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A framework is presented for fitting inverse problem models via variational Bayes approximations. 
This methodology guarantees flexibility to statistical model specification for a broad range of 
applications, good accuracy and reduced model fitting times. The message passing and factor 
graph fragment approach to variational Bayes that is also described facilitates streamlined 
implementation of approximate inference algorithms and allows for supple inclusion of numerous 
response distributions and penalizations into the inverse problem model. Models for one- and 
two-dimensional response variables are examined and an infrastructure is laid down where 
efficient algorithm updates based on nullifying weak interactions between variables can also 
be derived for inverse problems in higher dimensions. An image processing application and a 
simulation exercise motivated by biomedical problems reveal the computational advantage offered 
by efficient implementation of variational Bayes over Markov chain Monte Carlo.

1. Introduction

Inverse problems are essentially statistical regression problems where a response depending on a number of parameters is measured 
and the goal is to interpret the parameter estimates, rather then predict the outcome. Stable fitting of inverse problems is crucial but 
this is generally hindered by a large number of parameters and the presence of predictors which are highly correlated.

Let 𝒚 denote a vector of data and suppose this data is related to a vector of unknown parameters 𝒙 to estimate by a linear 
regression problem 𝐸(𝒚) = 𝑲𝒙, where 𝑲 is given, or a nonlinear one such that 𝐸(𝒚) = 𝑔(𝒙), where 𝑔 is a known function. From 
a Bayesian perspective, model fitting can be performed by placing a prior on 𝒙 to then find the maximum a posteriori estimate 
𝒙̂ = argmax𝒙𝑝(𝒙|𝒚). This appears straightforward in principle, however, in typical applications, inverse problems may be ill-posed in 
a sense that either the solution does not exist, is not unique or does not depend smoothly on the data, as small noise variations can 
produce significantly different estimates (Hadamard, 1902). A remedy is to introduce a penalization in the model formulation and 
use Bayesian hierarchical models, but these can be slow to fit via standard Markov chain Monte Carlo methods. To overcome this 
issue, we propose and study variational Bayes methods. The direct and message passing approaches to variational Bayes we examine 
facilitate inverse problem fitting in Bayesian settings with reduced computational times.

The use of variational Bayesian methods for inverse problems has been shown in the literature concerning neural source re-

construction, including Sato et al. (2004), Kiebel et al. (2008), Wipf and Nagarajan (2009) and Nathoo et al. (2014). Approximate 
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inference methods motivated by a broader class of inverse problem applications are in their infancy. A small, growing, literature 
includes McGrory et al. (2009), Gehre and Jin (2014) and Guha et al. (2015). Arridge et al. (2018) and Zhang et al. (2019) respec-

tively study usage of Gaussian variational approximations and expectation propagation to fit inverse problems models with Poisson 
responses. Tonolini et al. (2020) propose a framework to train variational inference for imaging inverse problems exploiting existing 
image data. Agrawal et al. (2022) study variational inference for inverse problems with gamma hyperpriors. Povala et al. (2022)

present a stochastic variational Bayes approach based on sparse precision matrices.

The state-of-the-art in approximate inference for inverse problems is to derive and code algorithm updates from scratch each time 
a model is modified. The message passing on factor graph fragment approach to variational Bayes we suggest in this work overcomes 
the issue. Wand (2017) has spearheaded adoption of this approach to fast approximation inference in regression-type models via 
variational message passing (VMP). In the same spirit, we lay down similar infrastructure for inverse problems and propose VMP 
as an alternative to the more common mean field variational Bayes (MFVB). We show how to perform approximate inference by 
combining algorithms for single factor graph components, or fragments, that arise from inverse problem models. The resultant factor 
graph fragments facilitate streamlined implementation of fast approximate algorithms and form the basis for software development 
for use in applications. The factor graph fragment paradigm allows for easy incorporation of different penalization structures in the 
model or changes to the distribution of the outcome variable. In fact, VMP on factor graph fragments is such that the corresponding 
algorithms only need to be derived once for a particular fragment and can be used for any arbitrarily complex model including such 
a fragment. Hence dramatically reducing set-up overheads as well as providing fast implementation.

Motivated by a real biomedical problem, we identify a base inverse problem model and describe how to efficiently perform MFVB 
and VMP. The application we show concerns medical positron emission tomography imaging where the raw data is processed for 
image enhancement. The data were collected to illustrate a small animal imaging system which can be used in biotechnology and pre-

clinical medical research to help detect tumors or organ dysfunctions. An application to two-dimensional deconvolution problems 
motivated by an archaeological exploration is also embarked upon the base framework by varying the response and penalization 
distributional assumptions. This is illustrated in the supplementary material.

1.1. Overview of the article

Section 2 defines a reference inverse problem model for illustrating the methodology in use and our computational developments. 
The variational approximation engine for inverse problem fitting and inference is introduced in Section 3. Section 4 examines strategies 
to streamline variational inference algorithms. An application to real biomedical data is treated in Section 5. The same section reports 
results from a study involving simulations which resemble the analyzed biomedical dataset. The supplementary material provides 
an illustration concerning archaeological data performed via VMP, where the Normal response and Laplace penalization of the base 
model are replaced by a Skew Normal distribution for the outcome variable and a Horseshoe penalization. Concluding remarks and 
extensions are discussed in Section 6.

Before setting up our reference linear inverse problem model and presenting variational algorithms for approximate model fitting 
we introduce some useful notation.

1.2. Useful notation

For a matrix 𝑨 of size 𝑑1 ×𝑑2, vec(𝑨) is the 𝑑1𝑑2 ×1 vector obtained by stacking the columns of 𝑨 underneath each other in order 
from left to right. If 𝒂 is a (𝑑1𝑑2) × 1 vector then vec−1

𝑑1×𝑑2
(𝒂) is the 𝑑1 × 𝑑2 matrix such that vec

{
vec−1

𝑑1×𝑑2
(𝒂)

}
= 𝒂; when the vec

operator inverse produces a square matrix the subscript is omitted. Vectors of 𝑑 zeros or ones are respectively denoted by 𝟎𝑑 and 𝟏𝑑 .

2. Base inverse problem model

We consider linear inverse problems having the following formulation:

𝒚 =𝑲𝒙+ 𝜺, 𝜺 ∼𝑁(𝟎, 𝜎2𝑰), (1)

where 𝒚 is an 𝑚 × 1 vector of observed data, 𝑲 is a matrix acting as a linear operator of size 𝑚 × 𝑚, 𝒙 is a 𝑚 × 1 vector of unknown 
parameters and 𝜺 is a Normal error vector of length 𝑚. For ease of illustration, we focus on the case where the vectors 𝒚 and 𝒙 have 
equal length 𝑚 and therefore 𝑲 is a square matrix. Nevertheless, the methodology presented here can be adapted to the situation 
in which 𝒚 has length 𝑛 different from and typically smaller than the length 𝑚 of 𝒙. Motivated by our biomedical application, we 
focus on a particular type of forward problem where 𝑲 is a kernel matrix. Another formulation of 𝑲 is discussed in the application 
to archaeological data treated in the supplementary material.

We assume that the vector of observations 𝒚 has a one-to-one correspondence with the vector of parameters 𝒙 = (𝑥1, … , 𝑥𝑚) to 
be estimated. For simplicity, here we only model first nearest neighbour interactions, or differences, between elements of 𝒙. If these 
elements are identified by a system of coordinates in two dimensions, then first nearest neighbour interactions are the differences 
2

between one parameter and those in adjacent locations on the horizontal and vertical coordinates of the parameter.
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Suppose the aim is to study a linear inverse problem in a Bayesian framework according to the model

𝑦𝑖|𝒙, 𝜎2𝜀 ind.∼ 𝑁
(
(𝑲𝒙)𝑖 , 𝜎2𝜀

)
, 𝑖 = 1,… ,𝑚,

(𝒙Δ)𝑗 |𝑏𝑗 , 𝜎2𝑥 ind.∼ 𝑁
(
0, 𝜎2𝑥∕𝑏𝑗

)
, 𝑏𝑗

ind.∼ Inverse-𝜒2 (2,1) , 𝑗 = 1,… , 𝑑,

𝜎2𝜀 |𝑎𝜀 ∼ Inverse-𝜒2 (1,1∕𝑎𝜀) , 𝑎𝜀 ∼ Inverse-𝜒2 (1,1∕𝐴2
𝜀

)
,

𝜎2𝑥|𝑎𝑥 ∼ Inverse-𝜒2 (1,1∕𝑎𝑥) , 𝑎𝑥 ∼ Inverse-𝜒2 (1,1∕𝐴2
𝑥

)
,

(2)

where 𝑲 is a matrix of size 𝑚 × 𝑚, 𝒙Δ is a vector of 𝑑 differences between pairs of elements in 𝒙 and 𝐴𝜀, 𝐴𝑥 > 0 are user-specified 
hyperparameters. The auxiliary variables 𝑎𝜀 and 𝑎𝑥 generate Half-Cauchy

(
𝐴𝜀

)
and Half-Cauchy

(
𝐴𝑥

)
priors on the scale parame-

ters 𝜎𝜀 and 𝜎𝑥, respectively. Specifically, the density function of a random variable 𝜎 > 0 having a Half-Cauchy(𝐴) distribution is 
𝑝(𝜎) = 2∕[𝐴𝜋{1 + (𝜎∕𝐴)2}], with 𝐴 > 0. For problems that only contemplate first nearest neighbour differences, the scalar 𝑑 co-

incides with the number of unique up to sign differences between pairs of elements of 𝒙 coming from adjacent locations. In the 
one-dimensional case, 𝒙 can be interpreted as a vector matching 𝑚 spatial locations on a line and the number of differences between 
adjacent locations will be 𝑑 = 𝑚 − 1. Model (2) also encompasses higher-dimensional problems. In bidimensional settings, 𝒙 can be 
conveniently expressed as the vectorization of a grid, or matrix, of pixels 𝑿 by setting 𝒙 = vec (𝑿). If 𝑿 has size 𝑚1 × 𝑚2, the first 
nearest neighbour differences are 𝑑 =𝑚1

(
𝑚2 − 1

)
+𝑚2

(
𝑚1 − 1

)
. In the simple example of Fig. 1 where 𝑿 is of size 3 ×4, the number 

of horizontal and vertical differences are respectively 9 and 8, giving 𝑑 = 17 differences in total. In a similar vein, the model can be 
applied to three-dimensional problems by letting 𝒙 be the vectorization of voxel-type data.

