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A B S T R A C T   

Architected lattice structures are designed to achieve specific mechanical properties while maintaining relative 
lightweight. Additive Manufacturing (AM) facilitates the fabrication of lattice structures with complex geome
tries. However, manufacturing imperfections, e.g., node dislocation, radius variation, and waviness, inevitably 
affect the performance of composite structures, of which the impact is significant yet difficult to quantify. Herein, 
a virtual model-assisted AM error quantification scheme is proposed to alleviate this challenge. The influence of 
geometric imperfections on the static buckling behaviour for sandwich lattice-core panels is investigated. A 
recently developed Extended Support Vector Regression (X-SVR) is utilized to alternatively bridge multiscale 
analyses. By integrating the sampling and virtual modelling methods, the effect of AM errors can be compre
hensively quantified with statistical moments, probability density function (PDF), cumulative distribution 
function (CDF), etc. Furthermore, high computational efficiency, robustness, and other inherent features high
light the applicability of the proposed AM error quantification scheme in engineering.   

1. Introduction 

Artificial architected lattice materials are a type of cellular structure 
that mimic the natural design of human bones, plant stems, wood, cork, 
and other biological materials [1–4]. These materials exhibit remarkable 
mechanical properties such as a high stiffness-to-weight ratio, excellent 
energy absorption, and low thermal conductivity [5–9], which make 
them suitable for various engineering applications in the automotive, 
aerospace, biomedical, and construction sectors [10–13]. As an 
emerging technique, Additive Manufacturing (AM) refers to a fabrica
tion process by adding material in a successive manner [14,15], which 
promotes the development of material science and is used to build 
cellular structures with geometric complexities [16–20]. Particularly, 
Selective Laser Melting (SLM) is one of the commonly used techniques in 
Metal Additive Manufacturing (MAM) [21] to provide engineers with 
economical and effective access to the fabrication of metallic lattice 
materials [22–24]. Therefore, AM techniques have achieved widespread 
applications and possess great potential in multiple disciplines including 
biomedical, aerospace, mechanical engineering, etc. [25–28]. 

However, the lattice structures fabricated by AM techniques inevi
tably introduce geometric imperfections, which are termed as the offset 

of junction center position (strut node dislocation), the variation of strut 
cross-section radius (radius variation), and the offset of cross-section 
center positions (waviness) [23,29,30]. A number of studies have been 
conducted to explore the influence of imperfections on additively 
manufactured lattice structures. Lozanovski et al. [21] utilized the finite 
element method (FEM) and proposed a computer-aided design (CAD) 
model involving the strut defects to explore the mechanical response of 
lattice structures. Lei et al. [31] and Cao et al. [32] conducted 
compressive experiments and evaluated the influence of SLM-induced 
imperfections on the compressive performance, energy absorption 
capability, mechanical properties, and deformation mechanisms of lat
tice structures. Dallago et al. [29] combined X-ray computed tomogra
phy with the FEM to investigate the fatigue strength and elastic modulus 
of SLM lattice structures. Liu et al. [30] utilized CT tomography to 
develop numerical models and studied the role of SLM-induced imper
fections on the elastic response and failure mechanism of the octet and 
rhombicuboctahedron lattice structures. Cumulative research has 
continuously revealed that the aforementioned AM errors could have 
significant impacts: without appropriate consideration of these errors, 
the mechanical properties of products may vary dramatically, leading to 
possible structural failures. Thus, to provide a feasible approach to 
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quantify the effects of AM errors on composite lattices for real-world 
adoptions, an advanced and systematic framework is expected to be 
developed. 

The buckling behaviour [33], as a fundamental mechanical perfor
mance, is investigated through the numerical homogenization method 
[34,35] and the first-order shear deformation theory (FSDT) [6,36]. A 
probabilistic statistical model used to model structural imperfections 
[30] is adopted herein to evaluate the concerned AM errors. By 
considering these errors as independent probabilistic statistical vari
ables, the homogenized mechanical properties in mesoscale lattice 
components, e.g., Young’s modulus, Poisson’s ratio, etc., possess the 
characteristics of randomness that may be reflected in the structural 
behaviours, such as the critical buckling load. Although sufficient sta
tistical information on the concerned structural response can be ob
tained through the brute Monte Carlo Simulation (MCS) method, the 
expensive computational costs are still a great concern in real-world 
engineering problems. Thus, to facilitate the quantification of the ef
fects of AM errors in a computationally effective and efficient manner, 
an advanced analysis method is proposed by integrating the sampling 
method with machine learning and data processing techniques. Inspired 
by several successes achieved in uncertainty quantification and reli
ability analysis for various types of engineering structures [37–40], a 
recently developed supervised machine learning technique, namely, 
Extended Support Vector Regression (X-SVR), is adopted to alternatively 
express the originally underpinned and sophisticated relationship be
tween AM errors and the concerned structural performance, i.e., bulking 
load. Due to the inherent features of convex optimization programming, 
the embedded X-SVR technique can theoretically achieve a good per
formance in regression. Based on the established X-SVR model, the 
sampling method can be implemented with greatly reduced computa
tional costs. A sufficient amount of statistical information on the quan
tity of interest can be obtained, including not only the statistical 
moments (means, standard deviations, etc.), but also the probability 
density function (PDF), and cumulative distribution function (CDF). 
Generally, the advantages of the proposed advanced AM error quanti
fication framework through machine learning techniques can be sum
marized as follows: 

(1) Wide applicability: The proposed AM error quantification 
framework supports the consideration of various types of lattice-core 
composite structures, e.g., cubic center, octet, vintiles, etc. Moreover, 
diverse critical AM errors, such as strut node dislocation, radius varia
tion, waviness, etc., are included. 

(2) Unrestricted selection of quantities of inputs and outputs: There is 
no obvious restricted selection of quantities of both inputs and outputs 
within the system. Moreover, according to the statistical information 
from reality, AM errors can be described as statistical models, and 
characterized by appropriate statistical moments and distribution types 
within the proposed quantification framework. 

(3) High compatibility: Data processing techniques, e.g., clustering 
strategy, normalization, feature selection, etc., as well as other machine 
learning techniques, can be easily integrated within the proposed 
quantification framework. 

(4) Computational efficiency: By implementing the sampling-based 
method on the established virtual model that can be expressed as an 
explicit formulation, the computational costs and resources can be 
remarkedly reduced. 

(5) Adequate statistical information: Based on the sampling-based 
method, a sufficient amount of statistical information of any con
cerned structural response can be effectively obtained, including the 
statistical moments, PDF, and CDF. 

In addition to these merits, information update, hypothesis analysis, 
and sensitivity analysis can be effectively and efficiently implemented 
on the established virtual models. Generally, the proposed AM error 
quantification strategy can be employed to investigate the sophisticated 
mechanisms between these imperfections induced by the 
manufacturing, processing, assembling, etc., in micro or mesoscale to 

overall structural performance, and convincingly, it possesses great 
potential for the wide adoption in advanced manufacturing and com
posites engineering. 

The remainder of this paper is organized as follows: Section 2 pre
sents the preliminaries, including the static buckling analysis for lattice- 
core composite plates with either ‘error-free’ geometries or AM errors. In 
Section 3, the proposed machine learning-assisted AM error quantifi
cation strategy is thoroughly presented. Numerical investigations for 
lattice-core composite plates under the three types of AM errors are 
subsequently implemented in Section 4 to demonstrate the applicability 
and computational efficiency of the proposed strategy. Finally, conclu
sions are drawn in Section 5. 

2. Preliminaries 

This paper aims to quantify the influence induced by AM errors on 
the static buckling behaviour of additively manufactured architected 
lattice-core composite sandwich plates under simply supported and 
clamped boundary conditions. Three commonly encountered imper
fections, especially raised by the SLM technique, including the strut 
node dislocation, radius variation, and waviness, are considered. The 
stability of composite sandwich plates, which consist of a Ti-6Al-4V 
architected lattice-core layer bounded by top and bottom aluminium 
isotropic face layers, are investigated under uniaxial loading conditions. 
This section elaborates on this problem by detailing the static buckling 
analysis for lattice-core composite sandwich plates with ‘error-free’ 
geometry, as well as that involving AM errors. 

