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Abstract— This document presents a framework for lidar-
inertial localisation and mapping named 2Fast-2Lamaa. The
method revolves around two main steps which are the inertial-
aided undistortion of the lidar data and the scan-to-map
registration using a distance-field representation of the envi-
ronment. The initialisation-free undistortion uses inertial data
to constrain the continuous trajectory of the sensor during the
lidar scan. The eleven DoFs that fully characterise the trajectory
are estimated by minimising lidar point-to-line and point-to-
plane distances in a non-linear least-square formulation. The
registration uses a map that provides a distance field for the
environment based on Gaussian Process regression. The pose
of an undistorted lidar scan is optimised to minimise the
distance field queries of its points with respect to the map.
After registration, the new geometric information is efficiently
integrated into the map. The soundness of 2Fast-2Lamaa is
demonstrated over several datasets (qualitative evaluation only).
The real-time implementation is made publicly available at
https://github.com/UTS-RI/2fast2lamaa.

I. INTRODUCTION

Thanks to a high level of accuracy and an ever-decreasing
cost, lidars have become omnipresent in the robotics field.
This gain in popularity is explained by the reliability of
the provided geometric measurements and their low noise
level over large distances (1-200m). While technology is
evolving, nowadays lidars still consist of a limited amount
of laser beams that sweep the environment. This sweeping
action implies that lidar scans are subject to motion distortion
when the sensor moves. A common approach to correct the
distortion is using information from the accelerometer and
gyroscope of an Inertial Measurement Unit (IMU). Given
a set of initial conditions, the inertial data can be used to
predict the sensor position and thus correct the motion distor-
tion of the lidar data. However, in many scenarios, the initial
conditions are not readily available. This document presents a
framework for lidar-inertial localisation and mapping in non-
static environments that addresses the motion distortion issue
without the need for any initialisation procedure following
concepts from our previous works [1] and [2]. We have
named it Fast Field-based Agent-Subtracted Tightly-coupled
Lidar Localisation And Mapping with Accelerometer and
Angular-rate (2Fast-2Lamaa).

A key aspect of 2Fast-2Lamaa is that it can be operated
in dynamic environments with people moving in the sensor’s
surroundings and still provide a clean “people-free” map
of the environment. This feature is particularly useful in
applications where a map of the environment is created once

1All authors are with the Robotics Institue at the University of Technol-
ogy Sydney: cedric.legentil@uts.edu.au

(a) Point cloud map (b) Mesh map

Fig. 1. Example of the mapping result using 2FAST-2LAMAA on the
Newer College dataset [3]. (a) is the point cloud map in blue/grey, the
current lidar scan in tile teal, and the distance function around the sensor
with a jet colourmap. (b) is the final mesh reconstruction.

and then reused for localisation only. It alleviates the need
for manual removal of trails in the map left by the presence
of dynamic objects during the mapping stage. Concretely,
2Fast-2Lamaa builds atop some previous works [4]–[6]. It
performs optimisation-based lidar-inertial undistortion, filters
dynamic and unreliable points from the lidar scans, estimates
the global pose with scan-to-map registration and map clean-
ing, and provides a triangle mesh of the environment via
surface reconstruction (c.f. Fig. 1).

The proposed map representation is an efficient approx-
imation of our Gaussian Process (GP)-based distance field
from [5]. Accordingly, 2Fast-2Lamaa allows for fast queries
of the shortest point-to-obstacle distance and the correspond-
ing direction at any location in space. It is particularly useful
for downstream applications such as path-planning (e.g., [7],
[8]). While building on previous work, this work presents
original contributions:

• A novel method for reliability score computation for fast
scan-filtering (removing dynamic and unreliable points
from lidar scans).

• Real-time scan-to-map registration using distance fields.
• A novel uncertainty proxy for the distance fields.
• The integration of an efficient map cleaning mechanism

(a.k.a free-space carving) to clean the proposed map
representation from objects no longer in the environ-
ment.

• The integration of screen Poisson Surface reconstruction
[9] for triangle-mesh map generation.

• The open-source implementation of all the aforemen-
tioned components.

In its current form, this document mainly focuses on the
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Fig. 2. Method overview.

technical aspects of the framework to make it available to
the research community. Accordingly, there is no dedicated
related work section and the experimental analysis is limited
to qualitative results. Future work will widen the scope of
this document. Meanwhile, for an overview of the related
work we invite the reader to read [4]–[6].