The distributional assumption on 𝒙Δ in model (2) can be conveniently re-expressed as

𝑳𝒙|𝒃, 𝜎2𝑥 ∼𝑁
(
𝟎𝑑 , 𝜎2𝑥 diag (𝒃)−1

)
, (3)

where 𝑳 is some 𝑑×𝑚 contrast matrix such that 𝒙Δ ≡𝑳𝒙 and 𝒃 = (𝑏1, … , 𝑏𝑑 ). For instance in one-dimensional problems contemplating 
first nearest neighbour interactions, the contrast matrix can be defined as

𝑳1D ≡
⎡⎢⎢⎢⎣
−1 1 0 ⋯ 0
0 −1 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 −1 1

⎤⎥⎥⎥⎦ , (4)

i.e. as the (𝑚 − 1) ×𝑚 matrix such that

𝒙Δ =𝑳1D𝒙 =
[
𝑥2 − 𝑥1, 𝑥3 − 𝑥2, … , 𝑥𝑚 − 𝑥𝑚−1

]𝑇
,

where 𝑚 − 1 is the number of unique up to sign differences between adjacent elements of 𝒙. In practice there is no need to compute 
a contrast matrix, although for deriving variational algorithms it is useful to carry 𝑳 around. As for the matrix defined in (4), it is 
convenient to design 𝑳 as a matrix whose number of rows and columns are respectively equal to the number of differences 𝑑 and 
the length of 𝒙, 𝑚, also in higher-dimensional problems. Model (2) also incorporates a Laplace penalization that originates from the 
auxiliary variables 𝑏𝑗 > 0, 𝑗 = 1, … , 𝑑, and the following result.

Result 1. Let 𝑥 and 𝑏 be random variables such that

𝑥 |𝑏 ∼𝑁
(
0, 𝜎2∕𝑏

)
and 𝑏 ∼ Inverse-𝜒2 (2,1) , with 𝜎 > 0.

Then 𝑥 ∼ Laplace (0, 𝜎).

The choice of imposing priors on the difference 𝒙Δ is mainly motivated by the two-dimensional applications on biomedical and 
archaeological imaging considered in this work. Such a choice gives adequate smoothing for flat regions (i.e., it increases image 
deblurring), but it may oversmooth discontinuities (see Section 3.2 of Aykroyd et al., 2001, for a detailed discussion on this and 
remedies). We focus on first-neighbour differences to illustrate efficient computation of the variational algorithm updates through 
removal of the contrast matrix 𝑳 as per Section 4. Another widely used neighbourhood system is the second order one, which is based 
on the eight nearest neighbours (e.g., Green, 1990) and also provides ground for efficient algorithm implementations.

If the dimension of 𝒙 increases, the number of first neighbour differences increases and reduces computational efficiency. This 
issue is often solved in practice by partitioning the surface where the observations are collected into smaller regions. Sometimes this 
is also done to facilitate the application of the inverse problem to irregular (e.g., non-rectangular) surfaces. For example, when large 
archaeological fields are explored it is standard practice to divide the area into grids and examine each grid as soon as it has been 
surveyed, and the inverse problem reconstruction of each grid is typically extended to part of the neighbouring grids in each direction 
to get a smoother reconstruction (Aykroyd et al., 2001, Section 5).

The design of the matrix 𝑲 varies according to the inverse problem characteristics. As illustration and for later use on real 
biomedical data we consider a Gaussian kernel matrix 𝑲 and show its application to a simple unidimensional problem. If 𝒚 is a 
vector of 𝑚 recordings from a unidimensional space having one-to-one correspondence with 𝒙, the (𝑖, 𝑗)th entry of a Gaussian kernel 
3

matrix 𝑲 is given as follows:
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Fig. 1. Example of a 3 ×4 grid of pixels with 9 horizontal differences marked by black arrows and 8 vertical differences in grey. The total number of first order nearest 
neighbour differences is 17.

Fig. 2. Data points obtained through the Blocks test function (red dashed line) along with blurred test function (solid line) for different levels of blur: no blur (𝛿 = 0), 
moderate blur (𝛿 = 2) and large blur (𝛿 = 5). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

𝐾𝑖𝑗 = (2𝜋𝛿2)−1∕2 exp{−(𝑖− 𝑗)2∕(2𝛿2)}, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… ,𝑚, (5)

where 𝛿 > 0 is a parameter that governs the amount of blur. Here 𝛿 is assumed to be fixed, but it can be estimated within the variational 
framework by imposing a prior and selected using, for example, a posterior mean estimate. Since this parameter is required to be 
positive, sensible choices of prior are gamma and inverse gamma distributions (Weir, 1997; Aykroyd et al., 2001). Alternatively, to 
limit computational costs one could first obtain a discrete approximation of the posterior of 𝛿 for a discrete grid of 𝛿 values.

To illustrate the effect of variations in 𝛿, consider the Blocks test function (Donoho and Johnstone, 1994; Nason, 2008) from 
the wavethresh package (Nason, 2022) available in R (R Core Team, 2023). The piecewise constant nature of this function makes 
estimation a very challenging problem especially when tackled as an inverse problem, but it is well motivated by stratigraphy problems 
in archaeology (Allum et al., 1999; Aykroyd et al., 2001). Fig. 2 shows three examples produced through (1) and the Gaussian kernel 
(5), with 𝑚 = 100, 𝜎 = 1 and 𝛿 = 0, 2, 5. In each plot the red dashed line shows the true Blocks function to estimate. In the plot 
corresponding to 𝛿 = 0 blurring is not added to the generation process and the data points are randomly scattered around the true 
function. Blurring is introduced when 𝛿 > 0 and points scatter around a rounded solid line. The cases where 𝛿 = 2 and 𝛿 = 5 respectively 
correspond to moderate and large blurring of the underlying true function and hence moderate and difficult inverse problems.

In two dimensions, assuming the observed data is stored in a matrix 𝒀 , each element of a Gaussian kernel matrix 𝑲 links an 
element of 𝒚 = vec(𝒀 ) to one of 𝒙 = vec(𝑿). The entry of 𝑲 corresponding to a pair (𝑌𝑖𝑗 , 𝑋𝑖′𝑗′ ) is given by

(2𝜋𝛿2)−1 exp[−{(𝑖− 𝑖′)2 + (𝑗 − 𝑗′)2}∕(2𝛿2)], for 𝛿 > 0. (6)

The effect of 𝛿 on blurring is analogous to the one described for unidimensional problems.

3. Model fitting via variational methods

In this section, we study variational Bayes approximations, specifically MFVB and VMP, for fitting the base model (2). Emphasis 
is placed onto the message passing on factor graph fragment prescription, which provides the infrastructure for compartmentalized 
and scalable algorithm implementations.

For studying MFVB and VMP note that the joint density function of all the random variables and random vectors in model (2)

admits the following factorization:( ) ( ) ( ) ( ) ( ) ( ) ( )

4

𝑝 𝒚,𝒙,𝒃, 𝜎2𝜀 , 𝜎
2
𝑥, 𝑎𝜀, 𝑎𝑥 = 𝑝 𝒚|𝒙, 𝜎2𝜀 𝑝 𝒙|𝒃, 𝜎2𝑥 𝑝 (𝒃)𝑝 𝜎2𝜀 |𝑎𝜀 𝑝 𝜎2𝑥|𝑎𝑥 𝑝 𝑎𝜀 𝑝 𝑎𝑥 . (7)
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Fig. 3. Directed acyclic graph representation of the Normal response model with Laplace penalization in (2). The shaded circle corresponds to the observed data. The 
unshaded circles correspond to model parameters and auxiliary variables. The small solid circles correspond to hyperparameters.