2.1. Static buckling analysis for lattice-core composite sandwich plates 
with ‘error-free’ geometry 

Herein, three types of lattice materials (i.e., the octet, cubic center, 
and vintiles), commonly applied to compose the core layer of composite 
sandwich plates in engineering industries [6], are selected in this static 
buckling analysis. Their detailed topologies are depicted in Fig. 1. 

Fig. 2 presents the modelling of the lattice-core composite sandwich 
plate and gives the corresponding topology and dimensional informa
tion. The plate length and width are denoted by La and Lb, respectively. 
The thicknesses of the face layer, the core layer, and the composite 
sandwich plate are represented as hf , hc and h, respectively. Two well- 
known methodologies, numerical homogenization and FSDT, are 
adopted and used to calculate the homogenized material properties and 
to generate the governing equation for solving the static buckling load of 
the composite sandwich plate. The following part will briefly introduce 
these two methodologies, as well as the governing equations. More 
detailed derivations can be found in [6] and [34]. 

In terms of the homogenization method for periodic composite ma
terials, the homogenized elasticity tensor EH

ijkl can be computed as: 

EH
ijkl =

1
|Y|

∫

Y
Epqrs

(
ε0(ij)

pq − ε(ij)pq

)(
ε0(kl)

rs − ε(kl)
rs

)
dY (1)  

where Epqrs is defined as the locally varying elasticity tensor, |Y| in
dicates the unit cell volume. ε0(ij)

pq and ε0(kl)
rs are prescribed strain fields. 

ε(ij)pq and ε(kl)
rs are locally varying strain fields. 

The homogenization equation should be discretised and solved by 
FEM, which is often called numerical homogenization. Grounded on the 
FEM, the strain ε and the element stiffness matrix Ke can be expressed as: 

ε(ij) = BU(ij),Ke =

∫

Ve

BEBT dVe (2)  

where B represents the strain–displacement matrix, which is defined as 
the derivative of element shape function. 

The material design domain is assumed to be discretised by N finite 
elements, where the type of each finite element is hexahedron with the 
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volume of Ve. By substituting Eq. (2) into Eq. (1), the original governing 
equation in homogenization method can now be expressed in the form of 
numerical homogenization, which can be expressed in Eq. (3) for 
calculating the homogenized material properties. 

CH
ijkl =

1
|Y|

∑N

e=1

∫

Ve

(
U0(ij)

(e) − U(ij)
(e)

)T
Ke

(
U0(kl)

(e) − U(kl)
(e)

)
dVe (3)  

where CH
ijkl, U

0
(e), U(e) and Ke are defined as the homogenized constitutive 

matrix, the prescribed displacement field, the locally varying displace
ment field, and the element stiffness matrix, respectively. Then, based 
on the generalized Hook’s law, the homogenized material properties 
(namely, Young’s modulus (E), Shear modulus (G), and Poisson’s ratio 
(v)) can be calculated by the homogenized compliance matrix, which 
can be obtained by inversing the homogenized constitutive matrix. 

Based on FSDT, the stress resultants N =
[
Nxx Nyy Nxy

]T, M =
[
Mxx Myy Mxy

]T, and the transverse force resultants Q =
[
Qx Qy

]T can 
be written as the constitutive relations, and the shear correction factor 
Ks takes the value of 5/6. 
{

N
M

}

=

[
A B
B D

]{
ε0
ε1

}

, Q = KsAsγ (4)  

(

A,B,D

)

=
∑3

k=1

∫ zk+1

zk

L(k)( 1, z, z2)dz,

As =
∑3

k=1

∫ zk+1

zk

L(k)
s dz

(5)  

L =

⎡

⎣
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤

⎦,Ls =

[
Q55 0
0 Q44

]

(6)  

where the elastic constants for the kth layer can be written as: 

Qk
11 = Qk

22 =
Ek

1 − v2
k
,

Qk
12 =

vkEk

1 − v2
k
,

Qk
44 = Qk

55 = Qk
66 =

Ek

2(1 + vk)

(7)  

in which the Ek and vk represent Young’s modulus and Poisson’s ratio for 
the kth layer of the composite sandwich plate. 

For the solution of the critical buckling load, assuming the uniaxial 
in-plane force Nxx applied along the plate length, the governing equation 
is consequently obtained: 

Fig. 1. Lattice materials (a) octet; (b) cubic center; (c) vintiles.  

Fig. 2. The schematic diagram of the lattice-core composite sandwich plate subjected to uniaxial loading (a) 3D model (b) 2D model.  
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(Γ + Λ)Δ = 0 (8)  

where: 

Γ =

⎡

⎢
⎣

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

⎤

⎥
⎦, Δ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wmn

Θx
mn

Θy
mn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

Λ =

⎡

⎢
⎣

NxxΓN11 0 0
0 0 0
0 0 0

⎤

⎥
⎦, 0 =

⎧
⎪⎨

⎪⎩

0
0
0

⎫
⎪⎬

⎪⎭

(9) 

Wmn, Θx
mn, Θy

mn are the arbitrary parameters. ΓN11 should be deter
mined by the admissible functions Xm(x) and Yn(y). The formulations of 
Xm(x) and Yn(y) under simply supported (SSSS) and clamped (CCCC) 
boundary conditions are provided in Eqs. (A1) and (A2) in Appendix A, 
respectively. Then, the formulation for calculating ΓN11 based on Xm(x)
and Yn(y) are given in Eq.(A3). For the coefficients in the matrix Γ, they 
should be calculated based on the above-mentioned admissible func
tions and the coefficients in matrices A,B,D. The detailed formulations 
for calculating each coefficient Γij are provided in Appendix B. After 
that, the solution of the critical static buckling load Nscr can be deter
mined by solving Eq. (8). 

Since the face layers in the composite sandwich plate are constructed 
from the isotropic solid material and the material properties are 
considered to be invariant, the variations of terms A,B,D are mainly 
dependent on the material properties of the core layer, and the term Γ is 
modified as: 

ΓH =

⎡

⎣
Γ11
(
CH) Γ12

(
CH) Γ13

(
CH)

Γ21
(
CH) Γ22

(
CH) Γ23

(
CH)

Γ31
(
CH) Γ32

(
CH) Γ33

(
CH)

⎤

⎦ (10)  

where ΓH denotes the coefficient matrix where all the coefficients in the 
matrix are determined by the homogenized constitutive matrix. Thus, 
the governing equation combining the homogenization method and 
FSDT for the static buckling analysis of the lattice-core composite 
sandwich plate with ‘error-free’ geometry is given via: 
(
ΓH + Λ

)
Δ = 0 (11) 

The critical static buckling load Nscr calculated based on the gov
erning equation can be functionally expressed as: 

Nscr = g(EH,GH) = h(X,EB,GB, ρB) (12)  

where EH and GH represent the homogenized Young’s modulus and 
Shear modulus of the lattice material. X denotes the coordinates of 
concerned nodes in the lattice material. EB, GB and ρB denote the 
Young’s modulus, Shear modulus and density of the base material to 
construct the lattice structure. g(⋅) denotes the physical relationship 
between the mesoscale material properties and Nscr. While h(⋅) denotes 
the physical relationship between the macroscale material properties 
and Nscr. 

2.2. Static buckling analysis for lattice-core composite sandwich plates 
with AM errors 

For composite sandwich plates with geometric imperfections during 
AM process, the AM errors should be considered as random variables in 
the static buckling analysis. After involving AM errors, the static buck
ling analysis now becomes non-deterministic with random feature. 
Therefore, the virtual model for this newly proposed analysis should be 
based on the randomness set and the random variable ξR should be 
defined to quantify each type of AM errors including the strut node 
dislocation, radius variation and waviness.  