II. FRAMEWORK OVERVIEW

Let us consider a rigidly mounted 6-DoF IMU and lidar
with TL

I the homogeneous geometric transformation between
the two sensors. We aim at estimating lidar pose T

Lt

W in a
world frame FW through time in dynamic environments as
well as establishing a map of the environment. The IMU
consists of a 3-axis gyroscope and a 3-axis accelerometer and
its pose T

It
W is linked to the lidar pose as TIt

W = T
Lt

W TL
I
−1.

As shown in Fig. 2, the proposed framework first per-
forms local undistortion of the lidar measurements by tightly

coupling the geometric and inertial data as in [6]. The core
principle is the use of continuous IMU preintegration [10] as
the continuous representation of the 6-DoF trajectory of the
sensor suite. Associated with point-to-line and point-to-plane
lidar residuals in a non-linear least-square optimisation, the
trajectory is estimated over short fixed periods of time.

Then, the undistorted geometric data is filtered to remove
unreliable points from each point cloud. The definition of un-
reliable point includes points that belong to dynamic objects
as well as points that do not provide much information about
the underlying surface (ambiguity on the surface normal).
This process is inspired by [4] as we locally analyse the
spatiotemporal covariance of the point cloud to classify each
point. The details of this novel filtering step are provided in
Section III-B.

Clouds of reliable points are used to both perform scan-
to-map registration of the data and increment a global map
of the environment. The voxelised map representation is
associated with accurate GP distance fields [5]. This allows
for scan-to-map registration in a simple non-linear least-
square formulation, and for downstream applications such
as shape reconstruction or path planning. When including
registered data into the global map, we introduce a free space
carving step to remove points belonging to objects that are no
longer present in the environment. An example is the case of
cars parked on the side of the road: while being considered as
static when first observed, the map should be updated when
the place is revisited in the absence of the vehicles.

III. UNDISTORTION / ODOMETRY

A. Lidar-inertial undistortion

In this subsection, we provide a succinct summary of the
lidar-inertial undistortion step of the proposed framework.
We invite the reader to refer to our previous work in [6] for
more details.

A key concept of the proposed lidar undistortion method
is the redefinition of what is a lidar scan. Traditionally,
a scan corresponds to the set of points collected by the
lidar throughout the duration of a single sweeping pattern,
typically a single 360◦ rotation for spinning lidars, and is
considered as one measurement. Here we consider the lidar
points independently and define a scan as the points collected
between arbitrarily chosen timestamps τi and τi+1. Each of
these scans undergoes a feature detection step where each
point is given a roughness score that represents the level of
planarity of the underlying surface. Points with low scores
are selected as planar features, and the ones with high scores
are used as edge features.

Using the continuous preintegration method introduced
in [10], we can characterise the trajectory of the sensors
continuously between τi and τi+1 as

Rt
Iτi

= ∆Rt
τi (1)

pt
Iτi

= (t − τi)v
τi
Iτi

+
(t − τi)

2

2
gIτi

+∆pt
τi , (2)



with Rt
Iτi

and pt
Iτi

the rotational and translational compo-
nents of Tt

Iτi
, ∆Rt

τi and ∆pt
τi the preintegrated measure-

ments, vτi
Iτi

the initial velocity of the IMU, and gIτi
the

gravity vector in the IMU frame at time τi. While omitted for
the sake of notation clarity, the preintegrated measurements
are functions of the gyroscope and accelerometer biases
[10]. Assuming constant biases between τi and τi+1 and
linearising the preintegrated measurements, the trajectory is
fully characterised by eleven Degree-of-Freedoms (DoFs)
with three for vτi

Iτi
, two for the direction of gIτi

, and six
for the biases.

By associating together the aforementioned planar and
edge feature points across consecutive scans using KDTrees
[11], and by using the preintegration-based continuous tra-
jectory (1) and (2), the scans are unistorted through the
minimisation of point-to-plane and point-to-line distances in
a non-linear least-square formulation. The eleven DoFs of the
state are estimated using the Levenberg-Maquardt algorithm.