Both variational inference procedures are based upon approximating the joint posterior density function through a product of ap-

proximating density functions. A possible mean field restriction on the joint posterior density function of all parameters in (2) is

𝑝
(
𝒙,𝒃, 𝜎2𝜀 , 𝜎

2
𝑥, 𝑎𝜀, 𝑎𝑥|𝒚) ≈ 𝑞 (𝒙) 𝑞

(
𝜎2𝜀

)
𝑞
(
𝜎2𝑥

)
𝑞
(
𝑎𝜀

)
𝑞
(
𝑎𝑥

) 𝑑∏
𝑗=1

𝑞
(
𝑏𝑗
)
. (8)

Typically, more restrictive density products facilitate the derivation of a variational algorithm but also negatively impact on the 
quality of the approximation. On the other hand, less severe restrictions may increase algebraic and computational complexity of the 
variational algorithms. The one used above provides a good trade-off between tractability and accuracy of the approximation.

The scope of MFVB and VMP is to provide expressions for the optimal 𝑞-densities that minimize the Kullback–Leibler divergence 
between the approximating densities themselves and the left-hand side of (8). The former is based upon a directed acyclic graph 
interpretation of the model, whereas the latter benefits from a factor graph representation and its subsequent division into factor 
graph fragments. While the two variational inference procedures lead to ostensibly different iterative algorithms, they converge to 
the identical posterior density function approximations in the case where the inputs of the algorithms are the same and parameters 
are updated in the same sequence, since they are each founded upon the same optimization problem (Wand, 2017). Details for fitting 
model (2) under restriction (8) via MFVB and VMP are shown in Sections 3.1 and 3.2.

3.1. Mean field variational Bayes

Mean field variational Bayes is a well established approximate Bayesian inference technique where tractability is achieved through 
factorization of the approximating density. Here we provide a short introduction to MFVB and we refer the reader to Section 3 of 
Wand et al. (2011) for fuller details on its derivation.

Let 𝒛 be a vector of observed data and 𝜽 ∈ Θ represent all model parameters. The logarithm of the model marginal likelihood, 
log𝑝(𝒛), satisfies

log𝑝(𝒛) ≥ log𝑝(𝒛; 𝑞) ≡ ∫ 𝑞(𝜽) log
{
𝑝(𝒛,𝜽)
𝑞(𝜽)

}
𝑑𝜽,

where 𝑝(𝒛; 𝑞) is a lower-bound depending on a density function 𝑞 defined over Θ and the joint density function 𝑝(𝒛, 𝜽). It can be 
shown that maximizing the above lower-bound is equivalent to minimizing the Kullback-Leibler divergence between 𝑞(𝜽) and the 
joint posterior density function 𝑝(𝜽|𝒛),

KL(𝑞(𝜽)‖𝑝(𝜽|𝒛)) = ∫ 𝑞(𝜽) log
{

𝑞(𝜽)
𝑝(𝜽|𝒛)

}
𝑑𝜽.

If the approximating density is factorized according to a partition (𝜽1, … , 𝜽𝑠) of 𝜽 such that 𝑞(𝜽) =
∏𝑠

𝑘=1 𝑞(𝜽𝑘), as on the right side 
of (8), then the optimal approximating densities satisfy

𝑞∗(𝜽𝑘) ∝ exp
[
𝐸𝑞(𝜽∖𝜽𝑘){log𝑝(𝜽𝑘|𝒛,𝜽∖𝜽𝑘)}], 𝑘 = 1,… , 𝑠, (9)

where 𝐸𝑞(𝜽∖𝜽𝑘) denotes the expectation with respect to all the approximating densities except 𝑞(𝜽𝑘) and 𝜽∖𝜽𝑘 represents the entries 
of 𝜽 with 𝜽𝑘 omitted. Under mild regularity conditions it can be shown that optimization of the lower bound can be performed via a 
coordinate ascent scheme converging to a local maximizer.

Fig. 3 is a directed acyclic graph representation of model (2), which forms the basis for deriving an MFVB algorithm. The shaded 
circle corresponds to the observed data, the empty circles correspond to model parameters and auxiliary variables, and the small 
solid circles are used for hyperparameters. According to (9), the full conditional density functions of the nodes in the directed acyclic 
graph provide expressions for the optimal approximating densities. For instance, the full conditional density of 𝒙 arising from model 
(2) and (3) is

𝑝 (𝒙|rest) ∝ exp

[
−1
2

{
𝒙𝑇𝑳𝑇

(
1
𝜎2𝜀

𝑲𝑇𝑲 + 1
𝜎2𝑥

diag (𝒃)

)
𝑳𝒙− 2

𝜎2𝜀
𝒙𝑇𝑲𝑇 𝒚

}]
.

5

From application of (9) it follows that
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𝑞∗(𝒙) is a𝑁
(
𝝁𝑞(𝒙),𝚺𝑞(𝒙)

)
density function (10)

with

𝝁𝑞(𝒙) ≡ 𝜇𝑞(1∕𝜎2𝜀 )
𝚺𝑞(𝒙)𝑲

𝑇 𝒚 and 𝚺𝑞(𝒙) ≡
(
𝜇𝑞(1∕𝜎2𝜀 )

𝑲𝑇𝑲 + 𝜇𝑞(1∕𝜎2𝑥)
𝑳𝑇 diag(𝜇𝑞(𝒃))𝑳

)−1
,

where 𝜇𝑞(1∕𝜎2𝜀 ), 𝜇𝑞(1∕𝜎2𝑥) and 𝜇𝑞(𝒃) respectively denote the expectations of 1∕𝜎2𝜀 , 1∕𝜎2𝑥 and 𝒃 computed with respect to the optimal 
approximating densities 𝑞∗(𝜎2𝜀 ), 𝑞

∗(𝜎2𝑥) and 𝑞∗(𝒃) =
∏𝑑

𝑗=1 𝑞
∗ (𝑏𝑗) arising from the mean field restriction (8). Referring to restriction 

(8), the other MFVB approximations to the posterior density functions of the parameters and auxiliary variables depicted in the 
directed acyclic graph have the following optimal forms:

𝑞∗(𝑏𝑗 ) is an Inverse-Gaussian
(
𝜇𝑞(𝑏𝑗 ), 𝜆𝑞(𝑏𝑗 )

)
density function, for 𝑗 = 1,… , 𝑑, (11)

𝑞∗(𝜎2𝜀 ) is an Inverse-𝜒2
(
𝜅
𝑞
(
𝜎2𝜀

), 𝜆
𝑞
(
𝜎2𝜀

)) density function, (12)

𝑞∗(𝜎2𝑥) is an Inverse-𝜒2(𝜅
𝑞
(
𝜎2𝑥

), 𝜆
𝑞
(
𝜎2𝑥

))density function, (13)

𝑞∗(𝑎𝜀) is an Inverse-𝜒2(𝜅𝑞(𝑎𝜀), 𝜆𝑞(𝑎𝜀))density function (14)

and 𝑞∗(𝑎𝑥) is an Inverse-𝜒2(𝜅𝑞(𝑎𝑥), 𝜆𝑞(𝑎𝑥))density function. (15)

Details about the optimal density function parameters are given in the supplement. Such parameters can be obtained through the 
MFVB iterative scheme listed as Algorithm 1.

Algorithm 1 Mean field variational Bayes scheme for fitting the inverse problem model (2), using product density restriction (8).

Data Inputs: 𝒚 (𝑚 × 1), 𝑲 (𝑚 ×𝑚).
Hyperparameter Inputs: 𝐴𝜀 > 0, 𝐴𝑥 > 0.

Initialize: 𝜇𝑞
(
1∕𝜎2

𝜀

) > 0, 𝜇𝑞(1∕𝜎2
𝑥

) > 0, 𝜇𝑞(1∕𝑎𝜀) > 0, 𝜇𝑞(1∕𝑎𝑥) > 0, 𝝁𝑞(𝒃) (𝑑 × 1) vector of positive elements.

𝜅𝑞
(
𝜎2
𝜀

) ⟵𝑚 + 1 ; 𝜅𝑞
(
𝜎2
𝑥

) ⟵ 𝑑 + 1 ; 𝜅𝑞
(
𝑎𝜀

) ⟵ 2 ; 𝜅𝑞
(
𝑎𝑥

) ⟵ 2.