Given the probability space (Ω,Σ,P) which is characterized by the 
sample space Ω, σ-algebra Σ, and the probability measure P. Z(R) de
notes the set of all real random variables and R denotes the set con
taining all real numbers. ξR ∈ Z(R) is defined as the random variable 
and PξR (x) denotes the PDF of the random variable ξR. 

ξR ∈ Ω :=
{

ξR∈ Z(R)|ξR ∼ PξR (x)
}

(13) 

Since studies on lattice-based composite materials considering AM 
errors are in an early stage and relevant experimental data are still 
scarce, the distribution function established herein for the quantification 
of AM errors are mainly based on assumptions that they are following 
the normal distributions. When sufficient experimental data is available, 
more realistic distribution types can be applied in the distribution 
function to credibly describe the AM errors. 

In the scenario of strut node dislocation, the node coordinates are 
defined as random variables where some of the coordinates remain to be 
fixed to ensure the overall structural integrity of the lattice materials. 
The defined nodes are shown in Fig. 3 for illustration. 

In Fig. 3, the black points represent fixed nodes, and the red points 
represent independent random nodes. For the purpose of computational 
efficiency, in the octet, the orange points are defined to be dependent 
random nodes that are symmetrical to the random red points with 
respect to the virtual geometry center in green. While in vintiles, the 
virtual green center point is defined to be independent random nodes to 
control the variability, where the distance between orange dependent 
random nodes to the random center point is defined to be constant. The 
detailed statistical information of the random variables can be expressed 
as follows. 

For the i-th cubic center sample: 

ξR ∈ Ω :=
{

xc
ij, y

c
ij, z

c
ij, i = 1, ...,m, j = 1

}
(14) 

For the i-th octet sample: 

ξR ∈ Ω :=
{

xo
ij, y

o
ij, i = 1, ...,m, j = 1, 2, 3

}
(15) 

For the i-th vintiles sample: 

ξR ∈ Ω :=
{

xv
ij, y

v
ij, z

v
ij, i = 1, ...,m, j = 1

}
(16)  

where xij, yij, zij denote the x, y, z coordinates of the j-th node in the i-th 
lattice material sample. The superscripts c, o, v refer to the cubic center, 
octet, and vintiles, respectively. 

In the case of radius variation, the lower quarter of struts in these 
lattice structures are divided into small segments of beam elements 
which are numbered and represented in black colour in Fig. 4. The 
radius of these beam elements is defined as random variables. 

In Fig. 4, the red points represent the nodes that divide struts into 
small beam elements. In the cubic center, the red points are points of 
trisection, while in octets and vintiles, they are defined as points of 
bisection. Then, similar to the scenario of strut node dislocation, all the 
struts represented by the blue colour in these lattice structures are 
defined to be symmetrical to the lower quarter part of randomized black 
struts with respect to the virtual geometry center in green. Thus, the 
variability of the whole structure could be simulated by the defined 
random variables and the radius of the blue struts can be seen as the 
dependent variables. Followed by the elaboration and the schematic 
diagram, the detailed statistical information of the random variables for 
radius variation can be defined herein. 

For the i-th cubic center sample: 

ξR ∈ Ω :=
{

rc
ij, i = 1, ...,m, j = 1, 2, ..., 7, 8, rc

ij > 0
}

(17) 

For the i-th octet sample: 

ξR ∈ Ω :=
{

ro
ij, i = 1, ...,m, j = 1, 2, ..., 8, 9, ro

ij > 0
}

(18) 
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For the i-th vintiles sample: 

ξR ∈ Ω :=
{

rv
ij, i = 1, ...,m, j = 1, 2, ..., 11, rv

ij > 0
}

(19)  

where rij denotes the random radius of the j-th beam element in the i-th 
lattice material sample. 

In the case of waviness, the random nodes are defined in the lower 
quarter part which are numbered and represented in red colour. The 
details are shown in Fig. 5. 

In Fig. 5, the black points denote the fixed nodes, and the red points 
represent the random nodes where the coordinates of these points are 
defined as random variables. In the cubic center, the red nodes are in the 

Fig. 3. Voxel models with node dislocation (a) cubic center; (b) octet; (c) vintiles.  

Fig. 4. Voxel models with radius variation (a) cubic center; (b) octet; (c) vintiles.  
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position of trisection points, while in octet and vintiles, they are in the 
position of bisection points, which are similar to the definition in radius 
variation. Then the waviness of the lower quarter part of the lattice 
structures could be simulated. Similar to the two imperfections intro
duced previously, the variation of the other parts of lattice structures is 
defined to be symmetrical to the variation of the lower quarter part to 
achieve the simulation of waviness for the whole structures by using the 
defined random variables. Based on the explanation, the random vari
ables can be defined as follows. The definitions of the subscripts and 
superscripts are the same as that in the strut node dislocation part. 

For the i -th cubic center sample: 

ξR ∈ Ω :=
{

xc
ij, y

c
ij, zc

ij, i = 1, ...,m, j = 1, 2, 3, 4
}

(20) 

For the i-th octet sample: 

ξR ∈ Ω :=
{

xo
ij, y

o
ij, zo

ij, i = 1, ...,m, j = 1, 2, 3, 4
}

(21) 

For the i-th vintiles sample: 

ξR ∈ Ω :=
{

xv
ij, y

v
ij, zv

ij, i = 1, ...,m, j = 1, 2, 3, 4
}

(22) 

After the definition of the random variable ξR for the three types of 
AM errors (i.e., strut node dislocation, radius variation, and waviness), 
the governing equation for the stochastic static buckling analysis of 
lattice-core composite sandwich plates can be updated as: 
(
ΓH( ξR)+ Λ

(
ξR) )Δ

(
ξR) = 0 (23)  

where the random variable ξR collects all the uncertain input parameters 
and the terms ΓH( ξR), Λ

(
ξR) and Δ

(
ξR) are dependent on ξR. 

Since the governing equation defined in Eq. (23) involves the AM 
errors as random variables, the concerned response Nscr is considered to 
possess random characteristics, which could be updated as NR

scr. The 
formulation in Eq. (12) which is utilized to functionally express Nscr can 
be updated as: 

NR
scr = g

(
ER

H,GR
H

)
= h
(
ξR,EB,GB, ρB

)
(24)  

where ER
H and GR

H denote the homogenized material properties with 
random feature caused by AM errors. The random variable ξR denotes 
the quantities of AM errors. From Eq. (24), the existence of AM errors 
could again be proved as one of the direct consequences to influence the 
critical static buckling load of lattice-based structures, which is the focus 
of our investigation in this paper. In engineering, this relationship nor
mally possesses underpinned and sophisticated features, which should 
also be expressed implicitly. 

By involving manufacturing imperfections as random variables, the 
complexity of static buckling analysis dramatically surged. For the 
problem considering uncertainties, the governing equation in Eq. (24) 
could not be solved analytically. From the view of mathematics, it is 
computationally infeasible to calculate all the possible static buckling 
loads as there are infinite possible varieties of uncertain parameters 
corresponding to infinite sets of realizations for the random variables. 
Alternatively, the statistical characteristics can be used to describe and 
analyse the target buckling behaviour based on the MCS. However, 
although it is theoretically feasible for the stochastic analysis to acquire 
adequate statistical characteristics including the mean, standard devia
tion, PDF, and CDF, the large number of iterations would be unavoidable 
and significantly increase the computational costs. To address this 
challenge, a machine learning-aided analysis framework is established 
for the AM error quantification of lattice-core composite sandwich 
plates. 

3. Static buckling analysis involving AM errors for lattice-core 
composite sandwich plates through X-SVR 

A recently developed supervised machine learning technique, 
namely Extended Support Vector Regression (X-SVR) [37,38], is adop
ted for the static buckling analysis of lattice-core composite sandwich 
plates involving AM errors. To achieve a self-contained work, the al
gorithms of the embedded X-SVR technique are presented herein. Fol
lowed by that, the framework based on X-SVR for the quantification of 
the effects from AM errors is freshly introduced. 