B. Point filtering
This step is inspired by our previous work on dynamic

object detection in [4] which allowed us to individually label
points in lidar scans as dynamic or not. Here we relax the
classification problem into reliable and unreliable points. The
set of unreliable points includes points from dynamic objects
as well a points that are deemed to be untrustworthy in their
ability to represent the local shape of the environment. In
other words, an unreliable point and its spatial neighbour-
hood do not allow for robust estimation of the underlying
surface normal vector. Similarly to [4], the core principle is
to analyse the spatiotemporal patterns of each lidar/depth-
camera point and their spatial neighbourhood. While [4]
analyses the spatio-temporal normal vector computed with
the Principal Component Analysis (PCA) of the local spatio-
temporal covariance matrix, here we directly process the
covariance matrix. Avoiding the Eigendecomposition of PCA
allows for significantly faster computations.

Provided with a sequence of undistorted scans, the points
are sorted in voxels of predefined size. For each voxel, the
spatio-temporal covariance matrix Qi associated to a point
xi is computed as:

Qi =
1

|Ni|

∑
j∈Ni

x̂jx̂j
⊤

−mim
⊤
i , (3)

with
mi =

1

|Ni|
∑
j∈Ni

x̂j , (4)

x̂i the time-augmented lidar points as
[
xi ti

]⊤
, and Ni

the set of lidar points in the spatial neighbourhood of xi.
Checking the correlation between the the temporal com-
ponent and the spatial ones provides an efficient way to
classify the points belonging to the voxel. Concretely, with
the correlation matrix Ci as

Ci = diag(Qi)
− 1

2Qidiag(Qi)
− 1

2 =

[
1 cxy cxz cxt

cxy 1 cyz cyt

cxz cyz 1 czt
cxt cyt czt 1

]
(5)

Area of high
spatiotemporal

correlation

Ground

Fig. 3. Example of high spatiotemporal correlation in lidar data while the
local neighbourhood reliably represents the underlying surface. The example
is based on a point cloud that consists of three consecutive scans collected
at three different poses and timestamps as highlighted by the red, green,
and blue colours.

the points in the voxels are considered reliable if√
c2xt + c2yt + c2zt < thr. (6)

Additional checks are implemented to account for very
specific scenarios as shown in Fig. 3. Due to the sparse nature
of nowadays rotating lidars, the space-time correlation can be
non-null in a point’s neighbourhood while the corresponding
points still provide trustworthy information of the true shape
of the underlying surface. Formally, if (6) is not true, the
spatial PCA is performed to check if the points lie on a
near-perfect plane. If they do, the points in the voxel are
considered to be reliable.

IV. MAPPING

The proposed mapping process is based on the GP-based
distance field introduced in [5]. In simple words, [5] perform
standard GP regression considering the 3D points of a point-
cloud map as observations of a latent space that is equal
to one on the environment’s surface and fading to zero
away from it. This latent space can be interpreted as a
3D occupancy field/function. Applying a particular function
over the GP-inferred latent space allows for the accurate
estimation of the distance to the closest element of the map.
It has been demonstrated that such a method provides good
non-parametric interpolation capabilities enabling the use of
relatively sparse input point clouds. While providing high
levels of accuracy, the original formulation of [5] suffers
from the cubic O(n3) computational complexity of standard
GP regression (n the number of points in the map).

In this work, we focus on approximating the distance
field by only computing the GP inference locally leveraging
efficient data structures to access a point and its spatial
neighbourhood. While subdividing a large problem into
smaller problems is a common strategy, it is important to
not make parts of the map completely independent from one
another. This would lead to the loss of interpolation abilities
between each subdivision, thus hindering the accuracy and
robustness of [5]. Accordingly, it is important that each local
neighbourhood used for local inference possesses an overlap
with surrounding neighbourhoods.

A. Map data structure

The key of the mapping approach is to store in parallel a
sparse voxelised representation of the map and an associated
spatial index S that allows for closest neighbour and radius



Fig. 4. Example of the typical local neighbourhood used for GP inference.
The green points are the centroids of the cells neighbouring the red cell.

queries.1 The voxelised representation consists of a hashmap
mapping 3-integer tuples to cells and their various attributes.
Among the cells’ attributes, one can find the centroid of the
points that occurred in the cell and the average direction
vector from which the cell has been observed by the sensor.

Integrating new points in the map simply consists in
checking if the corresponding cell is already present in the
hashmap. If yes, the cell’s parameters are incremented with
the new point location and sensor position. Otherwise, a new
cell is created and its position is added to the spatial index.
Thanks to the hashmap properties, incrementing an existing
cell is constant-time O(1) on average. The insertion of a
new cell is slower with a O(log(n)) complexity. Fortunately,
this does not occur often (the map shown in Fig. 1 induced
around 685k cell creations while more than 300 millions of
lidar points have being processed).