Cycle:

𝚺𝑞(𝒙) ⟵
(
𝜇𝑞(1∕𝜎2

𝜀
)𝑲

𝑇𝑲 + 𝜇𝑞(1∕𝜎2
𝑥
)𝑳

𝑇 diag(𝝁𝑞(𝒃))𝑳
)−1

𝝁𝑞(𝒙) ⟵ 𝜇𝑞(1∕𝜎2
𝜀
)𝚺𝑞(𝒙)𝑲

𝑇 𝒚

𝜆𝑞
(
𝜎2
𝜀

) ⟵ 𝜇𝑞(1∕𝑎𝜀 ) + ‖𝒚 −𝑲𝝁𝑞(𝒙)‖2 + tr
(
𝑲𝑇𝑲𝚺𝑞(𝒙)

)
𝜇𝑞

(
1∕𝜎2

𝜀

) ⟵ 𝜅𝑞
(
𝜎2
𝜀

)∕𝜆𝑞(𝜎2
𝜀

)
𝜆𝑞

(
𝑎𝜀

) ⟵ 𝜇𝑞(1∕𝜎2
𝜀
) + 1∕𝐴2

𝜀
; 𝜇𝑞(1∕𝑎𝜀 ) ⟵ 𝜅𝑞

(
𝑎𝜀

)∕𝜆𝑞(𝑎𝜀)
𝝉1 ⟵

(
𝑳𝝁𝑞(𝒙)

)2 + diagonal(𝑳𝚺𝑞(𝒙)𝑳
𝑇 )

𝜆𝑞
(
𝜎2
𝑥

) ⟵ 𝜇𝑞(1∕𝑎𝑥 ) + 𝜇𝑇
𝑞(𝒃)𝝉1

𝜇𝑞
(
1∕𝜎2

𝑥

) ⟵ 𝜅𝑞
(
𝜎2
𝑥

)∕𝜆𝑞(𝜎2
𝑥

)
𝜆𝑞

(
𝑎𝑥

) ⟵ 𝜇𝑞(1∕𝜎2
𝑥
) + 1∕𝐴2

𝑥
; 𝜇𝑞(1∕𝑎𝑥 ) ⟵ 𝜅𝑞

(
𝑎𝑥

)∕𝜆𝑞(𝑎𝑥)
𝝉2 ⟵ 𝜇𝑞

(
1∕𝜎2

𝑥

)𝝉1 ; 𝝁𝑞(𝒃) ⟵ 1∕
√
𝝉2

Output: 𝝁𝑞(𝒙) , 𝚺𝑞(𝒙) , 𝝁𝑞(𝒃) , 𝝀𝑞(𝒃) ≡ 𝟏𝑑 , 𝜅𝑞(𝜎2
𝜀

) , 𝜆𝑞(𝜎2
𝜀

) , 𝜅𝑞(𝜎2
𝑥

) , 𝜆𝑞(𝜎2
𝑥

) , 𝜅𝑞(𝑎𝜀) , 𝜆𝑞(𝑎𝜀) , 𝜅𝑞(𝑎𝑥) , 𝜆𝑞(𝑎𝑥) .

3.2. Variational message passing

The idea behind variational message passing as presented in Wand (2017) is that the same approximations in (9) can be achieved 
by exploiting a convenient factor graph representation of the model. A detailed description of VMP as a method for fitting statistical 
models that have a factor graph representation is provided in Sections 2–4 of Wand (2017) and briefly summarized here. The same 
notational conventions of Wand (2017) concerning message passing are used in this work.

A factor graph is an ensemble of factors connected to stochastic nodes by edges. Let 𝑓ℎ , ℎ = 1, … , 𝑟, denote a generic factor 
and function of one or more stochastic nodes and 𝜽𝑘, 𝑘 = 1, … , 𝑠, be a generic stochastic variable represented by a node. If 𝜽𝑘 is a 
neighbour of 𝑓ℎ in the factor graph, then the messages passed from 𝑓ℎ to 𝜽𝑘 and from 𝜽𝑘 to 𝑓ℎ are functions of 𝜽𝑘 and are denoted 
by 𝒎𝑓ℎ→𝜽𝑘

(𝜽𝑘) and 𝒎𝜽𝑘→𝑓ℎ
(𝜽𝑘), respectively.

In the optic of deriving an algorithm, the VMP stochastic node to factor message updates are given by

𝒎𝜽𝑘→𝑓ℎ
(𝜽𝑘)⟵∝

∏
ℎ′≠ℎ∶𝑘∈neighbours(ℎ′)

𝒎𝑓ℎ′→𝜽𝑘(𝜽𝑘) (16)

and the factor to stochastic node message updates are

𝒎𝑓ℎ→𝜽𝑘
(𝜽𝑘)⟵∝ exp

[
𝐸𝑓ℎ→𝜽𝑘

{
log𝑓ℎ(𝜽neighbours)

}]
, (17)
6

where 𝐸𝑓ℎ→𝜽𝑘
denotes expectation with respect to the density function
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Fig. 4. Factor graph representation of the Normal response model with Laplace penalization in (2), where the square nodes correspond to the density functions, or 
factors, at the right-hand side of (7). The circular nodes correspond to stochastic nodes of the 𝑞-density factorization in (8). The fragments are numbered 1 to 6, 
whereas colours identify different fragment types.

∏
𝑘′∈neighbours(ℎ)∖{𝑘}𝒎𝑓ℎ→𝜽𝑘′

(𝜽𝑘′ )𝒎𝜽𝑘′→𝑓ℎ
(𝜽𝑘′ )∏

𝑘′∈neighbours∖{𝑘} ∫ 𝒎𝑓ℎ→𝜽𝑘′
(𝜽𝑘′ )𝒎𝜽𝑘′→𝑓ℎ

(𝜽𝑘′ )𝑑𝜽𝑘′
, (18)

neighbours ≡ {𝑘 = 1, … , 𝑠 ∶ 𝜽𝑘 is a neighbour of 𝑓ℎ} and the ⟵∝ symbol means that the function of 𝜽𝑘 on the left-hand side is 
updated according to the expression on the right-hand side but that multiplicative factors not depending on 𝜽𝑘 can be ignored. Upon 
convergence of the messages, the optimal 𝑞-densities are obtained via

𝑞∗(𝜽𝑘) ∝
∏

ℎ∶𝑘∈neighbours

𝒎𝑓ℎ→𝜽𝑘
(𝜽𝑘). (19)

The messages above are typically proportional to an exponential family density function and so are such that

𝒎𝑓ℎ→𝜽𝑘
(𝜽𝑘) ∝ exp

{
𝑻 (𝜽𝑘)𝑇 𝜼𝑓ℎ→𝜽𝑘

}
and 𝒎𝜽𝑘→𝑓ℎ

(𝜽𝑘) ∝ exp
{
𝑻 (𝜽𝑘)𝑇 𝜼𝜽𝑘→𝑓ℎ

}
, (20)

where 𝑻 (𝜽𝑘) is a sufficient statistic vector, and 𝜼𝑓ℎ→𝜽𝑘
and 𝜼𝜽𝑘→𝑓ℎ

are the message natural parameter vectors. Then for each parameter 
𝜽𝑘, the optimal approximating density 𝑞∗(𝜽𝑘) belongs to an exponential family with natural parameter vector

𝜼𝑞(𝜽𝑘 ) ≡
∏

ℎ∶𝑘∈neighbours

𝜼𝑓ℎ→𝜽𝑘
(𝜽𝑘) (21)

that can be computed at convergence of a VMP algorithm.

The notion of a factor graph fragment, or simply fragment, allows for compartmentalization of algebra and computer code and can 
be exploited to fit inverse problems via VMP without resorting to calculations involving (16) and (17) each time a VMP algorithm is 
derived for a new model. The corresponding factor graph representation of (7) given the density product restriction (8) appears in 
Fig. 4. Colours mark different fragment types, in accordance with the nomenclature presented in Wand (2017) for variational message 
passing on factor graph fragments and numbers label seven factor graph fragments. Some of these have been studied in previous works. 
Those numbered 1, 2, 5 and 6 are already catalogued in Maestrini and Wand (2021) as Inverse G-Wishart prior fragments (1 and 6) and 
iterated Inverse G-Wishart fragments (2 and 5). Fragment number 4 corresponds to the Gaussian likelihood fragment treated in Section 
4.1.5 of Wand (2017), whose notation can be aligned with that of model (2) by settings 𝑨, 𝜽1 and 𝜃2 equal to the current 𝑲 , 𝒙 and 
𝜎2𝜀 , respectively. In the view of VMP, we can just read off from equations (38) and (39) of Wand (2017), which themselves originate 
from (17), and get the following updates for fragment 4 involving factor 𝑝(𝒚| 𝒙, 𝜎2𝜀 ) and stochastic nodes 𝒙 and 𝜎2𝜀 :

𝜼𝑝(𝒚|𝒙, 𝜎2𝜀 )→ 𝒙
⟵

[
𝑲𝑇 𝒚

−1
2 vec

(
𝑲𝑇𝑲

) ]{(
𝜼𝑝(𝒚|𝒙, 𝜎2𝜀 )↔ 𝜎2𝜀

)
1
+ 1

}/{(
𝜼𝑝(𝒚|𝒙, 𝜎2𝜀 )↔ 𝜎2𝜀

)
2

}
and

𝜼𝑝(𝒚|𝒙, 𝜎2𝜀 )→ 𝜎2𝜀
⟵

⎡⎢⎢⎣
−𝑛∕2

𝐺VMP

(
𝜼𝑝(𝒚|𝒙, 𝜎2𝜀 )↔ 𝒙

;𝑲𝑇𝑲 ,𝑲𝑇 𝒚,𝒚𝑇 𝒚
) ⎤⎥⎥⎦ ,

where, according to the definition in Section 2.7 of Wand (2017), 𝐺VMP

(
[ 𝒗𝑇1 𝒗𝑇2 ]𝑇 ;𝑸, 𝒓, 𝑠

) ≡ −(1∕8)tr
(
𝑸{vec−1(𝒗2)}−1[𝒗1𝒗𝑇1

{vec−1(𝒗2)}−1 − 2𝑰]
)
−(1∕2)𝒓𝑇 {vec−1(𝒗2)}−1𝒗1 − (1∕2)𝑠, for a 𝑑 × 1 vector 𝒗1, 𝑑2 × 1 vector 𝒗2 such that vec−1(𝒗2) is symmet-

ric, 𝑑 × 𝑑 matrix 𝑸, 𝑑 × 1 vector 𝒓 and 𝑠 ∈ℝ.

