used the
fast Fourier transform method to convert them into the fre-
quency domain. The resultant three-way data collected from
the cable-stayed bridge now have a structure of 600 features
× 24 sensors × 262 events. For the LANAL BUILDING
dataset, we computed the difference between signals of two
adjacent sensors which resulted in 12 different joints in the
three stories as in [24]. Then we selected the first 150 fre-
quencies as a feature vector which resulted in a three-way
data with a structure of 768 features × 12 locations × 240
events.

5.3.4 Experiments

For both BUILDING and BRIDGE datasets, we applied the
following procedures:
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Fig. 7 The locations on the bridge’s deck of the 24 Ai accelerometers used in the BRIDGE dataset. The cross-girder j of the bridge is displayed
as CGj [5]

Fig. 8 Three-story building and floor layout [24]

– Using the bootstrap technique, we selected 80% of the
healthy samples randomly for training and the remaining
20% for testing in addition to the damage samples. We
computed the accuracy of our FP-CPD model based on
the average results over ten trials of the bootstrap exper-
iment.

– Weused the core consistency diagnostic (CORCONDIA)
technique described in [6] to determine the number of
rank-one tensors X in the FP-CPD.

– We used the one-class support vector machine (OSVM)
[35] as a model for anomaly detection. The Gaussian ker-
nel parameter σ in OCSVM is tuned using the Edged
Support Vector (ESV) algorithm [2], and the rate of
anomalies ν was set to 0.05.

– We used the F-scoremeasure to compute the accuracy of
data values resulted from our model for damage detec-

tion. It is defined as F-score = 2 · Precision × Recall

Precision + Recall

where Precision = TP

TP + FP
and Recall = TP

TP + FN
(the number of true positive, false positive and false neg-
ative is abbreviated by TP, FP and FN, respectively).

– Wecompared the results of the competitivemethodSALS
proposed in [26] against the ones resulted from our FP-
CPD method.

5.3.5 Results and discussion

5.3.6 The cable-stayed bridge dataset

Our FP-CPD method with one-class SVM was initially vali-
dated using the vibration data collected from the cable-stayed
bridge (described in Sect. 5.3.1). The healthy training three-
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way tensor data (i.e., training set) was in the form of
X ∈ �24×600×100. The 137 examples related to the two dam-
age cases were added to the remaining 20% of the healthy
data to form a testing set, which was later used for model
evaluation. We conducted the experiments as followed the
steps described in Section. As a result, this experiment gen-
erates a damage detection accuracy F-score of 1 ± 0.00 on
the testing data. On the other hand, the F-score accuracy of
one-class SVM using SALS is recorded at 0.98 ± 0.02.

As demonstrated from the results of this experiment, the
tensor analysis with our proposed FP-CPD is capable to
capture the underlying structure in multi-way data with bet-
ter convergence. This is further illustrated by plotting the
decision values returned from one-class SVM-based FP-
CPD (as shown in Fig. 3). We can clearly separate the two
damage cases (“Car-Damage” and “Bus-Damage”) in this
datasetwhere the decision values are further decreased for the
samples related to the more severe damage cases (i.e., “Bus-
Damage”). These results suggest using the decision values
obtained by our FP-CPD and one-class SVM as structural
health scores to identify the damage severity in a one-class
aspect. In contrast, the resultant decision values of one-class
SVM based on SALS are also able to track the progress of
the damage severity in the structure but with a slight decreas-
ing trend in decision values for “Bus-Damage” as shown in
Fig. 3.

The last step in this experiment is to analyze the loca-
tion matrix B obtained from FP-CPD to locate the detected
damage. Each row in this matrix captures meaningful infor-
mation for each sensor location. Therefore, we calculate the
average distance from each row in the matrix Bnew to k-
nearest neighboring rows. Figure4 shows the obtained k-nn
score for each sensor. The first 25 events (depicted on the x-
axis) represent healthy data, followed by 107 events related
to “Car-Damage” and 30 events to “Bus-Damage.” It can
be clearly observed that FP-CPD method can localize the
damage in the structure accurately, whereas sensors A10
and A14 related to the “Car-Damage” and “Bus-Damage,”
respectively, behave significantly different from all the other
sensors apart from the position of the introduced damage. In
addition, we observed that the adjacent sensors to the dam-
age location (e.g., A9, A11, A13 and A15) react differently
due to the arrival pattern of the damage events. The SALS
method, however, is not able to accurately locate the damage
since it fails to update the location matrix B incrementally.