Fig. 5. Voxel models with waviness (a) cubic center; (b) octet; (c) vintiles.  
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3.1. The linear X-SVR 

In terms of regression, for xi ∈ R
n
(i = 1,2,...,m), the input and output 

for the training dataset are defined as: 

xtrain = [x1, x2, ..., xi, ..., xm]
T
∈ R

m × n
, ytrain ∈ R

m (25) 

The targeted hyperplane for regression is defined as: 

f̂ (x) = wT x − δ (26)  

where w = [w1,w2, ...,wn]
T
∈ R

n represents the normal to the hyper
plane, δ ∈ R denotes the bias and m is the number of training samples. 

Considering the ε-insensitive loss function, in which ε represents the 
tolerable deviation between ytrain and ̂f (x), the linear regression function 
in Eq.(26) can be solved by establishing the following optimization 
problem: 

min
w,δ,ξ,ξ*

:
1
2
‖w‖2

2 + C
∑m

i=1

(

ξi + ξ*
i

)

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wT xi − δ − yi⩽ε + ξi

yi − wT xi + δ⩽ε + ξ*
i

ξi, ξ
*
i ⩾0

(27)  

where C ∈ R
+
:= {x ∈ R|x > 0} is the constant to determine the trade- 

off between the flatness of f̂ (x) and the empirical error; ξi and ξ*
i 

represent the slack variables to denote the allowable negative and pos
itive excessive deviations, respectively. 

Since the doubly regularized support vector machine (Dr-SVM) 
proposed by Wang et.al [41] is an extension of the theory of support 
vector machine (SVM), it can be used to simultaneously conduct the 
classification and the feature selection process with a combination of the 
elastic-net penalty containing both L1- and L2-norm penalties. Then the 
governing equation for the proposed X-SVR can be expressed as follows: 

min
p,q,δ,ξ,ξ*

:
λ1

2
(
‖p‖2

2 + ‖q‖2
2

)
+ λ2eT

n (p + q) +
C
2
(
ξT ξ + ξ*T ξ*)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

xtrain(p − q) − δem − ytrain⩽εem + ξ

ytrain − xtrain(p − q) + δem⩽εem + ξ*

p,q⩾0n; ξ, ξ*⩾0m

(28)  

where λ1, λ2 ∈ R
+ indicate two tuning parameters used to balance the 

feature selection and classification performance; ξ, ξ* ∈ R
m represent 

two non-negative vectors for the collection of slack variables; en =

[1, 1, ...,1]T ∈ R
n and 0n = [0,0, ...,0]T ∈ R

n, p,q ∈ R
n consist of non- 

negative variables such that: 

pγ :=
(
wγ
)

+
=

{
0,wγ⩽0

wγ ,wγ > 0
,

qγ :=
(
wγ
)

−
=

{
− wγ ,wγ < 0

0,wγ⩾0
,

for γ = 1, 2, ..., n

(29)  

3.2. Kernelized nonlinear X-SVR 

In addition to the linear problem, the proposed X-SVR can be 
extended to the nonlinear regression problem. The empirical kernel 
mapping strategy [42] is adopted to effectively transform the linear X- 
SVR to a kernelized learning approach and the empirical kernelization is 
written as [38]: 

xi =
[
xi,1, xi,2, ..., xi,n

]T ↦κ̂(xtrain, xi) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Φ(x1)
T Φ(xi)

Φ(x2)
T Φ(xi)

⋮

Φ(xm)
T Φ(xi)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

κ(x1, xi)

κ(x2, xi)

⋮

κ(xm, xi)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

for i = 1, 2, ...,m
(30)  

of which Φ (xi) maps the i-th input data xi ∈ R
n into a higher- 

dimensional Euclidian space; κ̂ (xi) denotes the i-th empirical feature 
vector and the empirical degree is m equalling to the number of training 
samples [42]. 

Therefore, in terms of an arbitrary training dataset xtrain ∈ R
m×n and 

a specific kernel function, the training samples can be transformed into 
the kernelized matrix κtrain ∈ R

m ×m [37]: 

κtrain =

⎡

⎢
⎢
⎣

κ(x1, x1) κ(x1, x2) ⋯ κ(x1, xm)

κ(x2, x1) κ(x2, x2) ⋯ κ(x2, xm)

⋮ ⋮ ⋱ ⋮
κ(xm, x1) κ(xm, x2) ⋯ κ(xm, xm)

⎤

⎥
⎥
⎦ (31)  

where the kernel matrix κtrain is adopted as the training dataset. Then the 
kernelized nonlinear X-SVR problem can be formulated by: 

min
Ẑκ ,δ

:
1
2
(

Ẑ
T
κ Ĉκ Ẑκ + δ2)+ λ2 âT

κ Ẑκ

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

κtrain(pκ − qκ) − δem − ytrain⩽εem + ξ

ytrain − κtrain(pκ − qκ) + δem⩽εem + ξ*

pκ ,qκ, ξ, ξ*⩾0m

(32)  

in which the subscript κ indicates a kernelized learning model and the 
kernelized X-SVR is reformulated as: 

min
Ẑκ ,δ

:
1
2
(

Ẑ
T
κ Ĉκ Ẑκ + δ2)+ λ2 âT

κ Ẑκ

s.t.(Âκ + I4m ×4m)Ẑκ + (εI4m ×4m + δĜκ)B̂κ + D̂κ⩾04m

(33)  

where the kernelized matrices Âκ, Ĉκ, Ĝκ ∈ R
4m ×4m are: 

Âκ =

⎡

⎢
⎢
⎣

02m ×m 02m ×m 02m ×2m

− κtrain κtrain 0m ×2m

κtrain − κtrain 0m ×2m

⎤

⎥
⎥
⎦,

Ĉκ =

[
λ1I2m ×2m

CI2m ×2m

]

,

Ĝκ =

⎡

⎢
⎢
⎣

02m ×2m 02m ×m 02m ×m

0m ×2m Im ×m 0m ×m

0m ×2m 0m ×m − Im ×m

⎤

⎥
⎥
⎦

(34) 

The kernelized vectors âκ, B̂κ, D̂κ , Ẑκ ∈ R
4m are defined as: 

âκ =

[
e2m

02m

]

, B̂κ =

[
02m

e2m

]

,

D̂κ =

⎡

⎢
⎢
⎣

02m

ytrain

− ytrain

⎤

⎥
⎥
⎦, Ẑκ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pκ

qκ

ξ

ξ*

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(35) 

By adopting the Lagrange method with KKT conditions and intro
ducing the non-negative Lagrange multiplier φκ ∈ R

4m, the nonlinear X- 
SVR is calculated by a quadratic program: 
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min
φκ

:
1
2
φT

κ Qκφκ − mT
κ φκ,

s.t.φκ⩾04m

(36)  

where the terms Qκ ∈ R
4m ×4m and mκ ∈ R

4m are defined as: 

Qκ = (Âκ + I4m ×4m)Ĉ
− 1
κ (Âκ + I4m ×4m)

T
+ Ĝκ B̂κ B̂

T
κ Ĝκ

mκ = λ2(Âκ + I4m ×4m)Ĉ
− 1
κ âκ − εB̂κ − D̂κ

(37) 

Considering φ*
κ ∈ R

4m as the solution of Eq.(36), the variables Ẑκ, δκ 

are formulated as: 

Ẑκ = Ĉ
− 1
κ

[
(Âκ + I4m ×4m)

T φ*
κ − λ2 âκ

]
,

δκ = B̂
T
κ Ĝκφ*

κ

(38) 

The nonlinear regression function obtained by the kernelized X-SVR 
can be obtained as: 

f̂ κ(x) = (pκ − qκ)
T κ(xtrain, x) − B̂

T
κ Ĝκφ*

κ (39)  

where κ(xtrain, x) ∈ R
m denotes the kernelized input matrix. 