New calculations are needed only for fragment 3 to compose a VMP algorithm for the whole model. In fragment 3, factor 𝑝 (𝒃)
symbolizes the specification
7

𝑏𝑗
ind.∼ Inverse-𝜒2 (2,1) , 𝑗 = 1,… , 𝑑, (22)
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but may also represent other penalizations. Examples of alternative shrinkage distributions are displayed in Table 1 and discussed 
in Section 3.3. The factor 𝑝 

(
𝒙|𝒃, 𝜎2𝑥) of fragment 3 corresponds to the possibly improper specification (3). The logarithm of this 

likelihood factor is

log𝑝
(
𝒙|𝒃, 𝜎2𝑥) = −𝑑

2
log

(
𝜎2𝑥

)
− 1

2𝜎2𝑥
𝒙𝑇𝑳𝑇 diag (𝑏)𝑳𝒙+ 1

2

𝑑∑
𝑖=1

log
(
𝑏𝑖
)
+ const. (23)

Combining (23) with the auxiliary variable distributional assumption in (22) we get the VMP scheme listed as Algorithm 2 for fitting 
the penalization part of model (2). This originates from first noticing that, as a function of 𝒙, (23) can be written as

log𝑝
(
𝒙|𝒃, 𝜎2𝑥) = 1

𝜎2𝑥

[
𝒙

vec
(
𝒙𝒙𝑇

) ]𝑇 [ 𝟎
−1

2 vec
(
𝑳𝑇 diag (𝒃)𝑳

) ]
+ const,

which in light of (17) and (20) originates the message sent from factor 
(
𝒙|𝒃, 𝜎2𝑥) to node 𝒙

𝑚𝑝(𝒙|𝒃, 𝜎2𝑥)→ 𝒙 (𝒙) = exp

{[
𝒙

vec
(
𝒙𝒙𝑇

) ]𝑇
𝜼𝑝(𝒙|𝒃, 𝜎2𝑥)→ 𝒙

}
.

This message is within the Multivariate Normal family, with

𝜼𝑝(𝒙|𝒃, 𝜎2𝑥)→ 𝒙
≡𝐸⊠

(
1∕𝜎2𝑥

)[ 𝟎
−1

2 vec
(
𝑳𝑇 diag

{
𝐸⊕ (𝒃)

}
𝑳
) ]

,

where, following (18), 𝐸⊠ denotes expectation with respect to the normalization of

𝑚𝑝(𝒙|𝒃, 𝜎2𝑥)→ 𝜎2𝑥

(
𝜎2𝑥

)
𝑚𝜎2𝑥 → 𝑝(𝒙|𝒃, 𝜎2𝑥) (𝜎2𝑥)

and 𝐸⊕ denotes expectation with respect to the normalization of

𝑚𝑝(𝒙|𝒃, 𝜎2𝑥)→ 𝒃 (𝒃)𝑚𝒃→ 𝑝(𝒙|𝒃, 𝜎2𝑥) (𝒃) .
Rewriting log𝑝 

(
𝒙|𝒃, 𝜎2𝑥) as a function of 𝜎2𝑥 and 𝒃 and applying similar considerations we get to Algorithm 2 (see the supplement for 

full derivations).

Algorithm 2 Variational message passing inputs, updates and outputs of the penalization likelihood fragment given by (3) and (22), 
and corresponding to factor graph fragment 3 of Fig. 4.

Inputs: 𝜼𝑝(𝒙|𝒃, 𝜎2
𝑥
)→ 𝒙 , 𝜼𝒙→ 𝑝(𝒙|𝒃, 𝜎2

𝑥
) , 𝜼𝑝(𝒙|𝒃, 𝜎2

𝑥
)→ 𝜎2

𝑥
, 𝜼𝜎2

𝑥
→ 𝑝(𝒙|𝒃, 𝜎2

𝑥
) .

Updates:

𝜇𝑞
(
1∕𝜎2

𝑥

) ⟵{(
𝜼𝑝(𝒙|𝒃, 𝜎2

𝑥
)↔ 𝜎2

𝑥

)
1
+ 1

}/{(
𝜼𝑝(𝒙|𝒃, 𝜎2

𝑥
)↔ 𝜎2

𝑥

)
2

}
𝛀1 ⟵ − 1

2

{
vec−1

((
𝜼𝑝(𝒙|𝒃, 𝜎2

𝑥
)↔ 𝒙

)
2

)}−1

𝝎2 ⟵𝛀1

(
𝜼𝑝(𝒙|𝒃, 𝜎2

𝑥
)↔ 𝜎2

𝑥

)
1

; 𝝎3 ⟵𝑳𝝎2 ; 𝝎4 ⟵ diagonal
(
𝑳𝛀1𝑳

𝑇
)

𝝎5 ⟵ 𝝎2
3 +𝝎4 ; 𝝎6 ⟵ 𝜇𝑞

(
1∕𝜎2

𝑥

)𝝎5

𝝁𝑞(𝒃) ⟵ 1∕
√
𝝎6 ; 𝛀7 ⟵𝑳𝑇 diag

(
𝜇𝑞(𝒃)

)
𝑳

until convergence.

Outputs: 𝜼𝑝(𝒙|𝒃, 𝜎2
𝑥
)→ 𝒙 ⟵ 𝜇𝑞

(
1∕𝜎2

𝑥

)
[

𝟎

− 1
2

vec
(
𝛀7

) ]
; 𝜼𝑝(𝒙|𝒃, 𝜎2

𝑥
)→ 𝜎2

𝑥
⟵ − 1

2

[
𝑚𝐿

𝜇𝑇
𝑞(𝒃)𝝎5

]
.

The combination of Algorithm 2 with the Inverse G-Wishart fragment algorithms of Maestrini and Wand (2021) and the Gaussian 
likelihood fragment algorithm of Wand (2017) gives rise to a full VMP procedure for fitting and approximate inference on model 
(2). Complete details about the implementation of VMP for fitting the inverse problem model (2) are provided in the supplement. At 
convergence of the VMP procedure, (19) and (21) can be applied to obtain the approximating densities in explicit form. For instance, 
we have

𝑞∗(𝒙) ∝ exp
⎧⎪⎨⎪⎩
[

𝒙

vec
(
𝒙𝒙𝑇

) ]𝑇

𝜼𝑞(𝒙)

⎫⎪⎬⎪⎭ , with 𝜼𝑞(𝒙) ≡ 𝜼𝑝(𝒙|𝒃, 𝜎2𝑥)→ 𝒙
+ 𝜼𝑝(𝒚|𝒙, 𝜎2𝜀 )→ 𝒙

,

which can be rewritten in terms of the common parameters of the approximating density (10) of MFVB by setting

𝝁𝑞(𝒙) = 𝚺𝑞(𝒙)
(
𝜼𝑞(𝒙)

)
1∶𝑚 and 𝚺𝑞(𝒙) = −1

2 vec−1
{(

𝜼𝑞(𝒙)
)
(𝑚+1)∶𝑚2

}
.

Both MFVB and VMP can achieve the same approximations (10)–(15) since it is possible to establish a direct correspondence between 
8

the initialisation values of the two variational procedures. For example, using the hyperparameter input 𝐴𝑥 in Algorithm 1 for 
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Table 1

Distributions of the auxiliary variables 𝑏𝑗 > 0, 𝑗 = 1 … 𝑑, that produce the penalizations analyzed 
in Neville et al. (2014) when introduced in model (2) in lieu of the Laplace penalization. Here 
the shape parameter 𝜆 > 0 is fixed. For each distribution, the MFVB or VMP update for 𝝁𝑞(𝒃) is 
displayed in the last column. When Algorithm 1 is used to perform MFVB, 𝜻 ≡ 𝝉2 ; when Algo-

rithm 2 is used for running VMP, 𝜻 ≡ 𝝎6 .

Penalization Density function MFVB or VMP update

Horseshoe 𝑝
(
𝑏𝑗
)
= 𝜋−1𝑏

−1∕2
𝑗

(
1 + 𝑏𝑗

)−1
𝝁𝑞(𝒃) ⟵

2
𝜻⊙exp

(
1
2 𝜻

)
⊙𝐸1

(
1
2 𝜻

) − 1

Negative-
𝑝
(
𝑏𝑗
)
= 𝜆𝑏𝜆−1𝑗

(
1 + 𝑏𝑗

)−𝜆−1
𝝁𝑞(𝒃) ⟵ (2𝜆+ 1)2𝜆

(√
𝜻
)
⊙

√
𝜻

Exponential-Gamma

Generalized 𝑝
(
𝑏𝑗
)
= 1

2
(1 + 𝜆)𝜆1+𝜆

𝝁𝑞(𝒃) ⟵
√
2(𝜆+1)√

𝜻⊙(
√
2𝜆+𝜻)Double Pareto ×𝑏(𝜆−2)∕2𝑗 𝑒𝜆

2𝑏𝑗∕4−𝜆−2
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√
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MFVB corresponds to a call of VMP to the Inverse G-Wishart Prior Fragment (Maestrini and Wand, 2021, Algorithm 1) with inputs 
𝐺Θ =𝐺diag, 𝜉Θ = 1, 𝚲Θ =𝐴−2

𝑥 and 𝐺diag being a graph corresponding to a diagonal matrix, to initialise the natural parameter vector 
𝜼𝑝(𝑎𝑥)→ 𝑎𝑥

of the message sent from factor 𝑝(𝑎𝑥) to stochastic node 𝑎𝑥. Further details about the initialisation of VMP are provided in 
the supplement.