5.3.7 The building dataset

Following the experimental procedure described in section,
our second experiment was conducted using the acceleration
data acquired from24 sensors instrumentedon the three-story
building as described in Sect. 5.3.2. The healthy three-way
data (i.e., training set) are in the form of X ∈ �12×768×120.

The remaining 20% of the healthy data and the data obtained
from the two damage cases were used for testing (i.e., testing
set). The experiments we conducted using FP-CPDwith one-
class SVM have achieved an F-score of 95 ± 0.01 on the
testing data compared to 0.91 ± 0.00 obtained from one-
class SVM and SALS experiments.

Similar to the BRIDGE dataset, we further analyzed the
resultant decision valueswhichwere also able to characterize
damage severity. Figure5 demonstrates that the more severe
damage to the 1A and 3C location test data, the more devia-
tion from the training data with lower decision values.

Similar to the BRIDGE dataset, the last experiment is to
compute the k-nn score for each sensor based on the k-nearest
neighboring of the average distance between each row of the
matrix Bnew. Figure6 shows the resultant k-nn score for each
sensor. The first 30 events (depicted on the x-axis) represent
the healthy data, followed by 60 events describing when the
damage was introduced in location 3C . The last 30 events
represent the damage occurred in both locations 1A and 3C .
It can be clearly observed that the FP-CPDmethod is capable
to accurately localize the structure’s damage where sensors
1A and 3C behave significantly different from all the other
sensors apart from the position of the introduced damage.
However, the SALS method is not able to locate that damage
since it fails to update the location matrix B incrementally
(Figs. 7, 8).

In summary, the above experiments on the four real
datasets demonstrate the effectiveness of our proposed FP-
CPD method in terms of time needed to carry out training
during tensor decomposition. Specifically, our FP-CPD sig-
nificantly improves speed of model training and error rate
compared to similar parallel tensor decomposition methods,
PSGD and SALS. Furthermore, the other experiment sets
on the BRIDGE and BUILDING datasets showed empirical
evidence of the ability of ourmodel to accurately carry on ten-
sor decomposition on practical case studies. In particular, the
experimental results demonstrated that our FP-CPD is able
to detect damage in the build and bridge structures, assess the
severity of detected damage and localize of the detected dam-
age more accurately than SALS method. Therefore, it can be
concluded that our FP-CPD tensor decomposition method
is able to achieve faster tensor model training with minimal
error rate while carrying on accurate tensor decomposition
in practical cases. Such performance and accuracy gains can
be beneficial for many parallel tensor decomposition cases in
practice especially in real-time detection and identification
problems.We demonstrated such benefits with real use cases
in structural health monitoring, namely building and bridge
structures.
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6 Conclusion

This paper investigated theCP decompositionwith a stochas-
tic gradient descent algorithm for multi-way data analysis.
This leads to a new method named Fast Parallel-CP Decom-
position (FP-CPD) for tensor decomposition. The proposed
method guarantees the convergence for a given non-convex
problem by modeling the second-order derivative of the loss
function and incorporating little noise to the gradient update.
Furthermore, FP-CPD employs Nesterov’s method to com-
pensate for the optimization process’s delays and accelerate
the convergence rate. Based on laboratory and real datasets
from the area of SHM, our FP-CPD, with a one-class SVM
model for anomaly detection, achieves accurate results in
damage detection, localization and assessment in online and
one-class settings. Among the key future work is how to
parallelize the tensor decomposition with FP-CPD. Also, it
would be useful to apply FP-CPD with datasets from differ-
ent domains.

Our future work mainly includes the following aspects.
First, the proposed model in this research was to detect,
localize and assessing the severity of damage in buildings
and bridge structures. Does the model have the same predic-
tion performance when we apply it on other domain such as
recommender system? Futurework should include building a
personalized recommender systems but not only based on 2D
latent factor models such as users and items. Such person-
alization requires considering other important information
such as user age or gender, and item detail. For example,
some books could be more preferred by users of certain age
groups. Similarly, movies of specific genre could be a prefer-
ence for certain age group compared to others. Future work
also should consider implementing this system in a federated
learning settings which can be also useful when data are dis-
tributed among different clients/sources and not feasible to
be centralized in a single location/server.
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