B. Distance field query

The original formulation in [5] defines a latent space o(x)
that is arbitrarily set to one on the environment’s surface and
decreases toward zero further from the surface. The point
cloud map X represents noisy unit measurements of the
surface with σ the associated Gaussian uncertainty. The latent
space is modelled with a GP as

o(x) ∼ GP (0, k (x,x′)) , (7)

with k the covariance kernel function that specifies the
covariance between two instantiations of o(x). The latent
field is inferred at any location following

ô(x) = k(x,X) (K(X,X) + σI)
−1

1, (8)

with k(x,X) the covariance vector between the inference
point and the observations, and K(X,X) the covariance
matrix of the observations. By applying a reverting function
r to the latent field,2 we recover the distance to the closest
surface in the map as d(x) = r(o(x)). The main drawback

1One can think about the spatial index as being a standard KD-Tree
[11] however our implementation is based on a different data structures (cf.
Section V).

2We refer the reader to [5] for the exact expression of r.

(a) Without weighting (b) With proposed weighting

Fig. 5. Illustration of the impact of the proposed weighting mechanism
for our efficient GP-based distance field inference with sparse voxelised
observations. The cell centroids are in red and the colourmap represents
the distance field (the colour is purposely saturated at 1m for the sake of
visibility. (a) is the inference with equal weight for each voxel observation.
(b) is the inference with the proposed weighting based on the number of
lidar point that occurred in each cell. One can clearly see the improvement
in terms of smoothness, thus accuracy, of the field.

of this approach is the computation complexity of the matrix
in (8) as all the points in the point cloud map are considered.

In this work we exploit the sparse data structures dis-
cussed in Section IV-A to only perform (8) using a local
neighbourhood of map points (as illustrated in Fig. 4),
thus guaranteeing constant-time inference. Given a point x
anywhere in space, we can query the closest cell in the
voxelised map using the spatial index S, and then query
the local neighbourhood of the voxel centroid. Doing so,
it is possible to perform the distance field estimation d(x)
as in [5] locally resulting in a O(log(n)) computational
complexity due to the spatial index queries.

Directly using the cell centroids of the voxelised map as
surface observation allows for extremely fast inference. Un-
fortunately, it impedes the probabilistic properties of the GP
inference. Simply put, (8) give the same importance to each
observation as per the measurement noise model is set to σI.
Unfortunately, this is not realistic for voxel maps where one
cell might correspond to 100 points while the neighbouring
cell only to a couple of points. To alleviate this issue, we
propose to “weight” the cell centroid observations based on
the number of points that occurred in each cell. We call
that number of points the counter ci of a cell. Accordingly,
in (8), we replace the measurement uncertainty model σI
with diag(w) where wi (components of w) are computed
as a function of the cell’s counter and the maximum cell
counter in the neighbourhood. Note that a lower wi means
that the cell can be trusted more than a cell with a higher
wi. Thus the function that transforms ci to wi has to be
decreasing. We picked a decreasing sigmoid function in the
shape of 1

1+exp(−ci/cmax)
. Fig. 5 provides an illustration of

the impact of the proposed weighting mechanism on the
field’s smoothness.

C. Distance field uncertainty proxy

Before starting this paragraph it is important to note that
the distance field from our previous work [5] is not a GP as it
is obtained via non-linear operations over a GP latent space.
Accordingly, the naive GP variance inference [12] does not
provide satisfying uncertainty information about the distance



values d(x) away from the surface. Here, after reviewing the
mechanisms introduced [5], we present a novel uncertainty
proxy for the distance field.

To account for the uncertainty of the input point cloud, [5]
introduced a method for optimising the observation noise σ
based on a typical data sample. While this is a principled way
to address the issue of noisy input, it presents limitations.
One is the uniqueness of the noise parameter σ hindering
accuracy when considering non-stationary noise (both in time
and space). In realistic lidar-based odometry scenarios, some
surfaces will appear “thicker” than others in the incoming
point cloud due to various factors such as the noise in the
lidar pose estimate, the angle of incidence of the lidar beams,
etc. Regarding the uncertainty of the distance estimates, [5]
provides an elegant uncertainty proxy based on the degree
of similarity between the field’s gradient and the expected
gradient. However, this mostly addresses the issue of over-
interpolation in tight spaces (corridor-like pattern with width
in the order of magnitude of the kernel’s lengthscale). We
illustrate the aforementioned drawbacks in Fig. 6(c). Note
that the proxy from [5] is not relevant to the proposed
efficient distance field as the GP are computed locally
considering a small neighbourhood, thus, rarely presenting
corridor-like patterns.