3.3. Alternative response and penalization distributions

The message passing on factor graph fragments paradigm allows for flexible imposition of non-Normal response distributions. For 
instance, fragment 4 of Fig. 4 can be replaced by one of the likelihood fragments identified in Nolan and Wand (2017), Maestrini and 
Wand (2018) or McLean and Wand (2019) to accommodate a variety of response distributions such as, for instance, binary-logistic, 
Poisson, Negative Binomial, 𝑡, Asymmetric Laplace, Skew Normal, Skew 𝑡 and Finite Normal Mixtures.

Other penalization structures can be easily incorporated by varying the distributional assumption on the vector of auxiliary 
variables 𝒃. Neville et al. (2014) studied MFVB inference for three continuous sparse signal shrinkage distributions, namely the 
Horseshoe, Negative-Exponential-Gamma and Generalized Double Pareto distributions, that can replace the Laplace penalization 
employed in model (2). References for the development of these sparse shrinkage priors are respectively Carvalho et al. (2010), 
Griffin and Brown (2011) and Armagan et al. (2013).

The derivation of variational algorithms for models containing these shrinkage distributions can be quite challenging. In fact, 
the variational algorithm algebraic complexity and inference performance rely upon an accurate choice of their auxiliary variable 
representations. Neville et al. (2014) propose two alternative auxiliary variable representations for each of the aforementioned shrink-

age distributions by making use of either one or two sets of auxiliary variables. Their empirical and theoretical evidence show the 
supremacy of representations based on a single set of auxiliary variables in terms of posterior density approximation and compu-

tational complexity for all three cases. If this auxiliary variable representation is chosen, then the three penalizations can be easily 
imposed in model (2) as a replacement to the Laplace distribution by simply modifying the distributional assumption on the auxiliary 
vector 𝒃. Algorithms 1 and 2 can still be used by simply replacing the update for 𝝁𝑞(𝒃) with one of those listed in the last column 
of Table 1. Some expressions in Table 1 related to the Negative-Exponential-Gamma and Generalized Double Pareto cases depend 
on the parabolic cylinder function of order 𝜈, 𝜈 (𝑥), and 𝜈(𝑥) ≡−𝜈−2(𝑥)∕−𝜈−1(𝑥), for 𝜈 > 0 and 𝑥 > 0. Efficient computation of 
function 𝜈 (𝑥) is discussed in Appendix A of Neville et al. (2014).

Several other penalizations can be imposed on the base inverse problem model. The penalization in model (2) is a particular case 
of the Bayesian lasso of Park and Casella (2008) that makes use of a Gamma prior on the Laplace squared scale parameter. Tung 
et al. (2019) show the use of MFVB for variable selection in generalized linear mixed models via Bayesian adaptive lasso. Ormerod 
et al. (2017) develop a MFVB approximation to a linear model with a spike-and-slab prior on the regression coefficients. A detailed 
discussion on variable selection priors and variational inference fitting goes beyond the scope of this article. However, for the analysis 
of archaeological data provided in the supplement we show how the Laplace penalization can be easily replaced by a Horseshoe prior 
without deriving a VMP algorithm from scratch. In the same real data analysis we replace the Normal response assumption with a 
Skew Normal one.

4. Streamlined variational algorithm updates

In typical inverse problem applications the number of observations can be very high and a naïve implementation of Algorithms 1

and 2 may lead to a bottleneck due to operations involving a large contrast matrix 𝑳 and big matrix inversion steps related to 𝑲 . 
However, the structure of matrices 𝑳 and 𝑲 is such that computationally expensive algorithm updates may be efficiently performed. 
In this section we propose solutions to simplify algorithm updates and reduce their computational complexity. The results shown 
9

here are designed for one- and two-dimensional problems but are applicable to extensions to higher dimensions.
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4.1. Removal of the contrast matrix

The contrast matrix 𝑳 is a potentially massive sparse matrix that one does not want to compute or store. The number of rows of 
𝑳 is given by the 𝑑 differences between the elements of 𝒙 considered, whereas the number of columns is given by the length 𝑚 of 𝒙. 
For one-dimensional problems with a first nearest neighbour structure only the two longest diagonals of 𝑳 have non-zero elements, 
as shown in (4). The contrast matrix of two-dimensional problems under the same assumptions is sparse and has number of non-zero 
elements equal to twice the number of differences between elements of 𝒙, that is 2𝑑.

The updates of the variational Algorithms 1 and 2 that make use of matrix 𝑳 have the following forms:

𝑳𝒗, where 𝒗 is a vector; (24)

diagonal(𝑳𝑴𝑳𝑇 ), where 𝑴 is a symmetric positive definite matrix; (25)

𝑳𝑇 diag(𝒘)𝑳, where 𝒘 is a vector. (26)

The results presented in the supplementary material allow efficient computation of the MFVB and VMP updates that utilise matrix 𝑳
in the forms described in (24)–(26). One- and two-dimensional problems are considered and the results can be potentially extended 
to higher dimensions, e.g. for voxel-type data in three-dimensions.

4.2. Sparsification of 𝑲

The matrix 𝑲 is a potentially big matrix whose size depends on the number of observations and the length of 𝒙. It is easy to notice 
from the MFVB scheme presented as Algorithm 1 that the algebraic operations where matrix 𝑲 appears have the following generic 
forms: (

𝑠1𝑲
𝑇𝑲 + 𝑠2𝑳

𝑇 diag(𝝎)𝑳
)−1

, where 𝑠1 and 𝑠2 are scalar positive numbers; (27)

𝑴𝑲𝑇 𝒗, where 𝑴 is a symmetric positive definite matrix and 𝒗 is a vector; (28)

‖𝒖−𝑲𝒕‖2, where 𝒖 and 𝒕 are vectors; (29)

tr(𝑲𝑇𝑲𝑵), where 𝑵 is a matrix. (30)

For what concerns VMP, the expression in (27) appears in the update for 𝛀1 of Algorithm 2, whereas those in (28)–(30) arise in the 
Gaussian likelihood fragment numbered as fragment 5 in the Fig. 4 factor graph. Visual inspection of (27)–(30) suggests it is worth 
studying the structure of 𝑲 and 𝑲𝑇𝑲 for a computationally efficient implementation of the variational algorithm updates.

The focus of this section is placed on two-dimensional inverse problems. Again, we restrict our attention to the case where 𝑿 and 
𝒀 are both 𝑚1 ×𝑚2 matrices and each element of 𝑿 has a one-to-one correspondence with an element having the same position in 𝒀 . 
Under these conditions 𝑲 is a square matrix of size 𝑚 ×𝑚, with 𝑚 = 𝑚1𝑚2. If model (2) is used, setting 𝒙 = vec(𝑿) and 𝒚 = vec(𝒀 ), 
the matrix 𝑲 has the following structure:

𝑲 =
⎡⎢⎢⎢⎣
𝑲1 𝑲2 ⋯ 𝑲𝑚2
𝑲2 𝑲1 ⋱ ⋮
⋮ ⋱ ⋱ 𝑲2

𝑲𝑚2
⋯ 𝑲2 𝑲1

⎤⎥⎥⎥⎦ , with 𝑲 𝑖 =
⎡⎢⎢⎢⎣
𝐾𝑖,1 𝐾𝑖,2 ⋯ 𝐾𝑖,𝑚1
𝐾𝑖,2 𝐾𝑖,1 ⋱ ⋮
⋮ ⋱ ⋱ 𝐾𝑖,2

𝐾𝑖,𝑚1
⋯ 𝐾𝑖,2 𝐾𝑖,1

⎤⎥⎥⎥⎦ , 𝑖 = 1,… ,𝑚2.

Therefore 𝑲 is a symmetric block-Toeplitz matrix with 𝑚2 unique sub-blocks, each being 𝑚1 ×𝑚1 symmetric Toeplitz matrices. For 
simple unidimensional problems 𝑲 is a symmetric Toeplitz matrix.