3.3. Machine learning-aided stochastic static buckling analysis for 
composite sandwich plates 

For the illustration of quantifying the effects of AM error on the static 
buckling behaviour of lattice-core composite sandwich plates, the 
detailed steps for the proposed methodology combining static buckling 
analysis with the kernelized X-SVR technique are introduced herein. 

Step 1 Generate m samples of lattice-core composite sandwich plates 
with random variables for the three types of manufacturing imperfec
tions (i.e., strut node dislocation, radius variation, and waviness). Define 
m as the size of the training dataset, n as the dimension of the random 
variables, and xi as the i-th lattice material sample, then the training 
dataset xtrain can be represented as: 

xtrain := {xi ∈ R
n
, for i = 1, ...,m}, xtrain ∈ R

m ×n (40) 

Step 2 Construct the voxel models for the lattice materials in the 
training dataset based on the information provided in each xi and 
calculate the homogenized constitutive matrix to get Young’s modulus, 
shear modulus, and Poisson’s ratio using the numerical homogenization 
method given in Section 2.1. 

Step 3 Determine the critical static buckling load for the lattice-core 
composite sandwich plate which is constructed from the i-th lattice 
material sample in the training dataset based on FSDT mentioned in 
Section 2.1; define ytrain as the output of the training dataset: 

ytrain :=
{

yi = Ni
scr, for i = 1, ...,m

}
, ytrain ∈ R

m (41) 

Step 4 Establish a regression model by utilizing the generated 
training dataset with the kernelized X-SVR regression model: 

f̂ κ(x) = (pκ − qκ)
T κ(xtrain, x) − B̂

T
κ Ĝκφ*

κ (42) 

Step 5 Generate new inputs that follow the statistical models of AM 
errors. Herein, due to the insufficiency of the experimental data, the 
statistical models of AM errors are mainly based on assumptions that 
they are following normal distributions. 

Step 6 By importing the new inputs xnew into the established virtual 
model, calculate the corresponding buckling load Nscr according to ̂f κ(x)
and implement the sampling method. 

Step 7 Generate the statistical properties including the mean, stan
dard deviation, PDF and CDF based on Nscr. 

Based on the elaboration, the newly proposed framework is capable 
of quantifying the effects of AM errors on the static buckling behaviour 
of lattice-core composite sandwich plates by utilizing the recently 
developed kernelized X-SVR. The novelties and advantages possessed 

within the present work could be summarized into the following aspects: 
wide applicability, unrestricted selection, high compatibility, compu
tational efficiency, and adequate statistical information. In terms of 
applicability, the proposed framework supports various types of lattice- 
core composite structures including cubic center, octet, vintiles, etc., in 
which multiple AM errors induced during the manufacturing process can 
be targeted, including strut node dislocation, radius variation, waviness, 
etc. The feature of wide applicability could enable the developed 
methodology to analyse a diverse array of lattice-based composite 
structures with unique design and complex internal structures. For un
restricted selection, the quantities of interest for both inputs and outputs 
within the system are not confined to a single type of distribution. The 
AM errors within the framework could be quantified into various 
appropriate statistical moments and distribution types. Therefore, the 
random variables for quantifying the AM errors can be defined based on 
the statistical information from industries or experiments, which could 
be imported correspondingly into the proposed virtual model. Besides, 
the integration of machine learning techniques including clustering 
strategy, normalization, feature selection, etc., could enhance the 
compatibility of the proposed framework, improve the performance of 
the developed model, and ensure the model robustness when the input 
data varies. In addition, employing the sampling-based method to ex
press the established virtual model as an explicit formulation could 
significantly enhance the computational efficiency, which could 
contribute to the reduction in computational time compared to tradi
tional MCS. The implementation of sampling-based method could also 
enable the effective collection of a comprehensive set of statistical in
formation related to any concerned structural response, including the 
means, standard deviations, PDF and CDF. Furthermore, the proposed 
virtual model-aided AM error quantification strategy possesses other 
inherent features such as the feasibility of information update, hypoth
esis analysis, sensitivity analysis, etc., all of which can be implemented 
on the established virtual model in a computationally efficient manner. 
We believe that the proposed strategy for the quantification of AM errors 
could provide engineers a viable access to investigate the sophisticated 
mechanisms from the manufacturing imperfections in micro or meso
scale to the overall structural performance in macroscale, which could 
convincingly verify its potential in advanced manufacturing and com
posite engineering. 

4. Numerical investigation 

To demonstrate the applicability of the proposed machine learning- 
aided stochastic analysis framework, the numerical examples for cubic 
center, octet, and vintiles based composite sandwich plates considering 
AM errors, including strut node dislocation, radius variation, and 
waviness, are thoroughly investigated, where the number of samples in 
the dataset for each lattice form is set as 5000. The statistical informa
tion which covers the mean, standard deviation, PDF, and CDF are 
subsequently provided for quantifying the effects of these errors. 
Moreover, the inherent feature of information update for the proposed 
methodology is given after the numerical examples. All the in
vestigations are conducted by DELL 7920 Tower with Intel Xeon Gold 
5215 CPU @ 2.50 GHz and 128 GB of RAM. 

4.1. Numerical validation 

Before conducting the numerical investigation, the accuracy and 
efficiency of the X-SVR analysis framework should be studied and 
verified. Firstly, the comparison between the proposed methodology 
and the other commonly applied machine learning techniques (Gaussian 
Process Regression (GPR), Support Vector Machine (SVR), Decision Tree 
(DT), and Neural Network (NN)) is performed for strut node dislocation, 
radius variation, and waviness, respectively. The convergence study of 
estimated R2 values is given in Fig. 6. It can be observed that the per
formance of the proposed X-SVR model is more accurate and robust than 
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the other machine learning models, as evidenced by a relatively higher 
convergence rate and the highest R2 value. Based on the plot of the 
convergence study, the size of the training dataset is taken as m = 500 
for strut node dislocation, radius variation, and waviness. 

To estimate the computational accuracy, the R2 and NRMSE are 
selected as the estimation indices [37]. Based on the convergence study, 
the X-SVR model is trained with 500 samples and Table 1 gives the 
values of R2, NRMSE and the computational time of the corresponding 
trained models under simply supported (SSSS) and clamped boundary 
conditions (CCCC) for the target composite plates. From Table 1, it can 
be seen that the values of R2 are all greater than 0.9 and those of NRMSE 
are nearly 0, suggesting the great accuracy and robustness of the 
embedded X-SVR technique in generating virtual models by considering 
different boundary conditions and AM error types. 

In terms of computational time, the left column shows the estimated 
time required for training the X-SVR model using the existing 500 
training samples plus the time required for calculating the static buck
ling load of 5000 new samples, and the right column shows the esti
mated time for calculating the static buckling load of 5000 new samples 
by utilizing the MCS. The imperfection type of node dislocation, radius 
variation and waviness under both simply supported and clamped 
boundary condition are recorded, respectively. For node dislocation, the 
computational time is around 6.7 and 6.3 min for the X-SVR regression 
model, demonstrating a dramatic reduction compared to 5600 min 
required by MCS. In terms of radius variation, the X-SVR regression 
model requires about 7.1 min’ computational time, a decrease of more 
than 1000 times compared to the time needed for MCS. In the case of 
waviness, the recorded time is about 6.8 min and 7.7 min for X-SVR 

while MCS requires 7700 min. The computational time again signifi
cantly decreases for both boundary conditions. Thus, the results could 
indicate remarkable improvements for all the imperfection types and 
boundary conditions in computational efficiency when using the X-SVR 
regression model compared to the traditional MCS method. 

4.2. Numerical results and discussion 

The statistical information of the random variables used to define 
and mimic the AM error is given in Table 2. The parameter d and the 
subscript (o) denote the strut diameter and original. The definition for 
the rest variables could be found in Section 2.2. 