Conceptually, the use of GP regression for point-cloud-
based distance field estimation does not fit the original pur-
pose of standard GP regression: with [5], we extrapolate the
field far from the data observations whereas GP regression
is an interpolation tool. In other words, we are seeking
information and its variance in areas of space far from where
the information is actually observed.3 Here, the proposed
distance uncertainty proxy “fetches” the information where
it is relevant for a given distance query by first selecting
the closest surface point to the query location (denoted
s(x) in the following). The location of s(x) can easily be
deduced from the inferred distance and gradient s(x) =
x − d(x)∇d(x). The following step consists of comparing
the local shape of the latent field o around s(x) with the one
of a noiseless surface observation. We propose to use a local
integration of the latent field to summarise the local shape
of the latent field ν(s(x)) =

∫∫∫
u∈Ss(x)

o(u)du, with Ss(x)

a small sphere around s(x). The integrals can be obtained
with linear operators on the GP inference. Eventually, the
proxy is defined as ϕ(x) = |ν(s(x)) − νcalib|, where νcalib
is computed with noiseless simulated data of a flat wall. It is
equal to zero when the distance prediction is trustworthy and
grows when the local shape differs from the ideal noiseless
wall data.

The proposed proxy can be computed with the standard
global GP from [5], but can also be made efficient with the
sparse structure used in this work. First, the computation
of s(x) can be omitted and approximated with the results
of the spatial index query that already occurred to find the

3Please note that the GP-inferred variance is still relevant close to
the surface and can directly be leveraged in applications such as surface
reconstruction.
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Fig. 6. Visualisation of the proposed uncertainty proxy when considering
non-stationary observation noise. (a) shows the estimated distance field with
the observation parameters tuned for the least noisy of the wall observations.
(b) shows the error compared with the ground truth. (c) is the uncertainty
proxy introduced in [5]. (d) is the proposed uncertainty proxy which patterns
match the area of low and high error in (b).

closest map voxel. Then, as the GP is computed locally,
the integral over the sphere around s(x) can be replaced
by the integral over the full R3 space. As the integral over
R3 of the kernel function is a constant c, ν(s(x)) ≈ c

∑
i αi,

with α = (K(X,X) + σI)
−1

1 (already computed in (8)).
In the end, the additional computation cost of our novel
uncertainty proxy is negligible. An example of the proposed
proxy is given in Fig. 6 (d). Note that in its current state,
the proxy does not directly provide the standard deviation of
the inferred distance. We will investigate this in our future
work to give ϕ a physical meaning.

D. Scan-to-map registration

Before inserting a point cloud in the map, the proposed
mapping algorithm performs “scan”-to-map registration us-
ing the aforementioned distance function d(x) in a similar
way to [7]. The point cloud registration consists of iteratively
minimising the point-to-map distance queries for each of
the cloud’s points. Conceptually, this approach performs
association-free registration thanks to the continuous nature
of the distance field. Formally, the sensor pose is estimated
by solving the following non-linear least-square problem:

T
Lτi

W
∗ = argmin

T
Lτi
W

∑
j∈Pi

(
d

(
T

Lτi

W

[
x̄j

1

]))2

. (9)

This problem is solved with the Levenberg-Maquardt algo-
rithm accounting for the SE(3) nature of T

Lτi

W .

E. Free-space carving

As explained earlier in this paper, the point filtering
step is designed to remove unreliable lidar points including
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Fig. 7. Illustration of the free-space carving process of the proposed
mapping framework (using [13]’s living room simulated environment).

the ones belonging to dynamic objects. Occasional failure
of the filtering can lead to unwanted points in the map.
Moreover, if we consider objects in the environment that
are static at a given time but removed from the scene at
a later time, we want a mechanism to update/clean the
map accordingly. Under the name of free-space carving the
proposed mapping algorithm remove unwanted cells from
the map before inserting a novel scan to it.