Both the MFVB and VMP updates

𝚺𝑞(𝒙) ⟵
(
𝜇𝑞(1∕𝜎2𝜀 )

𝑲𝑇𝑲 + 𝜇𝑞(1∕𝜎2𝑥)
𝑳𝑇 diag(𝜇𝑞(𝒃))𝑳

)−1
of Algorithm 1 and (31)

𝛀1 ⟵ −1
2

{
−1
vec

((
𝜼𝑝(𝒙|𝒃, 𝜎2𝑥)↔ 𝒙

)
2

)}−1
of Algorithm 2 (32)

require inversion of a matrix of size 𝑚 ×𝑚. From (31) it is easy to notice that the structure of the matrix being inverted is influenced 
by 𝑲 through 𝑲𝑇𝑲 . A possible idea to reduce computational burden induced by these updates is to sparsify 𝑲 in such a way that 
also 𝑲𝑇𝑲 and the final matrix to invert are sparse. Since 𝑲 linearly links elements in 𝑿 with those in 𝒀 and given the one-to-one 
correspondence between 𝑿 and 𝒀 , it is reasonable to set to zero the matrix 𝑲 elements which correspond to interactions between 
pairs of locations whose distance exceeds a certain truncation value 𝓁 ∈ℕ, with 𝓁 <min(𝑚1, 𝑚2). This strategy can find application, for 
instance, both in the context of biomedical imaging discussed in Section 5 and archaeological field survey treated in the supplementary 
material. More formally, this consists in setting to zero the entries of 𝑲 that model dependence between pairs of elements of 𝑿 and 
𝒀 , (𝑋𝑖𝑗 , 𝑌𝑖′𝑗′ ), such that( )
10

max |𝑖− 𝑖′|, |𝑗 − 𝑗′| > 𝓁.
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Fig. 5. Representation of a sparse 𝑲 matrix of size 70 ×70 for an inverse problem over a pixel grid of size 7 ×10 (left panel) and the corresponding 𝑲𝑇𝑲 matrix (right 
panel). These matrices are obtained by using a truncation number 𝓁 = 2. Non-zero values are depicted in blue.

The resultant 𝑲 is an 𝓁-block-banded matrix whose sub-blocks are 𝓁-banded matrices. Also 𝑲𝑇𝑲 may result in a sparse matrix for 
particular choices of 𝓁, as stated in the following result.

Result 2. Let 𝑨 be an 𝓁-block-banded matrix of size 𝑚 × 𝑚 with 𝓁-banded sub-blocks and such that 0 < 𝓁 < (𝑚 − 1)∕2. Then 𝑨𝑇𝑨 is a 
symmetric 2𝓁-block-banded matrix whose sub-blocks are 2𝓁-banded matrices.

Fig. 5 depicts the 𝑲 matrix and 𝑲𝑇𝑲 block for an inverse problem where 𝑿 and 𝒀 have size 7 × 10 and 𝑲 is sparsified by 
applying a truncation value 𝓁 = 2. The blue colour indicates non-zero matrix entries. In this case, matrix 𝑲 is 2-block-banded matrix 
with 2-banded sub-blocks, whereas 𝑲𝑇𝑲 is a 4-block-banded matrix with 4-banded sub-blocks.

It is easy to check through Lemma 6 by applying such a sparsification strategy to 𝑲𝑇𝑲 that the same sparsity structure is imposed 
to the matrices being inverted in updates (31) and (32). Hence, for appropriate choices of 𝓁, the updates involve inversion of a sparse 
matrix having a block-banded structure and banded matrices in the main block-diagonals.

The suggested sparsification strategy has a physical interpretation. In the two-dimensional problems under examination each 
element of 𝒀 linearly depends on a subset of the elements of 𝑿 through 𝑲 . If the elements of 𝑲 are set to zero according to a 
truncation number 𝓁, then such subset is given by those elements of 𝑿 that fall inside of a circle of diameter 2𝓁 + 1 around the 
element of 𝑿 having one-to-one correspondence with the 𝒀 entry. Sparsifying the expression to be inverted in (31) means setting to 
zero some elements of the precision matrix 𝛀𝑞(𝒙) = 𝚺−1

𝑞(𝒙), where 𝚺𝑞(𝒙) is the covariance matrix of the optimal approximating density 
function 𝑞∗(𝒙) in (10). Since 𝑞∗(𝒙) is a Multivariate Normal density function, 

(
𝛀𝑞(𝒙)

)
𝑖𝑗
= 0, for 𝑖, 𝑗 = 1, … , 𝑚, if and only if 𝑥𝑖 and 𝑥𝑗

are conditionally independent given all the other elements of 𝒙.

Note that differently from the algebraic results proposed for removal of 𝑳, the sparsification applied to 𝑲 comes from nullifying 
interactions between elements of 𝑿 and 𝒀 , and therefore it introduces another level of approximation to the variational fitting 
procedure.

4.2.1. Block-banded matrix algebra

Asif and Moura (2005) propose two algorithms to invert block-banded matrices whose inverses are positive definite matrices: 
one resorting to Cholesky factors and an alternative implementation that avoids Cholesky factorizations. These algorithms require 
the inversion of smaller matrices having the size of the block-banded matrix sub-blocks. In the two-dimensional inverse problems 
under examination these sub-blocks have a banded structure. An approach for inverting banded matrices is described in Kılıç and 
Stanica (2013). These algebraic approaches for handling block-banded and banded matrices may allow for stable computation of 
variational algorithm steps involving sparse matrix inversions such as (27). However, the simplest way to perform efficient sparse 
matrix inversion and computations is to employ software for sparse matrix algebra. The functions contained in the R package spam
(Furrer and Sain, 2010) allow efficient management of sparse matrices and implement matrix operations. This package can be used 
in combination with package spam64 Gerber et al. (2017) to speed up such functions in 64 bit machines. Well established software 
is also available for lower-level languages such as the linear algebra libraries Armadillo and Eigen for C++ coding.

In general, matrices having banded or block-banded inverses are full matrices. Nonetheless, the inverse of a banded matrix may be 
referred to as band-dominated matrix (Bickel and Lindner, 2012), since the entries of its inverse exponentially decay with the distance 
from the main diagonal (Demko et al., 1984, Theorem 2.4). This property can be generalized to block-banded matrices and the inverse 
of a block-banded matrix can be approximated by a block-banded matrix with the same sparsity structure, i.e. with zero blocks off the 
main block band (Wijewardhana and Codreanu, 2016). The blocks outside the 𝓁-block band of a symmetric positive definite matrix 
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having an 𝓁-block-banded inverse are called nonsignificant blocks and those in the 𝓁-block band are called significant blocks. Theorem 
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3 of Asif and Moura (2005) states that nonsignificant blocks can be obtained from the significant ones. Then, a possible way to further 
speed-up algebra involving these matrices and reduce memory usage is to impose a block-banded structure to the precision matrix 
𝛀𝑞(𝒙) and approximate 𝚺𝑞(𝒙) with a block-banded matrix having the same structure of 𝛀𝑞(𝒙). In this case only the significant blocks 
of the covariance matrix 𝚺𝑞(𝒙), which solely depend on the significant blocks of 𝛀𝑞(𝒙), need to be computed.

5. Biomedical data study

This section demonstrates the use of variational inference for two-dimensional inverse problems motivated by a biomedical ap-

plication. An illustration on a real dataset and on simulations that mimic the real data are provided.

We assess the performances of variational inference through comparison with MCMC and computation of accuracy. For a generic 
univariate parameter 𝜃, the approximation accuracy of a density 𝑞(𝜃) to a posterior density 𝑝(𝜃|𝒚) is measured through

accuracy ≡ 100

{
1 − 1

2

∞

∫
−∞

|||𝑞(𝜃) − 𝑝(𝜃|𝒚)|||𝑑𝜃
}

%, (33)

so that 0% ≤ accuracy ≤ 100%, with 100% indicating perfect matching between the approximating and posterior density functions. 
We compute accuracy using Markov chain Monte Carlo as a benchmark. A standard Metropolis–Hastings algorithm Metropolis et al. 
(1953); Hastings (1970) is used to produce approximate samples from the posterior distribution. The Markov chains are started at 
feasible points in the parameter space and the retained samples are used to approximate the corresponding posterior density functions 
via kernel density estimation. Accuracy is then obtained from (33) with replacement of 𝑝(𝜃|𝒚) by MCMC density estimates of the 
posterior density functions. Variational inference is performed removing the contrast matrix 𝑳 through Lemmas 4–6 and sparsifying 
the matrix 𝑲 via truncation of interactions, as explained in Section 4. Also our MCMC implementation does not make direct use of 
matrices 𝑳 and 𝑲 to reduce computational burden. The simulation study was run on a personal computer with a 64 bit Windows 10 
operating system, an Intel i7-7500U central processing unit at 2.7 gigahertz and 16 gigabytes of random access memory. Variational 
inference was fully performed in R, whereas MCMC was run in R with subroutines replacing 𝑳 and 𝑲 matrix operations implemented 
in C++.

5.1. Real biomedical data

We test the performance of our variational inference approach on a real biomedical application from the realm of tomographic 
data. Tomography aims to display cross-sections through human and animal bodies, or other solid objects, using data collected around 
the body.

The data, kindly provided by BioEmission Technology Solutions, Athens, Greece, were collected to illustrate a small animal imaging 
system, gamma-eye, which can be used in biotechnology and pre-clinical medical research (Georgiou et al., 2017). A technetium 
radioisotope (99m Tc-MIBI) was injected via the tail vein of a mouse and mainly absorbed by organs such as heart, liver and kidneys, 
and then excreted. In humans such techniques are used to monitor heart function and mice are often used in pre-clinical studies. A 
single plane gamma-camera image of an adult mouse was collected with the camera at a distance of 5 mm from the nearest point of 
the mouse and 35 mm from the support bed. The 29 × 58, pixels of the data image are 1.7 mm apart giving a field of view of about 
5 cm by 10 cm. The mouse was anesthetized and so this corresponds to the “at rest” part of a human scan which would also involve 
a “stress test”. The total data recording time was 3 hours.