Three aforementioned lattice materials with 10 % relative density 
(ρ* = 10%) for the core layer are investigated under both simply sup
ported and clamped boundary conditions. The geometrical information 
of the composite sandwich plate is taken as: La = Lb = 1 m, h =

5cm,Rhc = hc/h = 0.98. The base material properties of the face layer 
and the core layer, and the homogenized material properties for the 
lattice core are detailed in Tables 3 and 4. 

The static buckling loads of lattice-core composite sandwich plates 
with ‘error-free’ geometry are calculated in Table 5. It can be seen that a 
higher static buckling load is expected under the clamped boundary 
condition, which can be explained by the extra constraints provided on 
the plate edges. Among the three lattice types, the octet lattice material 
shows the highest static buckling capacity under both boundary 
conditions. 

Fig. 6. Convergence study of different machine learning models for (a) strut node dislocation; (b) radius variation; (c) waviness.  

Table 1 
Estimation metrics of the virtual models.  

Imperfection type Boundary condition R2 NRMSE Computational time (mins) 

X-SVR MCS 

Node Dislocation SSSS 0.9423 0.0007382 6.7893  5656.8927 
CCCC 0.9355 0.0006202 6.3443  5634.2137 

Radius Variation SSSS 0.9996 0.0035102 7.1875  8568.8880 
CCCC 0.9814 0.0030944 7.1298  8571.1107 

Waviness SSSS 0.9514 0.0049302 6.8032  7733.9452 
CCCC 0.9169 0.0055493 7.7785  7729.8725  

Table 2 
Statistical information of the considered random variables for AM errors.  

AM error Random variables Distribution type Mean Std 

Node dislocation xij,yij ,zij Normal xij(o) ,yij(o),zij(o) 0.5d(o)

Radius variation rij Normal r(o) 0.25d(o)

Waviness xij,yij ,zij Normal xij(o) ,yij(o),zij(o) 0.25d(o)
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4.2.1. Strut node dislocation 
The statistical plots including the PDFs and CDFs for the static 

buckling behaviour of the cubic center lattice-core composite sandwich 
plate with strut node dislocation are illustrated in Fig. 7, where the re
sults from the X-SVR regression model are drawn against those based on 
the MCS to validate the applicability of the proposed method. We may 
find out that the proposed methodology is competent to deliver 
adequate estimations by utilizing 500 training samples in this case. 
Apart from the PDFs and CDFs, the accuracy of the proposed framework 
has been further verified by comparing the calculated probabilities, the 
mean value and the standard deviation between the X-SVR and MCS 

Table 3 
Base material properties for the composite sandwich plate.   

Material type E(GPa) ν ρ
(
kg/m3)

Face layer Al 68.3 0.34 2689.8 
Core layer Ti-6Al-4V 110 0.34 4450  

Table 4 
Effective material properties for different types of lattice-core.  

Lattice material E(GPa) ν G(GPa)

Cubic center 2.0488 0.2795 0.9018 
Octet 1.7345 0.3346 1.1932 
Vintiles 1.2856 0.3780 0.2949  

Table 5 
Static buckling loads (N) for the ‘error-free’ composite sandwich plate with 
different lattice cores.  

Relative density Lattice type Simply supported Clamped  

Cubic center 2,829,665 7,206,027 
10 % Octet 2,909,635 7,234,839  

Vintiles 2,400,967 6,119,772  

Fig. 7. Estimated strut node dislocation statistical results: (a) PDF for the simply supported composite sandwich plate with cubic center lattice-core; (b) CDF for the 
simply supported composite sandwich plate with cubic center lattice-core; (c) PDF for the clamped composite sandwich plate with cubic center lattice-core; (d) CDF 
for the clamped composite sandwich plate with cubic center lattice-core. 

Table 6 
Comparison of estimated probability for Nscr between X-SVR and MCS for cubic 
center core composite sandwich plate.  

Probability MCS (SSSS) X-SVR (SSSS) MCS (CCCC) X-SVR (CCCC) 

P(Nscr ≤ μ − 3σ) 0.017307 0.017667 0.015459 0.016185 
P(Nscr ≤ μ − 2σ) 0.045950 0.046440 0.046129 0.046966 
P(Nscr ≤ μ − σ) 0.130364 0.133765 0.137772 0.139411 
P(Nscr ≤ μ) 0.395841 0.389659 0.401796 0.392273 
P(Nscr ≤ μ + σ) 0.900304 0.901484 0.900131 0.902657 
P(Nscr ≤ μ + 2σ) 0.999760 0.999831 0.999751 0.999821 
P(Nscr ≤ μ + 3σ) 1.000000 1.000000 1.000000 1.000000 
P(Nscr ≤ Nscr(o)) 0.000499 0.000487 0.000414 0.000396 
μ(N) 2901889.40 2901961.88 7359992.28 7360229.40 
σ(N) 10970.81 10846.64 22929.53 22794.77 
σ/μ 0.003781 0.003737 0.003115 0.003097  
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approaches, as shown in Table 6 (Nscr(o) denotes the original static 
buckling load). 

From Table 6, it is evident that the estimated probabilities calculated 
based on the X-SVR model match well with the MCS simulation 
regardless of the locations ranging from μ − 3σ to μ + 3σ. In addition, the 
P(Nscr⩽Nscr(o)), the mean value μ(N) and the standard deviation σ(N) of 
the static buckling load agree well between the two methods. According 
to P (Nscr⩽Nscr(o)) ≈ (4 ∼ 5)× 10− 4, the strut node dislocation would 
potentially increase the overall static buckling load of the cubic center 
core composite sandwich plate under both simply supported and clam
ped boundary conditions. The small ratio between σ and μ suggests the 
possible values of static buckling load tend to be close to the mean. 

Followed by the comparison between the proposed X-SVR frame
work and MCS, similar statistical investigations on octet and vintiles 
core composite sandwich plates are conducted in Fig. 8. Then the 
calculation results under both simply supported and clamped boundary 
conditions are presented in Table 7 including the probabilities, the 
estimated mean values, and the standard deviation. 

Based on Fig. 8, considering the variation of boundary conditions 
only, a similar pattern of PDF could be observed for both types of lattice- 
core, while comparing the PDF between the two types of composite 
sandwich plate, an different shape could be observed for the one with 
octet lattice-core, which indicates that under the same type of AM error, 

the influence of the lattice-core internal structure is more evident than 
that of the boundary conditions on the static buckling behaviour. Be
sides, by observing the x-axis in the PDF plots, the values of static 
buckling load are generally higher in the octet core composite sandwich 
plate compared with that in the vintiles core composite sandwich plate 

Fig. 8. Estimated strut node dislocation statistical results: (a) PDF for the simply supported composite sandwich plate with octet lattice-core; (b) PDF for the clamped 
composite sandwich plate with octet lattice-core; (c) PDF for the simply supported composite sandwich plate with vintiles lattice-core; (d) PDF for the clamped 
composite sandwich plate with vintiles lattice-core. 

Table 7 
Estimated probability of Nscr for the octet core and vintiles core composite 
sandwich plate using the X-SVR method.  