The principle of the proposed mechanism relies of a
comparison between the spherical projections of the current
scan and the map cells in the vicinity of the current sensor
position. First, the scan is projected onto an image-like data
structure by keeping the point with the smallest range in
each of the pixels. Then, the map points present in a radius
around the sensor position are queried and projected in the
aforementioned image-like data structure. If a map point
is projected in a pixel that has a larger range (minus a
threshold), it should be removed from the map as it occurred
between a surface currently observed and the sensor. Fig. 7
illustrates this process.

F. Meshing

Once the lidar data collection finishes, we aim at providing
a clean map of the environment by meshing our sparse
voxelised map with screened Poisson surface reconstruction
[9]. This method requires a point cloud and the associated

oriented normals as input. Given the proposed voxelised
map of the environment, the point cloud of the map is
readily available as the centroid of each of the cells. For
the normals, we leverage the GP-based distance field. Atop
the distance field d(x), our GP-based map allows the direct
inference of the gradient of d(x) thanks to the use of linear
operators on the GP kernel [14]. By inferring ∇d(x) for
each cell’s centroid, we obtain the corresponding normal
vectors. However, as the proposed distance field is not
signed, the normals are not necessarily consistent throughout
the environment. Thus, the direction of the normal vectors is
corrected using the position of the sensor when it observes
the points in each cell.

As per its original design, the screened Poisson recon-
struction aims at computing a closed mesh. Such a feature
is not necessarily convenient for robotic applications where
systems mostly deal with partial observations of the envi-
ronment. This leads to “hallucinations” that erroneously fill
with triangles in areas where no data have been collected.
To avoid this, we perform a simple mesh-cleaning operation
that consists of removing from the mesh every triangle whose
centroid or corners are too far from the surface according to
our distance field. Note that the Poisson surface reconstruc-
tion builds an indicator function similar to a truncated signed
distance field that crosses a level set on the surface, before
running a marching cube algorithm. In future work, we will
investigate how to elegantly obtain the level set crossing
based on our GP-based representation of the environment.

V. IMPLEMENTATION

In this section, we present and discuss some specific
details of our ROS-based [15] C++ implementation.

A. Low-level data structures

1) Hashmaps: All the hashmaps used in the work (for
voxel management in the point filtering and the global
map) are using the ankerl::unordered dense::map
implementation [16]. In [17], the author benchmarks numer-
ous C++ hashmap implementations and shows that theirs
significantly outperforms the one from the standard library.
The values of the hashmap are stored through pointers to
ensure the compactness of the hashmap storage.

2) Spatial indexing: The constraints on the choice of the
spatial index are as follows:

• Fast and scalable insertion of new elements.
• Possibility to remove points without the need to recreate

the index.
• Allowing for N-closest neighbour and radius search.

Both ikd-Trees [18] and PH-Trees [19] match the aforemen-
tioned requirements. We have conducted simple toy-example
evaluations of both methods and observed a significant
advantage for the PH-Tree implementation available at [20].

For efficiency, the spatial indexing structure is not updated
with the changing centroid of the voxels but keeps using
the coordinates of the first point that occurred in each
voxel. Accordingly, the closest neighbour or radius searches
performed with the “out-of-date” spatial index are only



(a) Sequence quad easy (b) Sequence quad hard (c) Sequence cloister

Fig. 8. Top-down visualisation of the final mesh map using 2FAST-2LAMAA on several sequences of the Newer College Dataset [3]
.

approximations. To address this, a distance query in our map
structure involves a K closest neighbours and computes the
GP-based distance field with the K voxels independently.
The distance returned is the smallest of the K resulting
distance values.

B. Non-linear optimisations

All the optimisations in this work (lidar-inertial undistor-
tion and scan-to-map registration) are based on the open-
source Ceres non-linear least-square solver [21]. In the case
of the scan-to-map registration (9), we use a Cauchy loss
function to attenuate the impact of outliers. The analytical
Jacobians of the residuals are provided to the solver. To lower
the computational cost of the overall pipeline we adopted
a basic key-framing strategy to perform (9) only when the
sensor has moved sufficiently or after a fixed time period.

C. ROS nodes

The open-source ROS1 and ROS2 code of our implemen-
tation is organised in several nodes:

• scan maker: A simple node to reorganise the raw
incoming lidar data into “scans” as defined in this paper.