The objective is to reconstruct an image by removing blur from the observed scan of the mouse shown and denoted as 𝒀 in Fig. 6. 
We adopt model (2) setting 𝒚 = vec(𝒀 ) and using a Gaussian kernel matrix 𝑲 obtained through (6) with 𝛿 = 0.7. Hence, 𝒚 and 𝒙 are 
vectors of length equal to the number of pixels, 1,682, and 𝑲 has size 1, 682 × 1, 682. We set to zero the elements of 𝑲 expressing 
interactions between locations that have 10 or more pixels between each other using 𝓁 = 10. The random walk Metropolis–Hastings 
algorithm is used to produce approximate samples from the posterior distribution by simulating a Markov chain with burn-in of 1000 
followed by 100,000, then thinned by a factor of 20. Hyperparameters are set to values that give rise to diffuse priors. Specifically, 
𝐴𝜀 =𝐴𝑥 = 105. Estimates of 𝑿 obtained via variational inference and MCMC are included in Fig. 6. Here the term variational inference 
refers to both MFVB and VMP, as they both provide the same results by construction. The estimate of 𝑿 obtained via variational 
inference corresponds to the inverse vectorization of 𝝁𝑞(𝒙) from (10), whereas that of MCMC is given by the mean of the sampled 
chains.

Fig. 6 also displays approximate posterior density plots for a selection of six representative pixels. Five of the six selected pixels 
correspond to targeted organs of the mouse, namely thyroid, liver, kidneys and bladder, while the remaining pixel is located outside 
but near the mouse body. Overall variational approximations provide good image reconstruction and facilitate visualisation of the 
mouse body shape and organs. The posterior density approximations are also satisfactory in terms of accuracy, that is, area overlap 
between MCMC. As typical of variational approximations based on mean field restrictions, variational inference underestimates the 
variance of the approximate posterior densities. Plots of some representative bivariate posterior densities are also provided in the 
supplement. These show that in all cases the variational approximation covers a smaller area, indicating that it underestimates 
12

uncertainty relative to MCMC.
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Fig. 6. Analysis of the data provided by BioEmission Technology Solutions, Athens, Greece, performed by fitting model (2) via variational inference and MCMC. The 
panel on the upper-left side displays the observed data 𝒀 . The two panels on the right-hand side show, from top to bottom, the reconstruction 𝑿̂ of 𝑿 obtained via 
variational inference and MCMC. The plots on the lower-left side show the approximate marginal posterior densities produced through variational inference (blue 
lines) and MCMC (orange lines) for a selection of pixels.

5.2. Simulated biomedical data

We employ the real biomedical data image processed through MCMC, the one corresponding to the lower-right panel of Fig. 6, to 
simulate datasets and study the performance of variational inference in comparison with MCMC. In this simulation study we also keep 
track of computational times and calculate percentages of coverage. For a given parameter, the percentage of coverage corresponds to 
the proportion of simulations where the true parameter falls inside its 95% credible interval obtained through variational inference.

Let 𝑿̂MCMC be the inverse vectorization of the estimate of 𝒙 obtained as the sample mean of the corresponding MCMC chains. We 
simulate data through:

𝒚 =𝑲 vec(𝑿̂MCMC) + 𝜺, 𝜺 ∼𝑁(𝟎, 𝜎2𝜀𝑰),

with 𝜎𝜀 = 50 and 𝑲 generated according to (6), using 𝛿 values from the set (0.7, 0.8, 0.9) and without truncating interactions (𝓁 =∞). 
The example plots provided in the supplement show how the blur increases for higher 𝛿. For each 𝛿 value we generate 100 datasets 
and fit model (2) via both MFVB and MCMC. For fitting we apply the same 𝑲 matrix used to generate the datasets, i.e. without 
truncation of interactions, but also fit the model again setting to zero the elements of 𝑲 associated with pairs of observations whose 
distance exceeds a truncation value 𝓁 = 5. The MFVB algorithm is stopped when the relative difference of estimates of 𝑿 goes below 
10−2 between two iterations. We generate Markov chains of length 6,000 and retain 5,000 of them after discarding 1,000 warm-up 
samples.

Table 2 summarizes the results of the simulation study including: accuracy of the variational inference estimates of 𝑿 versus 
MCMC; variational inference percentage of coverage for 𝑿 , i.e. the number of times the entries of 𝑿̂MCMC falls inside their 95% 
variational inference credible intervals; variational inference and MCMC computational times. Average and standard deviations (in 
brackets) of each indicator are displayed for each combination of 𝛿 and 𝓁 values.

For each pixel of each simulated dataset we compute the accuracy of the variational approximation using (33) and then average 
over the 100 replicates. We then calculate average and standard deviation over all the entries of 𝑿 and display these in Table 2. We 
repeat the same procedure for measuring the percentage of coverage performances. The mean accuracy values range between 88.07 
and 87.10, whereas the mean percentages of coverage are between 95.09 and 92.75 and therefore close to the nominal 95% level. 
Both accuracy and coverage performances slightly degrade for higher values of 𝛿 and blur.

The variational inference and MCMC computational times are displayed in minutes and show that variational inference is around 
100 times faster for the 𝛿 = 0.7 setting. Imposing a truncation 𝓁 = 5 to 𝑲 reduces the MCMC computational times by about six to 
seven minutes on average for the three 𝛿 values under examination as opposed to not applying truncation. The time performances 
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of variational inference are not particularly affected by truncation as the R package spam efficiently manages the algorithm updates 
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Table 2

Results of the simulation study based on 100 replicates per 𝛿 value generated using the kernel 
matrix 𝑲 defined in (6) without truncation. Fitting is performed via variational inference and 
MCMC using the same 𝑲 matrix employed to generate the data (no truncation) and also imposing 
a truncation threshold 𝓁 = 5 to the interactions expressed by 𝑲 . Higher 𝛿 values correspond to 
more blur. The smaller 𝓁, the sparser the 𝑲 matrix used to fit the model is.

𝓁 =∞ (no truncation) 𝓁 = 5

𝛿 = 0.7

Var. inf. vs MCMC accuracy for 𝑿 88.07 (4.23) 88.04 (4.23)

Var. inf. percentage of coverage for 𝑿 95.09 (16.36) 95.09 (16.36)

Var. inf. comp. time (minutes) 0.85 (0.24) 0.84 (0.24)

MCMC comp. time (minutes) 87.67 (0.29) 81.61 (0.39)

𝛿 = 0.8

Var. inf. vs MCMC accuracy for 𝑿 87.54 (5.17) 87.55 (5.20)

Var. inf. percentage of coverage for 𝑿 94.01 (19.12) 94.01 (19.12)

Var. inf. comp. time (minutes) 1.20 (0.28) 1.19 (0.28)

MCMC comp. time (minutes) 88.08 (0.57) 82.12 (0.58)

𝛿 = 0.9

Var. inf. vs MCMC accuracy for 𝑿 87.10 (5.58) 87.12 (5.65)

Var. inf. percentage of coverage for 𝑿 92.75 (22.02) 92.75 (22.02)

Var. inf. comp. time (minutes) 1.43 (0.43) 1.43 (0.43)

MCMC comp. time (minutes) 88.64 (0.30) 81.70 (0.44)

involving 𝑲 in both cases with and without truncation. Once again, variational inference has been fully performed in R, while the 
main MCMC function has been implemented in R and uses C++ subroutines that replace the 𝑲 and 𝑳 matrix operations. Therefore, 
further computational advantages may be achieved implementing variational inference in C++.

6. Discussion

We have laid down the infrastructure for performing variational approximate inference on applications that can be studied through 
statistical inverse problems models. Our variational algorithms allow fast approximate fitting for these models, with satisfactory 
accuracy compared with standard MCMC.

The run-time of MCMC estimation for inverse problems is usually excessive on a standard personal computer. This means that 
parameter tuning, model diagnostics and sensitivity analyses are rarely performed. The use of variational inference methods, which 
are quick by comparison, means that multiple parameter settings and multiple models can be considered in a reasonable length 
of time. This opens-up the possibility of model diagnostics, such as influence and leverage, to become a routine part of applied 
inverse problems solution. Further, there is a subjective element, as always, to the choice of model components and in particular 
the hierarchical prior components. It would be a great advance for applications areas, such as medicine and archaeology, if rogue 
measurements could be identified and their influence on estimation could be quantified. Also, if any arbitrary parts could be shown 
to have insignificant effect on results, this would lead to far greater confidence and hence a wider acceptability of advanced statistical 
modelling approaches.

Hence, the implications of our work are not limited to the numerical results presented, but we provide a framework for other 
researchers to develop a richer set of model exploration methods for inverse problems. The flexibility of our approach is such that 
non-Normal likelihood distributions and other penalizations can be incorporated at will. Furthermore, this research sets the basis 
for several future directions to explore such as the study of settings with more than two dimensions, number of observations not 
matching that of data recording locations or more complex neighbour dependence structures.
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