Probability Octet (SSSS) Octet 
(CCCC) 

Vintiles 
(SSSS) 

Vintiles 
(CCCC) 

P(Nscr ≤ μ − 3σ) 0.008442 0.009170 0.004133 0.003885 
P(Nscr ≤ μ − 2σ) 0.043826 0.041984 0.027613 0.026210 
P(Nscr ≤ μ − σ) 0.157350 0.158399 0.144599 0.142795 
P(Nscr ≤ μ) 0.441142 0.442184 0.484781 0.489392 
P(Nscr ≤ μ + σ) 0.847525 0.846048 0.885250 0.883756 
P(Nscr ≤ μ +

2σ)
0.997720 0.997479 0.968861 0.967783 

P(Nscr ≤ μ +

3σ)
0.999993 0.999999 0.990335 0.990024 

P(Nscr ≤ Nscr(o)) 0.999742 0.999962 0.689764 0.710188 
μ(N) 2875833.17 7153481.31 2388881.27 6086224.65 
σ(N) 14080.00 30813.71 27800.66 72051.58 
σ/μ 0.004896 0.004308 0.011638 0.011838  
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under both boundary conditions. In addition, by comparing the calcu
lation results in Table 7, it can be seen that for the same composite 
sandwich plate with different boundary conditions, the values of prob
abilities for the selected locations agree well. While for the composite 
sandwich plate with a different lattice-core and the same boundary 
condition, the differences between the probability values are compara
tively larger, which further demonstrates the greater influence of the 
lattice-core internal structure rather than the boundary conditions. 
Furthermore, in terms of the probabilities for Nscr⩽Nscr(o), the composite 
sandwich plate with octet core layer and vintiles core layer reach around 
99.9 % and 70 % respectively, meaning that the strut node dislocation 
would weaken the static buckling load capacity for most composite 
sandwich plates with these two types of lattice-core layer. 

4.2.2. Radius variation and waviness 
The statistical plots for the cubic center core composite sandwich 

plate under the simply supported boundary condition are provided in 
Fig. 9 for the AM error of radius variation and waviness respectively, 
where the estimated PDFs and CDFs computed by the X-SVR framework 
are compared with that computed by the MCS to illustrate the capability 
and accuracy of the proposed methodology for the stochastic static 
buckling analysis considering the two manufacturing imperfections 
above. 

Based on the plots in Fig. 9, the proposed X-SVR model shows great 
capability and competency to estimate the static buckling behaviour of 

the lattice-core composite sandwich plate under the AM error of radius 
variation and waviness, where the statistical plots computed from the X- 
SVR model match well with those via the MCS simulation. The values of 
R2, which are given as 0.9996 and 0.9514 for the radius variation and 
waviness respectively, further indicate the great accuracy of the pro
posed methodology. In addition to the PDFs and CDFs, the computed 
probability, the mean value, and the standard deviation calculated via X- 
SVR and MCS are shown in Table 8. 

Fig. 9. Estimated statistical results for the simply supported composite sandwich plate with cubic center lattice-core: (a) PDF for radius variation; (b) CDF for radius 
variation; (c) PDF for waviness; (d) CDF for waviness. 

Table 8 
Estimated probability of Nscr for the simply supported cubic center core com
posite sandwich plate with radius variation and waviness.  

Probability Radius variation Waviness 

MCS X-SVR MCS X-SVR 

P(Nscr ≤ μ − 3σ) 0.000000 0.000000 0.006213 0.006692 
P(Nscr ≤ μ − 2σ) 0.000007 0.000009 0.047433 0.047518 
P(Nscr ≤ μ − σ) 0.124155 0.125030 0.165991 0.162001 
P(Nscr ≤ μ) 0.583363 0.585491 0.436126 0.433692 
P(Nscr ≤ μ + σ) 0.853149 0.850100 0.842640 0.849542 
P(Nscr ≤ μ + 2σ) 0.955938 0.952964 0.999652 0.999620 
P(Nscr ≤ μ + 3σ) 0.988191 0.986547 1.000000 1.000000 
P(Nscr ≤ Nscr(o)) 0.600090 0.601553 0.553863 0.553101 
μ(N) 2806029.04 2806713.50 2807329.11 2808161.83 
σ(N) 532461.89 533446.53 69723.53 69534.13 
σ/μ 0.189756 0.190006 0.024836 0.024761  
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Fig. 10. The estimated ratio of interval for the simply supported composite sandwich plate: (a) PDF for radius variation octet; (b) CDF for radius variation octet; (c) 
PDF for waviness octet; (d) CDF for waviness octet; (e) PDF for radius variation vintiles; (f) CDF for radius variation vintiles; (g) PDF for waviness vintiles; (h) CDF for 
waviness vintiles. 
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It is evident that the proposed X-SVR approach is competent to 
provide accurate estimation. The probabilities of Nscr⩽Nscr(o) for radius 
variation and waviness are estimated to be around 60 % and 55 %, 
respectively. This indicates that the two types of manufacturing im
perfections could potentially weaken the plate and the chance from 
radius variation is larger. 

Followed by the investigation of the cubic center core composite 
sandwich plate under the two types of manufacturing imperfections, the 
percentage change of the static buckling load under the simply sup
ported boundary condition is plotted in terms of PDFs and CDFs for the 
radius variation and waviness in Fig. 10. Then the study of the static 
buckling behaviour of the octet core and vintiles core composite sand
wich plate could be conducted. A new parameter: ratio of interval (RoI) 
used in the following part is defined herein. 

RoI =
Nscr − Nscr(o)

Nscr(o)
× 100% (43) 

In the PDF and CDF plots from Fig. 10, the grey shadow represents 
the range of 95% confidence interval. By comparing the values of RoI in 
the figure, a wider range could be observed in the case of radius varia
tion for both types of composite plates, which means that the influence 
of radius variation is considered to be greater than that of waviness. 
Besides, the highest probabilities are indicated in the plots. For the octet 
core composite sandwich plate, the values are 0.029892 and 0.197290 
under radius variation and waviness, respectively. When considering the 
vintiles core composite sandwich plate, the values are 0.024580 and 
0.176580. Based on the values above, the highest probabilities in octet 
core composite sandwich plate are comparatively larger under both 
types of imperfections. After that, the estimated probabilities for RoI⩽0, 
μ(RoI) and σ(RoI) are provided in Table 9. 

Based on the values of P(RoI⩽0), the effects of waviness which causes 
the decrease of static buckling load can be greater than that caused by 
radius variation for both types of composite sandwich plates. By 
comparing the standard deviations of RoI, greater values can be 

observed in the case of radius variation for both types of composite 
plates. This again indicates that the range of static buckling load change 
caused by radius variation is greater than that caused by waviness where 
the distributions are separated further apart with respect to the mean 
values. 

4.2.3. Information update for the X-SVR analysis framework 
To ensure the adjusted statistical models could be integrated and 

applied into the proposed analysis framework, the inherent feature of 
unrestricted selection and information update for the random variables 
should be validated in this section. The cubic center core composite 
sandwich plate with the AM error of radius variation is selected as the 
investigating numerical example and various appropriate distribution 
types are utilized to quantify the AM errors. Three different statistical 
distribution including the uniform distribution, gamma distribution, and 
beta distribution are selected to define the radius variation of horizontal 
strut, vertical strut, and diagonal strut in the cubic center lattice-core, 
respectively. The detailed statistical information of the random vari
ables is defined in Table 10. 

To demonstrate the applicability and accuracy of information update 
for the proposed machine learning-aided framework, the PDF and CDF 
for the static buckling behaviour considering the above three distribu
tions together are given in Fig. 11, where the plots are compared against 
that computed by the MCS. Followed by that, the estimated probabili
ties, the mean value, and the standard deviation calculated from the 
trained X-SVR model and MCS are presented in Table 11. 

Based on the statistical plot, it could be observed that the PDF and 
CDF curves computed by the previously trained X-SVR model overlap 
with that computed from the MCS. The well-matched curves indicate the 
high accuracy of the proposed machine learning-aided training model, 
which could demonstrate the inherent feature of information update for 
the proposed analysis framework. Besides, by comparing the probabil

Fig. 10. (continued). 

Table 9 
Estimated probabilities of RoI for the simply supported composite sandwich 
plate with radius variation and waviness.  

Probability Octet Vintiles 

Radius Variation Waviness Radius Variation Waviness 

P(RoI ≤ 0) 0.529229 0.998733 0.405481 0.883522 
μ(RoI)(%) 1.142639 − 4.758660 8.708664 − 2.895942 
σ(RoI)(%) 14.251814 2.102499 20.365245 2.361989  

Table 10 
Statistical information for cubic center lattice-core composite sandwich plate 
under the defects of radius variation.  