• lidar feature detection: This piece of code
performs the feature point detection on each of the
previously constituted scans.

• lidar scan odometry: Here the IMU-aided scan
undistortion and the unreliable point filtering are per-
formed.

• gp map: This node contains our efficient GP-based
distance field representation. The scan-to-map registra-
tion, free-space carving mechanism, and triangle mesh
reconstruction are all part of this node.

• field visualiser: A simple visualisation node to
demonstrate queries of our distance-field map via calls
to the QueryDistField service. The returns are
published as a distance-coloured PointCloud2.

VI. EXPERIMENTS

We have tested the proposed framework on the quad and
cloister sequences of the Newer College Dataset [3].

Node CPU load [%] RAM usage [MB]

Scan maker 1.81 61
Feature detection 1.27 41
Scan odometry 5.36 918
GP map 14.11 737

TABLE I
COMPUTATIONAL LOAD OF THE DIFFERENT NODES OF

2FAST-2LAMAA.

The data was collected with a 128-beam Ouster lidar and its
embedded 6-DoF IMU. Note that the dataset also provides
visual information from multiple cameras. That information
is not used in the proposed pipeline but we display it in our
qualitative results to give additional context information to
the reader. Fig. 8 shows the obtained map overview with
the quad easy, quad hard, and cloister sequences,
while Fig. 9 provide closer viewpoints. As illustrated further
in Fig. 10, one can see that despite people moving around
the environment, the resulting map is free from any 3D trails
typically left by moving objects in lidar-built maps.

All the experiments are run in real-time on a consumer-
grade laptop equipped with an i7-1370p CPU and 32GB of
RAM. In Table I, we provide the CPU and RAM usage
for the different nodes of the pipeline on the cloister
sequence. Note that the triangle mesh reconstruction is not
considered there as it is a one-off computation automat-
ically performed at the end of the data recording. The
time consumption for the reconstruction is detailed in Ta-
ble II. Regarding downstream application uses of the distance
field, the query time for a single point is around 250µs.
However, when querying multiple points and using some
caching (GP computation reuse), the average per-query time
is around 5µs.

In order to compare with other distance field frameworks
such as [22] which assumes already registered scans, we
provide the average computation time per scan (keyframes)
with and without the registration. The results are shown in
Table III. We have also included a version of the registration
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Fig. 9. Visualisation of the 2FAST-2LAMAA mesh maps associated with
camera image for reference (not used in the estimation pipeline).

Reconstruction time [s]

Normal queries 6.52
Screened Poisson 19.77
Mesh cleaning 3.48
Writing to disk 0.68

Total 30.45

TABLE II
TIME CONSUMPTION OF THE TRIANGLE MESH SURFACE

RECONSTRUCTION.

Version Time[ms]

GP reg. + free-space carving + map update 277
Approx. reg. + free-space carving + map update 143

Free-space carving + map update 73.2
Map update 15.2

TABLE III
PER-SCAN TIME CONSUMPTION OF GP MAPPING NODE.

that only uses the point-to-point distances directly out of the
spatial indexing without the use of the GP-based distance
field in the cost function (9) (the data structure still allows
for distance field queries though). When compared with the
benchmarked methods in [22], the proposed implementation
(free-space carving and map update) is faster by almost an
order of magnitude. Note that the free-space carving and map
update are both performed in a single thread. It makes the
proposed mapping node attractive for low-power embedded
systems.

VII. CONCLUSION

In this document, we have presented a novel lidar-inertial
framework named 2Fast-2Lamaa for localisation and map-
ping in dynamic environments. It builds on lidar-inertial
undistortion of the sensor data through the estimation of the
system’s velocity, gravity direction, and inertial biases. This
is followed by a global registration step using a continu-
ously incremented GP-based distance field. The soundness
of 2Fast-2Lamaa is shown over sequences from the Newer
College Dataset [3] and we have provided detailed informa-
tion about the computation requirements.

In the future, we will perform a thorough evaluation of
2Fast-2Lamaa over a wide range of dataset. Additionally,
as the method performs scan-to-map registration with a
single global map without storing the past trajectory, it
does not possess a mechanism to integrate explicit loop-
closure constraints. While not required for relatively small
environments as shown in this document, it is crucial to
address the unavoidable drift over large-scale datasets. Thus,
the use of a sub-mapping strategy and graph-based pose
estimation will be part of our future work.
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