Property Distribution 
type 

Mean 
(cm) 

Standard deviation 
(cm) 

Radius variation for 
horizontal strut 

Uniform 0.0604 0.0313 

Radius variation for vertical 
strut 

Gamma 0.0442 0.0161 

Radius variation for 
diagonal strut 

Beta 0.0353 0.0163  
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ities, the mean value, and the standard deviation of the static buckling 
load calculated from X-SVR and MCS in Table 11, the applicability of the 
proposed analysis framework could be further illustrated, where the 
random variables can be imported continuously without rebuilding the 
virtual model. In addition, by observing the results of Nscr⩽Nscr(o), the 
estimated probability is about 95.5%, which indicates that the static 
buckling capacity of cubic center composite sandwich plates can be 
greatly impaired when considering different types of probability distri
butions together. 

5. Conclusion 

In this work, a machine learning-aided stochastic analysis framework 
is proposed for quantifying the effects of AM errors on the static buckling 
behaviour of composite sandwich plates, including strut node disloca
tion, radius variation, and waviness. The method of homogenization and 
the first-order shear deformation theory are combined to create the 
theoretical basis. Then, a newly developed stochastic analysis frame
work by adopting extended Support Vector Regression (X-SVR) 
approach is used for plates with AM errors. To demonstrate the accuracy 
and efficiency of the proposed framework, the R2 value, NRMSE, and 
computational time are calculated for the trained models regarding each 
type of AM error. The statistical information computed from X-SVR and 
MCS is compared together to further illustrate the applicability of the 
proposed methodology. Then, the numerical experiments are conducted 

for the static buckling behaviour of cubic center, octet and vintiles 
composite plates, which provides new insights into the influence of AM 
errors on the structural stability and guidance on the structure design 
and optimization. The conclusions drawn from this work can be sum
marised herein: 

1. The proposed framework through kernelized X-SVR is capable of 
analysing different types of lattice-core composite sandwich plates and it 
possesses high robustness for conducting the analysis of static buckling 
behaviour considering various types of manufacturing imperfections, 
including strut node dislocation, radius variation, and waviness. 

2. The proposed framework greatly increases computational effi
ciency, and the calculation time can be dramatically reduced without 
compromising the accuracy of the calculation results. 

3. The inherent feature of information update enables the statistical 
information from different manufacturing sectors to be updated 
continuously into the analysis framework without rebuilding the trained 
machine learning model. 

4. The influence of AM errors on the static buckling behaviour of 
composite sandwich plates is more evident than that from boundary 
condition types. 

5. The strut node dislocation possibly increases the overall static 
buckling capacity for the cubic center core composite sandwich plate, 
while reducing those from its counterparts made of octet and vintiles 
cores. 
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Table 11 
Estimated probability of Nscr for the information update of the simply supported 
cubic center core composite sandwich plate with radius variation.  

Probability MCS X-SVR 

P(Nscr ≤ μ − 3σ) 0.000000 0.000000 
P(Nscr ≤ μ − 2σ) 0.000113 0.000126 
P(Nscr ≤ μ − σ) 0.130075 0.131226 
P(Nscr ≤ μ) 0.584582 0.583435 
P(Nscr ≤ μ + σ) 0.855965 0.854094 
P(Nscr ≤ μ + 2σ) 0.953090 0.951719 
P(Nscr ≤ μ + 3σ) 0.986110 0.986805 
P(Nscr ≤ Nscr(o)) 0.955740 0.957352 
μ(N) 2351041.68 2349937.53 
σ(N) 233244.89 232993.14 
σ/μ 0.099209 0.098723  

Fig. 11. Estimated statistical results of the cubic center core composite sandwich plate for information update: (a) PDF for radius variation; (b) CDF for 
radius variation. 

W. Tian et al.                                                                                                                                                                                                                                    



Composite Structures 327 (2024) 117645

16

Data availability 

Data will be made available on request. 

Acknowledgements 

The work presented in this paper has been supported by Australian 
Research Council projects IH210100048, IH200100010, DP210101353 
and DP240102559.  

Appendix A 

The admissible functions Xm(x) and Yn(y) for (SSSS) are expressed as: 

Xm(x) = sin(mαx)
Yn(y) = sin(nβy) (A1) 

The admissible functions Xm(x) and Yn(y) for (CCCC) are expressed as: 

Xm(x) = sin(αx)sin(mαx)
Yn(y) = sin(βy)sin(nβy) (A2) 

ΓN11 can be formulated as: 

ΓN11 =

∫ Lb

0

∫ La

0

{[
Xm,xxYn

]
XmYn

}
dxdy (A3)  

Appendix B 

The coefficient in Γ (i.e., Γij, for i, j = 1, 2, 3) in Eq.(8) can be formulated as: 

Γ11 =

∫ Lb

0

∫ La

0

{[
KsA55Xm,xxYn + KsA44XmYn,yy

]
XmYn

}
dxdy

Γ12 =

∫ Lb

0

∫ La

0

{[
KsA55Xm,xxYn

]
XmYn

}
dxdy

Γ13 =

∫ Lb

0

∫ La

0

{[
KsA44XmYn,yy

]
XmYn

}
dxdy

(B1)  

Γ21 =

∫ Lb

0

∫ La

0

{[
− KsA55Xm,xYn

]
Xm,xYn

}
dxdy

Γ22 =

∫ Lb

0

∫ La

0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

(
B11A*

11 + B12A*
12 − B66A*

31

)
T2,xyy +

(
B11A*

12 + B12A*
22

)
T2,xxx

− KsA55Xm,xYn +
(
B66A*

32 + D66
)
Xm,xYn,yy

+
(
B11A*

13 + B12A*
23 + D11

)
Xm,xxxYn

⎤

⎥
⎥
⎥
⎦

Xm,xYn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dxdy

Γ23 =

∫ Lb

0

∫ La

0

⎧
⎨

⎩

⎡

⎣

(
B11A*

11 + B12A*
12 − B66A*

31

)
T3,xyy +

(
B11A*

12 + B12A*
22

)
T3,xxx

+
(
B11A*

14 + B12A*
24 + D12 + B66A*

32 + D66
)
Xm,xYn,yy

⎤

⎦Xm,xYn

⎫
⎬

⎭
dxdy

(B2)  

Γ31 =

∫ Lb

0

∫ La

0

{[
− KsA44ΦmΨn,y

]
XmYn,y

}
dxdy

Γ32 =

∫ Lb

0

∫ La

0

⎧
⎨

⎩

⎡

⎣

(
B12A*

11 + B22A*
12

)
T2,yyy +

(
B12A*

12 + B22A*
22 − B66A*

31

)
T2,xxy

+
(
B12A*

13 + B22A*
23 + D12 + B66A*

32 + D66
)
Xm,xxYn,y

⎤

⎦XmYn,y

⎫
⎬

⎭
dxdy

Γ33 =

∫ Lb

0

∫ La

0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

(
B12A*

11 + B22A*
12

)
T3,yyy +

(
B12A*

12 + B22A*
22 − B66A*

31

)
T3,xxy

− KsA44XmYn,y +
(
B66A*

32 + D66
)
Xm,xxYn,y

+
(
B12A*

14 + B22A*
24 + D22

)
XmYn,yyy

⎤

⎥
⎥
⎥
⎦

XmYn,y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dxdy

(B3) 

where Ti can be calculated based on the considered boundary conditions [6], Ti,x denotes the first derivative of Ti with respect to x, and A*
ij is 

calculated in the form of: 

A*
11 =

A22

A22A11 − A2
12
,A*

12 = −
A12

A22A11 − A2
12
,A*

13 =
A12B12 − A22B11

A22A11 − A2
12

,

A*
14 =

A12B22 − A22B12

A22A11 − A2
12

,A*
22 =

A11

A22A11 − A2
12
,A*

23 =
A12B11 − A11B12

A22A11 − A2
12

,

A*
24 =

A12B12 − A11B22

A22A11 − A2
12

,A*
31 =

1
A66

,A*
32 = −

B66

A66

(B4)  
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